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Abstract 

Concrete electrical resistivity is an important property in the assessment of reinforcement 

corrosion in concrete, and an essential parameter in the design and operation of cathodic 

protection for reinforced concrete structures. Water and chloride contents in concrete are 

highly variable for reinforced concrete structures in real world hostile environments. It leads 

to the interest to the characterization of their coupling effects on the concrete electrical 

resistivity. This paper at first investigates the current available models. Seeing that all the 

current models are purely empirical, this paper proposes an improvement with a semi-

empirical model. The improvement highlights that the correlation between concrete electrical 

resistivity and the water content intrinsically establishes on the pore-size-distribution of the 

pore structure of concrete. At the end, the proposed model has been tested on two sets of 

experimental data and been compared with other two empirical models. 

 

Keywords: Durability-related properties, Electrical properties, Moisture-related properties, 

Plain concrete 
 

 

 

* Corresponding author: y.wang@salford.ac.uk 

  



2 
 

Notation 

 

ρc : concrete electrical resistivity, Ω-m 

ρp : electrical resistivity of cement paste, Ω-m  

ρw : electrical resistivity of concrete pore water solution, Ω-m  

ρwf : electrical resistivity of the water film on pore surface, Ω-m 

S, Sw : water saturation in concrete, pore water volume/pore volume 

ϕ : porosity 

φ : cement paste fractional volume in concrete 

θ : concrete pore water volumetric fraction, pore water volume/concrete volume   

Cl : total chloride content in terms of cement or concrete weight, % 

Cl/W : ratio of chloride mass to water mass  

w/c : water to cement ratio 

T : absolute temperature, K 

A, a, b, c, m, n, P0, α, β, f0, ρ0 : model parameters 
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1. Introduction 

Reinforced concrete (RC) used as structural material has outstanding advantages on cheap 

cost, convenient construction and high strength (Gao et al., 2011). However, for a long time, 

the corrosion of the steel reinforcement in concrete has become a major reason for the 

premature deterioration of RC structures, and posed serious problems in economy and safety 

(Sun et al., 2010). In the efforts to arrest the conditions for steel corrosion, cathodic 

protection (CP) so far has proved the most effective and reliable technique and has been 

increasingly used in civil engineering for structural repair and maintenance (Wilson et al., 

2013).  

 

Numerical modelling and simulation today has been popular employed for RC structure CP 

design and operation analysis (Qiao et al., 2015; Liu and Shi, 2012; Qiao et al., 2016). The 

mathematical model describing the CP process running in RC is generally based on the 

Nernst-Planck equation describing the principles of ionic transportation in concrete pore 

solution and the Ohm’s law describing the implemented DC current flow in concrete (Wang 

2011). To solve the two equation model, concrete electrical resistivity as a material property 

is required at the first hand. At the second hand, concrete resistivity also plays an important 

role in the reinforcement corrosion process to influence the rebar surface potential and the 

corrosion current (Hornbostel et al., 2013). For the reason, accurate estimation of the 

electrical resistivity at varied concrete conditions is important to help assess the state of the 

reinforcement for CP design or under CP operation. 

 

Fundamentally, concrete electrical resistivity depends upon the formation of concrete pore 

structure, pore water content, as well as the chemical composition of the pore water solution 

(Azarsa and Gupta, 2017; Layssi et al., 2015; Banea 2015). These factors are consequently 

decided by the nature of the component materials, mixture proportion, water to cement ratio 

(w/c), curing methods, and the exposure and environment (Whiting and Nagi, 2003; Elkey 

and Sellevold, 1995). For mature concrete, pore water saturation degree has been identified to 

have the most influence on concrete resistivity. It has been found that, for example, when 

water saturation changed from 20% to 100%, concrete electrical resistivity decreases in three 

orders from 6×106 to 7×103 Ohm-cm (Elkey and Sellevold, 1995; Gjorv et al., 1977). 

