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Abstract 
Reactive magnetohydrodynamic (MHD) flows arise in many areas of nuclear reactor transport. 
Working fluids in such systems may be either Newtonian or non-Newtonian. Motivated by these 
applications, in the current study, a mathematical model is developed for electrically-conducting 
viscoelastic oblique flow impinging on stretching wall under transverse magnetic field. A non-
Fourier Cattaneo-Christov model is employed to simulate thermal relaxation effects which 
cannot be simulated with the classical Fourier heat conduction approach. The Oldroyd-B non-
Newtonian model is employed which allows relaxation and retardation effects to be included. A 
convective boundary condition is imposed at the wall invoking Biot number effects. The fluid is 
assumed to be chemically reactive and both homogeneous-heterogeneous reactions are studied. 
The conservation equations for mass, momentum, energy and species (concentration) are 
altered with applicable similarity variables and the emerging strongly coupled, nonlinear non-
dimensional boundary value problem is solved with robust well-tested Runge-Kutta-Fehlberg 
numerical quadrature and a shooting technique with tolerance level of 10−4. Validation with the 
Adomian decomposition method (ADM) is included. The influence of selected thermal (Biot 
number, Prandtl number), viscoelastic hydrodynamic (Deborah relaxation number), Schmidt 
number, magnetic parameter and chemical reaction parameters, on velocity, temperature and 
concentration distributions are plotted for fixed values of geometric (stretching rate, 
obliqueness) and thermal relaxation parameter. Wall heat transfer rate (local heat flux) and wall 
species transfer rate (local mass flux) are also computed and it is observed that local mass flux 
increases with strength of heterogeneous reactions whereas it decreases with strength of 
homogeneous reactions. The results provide interesting insights into certain nuclear reactor 
transport phenomena and furthermore a benchmark for more general CFD simulations. 

Keywords: Oblique stagnation flow; Non-Fourier conduction; Oldroyd-B viscoelastic fluids; Chemical 
reaction; Radiative heat transfer; nuclear reactor near-wall transport. 
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1.INTRODUCTION 

Non-Newtonian liquids are encountered in many technological applications including polymer 

processing, biotechnology, lubrication of aerospace and automotive vehicles and nuclear 

thermo-hydraulics [1]. Such fluids may be delineated broadly into three classes, namely “rate 

type”, “differential type” and “integral type”. The Oldroyd-B fluid model belongs to the “rate 

type” of model and is a generalization of the upper-convected Maxwell model. Rate models 

provide features not possible in the differential [2] or integral type models, and these include 

stress relaxation, material retardation, nonlinear creep and normal stress differences in simple shear 

flows. However further modification is required to simulate shear thinning/shear thickening effects. 

Although the original Oldroyd-B model is in fact a three-dimensional rate-type models satisfying frame 

indifference, in modern fluid dynamics it has evolved into one of the simplest constitutive fluid models 

available for modelling viscoelastic flows under general flow conditions. In recent years this 

model has stimulated renewed interest as it quite accurately captures the shear-stress-strain 

characteristics of many working fluids encountered in the nuclear, petroleum and materials 

processing industries. Tan et al. [3] investigated Oldroyd-B fluid transport in porous media with 

a modified Darcy law, employing a Fourier sine transformation. Further studies of Oldroyd-B 

fluids include transient hydrodynamics in a helical pipe [4], inclined channel slurry flows [5], 

bifurcating heat transfer in permeable media [6] and flat plate accelerating flows [7]. 

The above studies ignored electrically-conducting properties of the fluid. However, many 

working fluids are doped with salts or carry electrical charges. To simulate this behaviour the 

preferred approach is magnetohydrodynamics (MHD). MHD is important in modern nuclear 

engineering systems since via the imposition of a magnetic field it is possible to successfully 
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control the heat transfer rates in ducts, channels etc. MHD features in lithium blanket systems 

[8], nuclear coolant pumping [9] and tokamak liquid metal systems [10]. Experimental studies 

of such flows are very challenging. Numerical and mathematical modelling has therefore 

emerged as a major complimentary area of study. In flow simulations important parameters 

which characterize MHD flows include the Hartmann number (used for the Lorentzian body 

force effect), Chandrasekhar number (the square of the Hartmann number and a popular 

parameter also for magnetic convection), Batchelor number (important when magnetic 

induction arises) and the magnetic Prandtl number (relative influence of momentum diffusion 

rate and magnetic diffusion rate). Han et al. [11] employed a finite volume technique to study 

the heat transfer in hydromagnetic rectangular ducts flow. Khan et al. [12] used a Laplace 

transform technique to derive closed-form solutions for oscillatory magneto-convection in an 

Oldroyd-B fluid. Zheng et al. [13] utilized Fox H-functions and the discrete Laplace transform to 

analyse hydromagnetic Oldroyd-B slip flow. These studies all confirmed a substantial 

modification in velocity field or thermal field with magnetic field imposition.  

Stagnation point flows constitute yet another important family of flows in which boundary layer 

theory [14] may be applied. Such flows are characterized by viscous (or inviscid) fluids impinging 

on solid surfaces and manifest in a vanishing of the local velocity and an associated peak in 

stagnation pressure. They arise in many areas of chemical engineering (food stuff processing), 

coating of components in the polymer industry, aircraft wing aerodynamics, duct flows in nuclear 

reactors and spray cooling of metallic components. In nuclear and chemical engineering the solid 

surface may also be distensible i.e. may contract or extend. Chiam [15] studied the stagnation 

flow of Newtonian viscous fluid over linearly stretching wall. Ishak et al. [16] computed 
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incompressible Newtonian flow solutions on an upright permeable stretched surface with non-

isothermal conditions using Keller’s box finite difference. Mixed convection heat transfer in 

stagnation flows is also of some interest in engineering systems. Buoyancy forces are generated 

when temperature differences becomes significant. These forces amend the hydrodynamic 

stream and temperature fields which interact differently in the presence of buoyancy. These 

forces may be in the or opposite to the flow direction and may therefore increase or decrease 

heat transfer especially at boundaries. Many such studies have been communicated for non-

Newtonian fluids with and without magnetic field effects. Gupta et al. [17] used variational finite 

element code to analyse magnetized stagnation flow of micropolar fluid from an extending sheet 

with wall transpiration. Uddin et al. [18] used Maple quadrature to compute the stagnation flow 

of nanofluid containing gyrotactic micro-organisms with anisotropic hydrodynamic and thermal 

slip effects.  Le Blanc and Malone [19] computed with finite elements the velocity, pressure and 

stress fields in steady flow in a planar stagnation die using the Maxwell viscoelastic model. Parks 

[20] presented extensive simulations of Oldroyd-B viscoelastic fluid stagnation flows in 

polystyrene melts. Further rheological stagnation flows have been investigated by Sadeghy et 

al. [21] for Maxwell fluids and Renardy [22] for Oldroyd B fluids. In this latter study an exact 

solution (quadratic velocity profile) was obtained for the axisymmetric case whereas for the 

planar case, the velocity was shown to be quadratic close to the stagnation point, whereas it 

followed an exponential growth further away. These studies were confined to the orthogonal 

impinging flow scenario (flow field is at right angles to the solid surface). However a more general 

family of stagnation point flows is known as the non-orthogonal flows where the oncoming flow 

field impinges obliquely to the solid surface. Orthogonal flows are therefore a special case of non-
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orthogonal flows.  In recent years non-orthogonal stagnation point flows have attracted some 

attention as they generalize the models used by engineers to include all possible angles of 

impingement of industrial flows on solid surfaces. The classical normal stagnation flow 

(sometimes known as Hiemenz flow) can be extended to consider non-orthogonal stagnation 

flow by supplementing the inviscid stream function with a constant vorticity. Studies of non-

orthogonal stagnation flow for two-dimensional problems also provide a very good benchmark 

for generalization to three-dimensional computational fluid dynamics with commercial software 

e.g. ANSYS FLUENT, ADINA-F. Javed et al. [23] studied oblique MHD flow over an oscillating sheet 

with Keller’s box method by formulating the stream function in terms of both Hiemenz and 

tangential components. They observed that magnetic field assists in trans-locating the oblique 

stagnation point. Mahapatra et al. [24] identified both conventional and inverted boundary layer 

structures in oblique stagnation point Newtonian flow. Labropulu et al. [25] used the Bellman-

Kalaba quasi-linearization method to compute non-orthogonal stagnation-point flow and 

convective heat transfer towards a stretching surface in a second order Reiner-Rivlin viscoelastic 

fluid. Newtonian oblique stagnation-point flows with heat transfer were addressed by Wu et al. 

