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ABSTRACT 

The magnetic properties of blood allow it to be manipulated with an electromagnetic field. Electromagnetic blood flow pumps are 
a robust technology which provide more elegant and sustainable performance compared with conventional medical pumps. Blood 
is a complex multi-phase suspension with non-Newtonian characteristics which are significant in micro-scale transport. Motivated 
by such applications, in the present article a mathematical model is developed for magnetohydrodynamic (MHD) pumping of blood 
in a deformable channel with peristaltic waves. A Jeffery’s viscoelastic formulation is employed for the rheology of blood. A two-
phase fluid-particle (“dusty”) model is utilized to better simulate suspension characteristics (plasma and erythrocytes). Hall current 
and wall slip effects are incorporated to achieve more realistic representation of actual systems. A two-dimensional asymmetric 
channel with dissimilar peristaltic wave trains propagating along the walls is considered. The governing conservation equations for 
mass, fluid and particle momentum are formulated with appropriate boundary conditions. The model is simplified using of long 
wavelength and creeping flow approximations. The model is also transformed from the fixed frame to the wave frame and rendered 
non-dimensional. Analytical solutions are derived. The resulting boundary value problem is solved analytically and exact 
expressions are derived for the fluid velocity, particulate velocity, fluid/particle fluid and particulate volumetric flow rates, axial 
pressure gradient, pressure rise and skin friction distributions are evaluated in detail. Increasing Hall current parameter reduces 
bolus growth in the channel, particle phase velocity and pressure difference in the augmented pumping region whereas it increases 
fluid phase velocity, axial pressure gradient and pressure difference in the pumping region. Increasing the hydrodynamic slip  
parameter accelerates both particulate and fluid phase flow at and close to the channel walls, enhances wall skin friction, boosts 
pressure difference in the augmented pumping region and increases bolus magnitudes. Increasing viscoelastic parameter (stress 
relaxation time to retardation time ratio) decelerates the fluid phase flow, accelerates the particle phase flow, decreases axial 
pressure gradient, elevates pressure difference in the augmented pumping region and reduces pressure difference in the pumping 
region. Increasing drag particulate suspension parameter decelerates the particle phase velocity, accelerates the fluid phase  
velocity, strongly elevates axial pressure gradient and reduces pressure difference (across one wavelength) in the augmented 
pumping region. Increasing particulate volume fraction density enhances bolus magnitudes in both the upper and lower zones of 
the channel and elevates pressure rise in the augmented pumping region. 
 

KEYWORDS: Peristaltic propulsion;Magnetohydrodynamics; Particle-fluid suspension; Viscoelasticity; Hall current; Slip boundary 

conditions; Electromagnetic biomimetic blood pumps. 
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NOMENCLATURE 

Roman 

 
:, 21 aa Wave amplitudes 

:a Amplitude ratio of the upper wall wave 

:b Amplitude ratio of the lower wall wave 

:0B Magnetic field 

:c Wave speed  

:e Charge of ions 

:F  Dimensionless time-mean flow in the wave frame 

:, 21 hh Dimensionless wall deformations 

:m Hall current parameter 

:M  Hartmann magnetic number 

:en Mass of the electrons 

:N  Suspension parameter 

:p  Dimensionless pressure 

:P Pressure 

:fQ Volume flow rate in fluid phase 

:pQ Volume flow rate in particulate phase 

:Re  Reynolds number 

:S Drag coefficient 

:t  Dimensionless time 

:t Time 

:fU Longitudinal velocity in fluid phase 

:u  Non-dimensional axial velocity 
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:pU Longitudinal velocity in particulate phase 

:fV  Transverse velocity in fluid phase 

:v  Dimensionless transverse velocity 

:pV  Transverse velocity in particulate phase 

:,YX  Coordinate axes 

:x  Non-dimensional axial coordinate 

:y  Dimensionless transverse coordinate 

 

Greek  

:  Dimensionless slip parameter  

:  Dimensionless wave number 

:f Density of material constituting fluid 

:p Density of particulate phase 

: Electrical conductivity 

: Wavelength 

:s Viscosity coefficient 

: Phase difference 

:1 Ratio of the relaxation and retardation times 

:2 Retardation time 

 