However, it has also been noticed that when the water saturation degree is over 70% or below 

35%, the electrical resistivity is either too small or too large to have further big concern of the 
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effect of water content change (Lopez 1993). It was also found that when concrete exposed to 

a relativity humidity below 40% electrical resistivity was too large to be stable (Chen et al., 

2014). The large resistivity at low water saturation may be explained by the fact that the 

water in the gel pore is much less electrically conductive due to the strong chemical bond to 

the inner surfaces of gel pores (Zaccardi and Maio, 2014) and their disconnected distribution. 

It was suggested that the electrical resistivity of concrete presents an exponentially decreasing 

trend along with the increase of the pore water content (Saleem et al., 1996; Zaccardi et al., 

2009; Zaccardi and Maio, 2014). Second to water, chloride ions in concrete has been 

identified the other important factor influencing concrete electrical resistivity due to its wide 

presence in the exposed environments and high mobility in concrete. Once reaching the 

surface of the steel reinforcements in concrete, chloride will play an important role in the 

corrosion process. Although, in general, an inverse correlation exists between the chloride 

content and concrete electrical resistivity (Henry, 1964; Zaccardi and Maio, 2014), so far, 

there hasn’t had a widely recognised quantitative model to characterize their relationship. 

 

In spite of the important role of electrical resistivity, most of previous work on numerical 

modelling and simulation of the CP process on concrete structures neglected the variation of 

concrete resistivity with the change of water content and the ionic redistribution in concrete 

under varied environmental situations. In these work, by assuming the resistivity as a 

constant, the electrical current and potential distribution in concrete was in general simply 

described using the Laplace equation. However, in order to accurately evaluate the electrical 

potential of the reinforcement under CP conditions, it needs to consider the variation of 

concrete electrical resistivity. A few researches so far have reported the combined influence 

of water and chloride contents on concrete electrical resistivity. However, the characterisation 

and modelling of the electrical resistivity under the coupling influence of the two important 

factors are still open for discussion for accuracy, reliability and fundamental underlying 

mechanisms. To provide an efficient tool for CP process modelling, this paper, at first, 

investigates two existing empirical models of concrete electrical resistivity. Thereafter it 

proposes a new semi-empirical model based on the understanding that the relationship 

between electrical resistivity and water content has an intrinsic linkage to the pore size 

distribution of concrete pore structures. At last, the three models are tested and compared on 

two sets of reported experimental data. 

 

2. Two Empirical Models 
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Jiang and Yuan (2012) suggested a concrete electrical resistivity model as expressed in Eq. 

(1), which considers the effects of water-cement ratio, chloride-ion content, pore water 

saturation and temperature. 

 

𝜌𝑐 =  [750,605 (
𝑤

𝑐
) − 106,228] 𝑒𝑥𝑝 [−0.4417𝐶𝑙 − 7.7212𝑆 + 2889(

1

𝑇
−

1

303
)] (1), 

 

where c is concrete electrical resistivity; w/c is the water-cement ratio; Cl is the total 

chloride-ion content (%) in terms of cement in concrete; S is the pore water saturation of 

concrete near the surface of the reinforcing bar, and T is the absolute temperature (K) of 

concrete. For a specific concrete under a certain temperature condition, the Eq. (1) may be 

rewritten into a general form as: 

 

𝜌𝑐 =  𝐴𝑒𝑥𝑝[𝑎𝐶𝑙 + 𝑏𝑆 + 𝑐]      (2), 

 

where A, a, b and c are four constants depending on the formation and the temperature of 

concrete. However, it has been found that using either Eq. (1) or (2) gave a low accuracy in 

many cases under the variation of pore water and chloride contents. 

 

Another attempt was to use the Archie’s law (Zaccardi et al., 2009; Atkins and Smith, 1961; 

Whittington, 1981). A formula, shown in the form of the Eq. (3) below, was firstly proposed 

to describe the electrical resistivity of rocks for the effects of the porosity and the degree of 

brine saturation (Artchie, 1942). 