[26] and Yian et al. [27].  Li et al. [28] reported on Weissenberg number effects in non-orthogonal 

stagnation flow and heat transfer in second order Reiner-Rivlin viscoelastic fluids, also 

supplementing the orthogonal flow with shear flow. Zheng and Phan-Tien [29] presented a 

seminal study of non-orthogonal stagnation flow of an Oldroyd-B fluid in channel using a finite 

difference numerical method with a parameter continuation method.  

The classical approach to modelling heat transfer in viscous flows has been the Fourier thermal 

conduction equation [30]. This approach however diminishes heat conservation formulation to 
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parabolic energy equation which displays that medium under scrutiny goes through an initial 

disturbance. To tackle this difficulty, Cattaneo [31] presented relaxation time term in Fourier’s 

law of heat conduction which results in the physically realistic finite-speed heat conduction. 

Following further modifications a modern form of the non-Fourier model which has emerged and 

been embraced in computational studies is the Cattaneo–Christov heat flux model. Several 

recent studies have utilized this non-Fourier heat flux model in thermal convection flows via the 

inclusion of a thermal relaxation term. Akbar et al. [32] used fourth order Runge-Kutta shooting 

quadrature to compute the hydromagnetic flow of nanofluids from a stretching surface with the 

Cattaneo–Christov heat flux model noting that heat transfer rates are substantially altered with 

non-Fourier thermal relaxation effects. Further studies include Bhatti et al. [33] who simulated 

the multi-mode heat transfer in electrically-conducting viscoelastic boundary layer flow from an 

extending sheet with thermal relaxation effects.  

In numerous industrial systems chemical reactions are known to take place. These include 

corrosive effects in nuclear heat transfer, polymer radical manipulation, catalytic conversion and 

distillation processes. They require mass i.e. species diffusion. There are two major classifications 

of chemical reactions, namely homogeneous and heterogeneous. Chemical changes occurring 

with liquids or gases depend on the type of interactions of these chemical substances. 

Homogeneous reactions occur in one phase only whereas heterogeneous reactions occur in two 

or more phases. The majority of analytical studies in the literature dwell on complex purely 

heterogeneous chemical reactions, for example in catalysis. The major applications of 

homogeneous-heterogeneous reactions are ammonia, transition of metal and metal oxides 

(including nuclear corrosive environments), Friedel processes, hydrogen, silica, alumina and 
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catalytic ceramics. Chaudhary and Merkin [34] used asymptotic expansions to study 

homogeneous-heterogeneous chemical reaction effects in stagnation boundary layer flows by 

considering isothermal autocatalytic processes for homogeneous reactions and first order 

kinetics for the heterogeneous reactions. Khan et al. [35] presented numerical results for the 

influence of homogeneous-heterogeneous reactions in viscoelastic flow. Kameswaran et al. [36] 

analyzed homogeneous-heterogeneous chemical reaction effects in silver-water and copper-

water nanofluid flows, considering both cases of diffusion coefficients of reactants and 

autocatalytic behaviour. Shaw et al. [37] also explored equal diffusive reactant and auto catalyst 

for a steady micropolar fluid model on a porous shrinking/stretching sheet. Rana et al. [38] 

studied oblique viscoplastic slip flow with homogeneous-heterogeneous reactions. 

Magnetohydrodynamic flows of reactive fluids have also received significant attention.  

Soundalgekar and Gupta [39] presented analytical solutions for hydrodynamic dispersion in a 

magnetohydrodynamic channel flow with homogeneous and heterogeneous reactions. These 

studies all verified the marked influence of chemical reaction in multi-physical Newtonian and 

non-Newtonian heat and mass transfer. In the present article we develop a mathematical model 

for magnetohydrodynamic chemically-reacting oblique stagnation point flow, heat and mass 

transfer from a stretching sheet to an Oldroyd-B viscoelastic fluid. The non-Fourier Cattaneo-

Christov heat flux model is utilized and both homogeneous-heterogeneous reactions are 

examined in the species (concentration) conservation equation. Numerical quadrature solutions 

are obtained for the normalized ordinary differential boundary value problem. An extensive 

parametric study is conducted to evaluate heat, momentum and concentration characteristics. 

Validation with the Adomian decomposition method is included. To the best knowledge of the 
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authors the present study has never been reported before and is relevant to certain nuclear and 

materials processing operations. 

 

2. PHYSICO-CHEMICAL MAGNETOHYDRODYNAMIC VISCOELASTIC TRANSPORTMODEL  

Consider the steady, two-dimensional oblique stagnation flow and mixed convection heat and 

mass transfer in a reactive electrically conducting Oldroyd-B elastic-viscous fluid from a 

stretching sheet. The viscoelastic fluid is doped with a species which undergoes both 

homogeneous and heterogeneous chemical reactions. The Cattaneo-Christov heat flux model is 

used in the heat (energy) conservation equation to simulate thermal relaxation effects. Two 

Equal but oppositely forces are applied in both directions along 𝑥1 − axis (see Fig. 1). A magnetic 

field of constant strength is applied transverse to plane of the sheet. The governing conservation 

equations for mass, momentum, energy and species may be formulated as follows [40] 

𝛻.̅ �̅� = 𝟎,         (𝟏) 

𝜌 [
𝜕�̅�

𝜕𝑡
+ (�̅�. ∇̅)�̅�] =  𝛻.̅ �̅� + 𝑱 × 𝑩,     (𝟐) 

𝛻 ̅ × 𝑩 = 𝝁𝒆 𝑱,        (𝟑) 

𝛻 ̅ × 𝑬 = −
𝝏𝑩

𝝏𝒕
 ,        (𝟒) 

𝛻 ̅. 𝑩 = 𝟎,        (𝟓) 

𝑱 = 𝜎(𝐸 + 𝑉 ×𝑩),       (𝟔) 

The constitutive equation for Oldroyd-B fluid are: 

𝑻 = −𝑝𝑰 + 𝑺,        (𝟕) 

𝑺 + 𝜆1(
𝑫𝑺

𝑫𝒕
− 𝑳𝑺 − 𝑺𝑳𝑻)=𝜇[𝐴1 + 𝜆2(

𝑫𝐴1

𝑫𝒕
− 𝑳𝐴1 − 𝐴1𝑳

𝑻)],  (𝟖) 

𝑳 = 𝑔𝑟𝑎𝑑 𝑽, 𝐴1 = 𝐿 + 𝐿
𝑇,      (𝟗) 
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Here the upper-convected time derivative, 
𝐷

𝐷𝑡
, in a Cartesian coordinate system can be defined as: 

 
𝑫

𝑫𝒕
=

𝝏

𝝏𝒕
+ 𝑽.𝛁 − 𝑳 − 𝑳𝑻.       (𝟏𝟎) 

 

For this problem velocity vector and stress tensor is defined as: 

 𝑽 = (𝒖𝟏, 𝒖𝟐)
𝑻,            (𝟏𝟏) 

 

𝑺 = (
𝑺𝒙𝒙 𝑺𝒙𝒚
𝑺𝒚𝒙 𝑺𝒚𝒚

),            (𝟏𝟐) 

Navier stokes equations become then: 