1. INTRODUCTION 

The electromagnetic properties of blood have been established for some time. The presence of 

hemoglobin and ionic content enables blood to respond to the imposition of electrical and magnetic 

fields. These features were identified in the 1930s by Pauling and co-workers at Caltech, USA [1] 

and have been shown to allow manipulation of both oxygenated and de-oxygenated blood flows 
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in many diverse applications. In the deoxygenated state, blood exhibits paramagnetic behavior 

whereas in the oxygenated state it possesses diamagnetic properties. Magnetic relaxation also 

arises in blood flow and may be of the order of several seconds. Magnetohydrodynamics (MHD) 

which involves the interaction of electrical/magnetic fields and electrically-conducting fluid flows 

has therefore emerged as a significant discipline in medical engineering. Applications include 

modification of light-absorbing properties of blood in biomagnetic devices [2], spinal lumbar 

fusion [3], pulsed therapy of tibial fractures [4] and osteoporosis treatments [5]. A significant 

biomedical apparatus which utilizes magnetohydrodynamics is the electromagnetic flow pump. 

This has been used for some years in flow meters [6], rotary maglev cardiac-assist devices [7], 

magnetic micro-pumps for enhanced flow control in surgical procedures [8] and also pumping of 

biological and chemical specimens, including DNA and saline buffers. Simulations of MHD 

pumps which have the advantage of generating continuous flow with low power and without 

moving parts, require simultaneous consideration of the fluid dynamics and electro-magnetic 

phenomena (Maxwell field equations). Interesting investigations in this regard include Naceur et 

al. [9] who used a finite volume solver (Ansys Fluent) to compute velocity and pressure 

distributions under various magnetic field loads. Hasan et al. [10] used COMSOL multiphasic 

modeling software to study the effects of various electromagnetic boundary conditions on 

magnetohydrodynamic flow in square, rectangular, circular and trapezoidal cross section micro-

channel pumps. Further studies include Homsy et al. [11] for direct current high density 

micropumps, Vaibhayetal. [12] who also studied electro-osmotic effects, Zhao et al. [13] for 

alternating current   MHD micropumps, Pal et al. [14] for ferrofluid thermo-magnetic micropumps, 

Kabbani et al. [15] for both DC and AC systems, Jian [16] for rotating EM micro-pumps. These 

works have generally neglected Hall current effects. Under certain magnetic field conditions with 

complex ionic working solutions, Hall currents can be mobilized which generate a secondary 

(cross) flow. This can exert a significant modification on velocity and pressure characteristics in 

micro-pumps [17]. Clinical verification of the contribution of Hall currents to real magnetized 

blood flows has also been confirmed in a number of studies including Sinatra [18] who 

demonstrated that Hall currents may also induce variation in magnetic field associated with the 

substantial magnetization of blood during slow flow and low magnetization during accelerated 

flow. Many investigations of Hall current effects in MHD pumping flows have been 

communicated using a variety of computational methods. Bég et al.[19] examined with a network 
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electrothermal code (PSPICE) the Hall current effects on oblique magnetohydrodynamic pumping 

in  spinning porous media system, observing that primary flow is accelerated whereas secondary 

flow is inhibited with stronger Hall parameter. Lemoff and Lee [20] considered Hall current and 

alternating magnetic field effects on magnetohydrodynamic pumping flows with computational 

finite volume codes. Srnivasacharya and Shiferaw [21] employed a finite difference algorithm to 

investigate micropolar magnetohydrodynamic pumping with both Hall and ion slip phenomena. 

An important trend in recent years in micro-pump technology has been the adoption of bio-inspired 

pumping mechanisms which achieve greater efficiency and sustainability. These systems employ 

complex biological characteristics including ciliated walls, variable stiffness and wall 

deformability, adaptive healing, surface tension and many other intriguing features. One of the 

most efficient and frequently deployed mechanisms of biological transport is peristalsis. This 

involves the propulsion of physiological fluids via rhythmic contraction of the walls of a vessel. 

Many sophisticated and robust peristaltic blood flow pumps have been introduced including non-

occlusive designs which employ passive filling and negate negative pressure, allowing successful 

operation in extracorporeal circulation as described by Montoya et al. [22]. Computational 

analyses of peristaltic blood flow pumps include Natarajan and Mokhtarzadeh-Dehghan [23] who 

used a finite element method to simulate the hydrodynamics of “soft’ two-way pulsatile peristaltic 

hemodynamic pumps, observing that net outflow linearly decays to zero with increasing pressure 

head. Lachat and Leskosek [24] developed an affinity peristaltic micro-pump for cardiopulmonary 

bypass procedures, noting the exceptional efficiency and sustained flow rates which can be 

achieved.  