 

𝑅𝑟 = 𝑎𝜙−𝑚𝑆−𝑛𝑅𝑏       (3), 

 

where 𝑅𝑟 is the electrical resistivity; 𝑅𝑏 is the brine electrical resistivity; S is the degree of 

brine saturation in rocks; 𝜙 is the rock porosity; a is a factor for tortuosity; m and n are two 

constants. Assuming that concrete electrical resistivity is primarily decided by the cement 

past, Atkins and Smith (1961) revised the Archie’s law into the form below and applied it on 

concrete: 

 

𝜌𝑐 = 𝐴𝜑−𝑚𝜌𝑝        (4), 
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where ρc is concrete electrical resistivity; p is the electrical resistivity of the cement paste in 

concrete; 𝜑  is the fractional volume of cement paste; A and m are two constants. Later, 

having recognised that the electrical conductivity of the pore solution is several orders higher 

than that of all the other phases in concrete, Archie’s law was further revised into the form of 

the Eq. (5) to explicitly consider the effect of water content variation in concrete (Zaccardi et 

al., 2009; Whittington et al., 1981). 

 

𝜌𝑐 = 𝐴𝜃−𝑚𝜌𝑤        (5), 

 

where 𝜌𝑤  is the electrical resistivity of pore water solution, which depends upon the 

composition of the pore water solution; 𝜃 is the pore water volumetric fraction of concrete; A 

and m are two redefined constants. To explicitly describe the effect of the variation of the 

chloride content in concrete pore solution, in this paper, we rewrite the Eq. (5) into the 

following form: 

 

𝜌𝑐 = 𝐴𝑆𝑤
−𝑛𝜌𝑤(𝐶𝑙)       (6), 

 

where Sw is the degree of pore water saturation, ρw(Cl) is the electrical resistivity of pore 

water solution, which is simply assumed to depend on the chloride content; A and n are two 

constants related to the pore structure, such as porosity and tortuosity. Referring to the work 

by Jiang and Yuan (2012), we use a general exponential function to describe the influence of 

chloride content, i.e.: 

 

𝜌𝑤 = 𝑎𝑒𝑏𝐶𝑙 + 𝑐        (7), 

 

where a, b and c are three constants depending on the other condition of the concrete pore 

water solution such as temperature, pH and etc. Substituting Eq. (7) into (6) generates a new 

revision of the Archie’s law, i.e.: 

 

𝜌𝑐 = 𝑆𝑤
−𝑛(𝑎𝑒𝑏𝐶𝑙 + 𝑐)       (8), 

 

where a and c are two redefined constants merged with A in the Eq. (6). 

 



8 
 

3. A Semi-Empirical Model 

Although both Eqs. (2) and (8) provide the expected explicit form to describe the coupling 

influence of the water and chloride content variation on concrete electrical resistivity, they 

have little fundamental explanation for the underlying mechanism. Fundamentally, the pore 

water solution in concrete acts as the solely media for electrical conductivity. The more the 

water the higher the conductivity or the lower the electrical resistivity. In addition to absolute 

water quantity, the water distribution in concrete pore network plays an important role in 

deciding the electrical conductivity as well. Under unsaturated state, the bulk water phase 

presents two configurations in pores. The major part of water predominantly occupies the 

pore space of small sizes while a water film covers on all the empty pore surfaces. Such water 

occupying configuration state is due to the physicochemical absorption of pore surfaces and 

capillary condensation (Wang et al., 2008; Wang and Wu, 2008). Consequently, the water 

distribution or configuration at varied pore water saturation degree depends upon the pore 

size distribution. As a result, the influence of water content on electrical conductivity or 

resistivity is intrinsically related to concrete pore size distribution. Such intrinsic relationship 

is similar as that between the thermal conductivity of unsaturated soils and soil water 

saturation (Jin et al., 2017). To reflect the underlying mechanism, we revise the work by Jin 

et al. (2017) to characterise and model concrete electrical resistivity at varied water content. 