�̅�1
𝜕𝑢1

𝜕�̅�1
+ �̅�2

𝜕𝑢1

𝜕�̅�2
+
1

𝜌

𝜕�̅�

𝜕�̅�1
+ 𝜆1 (�̅�1

2 𝜕
2𝑢1

𝜕�̅�1
2 + �̅�2

2 𝜕
2𝑢1

𝜕�̅�2
2 + 2�̅�1�̅�2

𝜕2�̅�1

𝜕�̅�1𝜕�̅�2
) = 𝜈 [

𝜕2�̅�1

𝜕�̅�1
2 +

𝜕2𝑢1

𝜕�̅�2
2 +

𝜆2 (�̅�1
𝜕3�̅�1

𝜕�̅�1
3 + �̅�1

𝜕3�̅�1

𝜕�̅�1𝜕�̅�2
2 + �̅�2

𝜕3�̅�1

𝜕�̅�2
3 + �̅�2

𝜕3𝑢1

𝜕�̅�2𝜕�̅�1
2 −

𝜕𝑢1

𝜕�̅�1

𝜕2�̅�1

𝜕�̅�1
2 −

𝜕𝑢1

𝜕�̅�1

𝜕2𝑢1

𝜕�̅�2
2 −

𝜕𝑢1

𝜕�̅�2

𝜕2𝑢2

𝜕�̅�1
2 −

𝜕𝑢1

𝜕�̅�2

𝜕2𝑢2

𝜕�̅�2
2)] −

𝜎𝐵0
2

𝜌
(�̅�1 + 𝜆1�̅�2

𝜕𝑢1

𝜕�̅�2
) + 𝑔1𝛽{(�̅� − 𝑇∞) + 𝜆1(�̅�1

𝜕�̅�

𝜕�̅�1
+ �̅�2

𝜕�̅�

𝜕�̅�2
−
𝜕𝑢1

𝜕�̅�1
(�̅� − 𝑇∞))      (13)  

�̅�1
𝜕𝑢2

𝜕�̅�1
+ �̅�2

𝜕𝑢2

𝜕�̅�2
+
1

𝜌

𝜕�̅�

𝜕�̅�2
+ 𝜆1(�̅�1

2 𝜕
2�̅�2

𝜕�̅�1
2 + �̅�2

2 𝜕
2𝑢2

𝜕�̅�2
2 + 2�̅�1�̅�2

𝜕2�̅�2

𝜕�̅�1𝜕�̅�2
) = 𝜈[

𝜕2�̅�2

𝜕�̅�1
2 +

𝜕2�̅�2

𝜕�̅�2
2 +

𝜆2(�̅�1
𝜕3𝑢2

𝜕�̅�1
3 + �̅�1

𝜕3�̅�2

𝜕�̅�1𝜕�̅�2
2 + �̅�2

𝜕3𝑢2

𝜕�̅�2
3 + �̅�2

𝜕3𝑢2

𝜕�̅�2𝜕�̅�1
2 −

𝜕𝑢2

𝜕�̅�1

𝜕2𝑢1

𝜕�̅�1
2 −

𝜕𝑢2

𝜕�̅�1

𝜕2𝑢1

𝜕�̅�2
2 −

𝜕𝑢2

𝜕�̅�2

𝜕2𝑢2

𝜕�̅�1
2 −

𝜕𝑢2

𝜕�̅�2

𝜕2𝑢2

𝜕�̅�2
2)] 

                       (14) 

𝜌𝐶𝑝 (�̅�1
𝜕�̅�

𝜕�̅�1
+ �̅�2

𝜕�̅�

𝜕�̅�2
) = −𝛻.̅ �̅�                (15) 

�̅�1
𝜕𝑐1̅

𝜕�̅�1
+ �̅�2

𝜕𝑐1̅

𝜕�̅�2
= 𝐷𝐴

𝜕2𝑐1̅

𝜕�̅�2
2 − 𝑘𝑐𝑐1̅𝑐2̅

2                    (16) 

�̅�1
𝜕𝑐2̅

𝜕�̅�1
+ �̅�2

𝜕𝑐2̅

𝜕�̅�2
= 𝐷𝐵

𝜕2𝑐2̅

𝜕�̅�2
2 + 𝑘𝑐𝑐1̅𝑐2̅

2                    (17) 

Here �̅� having �̅�1 and �̅�2 as the �̅�1 − and �̅�2 − velocity components respectively, 𝜈 is effective 

kinematic viscosity, �̅� is pressure, 𝜌 is s density, the term 𝑱 × 𝑩  is ponder motive force of the fluid 
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because of electric current, 𝑱 is current density of fluid and 𝑩 is the magnetic flux. 𝝁𝒆 is constant known 

as magnetic permeability, E is electric field and 𝜎 is electric conductivity, 𝑝𝑰 is spherical part of stress 

tensor and 𝑺 is extra stress tensor, �̅� is temperature of the fluid, 𝜆1is relaxation time,  𝜆2 is 

retardation time, 𝛼 is thermal diffusivity, 𝑇∞ is ambient fluid  temperature, 𝑐1̅ and 𝑐2̅ are 

absorption coefficients of the organic classes 𝐴 and 𝐵, 𝑘𝑐 and 𝑘𝑠 are the rate factors, assuming 

the same reaction progressions, 𝐷𝐴 and 𝐷𝐵 are dispersion quantities, 𝑎, 𝑏. 𝑐 are constants, �̅�, the 

heat flux satisfying the non-Fourier theory [41]: 

�̅� + 𝜆2
𝜕�̅�

𝜕�̅�
+ 𝜆2(∇̅. 𝑉̅̅ ̅)�̅� + 𝜆2𝑉.̅ ∇̅�̅� − 𝜆2�̅�. ∇̅�̅� + 𝑘∇̅�̅� = 0,     (18) 

In Eqn. (7) 𝜆2 is thermal retardation time and 𝑘, denotes the viscoelastic fluid thermal 

conductivity. Eliminating �̅� from Eqns.(15) and(18) yields: 

�̅�1
𝜕�̅�

𝜕�̅�1
+ �̅�2

𝜕�̅�

𝜕�̅�2
=

𝑘

𝜌𝐶𝑝

𝜕2�̅�

𝜕�̅�2
2 − 𝜆2 (�̅�1

2 𝜕
2�̅�

𝜕�̅�1
2 + �̅�2

2 𝜕
2�̅�

𝜕�̅�2
2) + 2�̅�1�̅�2

𝜕2�̅�

𝜕�̅�1𝜕�̅�2
 

+(�̅�1
𝜕𝑢1

𝜕�̅�1
+ �̅�2

𝜕𝑢1

𝜕�̅�2
)
𝜕�̅�

𝜕�̅�1
+ (�̅�1

𝜕𝑢2

𝜕�̅�1
+ �̅�2

𝜕𝑢2

𝜕�̅�2
)
𝜕�̅�

𝜕�̅�2
 ,       (19)      

The prescribed boundary conditions at the wall (sheet) and free stream are: 

�̅�1 = 𝑐�̅�1, �̅�2 = 0,−𝑘
𝜕�̅�

𝜕�̅�2
= ℎ(𝑇𝑓 − �̅�),

𝐷𝐴
𝜕𝑐1̅

𝜕�̅�2
= 𝑘𝑠𝑐1̅, 𝐷𝐵

𝜕𝑐2̅

𝜕�̅�2
= −𝑘𝑠𝑐1̅,

} 𝑎𝑡     �̅�2=0,      (20) 

�̅�1 = 𝑎�̅�1 + 𝑏�̅�2,    �̅� =  𝑇∞,   𝑐1̅ → 𝑐0, 𝑐2̅ → 0, 𝑎𝑠 �̅�2 → ∞.      (21) 

Introducing similarity transformations following Nadeem et al. [42]:  

𝑥1 = �̅�1√
𝑐

𝜈
 , 𝑥2 = �̅�2√

𝑐

𝜈
 , 𝑢1 = �̅�1

1

√𝜈𝑐
 , 𝑢2 = �̅�2

1

√𝜈𝑐

𝑝 =
�̅�

𝜇𝑐
, 𝑇 =

�̅�−𝑇∞

𝑇𝑓−𝑇∞
 , 𝑐1̅ = 𝑐0𝑗(𝑥2), 𝑐2̅ = 𝑐0𝑠(𝑥2)