The magnetic properties of blood and other physiological fluids have also mobilized interest in 

magnetohydrodynamic peristaltic pumps. These combine the flow control abilities of MHD 

micropumps with the biological optimization achieved with the peristaltic mechanism, as 

emphasized by Pan et al. [25]. Tripathi and Bég [26] derived analytical solutions for transient 

MHD pumping with thermal diffusion in finite length channel under peristaltic waves, observing 

the significant regulation in velocity and pressure fields which can be achieved by combining 

different wave amplitudes and transverse electromagnetic body force. Kothandapani and Srinivas 

[27] employed a perturbation method to examine the flow characteristics in hydromagnetic 

peristaltic pumping in inclined channels also considering the Saffman boundary condition for 

porous media effects. Mekheimer [28] studied magnetic pumping of couple stress peristaltic blood 
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flow in non-uniform two-dimensional channels noting that an increase in Hartmann magnetic 

parameter enhances the pressure rise whereas greater couple-stress fluid parameter reduces it. 

Bhatti et al. [29] have discussed the simultaneous effects of coagulation (blood clot) and variable 

magnetic field on peristaltically induced motion of non-Newtonian Jeffrey nanofluid containing  

gyrotactic microorganism through an annulus. Ijaz et al. [30] have presented comprehensive study 

on the liquid and solid particles interaction propagating through a finite symmetric wavy channel 

with electro-osmotic flow with magnetohydrodynamics effects. Bhatti et al. [31] have given a 

theoretical mathematical model to determine the entropy generation on electro-kinetically 

modulated peristaltic propulsion on the magnetized nanofluid flow through a microchannel with 

joule heating. Bhatti et al. [32] have examined the effects of magnetohydrodynamics on particle-

fluid suspension induced by metachronal wave. Zeeshan et al. [33] have investigated the peristaltic 

transport of a MHD dusty three-dimensional biorheological (Casson) fluid in a duct. These 

investigations generally utilized the assumption of long wavelength and low Reynolds number 

approximation i.e. the so-called lubrication theory. However they have neglected wall 

(hydrodynamic) slip effects. In micro-channel pumping systems, slip effects can exert a substantial 

influence on wall shear stress characteristics and therefore influence the velocity development 

across the channel span. Slip is a physical non-adherence of fluid to a boundary and can be 

hydrodynamic, thermal or even species-related.  In MHD systems, at the walls and also in close 

proximity to the walls, the ions present in magnetized working fluids may also contribute to slip 

phenomena. Slip in viscoelastic peristaltic pumping has been addressed by Tripathi et al. [34] for 

Oldroyd-B liquids using a homotopy analytical approach. Uddin et al. [35] have considered both 

velocity and thermal slip in bioconvection nanofluid transport. Rivero and Cuevas [36] have 

computationally examined the effect of fluid/wall slippage in magnetohydrodynamic (MHD) 

micropumps in low-Hartmann-number flows, also computing the influence of slip length on the 

flow rate magnitudes. Further studies of slip dynamics in biological fluid mechanics include Bég 

et al. [37] for expanding/contracting micro-channel bio-nanoconvection flows, Bég et al. [38] for 

rotating disk reactor flows and Uddin et al. [39] for 3-dimensional anisotropic gyrotactic 

bioconvection with nano-particle doping. Slip effects in non-Newtonian peristaltic flows have 

been studied by El-Shehawy et al. [40] for Maxwell upper convected fluids and Ali et al. [41] for 

magnetic Reynolds exponential viscosity fluids.   
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Generally the articles quoted hitherto have simplified the blood (or biofluid) to a single phase 

model. Blood and indeed practically every other biological fluid contains many suspensions which 

are critical to functionality. These “particular” suspensions may include mucin, proteins, lipids, 

ions, erythrocytes, phospholipids and enzymes. These can also dramatically modify the rheology 

of physiological liquids. As such blood should be treated as a multi-phase medium [42]and in this 