Based on the physical chemistry theory of interfacial phenomena, for unsaturated porous 

media in general, the total pore volume average pressure of the bulk water phase in filled 

pores and the total pore volume average pressure of the bulk vapour phase in empty pores can 

be expressed respectively using two functions of water saturation (Wang 2010; Wang et al., 

2012; Jin et al., 2017), i.e.: 

 

 𝑃𝑤 =
𝑃0

𝛼
[𝑒𝑥𝑝(𝛼𝑆𝑤) − 1]      (9a) 

 𝑃𝑣 =
𝑃0

𝛽
[𝑒𝑥𝑝(𝛽(1 − 𝑆𝑤)) − 1]     (9b) 

 

where Pw and Pv are the total pore volume average pressures of the water phase and the 

vapour phase pressure in porous media; Sw is the pore water saturation degree; P0, α, β are 

three constants related to the nature of the interfacial phenomenon at pore surfaces. Under 

thermodynamic equilibrium, the pressure difference of the two phases will be balanced by the 

interfacial meniscuses between the bulk water phase and the bulk vapour phase, and is related 

to the pore size distribution (Wang 2010; Wang et al., 2012).  
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Water pressure and water electrical conductivity has an intrinsic thermodynamic relationship. 

Both of them relate to the water molecular and ionic dynamics. On the ground, we adopt the 

same form of the Eq. (9) here to describe the electrical conductivity or resistivity of the bulk 

water in filled pores and the water film on the empty pore surfaces (the water film thickness 

relates to the vapour pressure in the empty pores), respectively. It gives that the concrete 

electrical resistivity at varied water saturation degree may be expressed as: 

 

 𝜌𝑐 = 𝜌𝑤 + 𝜌𝑤𝑓 =
𝜌0

𝛼
[𝑒𝑥𝑝(𝛼𝑆𝑤) − 1] +

𝜌0

𝛽
[𝑒𝑥𝑝(𝛽(1 − 𝑆𝑤)) − 1] (10), 

 

where ρc is the concrete electrical resistivity; ρw and ρwf indicate the resistivity of the bulk 

water phase and the water film phase in concrete, respectively. By explicitly distinguishing 

the two water configuration phases, Eq. (10) has naturally taken account of the effect of pore 

size distribution. Rearranging Eq. (10) generates: 

 

 𝜌𝑐 = 𝜌0 [−
1

𝛽
−

1

𝛼
+ 𝑒𝑥𝑝(𝛼𝑆𝑤)/𝛼 + 𝑒𝑥𝑝(𝛽(1 − 𝑆𝑤))/𝛽]  (11). 

 

A similar form as the Eq. (11) has been successfully used to model the water vapour 

adsorption isotherm of concrete materials for pore size distribution analysis (Wang et al., 

2012). Based on the Eq. (11), for easy implementation and memorising, a simplified form 

was suggested as: 

 

 𝜌𝑐 = 𝑓0 + 𝜌0[𝑒𝑥𝑝(𝛼𝑆𝑤) + 𝑒𝑥𝑝(𝛽(1 − 𝑆𝑤))]   (12), 

 

where f0, ρ0, α and β are four redefined constants. The form of Eq. (12) has proved to generate 

a close result on water vapour adsorption isotherm compared with that of the similar form of 

Eq. (11) (Wang et al., 2012). For the reason, this paper uses the simplified form, Eq. (12), to 

describe effect of water saturation on concrete electrical resistivity. 

 

To characterise the coupling effect of water and chloride contents on concrete electrical 

resistivity, this paper uses an exponential form function for the chloride effect to weigh the 

Eq. (12) and derives a model below: 
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 𝜌𝑐 = exp (𝑎𝐶𝑙𝑏)(𝑓0 + 𝜌0[𝑒𝑥𝑝(𝛼𝑆𝑤) + 𝑒𝑥𝑝(𝛽(1 − 𝑆𝑤))])  (13), 

 

where Cl is the chloride content in concrete; a and b are two constants. In the next section, we 

use the Eqs. (2), (8) and (13) to model the experimental data of concrete electrical resistivity 

measurement to compare their performance. 

 

4. Model Test 

Two sets of experimental data were selected. One is from a reference published (Saleem at al., 

1996). The other one is from an experimental study together with this work (Oleiwi, 2018). 