}     (22) 

Invoking Eqn. (22), into Eqns. (13) − (21),  yields the following dimensionless equations: 
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𝜕𝑢1

𝜕𝑥1
+
𝜕𝑢2

𝜕𝑥2
= 0,           (23) 

𝑢1
𝜕𝑢1

𝜕𝑥1
+ 𝑢2

𝜕𝑢2

𝜕𝑥2
+ 𝛽1 {𝑢1

2 𝜕
2𝑢1

𝜕𝑥12
+ 𝑢2

2 𝜕
2𝑢1

𝜕𝑥22
+ 2𝑢1𝑢2

𝜕2𝑢1

𝜕𝑥1𝜕𝑥2
}  = −

𝜕𝑝

𝜕𝑥1
+
𝜕2𝑢1

𝜕𝑥12
+
𝜕2𝑢1

𝜕𝑥22
+

𝛽2 {𝑢1
𝜕3𝑢1

𝜕𝑥13
+ 𝑢1

𝜕3𝑢1

𝜕𝑥1𝜕𝑥22
+ 𝑢2

𝜕3𝑢1

𝜕𝑥2𝜕𝑥12
+ 𝑢2

𝜕3𝑢1

𝜕𝑥23
–
𝜕𝑢1

𝜕𝑥1

𝜕2𝑢1

𝜕𝑥12
−
𝜕𝑢1

𝜕𝑥1

𝜕2𝑢1

𝜕𝑥22
−
𝜕𝑢1

𝜕𝑥2

𝜕2𝑢2

𝜕𝑥12
−

𝜕𝑢1

𝜕𝑥2

𝜕2𝑢2

𝜕𝑥22
} –M (𝑢1 + 𝛽1𝑢2

𝜕𝑢1

𝜕𝑥1
) +  𝜆 [T + 𝛽1 (𝑢1

𝜕𝑇

𝜕𝑥1
+ 𝑢2

𝜕𝑇

𝜕𝑥2
− 𝑇

𝜕𝑢1

𝜕𝑥1
)],     (24) 

𝑢1
𝜕𝑢2

𝜕𝑥1
+ 𝑢2

𝜕𝑢2

𝜕𝑥2
+ 𝛽1 {𝑢1

2 𝜕
2𝑢2

𝜕𝑥12
+ 𝑢2

2 𝜕
2𝑢2

𝜕𝑥22
+ 2𝑢1𝑢2

𝜕2𝑢2

𝜕𝑥1𝜕𝑥2
} = −

𝜕𝑝

𝜕𝑥2
+
𝜕2𝑢2

𝜕𝑥12
+
𝜕2𝑢2

𝜕𝑥22
+

𝛽2{𝑢1
𝜕3𝑢2

𝜕𝑥13
+ 𝑢1

𝜕3𝑢2

𝜕𝑥1𝜕𝑥22
+ 𝑢2

𝜕3𝑢2

𝜕𝑥2𝜕𝑥12
+ 𝑢2

𝜕3𝑢2

𝜕𝑥23
–
𝜕𝑢2

𝜕𝑥1

𝜕2𝑢1

𝜕𝑥12
−
𝜕𝑢2

𝜕𝑥1

𝜕2𝑢1

𝜕𝑥22
−
𝜕𝑢2

𝜕𝑥2

𝜕2𝑢2

𝜕𝑥12
−
𝜕𝑢2

𝜕𝑥2

𝜕2𝑢2

𝜕𝑥22
}, 

            (25) 

𝑢1
𝜕𝑇

𝜕𝑥1
+ 𝑢2

𝜕𝑇

𝜕𝑥2
=

1

𝑃𝑟

𝜕2𝑇

𝜕𝑥22
− 𝛽2 [𝑢1

2 𝜕
2𝑇

𝜕𝑥12
+ 𝑢2

2 𝜕
2𝑇

𝜕𝑥22
+ 2𝑢1𝑢2

𝜕2𝑇

𝜕𝑥1𝜕𝑥2
+ (𝑢1

𝜕𝑢1

𝜕𝑥1
+ 𝑢2

𝜕𝑢1

𝜕𝑥2
)
𝜕𝑇

𝜕𝑥1
+

(𝑢1
𝜕𝑢2

𝜕𝑥1
+ 𝑢2

𝜕𝑢2

𝜕𝑥2
)
𝜕𝑇

𝜕𝑥2
],                (26) 

𝑢2
𝜕𝑗

𝜕𝑥2
(𝑥2) =

1

𝑆𝑐

𝜕2𝑗

𝜕𝑥22
(𝑥2) − 𝑘1𝑗(𝑥2)𝑠

2(𝑥2),                   (27) 

𝑢2
𝜕𝑠

𝜕𝑥2
(𝑥2) =

𝛿

𝑆𝑐

𝜕2𝑠

𝜕𝑥22
(𝑥2) + 𝑘1𝑗(𝑥2)𝑠

2(𝑥2),                (28) 

The normalized boundary conditions take the form: 

𝑢1 = 𝑥1, 𝑢2 = 0,
𝜕𝑇

𝜕𝑥2
= −𝐵𝑖(1 − 𝑇),

𝐷𝐴
𝜕𝑗

𝜕𝑥2
(𝑥2) = 𝑘𝑠√

𝜈

𝑐
𝑗(𝑥2), 𝐷𝐵

𝜕𝑠

𝜕𝑥2
(𝑥2) = −𝑘𝑠√

𝜈

𝑐
𝑗(𝑥2),

}  𝑎𝑡 𝑥2 = 0,                (29) 

𝑢1 =
𝑎

𝑐
𝑥1 + 𝛾1𝑥2, 𝑇 = 0, 𝑗(𝑥2) → 1, 𝑠(𝑥2) → 0, 𝑎𝑡 𝑥2 → ∞.                  (30) 

Here 𝛽1 = 𝜆1𝑐 and 𝛽2 = 𝜆2𝑐 are the relaxation and retardation Deborah numbers, 
𝜎𝐵0

2

𝜌𝑐
= 𝑀 is 

magnetic field parameter, 𝑃𝑟 =
𝜈

𝛼
 is Prandtl number, 𝜆 =

𝑔1𝛽(𝑇𝑓−𝑇∞)

𝑐√𝜈𝑐
 is mixed convection 

parameter, 𝐵𝑖 = −
ℎ

𝑘
√
𝜈

𝑐
 is Biot number, 𝑆𝑐 =

𝜈

𝐷𝐵
 is Schmidt number,

𝑎

𝑐
 is stretching ratio and 
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𝛾1 =
𝑏

𝑐
 is obliqueness parameter. 

Defining the stream function as:  

𝑢1 =
𝜕𝜁

𝜕𝑥2
, 𝑢2 = −

𝜕𝜁

𝜕𝑥1
.   (31) 

Introducing Eqn. (31) into Eqns.(23) − (30) and eliminating the pressure term we have:  

2
𝜕2𝜁

𝜕𝑥12
𝜕2ζ

𝜕𝑥1𝜕𝑥2
+

𝜕𝜁

𝜕𝑥2
(
𝜕3𝜁

𝜕𝑥13
+

𝜕3𝜁

𝜕𝑥1𝜕𝑥22
) +

𝜕𝜁

𝜕𝑥1
(

𝜕3𝜁

𝜕𝑥2𝜕𝑥12
−

𝜕3𝜁

𝜕𝑥23
) − ∇4𝜁 + 𝛽1 {2

𝜕3𝜁

𝜕𝑥2𝜕𝑥12
(
𝜕𝜁

𝜕𝑥2

𝜕2𝜁

𝜕𝑥22
−

𝜕𝜁

𝜕𝑥2

𝜕2𝜁

𝜕𝑥12
−

𝜕𝜁

𝜕𝑥1

𝜕2ζ

𝜕𝑥1𝜕𝑥2
) + 2

𝜕3𝜁

𝜕𝑥1𝜕𝑥22
(
𝜕𝜁

𝜕𝑥1

𝜕2𝜁

𝜕𝑥12
−

𝜕𝜁

𝜕𝑥1

𝜕2𝜁

𝜕𝑥22
−

𝜕𝜁

𝜕𝑥2

𝜕2ζ

𝜕𝑥1𝜕𝑥2
) + (

𝜕𝜁

𝜕𝑥1
)
2

(
𝜕4𝜁

𝜕𝑥24
+

𝜕4𝜁

𝜕𝑥12𝜕𝑥22
) + (

𝜕𝜁

𝜕𝑥2
)
2

(
𝜕4𝜁

𝜕𝑥14
+

𝜕4𝜁

𝜕𝑥12𝜕𝑥22
) + 2

𝜕𝜁

𝜕𝑥1
(
𝜕3𝜁

𝜕𝑥23
𝜕2ζ

𝜕𝑥1𝜕𝑥2
−

𝜕𝜁

𝜕𝑥2

𝜕4𝜁

𝜕𝑥2𝜕𝑥13
−

𝜕𝜁

𝜕𝑥2

𝜕4𝜁

𝜕𝑥1𝜕𝑥23
)} −

𝛽2 {2 (
𝜕2𝜁

𝜕𝑥22
−

𝜕2𝜁

𝜕𝑥12
) (

𝜕4𝜁

𝜕𝑥1𝜕𝑥23
+

𝜕4𝜁

𝜕𝑥2𝜕𝑥13
) −

𝜕𝜁

𝜕𝑥1
(
𝜕5𝜁

𝜕𝑥25
+

𝜕5𝜁

𝜕𝑥2𝜕𝑥14
+ 2

𝜕5𝜁

𝜕𝑥12𝜕𝑥23
) +

𝜕𝜁

𝜕𝑥2
(
𝜕5𝜁

𝜕𝑥15
+

𝜕5𝜁

𝜕𝑥1𝜕𝑥24
+ 2

𝜕5𝜁

𝜕𝑥13𝜕𝑥22
) − 2

𝜕2ζ

𝜕𝑥1𝜕𝑥2
(

𝜕4𝜁

𝜕𝑥12𝜕𝑥22
+

𝜕4𝜁

𝜕𝑥24
) − 2

𝜕3𝜁

𝜕𝑥2𝜕𝑥12
(
𝜕3𝜁

𝜕𝑥13
+

𝜕3𝜁

𝜕𝑥1𝜕𝑥22
+

𝜕𝜁

𝜕𝑥1

𝜕5𝜁

𝜕𝑥2𝜕𝑥14
)} +

𝑀 {
𝜕2𝜁

𝜕𝑥22
− 𝛽1 (

𝜕2𝜁

𝜕𝑥22
𝜕2ζ

𝜕𝑥1𝜕𝑥2
+

𝜕𝜁

𝜕𝑥1

𝜕3𝜁

𝜕𝑥23
)} − 𝜆{

𝜕𝑇

𝜕𝑥2
+ 𝛽1 (

𝜕2𝜁

𝜕𝑥22
𝜕𝑇

𝜕𝑥2
+

𝜕𝜁

𝜕𝑥2

𝜕2T

𝜕𝑥1𝜕𝑥2
− 2

𝜕2ζ

𝜕𝑥1𝜕𝑥2

𝜕𝑇

𝜕𝑥2
−

𝜕2𝑇

𝜕𝑥22
𝜕𝜁

𝜕𝑥1
− 𝑇

𝜕3𝜁

𝜕𝑥1𝜕𝑥22
)} = 0,         (32) 

𝑃𝑟[
𝜕𝜁

𝜕𝑥2

𝜕𝑇

𝜕𝑥1
−

𝜕𝜁

𝜕𝑥1

𝜕𝑇

𝜕𝑥2
+ 𝛽2{(

𝜕𝜁

𝜕𝑥2
)2

𝜕2𝑇

𝜕𝑥12
+

𝜕𝜁

𝜕𝑥1

𝜕2𝑇

𝜕𝑥22
− 2

𝜕𝜁

𝜕𝑥1

𝜕𝜁

𝜕𝑥2

𝜕2𝑇

𝜕𝑥1𝜕𝑥2
+ (

𝜕𝜁

𝜕𝑥2

𝜕2ζ

𝜕𝑥1𝜕𝑥2
−

𝜕𝜁

𝜕𝑥1

𝜕2𝜁

𝜕𝑥22
)
𝜕𝑇

𝜕𝑥1
+

(
𝜕𝜁

𝜕𝑥1

𝜕2ζ

𝜕𝑥1𝜕𝑥2
−

𝜕𝜁

𝜕𝑥2

𝜕2𝜁

𝜕𝑥22
)
𝜕𝑇

𝜕𝑥2
=

𝜕2𝑇

𝜕𝑥22
,          (33) 

−
𝜕𝜁

𝜕𝑥1
𝑗′(𝑥2) =

1

𝑆𝑐
𝑗′′(𝑥2) − 𝑘1𝑗(𝑥2)𝑠

2(𝑥2),         (34) 

−
𝜕𝜁

𝜕𝑥1
𝑠′(𝑥2) =

𝛿

𝑆𝑐
𝑠′′(𝑥2) + 𝑘1𝑗(𝑥2)𝑠

2(𝑥2),         (35) 

𝜕𝜁

𝜕𝑥2
= 𝑥1,

𝜕𝜁

𝜕𝑥1
= 0,

𝜕𝑇

𝜕𝑥2
= −𝐵𝑖(1 − 𝑇),

𝐷𝐴𝑗
′(𝑥2) = 𝑘𝑠√

𝜈

𝑐
𝑗(𝑥2), 𝐷𝐵𝑠

′(𝑥2) = −𝑘𝑠√
𝜈

𝑐
𝑗(𝑥2),

}  𝑎𝑡 𝑥2 = 0,      (36) 

𝜕𝜁

𝜕𝑥2
= 

𝑎

𝑐
𝑥1 + 𝛾1𝑥2, 𝑇 = 0, 𝑗(𝑥2) → 1, 𝑠(𝑥2) → 0, 𝑎𝑡 𝑥2 → ∞.      (37) 
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Re-defining the stream function [42]: 

𝜁 = 𝑥1𝑓(𝑥2) + 𝑔(𝑥2), 𝑇(𝑥1, 𝑥2) = 𝜃(𝑥2).               (38) 

 

𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 + 𝛽1(2𝑓𝑓
′𝑓′′ − 𝑓2𝑓′′′) + 𝛽2(𝑓

′′2 − 𝑓𝑓′′′′)     

+𝑀(𝛽1𝑓𝑓
′′ − 𝑓′) + 𝐵1 = 0   (39) 

𝑔′′′ − 𝑓′𝑔′ + 𝑓𝑔′′ + 𝛽1(2𝑓𝑔
′𝑓′′ − 𝑓2𝑔′′′) + 𝛽2(−𝑓

′𝑔′′′ + 𝑓′′𝑔′′ − 𝑓𝑔′′′′ + 𝑓′′′𝑔′) 

          +𝑀(𝛽1𝑓𝑔
′′ − 𝑔′) + 𝜆(𝜃 − 𝛽1(𝑓𝜃

′ − 𝑓′𝜃))+𝐵2 = 0,           (40) 

𝜃′′ + Pr [𝑓𝜃′ − 𝛽2{𝑓
2𝜃′′ + 𝑓𝑓′𝜃′}] = 0.                                                       (41) 

Assuming the dispersion constant of organic class reactants 𝐴 and 𝐵 are of similar extent, using 

the following constraint 𝐷𝐴 = 𝐷𝐵 ⇒ 𝛿 = 1, leads to: 

𝑗(𝑥2) + 𝑠(𝑥2) = 1                (42) 

𝑗′′(𝑥2)+𝑆𝑐[𝑓(𝑥2)𝑗
′(𝑥2) − 𝑘1𝑗(𝑥2)(1 − 𝑗

2(𝑥2))] = 0,           (43) 

The transformed “similarity” boundary conditions (36 − 37) assume the form: 

𝑓 = 0, 𝑓′ = 1, 𝑔′ = 0 , 𝜃′ = −𝐵𝑖(1 − 𝜃(0)),   𝑗′ = 𝑘2𝑗(0),     at     𝑥2 = 0,              (44) 

𝑓′ =
𝑎

𝑐
, 𝑔′(𝑥2) → 𝛾1𝑥2, 𝜃 = 0, 𝑗 → 1,        at        𝑥2 → ∞.                    (45) 

Using asymptotic condition(34) in Eqns.(28) and (29), we get: 

𝐵1 = (
𝑎

𝑐
)2 +𝑀

𝑎

𝑐
,  𝐵2 = −𝛾1 (𝐴 +𝑀 (𝑥2 − 𝐾1 (

𝑎

𝑐
𝑥2 + 𝐴))),        (46) 

Here 𝐴 is a boundary layer constant. 