The MATLAB curve fitting tool was employed to perform the modelling. The model 

performance (goodness-of-fit) was evaluated in terms of two statistical measures, they are the 

root-mean-square error (RMSE) and the R-squared, which are defined as: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−f𝑖)2𝑛

𝑖=1

𝑛
       (14), 

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = √1 −
∑ (𝑦𝑖−f𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦�̅�)2𝑛
𝑖=1

     (15), 

 

where 𝑦�̅�  is the average of all the experimental data yi, n is the total number of the 

experimental data, fi is the modelling value from data fitting. The lower the RMSE value the 

better the modelling. Meanwhile, a value of R-squared closer to 1 indicates that the model 

has almost all the variability of the response data around its mean. 

 

Saleem et al. (1996) conducted a series of study on the effects of both chloride and moisture 

(water) contents on the electrical resistivity of concrete made with w/c 0.45. The water 

content was accounted in terms of the mass percentage to the oven dry specimens, while the 

chloride content was accounted in terms of the weight in 1 m3 volume of the specimens. In 

the current study, with an estimation that the dry concrete specimens have a density of 

2000kg/m3 and a porosity of 0.13, these data are converted to pore water saturation and 

chloride to water mass ratio. Fig. 1 compares the Eqs. (2), (8) and (12) to model the variation 

of the electrical resistivity at different water contents under certain chloride contents. It shows 

that Eqs. (12) and (8) outperformed Eq. (2). Both of them have produced a very closely good 

result fitting to the experimental data. 
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Figure 1. Comparison of the three models on Saleem et al.’s data at certain chloride contents 

 

Fig. 2 compares the modelling results using Eqs. (2), (8) and (13) to fit all the reported 

experimental data in the linear-scaled 3D space of electrical resistivity against the pore water 

saturation (Sw) and the chloride to water mass ratio (Cl/W), respectively. Although all the 

three models present a surface fitting to the measurement points, it can be seen that Eqs. (8) 

and (13) have produced much better, stable and reliable results than Eq. (2) which fails to 

represents all the experimental data involved. Fig. 3 compares the modelling statistics of the 

three models. It shows that the RMSEs of the Eqs. (8) and (13) are about half of that of the 

Eq. (2) and quite small compared to the value range of all the experimental data. The R-

squared values of the Eqs. (8) and (13) are very close to unity, which indicate that deviation 

around the mean value is small as well. Overall the model Eq. (13) presents the best 

performance. 
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(a) Modelling result of Eq. (2) 

 

    

(b) Modelling result of Eq. (8) 

    

(c) Modelling result of Eq. (14) 

Figure 2. Modelling the coupling effect of water and chloride contents on concrete resistivity 

for the data by Saleem et al. (1996) 
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Figure 3. Modelling statistics for the data by Saleem et al. (1996) 

 

Eqs. (2), (8) and (13) have been compared on another set of the data from an experimental 

study together with this work. The concrete specimens were made using locally produced 

Portland limestone cement, CEM II/A-LL conforming to the British standard BS EN 197-1: 

2011, for the concrete mixes at 390 kg/m3. Natural sand of the maximum size of 4.75mm and 

a relative density of 2.47 was used for the fine aggregate at 580 kg/m3. The coarse aggregate 

was the limestone of 10mm maximum size and 2.49 specific gravity and used at 1125 kg/m3. 

The mix of concrete followed the British standard, BS 1881-125:2013. Four different 

chloride contents were prepared by adding NaCl in the mix water. The added chloride 

contents are 0, 1.5, 3 and 4.5% of the cement mass, respectively. Three water to cement ratios 

(w/c = 0.4, 0.5 and 0.6) were used for each chloride content. All the casted concrete samples 

were cured by submerged in the water of the same chloride content as that used for their 

mixes. This fully saturated curing method aims for an even distribution of chloride in the 

concrete and therefore makes the test results more reliable. The actual total chloride content 

in the cured samples for each mixture were measured specifically. For each mix, three 

specimens were prepared for each property measuring, and the final result took the average of 

the triplicate measurements. The electrical resistivity was measured using internal electrode 

methods. The detail of the experiments has been reported in the reference (Oleiwi. 2018). Fig. 