Introducing: 

𝑔′(𝑥2) = 𝛾1ℎ(𝑥2).        (47) 

Using Eqns.(35) and (36) in Eqns. (28) and (29), we have: 
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𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 + 𝛽1(2𝑓𝑓
′𝑓′′ − 𝑓2𝑓′′′) + 𝛽2(𝑓

′′2 − 𝑓𝑓′′′′)  

+𝑀(𝛽1𝑓𝑓
′′ − 𝑓′) + (𝑎/𝑐)2 +𝑀

𝑎

𝑐
= 0,           (48) 

ℎ′′ − 𝑓′ℎ + 𝑓ℎ′ + 𝛽1(2𝑓ℎ𝑓
′′ − 𝑓2ℎ′′) + 𝛽2(𝑓

′′′ℎ + 𝑓′′ℎ′ − 𝑓′ℎ′′ − 𝑓ℎ′′′) + 𝑀(𝛽1𝑓ℎ
′ − ℎ) +

𝜆

𝛾1
(𝜃 − 𝛽1(𝑓𝜃

′ − 𝑓′𝜃)) − {𝐴(1 +𝑀𝛽1) + 𝑥2𝑀 (𝛽1
𝑎

𝑐
− 1)},            (49 ) 

𝜃′′ + Pr [𝑓𝜃′ − 𝛽2{𝑓
2𝜃′′ + 𝑓𝑓′𝜃′}] = 0.                                                          (50) 

𝑗′′+𝑆𝑐[𝑓𝑗′ − 𝑘1𝑗(1 − 𝑗
2)] = 0 .               (51) 

The associated boundary conditions emerge as:  

𝑓 = ℎ = 0, 𝑓′ = 1 , 𝜃′ = −𝐵𝑖(1 − 𝜃(0)), 𝑗′ = 𝑘2𝑗(0), 𝑎𝑡 𝑥2 = 0,

𝑓′ = 𝛾1, ℎ
′ = 1, 𝜃 = 0, 𝑗 → 1,     𝑎𝑠 𝑥2 → ∞.

}          (52) 

Here ( )/ denotes ordinary derivative with respect to𝑥2. 

Important engineering design quantities are the local heat and mass flux, which in dimensional 

and non-dimensional form are defined respectively as: 

𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

, 𝑧𝑤 = (
𝜕𝑗

𝜕𝑦
)
𝑦=0
,          (53)  

and 

                                     𝑞𝑤 = −𝜃
′(0),   𝑧𝑤 = −𝑗

′(0).                                                    (54) 

3. COMPUTATIONAL SOLUTIONS OF BOUNDARY VALUE PROBLEM  

Analytical solutions of non-dimensional nonlinear coupled ordinary differential equation system 

defined by Eqns.(37) − (40) with boundary conditions (41) are challenging. A computational 

methodology is therefore elected in which numerical quadrature is implemented (i.e. a shooting 

algorithm) together with the popular and robust Runge-Kutta Fehlberg method. This approach 

can easily handle multi-order ordinary differential boundary value problems and has been 
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implemented via different symbolic codes in many studies including reactive mixed double 

diffusive convection, magnetohydrodynamic slip flow [43], contracting/expanding nano-polymer 

sheet flows, free convection auto-catalytic reactive magnetic flows [44] and gyrotactic 

bioconvection nanofluid pumping. By making use of the following substitutions in Eqs. (37) −

(41), we have: 

(

 
 

𝑓

𝑓′

𝑓′′

𝑓′′′

𝑓′′′′)

 
 
=

(

  
 

𝑦1
𝑦′
1
= 𝑦2

𝑦′
2
= 𝑦3

𝑦′
3
= 𝑦4

𝑦4
′ = 𝑦5 )

  
 
, (

ℎ
ℎ′

ℎ′′

ℎ′′′

) =

(

 

𝑦6
𝑦′
6
= 𝑦7

𝑦′
7
= 𝑦8

𝑦8
′ = 𝑦9 )

 , 

(
𝜃
𝜃′

𝜃′′
) = (

𝑦10
𝑦′
10
= 𝑦11

𝑦′11 = 𝑦12

) , (

𝑗

𝑗′

𝑗′′
) = (

𝑦13
𝑦′
13
= 𝑦14

𝑦′14 = 𝑦15

), 

𝑦1𝑦′4 =
1

𝛽2
[
𝑦4 + 𝑦1𝑦3 − 𝑦2

2 + 𝛽1{2𝑦1𝑦2𝑦3 − 𝑦4𝑦1
2}

−𝑀(−𝑦2 + 𝛽1𝑦1𝑦3) − (
𝑎

𝑐
)2 −𝑀

𝑎

𝑐

] + 𝑦3
2,      (55) 

𝑦1𝑦
′
8
=

1

𝛽2
[𝑦8 + 𝑦1𝑦7 − 𝑦2𝑦6 + 𝛽1{2𝑦1𝑦3𝑦6 − 𝑦8𝑦1

2} − 𝑀(𝛽1𝑦1𝑦7 − 𝑦6) −
𝜆

𝛾1
(𝜃 −

𝛽1(𝑦1𝜃
′ − 𝑦2𝜃)) + 𝐴(1 +𝑀𝛽1) + 𝑥2𝑀(𝛽1𝛾1 − 1)] + 𝑦4𝑦6 + 𝑦3𝑦7 − 𝑦2𝑦8,  

                                 (56) 

𝑦′11 = −Pr(𝑦1𝑦11 − 𝛽2{𝑦1
2𝑦12 + 𝑦1𝑦2𝑦11},       (57) 

𝑦′15 = −Sc[𝑦1𝑦14 − 𝑘1𝑦13(1 − 𝑦13
2)],                     (58) 

𝑦1(0) = 0, 𝑦3(0) = 0, 𝑦4(0) = 𝛼1,                      (59) 

𝑦6(0) = 0, 𝑦8(0) = 𝛼2,                             (60) 
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𝑦8(0) = 𝛼3,                          (61) 

𝑦11(0) = 𝛼4, 𝑦13(0) = 𝛼5,                                   (62) 

Here  𝛼𝑖, 1 ≤ 𝑖 ≤ 5 are shooting parameters. A tolerance level of 10−5 is considered in all 

calculations. Note that for all computations the variable y is used instead of 𝑥2 . 

 

4.VALIDATION WITH ADOMIAN DECOMPOSITION METHOD (ADM) 

Since the present model is novel there are no existing solutions in the literature with which 

validation of the general model can be conducted. We therefore use an alternative approach 

and validate the solutions with an alternative numerical method known as Adomian 

decomposition method (ADM). Eqns.(37) − (40) with boundary conditions (41) are therefore 

re-solved with ADM and selected comparison is visualized in Fig. 2. Introduced by Adomian [45] 

this approach employs very precise polynomial expansions to achieve faster convergence 

compared with other methods. ADM has been exploited recently in numerous sophisticated 

fluid dynamics problems. The reader is referred to Kezzar and Sar [46] and Ebaid et al. [47] who 

studied nanofluids, Bég et al. [48] who applied ADM to bio-magneto-rheological lubrication flows 

and Aaboubi et al. [49] for electrochemical species diffusion flows. An advantage of ADM is that 

it gives analytical approximations to an extensive class of nonlinear equations without 

linearization, perturbed solution or discretization. ADM sets up an infinite series solution for 

unidentified functions and exploits recursive relations. Applying standard procedure of Adomian 

Decomposition Method (ADM), inverse operators are formulated. The unknown dependent flow 
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variable functions arising in the momentum, energy, species conservation equations i.e. normal 

velocity f (y), tangential velocity h(y), temperature  (y and concentration, j (y), can be conveyed 

as infinite series’ of the form: 

  ,
0







m

mfyf   ,
0







m

mhyh   ,
0







m

my    





0m

mjyj                   (63) 

These expansions are introduced into the Eqns. (37-40) and the resulting linear and nonlinear 

terms are decomposed by an infinite series of polynomials. Boundary conditions (41) are also 

adapted. The resulting solutions are lengthy algebraic relations and omitted for brevity. The 

numerical evaluation is executed in MATLAB symbolic software. Fig. 2 shows the comparison of 

the ADM and quadrature solutions for the case 1=0.05. Evidently very close agreement is achieved 

for the normal velocity component velocity 𝑓′(𝑦). Fig. 2 further shows that with increasing 

relaxation Deborah number, 𝛽1, there is a sustained decrease in normal velocity component 

throughout the boundary layer. The flow is therefore decelerated and momentum boundary 

layer also decreases.  

The Oldroyd B model is infact a quasilinear rheological rate model. It is equivalent to the 

convected Jeffery model. Although often in simulations a single Deborah number is deployed 

which represents the ratio of relaxation to retardation times, in the present work we employ two 

distinct Deborah numbers, 1 and 2 which respectively are known as the relaxation Deborah 

number (a function of  𝜆1 𝑖. 𝑒. relaxation time) and the retardation Deborah number (a function 

of 𝜆2 𝑖. 𝑒. retardation time). Rheological fluids exhibits distinctive time scaled memory a feature 

known as relaxation time. At zero deformation rates such materials ease through their relaxation 

time which is their constitutive property. Similarly under nonlinear deformation of rheological 
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fluids, considerable tension cultivates in the streamlines due to large relaxation time which leads 

to non-zero normal stresses. The larger the relaxation time the greater the tension and the 

associated tensile stresses cause a deceleration in the fluid i.e. reduction in momentum 

(hydrodynamic) boundary layer thickness, as seen in fig. 2. In the current work we have 

constrained the value of  𝜆2 i.e. retardation time as 0.2 which implies that the time scale of fluid 

movement is low which is appropriate for working fluids in nuclear reactors, industrial heat 

transfer processes etc. Retardation time is also in rheology. When retardation times are high the 

behaviour corresponds more to high density polymers where elastic forces dominate the viscous 

forces and therefore this is not relevant to the present discussion. Many investigations have 

confirmed that relaxation time has a much more prominent role in viscoelastic fluids whereas 

retardation time is generally more dominant in viscoelastic solids [50]. Further validation with 

ADM is also included for Figs 3, 4, 5 i.e. for tangential velocity, temperature and concentration 

fields and again very close correlation is achieved. It is also note-worthy that in each of these and 

the figures plotted there is a very smooth behaviour of profiles in free stream indicating that an 

effectively large infinity boundary condition is prescribed in both numerical quadrature and the 

ADM codes. Confidence in the shooting quadrature method is therefore justifiably high.  

 

5. COMPUTATIONAL RESULTS AND DISCUSSION 

Broad calculations have been conducted with shooting quadrature technique and are visualized 

in Figures (𝟐) − (𝟏𝟐) for the primitive variables (i.e. normal velocity, tangential velocity, 

temperature and concentration) and in Figs 13-16 for derivative functions (local heat flux and 
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local mass flux). We note that for brevity we constrain the values of certain geometric parameters 

i.e. 
𝑎

𝑐
 (stretching ratio) fixed at 0.1 and 𝛾1 =

𝑏

𝑐
  (obliqueness parameter) is fixed at 0.5 as is thermal 

relaxation parameter (). 

Figures (𝟑) − (𝟓) illustrate the behaviour of tangential velocity ℎ′(𝑦),  

with variation in respectively relaxation Deborah number 𝛽1 , mixed convection parameter, 𝜆, 

and finally Biot number, Bi. Tangential velocity ℎ′(𝑦) increases with greater relaxation Deborah 

number 𝛽1 close to the wall but further from the wall it decreases. As noted earlier, relaxation 

time incorporates elastic as well as viscous properties of material. Higher Deborah number 

materials acts as rheological fluid while for smaller Deborah number, it works as a Newtonian 

fluid. The destruction in momentum in the normal direction (reduced normal velocity 

component) is compensated with a generation in tangential momentum. The higher Deborah 

number therefore only decelerates the normal velocity field component but acts to accelerate 

the tangential field. Figure (4) shows that with increasing mixed convection parameter 𝜆, 

tangential velocity ℎ′(𝑦) declines close to surface whereas away from the surface it is 

accelerated. 𝜆 =
𝑔1𝛽(𝑇𝑓−𝑇∞)

𝑐√𝜈𝑐
  and embodies comparative involvement of thermal buoyancy force 

to viscous hydrodynamic force. When this parameter is increased the flow is energized with 

buoyancy and the viscous effect is reduced. However owing to the dominance of viscosity in 

boundary layer, the net effect is to inhibit tangential flow near the sheet and to enhance it further 

from the wall towards the edge of the boundary layer. Fig. 5 specifies that with increasing Biot 

number 𝐵𝑖 the tangential component of velocity ℎ′(𝑦), is reduced near the wall whereas it is 

elevated further from the wall. Magnitudes of Biot number less than 0.1 infer that heat 

conduction within body is much quicker than heat convection away from surface, and 
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temperature gradients are insignificant inside. This range is therefore ignored in our study (Biot 

number lesser than 0.1 corresponds to “thermally thin” scenarios). We consider exclusively cases 

wherein the Biot number is much larger than 0.1 and this relates to ”thermally thick” regimes. 

All values of Biot number are associated with thermally thick behavior. The Biot number is directly 

proportional to convection heat transfer coefficient at surface and inversely proportional to 

thermal conductivity, with other parameters fixed (B𝑖 = −
ℎ

𝑘
√
𝜈

𝑐
 ). Higher thermal conductivities 

imply a lower Biot number and vice versa. The modification in thermal regime at the wall exerts 

an indirect influence on the tangential component of velocity. Increasing Biot number boosts the 

temperature near the wall which decreases momentum diffusion here and depresses the 

tangential velocity near wall. This effect is though reversed further towards the free stream 

where wall conduction effects are negated. 

 Figures (𝟔) − (𝟕) illustrate the response in temperature profile 𝜃(𝑦) with relaxation Deborah 

numbers 𝛽1 and Prandtl number 𝑃𝑟.  From figure (6) it is evident that temperature is elevated 

with increasing Deborah number 𝛽1. The increase in viscous effects associated with larger 

relaxation Deborah number serves to reduce momentum diffusion and to enhance thermal 

diffusion, for fixed Prandtl number. This manifests in heating in the boundary layer and increasing 

thermal boundary layer thickness. With increasing Prandtl number 𝑃𝑟, the tangential 

velocity ℎ′(𝑦), declines near the surface whereas it is accelerated further from the surface, as 

observed in Figure (7). This is so as smaller Prandtl number fluids are vastly conductive and their 

thermal diffusivity decreases with increasing values of Prandtl number. This stifles thermal 

diffusion and enhances momentum diffusion leading to flow acceleration further from the wall. 
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Figures (𝟖) − (𝟏𝟐) visualize the evolution in species concentration profile 𝑗(𝑦) with various 

parameters. Figure (8) shows that concentration magnitude is reduced by increasing relaxation 

Deborah number 𝛽1. The increased viscous effect associated with greater relaxation Deborah 

number implies a reduction in momentum diffusion rate. Via coupling with the concentration 

field the latter is therefore also adversely affected and this results in a decrease in concentration 

boundary layer thickness. Fig. 9 shows that similarly an increase in magnetic body force 

parameter, M =
𝜎𝐵0

2

𝜌𝑐
,  also depresses concentration profile 𝑗(𝑦). The inhibiting effect of Lorentzian 

magnetohydrodynamic drag associated with magnetic parameter serves to retard the flow. This 

decreases momentum diffusion in the boundary layer and again via coupling with the 

concentration field also indirectly opposes species diffusion. Concentration boundary layer 

thickness is also therefore depleted with greater magnetic field applied transverse to the wall. 