4 compares the Eqs. (2), (8) and (12) to model the variation of the electrical resistivity at 

different water contents under certain chloride contents, where the electrical resistivity is 

presented in log scale to show difference more clearly. Fig. 5 shows the residuals of the 

modelling, the difference between the fitting results to the experimental data (i.e. fi-yi). It can 

be seen that except at an extremely low water saturation (<<0.1) Eq. (12) produced the best 

fitting (close to the neutral line, 0) to all other data. The underperformance at very low water 
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contents may be due to the unstable measurement of the electrical resistivity under the 

situation. 

 

 

(a) w/c = 0.4 
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(b) w/c = 0.5 

 

(c) w/c = 0.6 

Figure 4. Comparison of the three models on Oleiwi’s data at certain chloride contents 

 

 

Figure 5. The residues of the three models on cases in Fig. 4 

 

Fig. 6 shows that using the exponential weighting term in Eq. (13) to model the chloride 

effect on electrical resistivity of fully saturated samples, which proves a good performance. 
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Figure 6. Modelling chloride effect using the exponential weighting term in Eq. (13) 

 

Fig. 7 shows the results using the Eq. (2) to fit all the experimental data in the linear-scaled 

3D space of electrical resistivity against the pore water saturation and total chloride content in 

terms of pore water content. Visually, the fitting surfaces for the three concretes of different 

w/c have showed a good agreement with the experimental data in this case.  
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Figure 7. Modelling the coupling effect of water and chloride contents on concrete resistivity 

using Eq. (2) for the data by Oleiwi (2018) 

 

Fig. 8 shows the results using the Eq. (8) to fit these experimental data in the same way. A 

visual inspection shows that the fitting surfaces for the three concretes of different w/c are 

close to that represented by the Eq. (2) in the Fig. 6. 

 

    

    



18 
 

    

Figure 8. Modelling the coupling effect of water and chloride contents on concrete resistivity 

using Eq. (8) for the data by Oleiwi (2018) 

 

Fig. 9 shows the results using the Eq. (13) to fit all the experimental data again in the same 

way. A visual inspection shows that Eq. (13) has produced a better performance than Eqs (2) 

and (8) in representing the experimental measurements over all. 
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Figure 9. Modelling the coupling effect of water and chloride contents on concrete resistivity 

using Eq. (13) for the data by Oleiwi (2018) 

 

Fig. 10 compares the modelling statistics of the three models for this set of data. It shows that 

in all the cases the R-squared values of the three models are very close to unity. However, the 

model Eq. (13) presents the best performance with a quite small the RMSE. It produces the 

smallest RMSE and the highest R-squared value in all the cases. 

 

 

Figure 10. Modelling statistics for the data by Oleiwi et al. (2018) 
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5. Conclusions 

This paper has investigated the characterization models for the coupled effect of water and 

chloride contents on the electrical resistivity of concrete of different pore structures (related 

to different w/c). It proposed a semi-empirical model based on the understanding that 

concrete electrical resistivity at varied water content is related to the pore size distribution of 

the pore structure. Comparison of the three different models have been conducted on two sets 

of experimental data. From the investigation, we can draw the following conclusions: 

1. Archie’s law demonstrates a good representation for the effect of degree of pore water 

saturation on the concrete electrical resistivity, while an exponential function well 

represents the effect of chloride. 

2. The proposed semi-empirical model established on the water phase configurations in pore 

network highlights the important role of the pore size distribution of pore structure in the 

electrical resistivity of unsaturated concrete.  

3. The semi-empirical model has demonstrated a more accurate and reliable performance 

compared to the other two empirical models to characterize the coupling effect of the 

variation of water and chloride contents on concrete electrical resistivity. 

4. The proposed semi-empirical model provides a useful tool for the modelling of the 

cathodic protection process in concrete to describe the coupling effects of the water and 

chloride variation when reinforced concrete structures expose to varying severe 

environments. 
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