Asymptotically smooth convergence of all concentration plots is also achieved in the free stream 

confirming again the imposition of a sufficiently large infinity boundary condition in the 

computations. Figure (10) demonstrates that for an increment in Schmidt number 𝑆𝑐, there is a 

considerable enhancement in concentration magnitudes and therefore boosts the concentration 

boundary layer thickness. Schmidt number is chosen between 0.1 and 0.5 and these correspond 

to communal diffusing chemical species which including (hydrogen, Sc ~0.1), (helium, Sc ~ 0.2), 

(water vapour, Sc ~0.4-0.8). Schmidt is ratio of momentum to species diffusivity. Small values of 

Sc lead to enhanced chemical molecular diffusivity. Sc also represents relative thickness of 

velocity boundary layer to concentration (solutal) boundary layer. Larger Sc fluids have lower 

mass diffusion characteristics. Evidently Sc modifies significantly the concentration distribution 

throughout the regime. Figures (11) and (12) show that concentration profile 𝑗(𝑦) declines with 
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intensification in strength of either homogeneous or heterogeneous reactions i.e. increase in 

either 𝑘1 and 𝑘2. Owing to consumption of the reactive species, the concentration magnitudes 

are suppressed rapidly as 𝑘1 and 𝑘2 increase. Thus the diffusion rates can be tremendously 

altered by destructive first order homogenous or heterogeneous chemical reactions which both 

serve to thin the concentration boundary layer thickness. 

Figure (𝟏𝟑) − (𝟏𝟔) depict the response in local heat and mass flux −𝜃′(0), 𝑗′(0) with a variation 

in homogeneous or heterogeneous reactions 𝑘1 and 𝑘2,  magnetic field parameter 𝑀, and 

Schmidt number 𝑆𝑐. In figure(13), it is found that with elevating homogeneous reactions 𝑘1, 

there is no tangible change in heat flux −𝜃′(0), since the homogeneous reactions do not affect 

heat transfer rates but do impact on the mass transfer rate. Local mass flux 𝑗′(0) decreases with 

increasing homogeneous reaction, 𝑘1. Figure(14), shows that similarly the heat flux is not 

noticeably modified with heterogeneous reaction parameter, 𝑘2, whereas there is a considerable 

elevation in local mass flux. Figure(15), shows that with greater magnetic field parameter, 𝑀, 

both heat and mass flux −𝜃′(0), 𝑗′(0) are suppressed. Figure(16) demonstrates that with 

elevation in the Schmidt number 𝑆𝑐, heat flux −𝜃′(0) is not altered whereas there is a substantial 

accentuation in mass flux 𝑗′(0).  

 

6. CONCLUDING REMARKS 

Motivated by simulating rheological transport phenomena in nuclear reactor thermos-hydraulics 

near-wall regimes, a mathematical study has been conducted for time-independent 

hydromagnetic mixed convective heat and mass transfer in Oldroyd-B viscoelastic electrically 
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conducting fluid non-orthogonal (oblique) stagnation flow impinging on a stretching sheet under 

homogeneous-heterogeneous chemical reaction effects. Non-Fourier Cattaneo-Christov heat 

flux model is being utilized in the model. The non-dimensional governing boundary layer 

equations along with viable boundary conditions are solved expending shooting algorithm. 

Validation has been performed with the Adomian decomposition method (ADM). Important 

deductions from the present simulation may be summarized as follows: 

(i) Momentum boundary layer thickness declines whereas thermal boundary layer 

thickness upsurges with cumulative relaxation Deborah number and magnetic body 

force parameter. 

(ii) Concentration of chemical species increases with elevating Schmidt number whereas 

it is depleted with increasing strength of homogeneous- heterogeneous reactions.  

(iii) Normal and tangential velocity components are influenced differently with increasing 

relaxation Deborah number. 

(iv) With increasing Prandtl number the tangential velocity component is accelerated 

further from the wall whereas it is decelerated near the wall. 

(v) Increasing Biot number decelerates tangential velocity near the wall whereas it 

induces the opposite effect further from the wall towards the free stream. 

(vi) Local heat flux is stifled with increasing magnetic field parameter 𝑀. 

(vii) Local mass flux is reduced with increasing homogeneous reaction parameter and also 

with greater magnetic field parameter whereas it is elevated with increasing 

heterogeneous reaction parameter and Schmidt number. 
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An important implication of the current work is that the complex rheology, reactive and other 

effects have a significant impact on the fluid dynamics of the stagnation flow. The multi-physics 

is therefore important in more realistic simulations for nuclear reactor transport phenomena. It is 

envisaged that inclusion of these complex phenomena (non-Fourier, rheological, magnetic etc) 

associated with real fluids in nuclear engineering should not be neglected. The current 

simulations have considered a no-slip wall condition for velocity. Future studies will investigate 

both isotropic and anisotropic hydrodynamic slip and furthermore may explore thermal and 

solutal slip also.  
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𝐅𝐢𝐠𝐮𝐫𝐞 (𝟐) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑓′(𝑦)  with relaxation Deborah number  𝛽1. 
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𝐅𝐢𝐠𝐮𝐫𝐞 (𝟑) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  ℎ′(𝑦) with relaxation Deborah number   𝛽1. 

 

𝐅𝐢𝐠𝐮𝐫𝐞 (𝟒) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ℎ′(𝑦) with mixed convection parameter  𝜆. 
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𝐅𝐢𝐠𝐮𝐫𝐞 (𝟓) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ℎ′(𝑦) with Biot number, B𝑖 

 

𝐅𝐢𝐠𝐮𝐫𝐞 (𝟔) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 temperature  𝜃(𝑦) with relaxation Deborah number   𝛽1   
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𝐅𝐢𝐠𝐮𝐫𝐞 (𝟕) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 temperature  𝜃(𝑦) with Prandtl number 𝑃𝑟   

 

𝐅𝐢𝐠𝐮𝐫𝐞 (𝟖) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑗(𝑦) with relaxation Deborah number  𝛽1 
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𝐅𝐢𝐠𝐮𝐫𝐞 (𝟗) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑗(𝑦) with 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑀. 

 

𝐅𝐢𝐠𝐮𝐫𝐞 (𝟏𝟎) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑗(𝑦) with Schmidt number, 𝑆𝑐 
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𝐅𝐢𝐠𝐮𝐫𝐞 (𝟏𝟏) 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑗(𝑦) with homogeneous chemical reaction, 𝑘1. 

 

𝐅𝐢𝐠𝐮𝐫𝐞 (𝟏𝟐) Variation of 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑗(𝑦) with heterogenous chemical reaction, 𝑘2. 
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𝐅𝐢𝐠𝐮𝐫𝐞 (𝟏𝟑) Variation of local heat and mass flux with homogeneous chemical reaction 𝑘1. 

 

𝐅𝐢𝐠𝐮𝐫𝐞 (𝟏𝟒) Variation of local heat and mass flux with heterogeneous chemical reaction, 𝑘2. 
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𝐅𝐢𝐠𝐮𝐫𝐞 (𝟏𝟓) Variation of local heat and mass flux with magnetic parameter,  𝑀. 

 

𝐅𝐢𝐠𝐮𝐫𝐞 (𝟏𝟔) Variation of local heat and mass flux with Schmidt number, 𝑆𝑐. 
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