context the fluid-particle suspension model provides a simple but elegant and physically realistic 

approximation. Fluid-particle blood flows lead to various different formulations. These may 

involve a simple suspension parameter introduced into momentum balance equations or Stokes 

particle numbers. Both approaches have been extensively deployed in recent years in peristaltic 

and other hemodynamic transport problems. Srivastava and  Srivastava [43] obtained perturbation 

solutions for peristaltic pumping of a particle-fluid mixture under sinusoidal traveling wave in a 

two-dimensional channel, noting that critical reflux pressure is lower for the particle-fluid 

suspension than for the particle-free fluid and that the mean flow reversal is significantly 

influenced by particle concentration Bég et al. [44] used the Zhou differential transform algorithm 

to simulate momentum inverse Stokes number (Skm), particle loading parameter (pL), particle-

phase wall slip parameter (Ω) and other effects on blood hydrodynamics in a bio-filtration device. 

Chhabra and Prasad [45] performed experiments  to quantify the influence of aerosol deposition 

in respiratory flows, showing that the introduction and clogging of aerosol particles in the acinar 

region can either be detrimental to gas exchange (as in the case of harmful particulate matter) or 

beneficial (as in the case of inhalable pharmaceuticals). Bhatti et al. [46] studied multi-mode heat 

transfer in electromagnetic pumping of viscoelastic fluid-particle suspensions in two-dimensional 

channels. Srivastava and Srivastava [47] examined the simultaneous Poiseuille and peristaltic 

transport of a particulate suspension in infinite tubes using a Frobenius series solution method 

and observing that mean flow is modified considerably by peristaltic wave parameter and 

Poiseuille’s flow parameter and furthermore is damped by greater particle concentrations. Further 

analyses have been communicated by Medhavi and Singh[48], Kamel et al .[49], Bahiraei 

[50,51,52], Bahiraei et al. [53,54,55] the latter also addressing multi- phase flows. 

In the present investigation, analytical solutions are developed for magnetohydrodynamic (MHD) 

pumping of fluid-particle blood suspension in a two-dimensional channel with asymmetric 

peristaltic waves imposed at the upper and lower walls. The Jefferys viscoelastic model is used for 

non-Newtonian relaxation effects. Magnetic field is imposed transverse to the channel longitudinal 
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axis and is sufficiently strong to invoke Hall current effects. Hydrodynamic slip is also included 

at the channel walls. The work is relevant to further elucidating biological designs in 

magnetohydrodynamic micropumps and extends significantly the rigid wall and simple power-law 

fluid study of Shahidian et al. [45]. The present simulations are also relevant to the magnetic 

pumping of viscoelastic solid-fluid mixtures by peristalsis in chemical engineering systems. 

 

2. MATHEMATICAL MODEL  

Consider the peristaltic propulsion of particulate suspension of an incompressible Jeffrey fluid 

through a two-dimensional asymmetric channel of width .21 dd +  Asymmetry in the channel is 

produced by assuming the peristaltic wave trains propagating with constant speed c  along the 

walls to have different amplitudes and phases. The Cartesian coordinate system is adopted to 

describe the geometry, in such a way that −X axis is taken towards the flow direction and −Y axis 

is considered towards normal along the channel (see Fig. 1). A strong static uniform magnetic field 

with magnetic flux density ( )0,0,0 B=B is applied in the transverse direction and is adequately large 

to invoke Hall current effects. The induced magnetic field is neglected by assuming a very small 

magnetic Reynolds number. Furthermore, it is assumed that there is no applied or polarization 

voltage so that the total electric field .0=E The shapes of the channel walls are represented as 

( ) ( )1 1 1

2
, cos ,H X t d a X ct





 
= + − 

 
                                                     (1) 

( ) ( )2 2 2

2
, cos ,H X t d a X ct






 
= − − − + 

                                                   

(2) 

where 1a  and 2a  are the wave amplitudes,   is the wavelength, c  is the velocity of propagation, t  

is the time and X  is the direction of wave propagation. The phase difference   varies in the range 

,0    in which 0=  corresponds to symmetric channel with waves out of phase and  =

corresponds to that with waves in phase, and further 2121 ,,, ddaa  and   satisfy the relation 

( ) .cos2
2

2121
2
2

2
1 ddaaaa +++   

The extra stress tensor for the Jeffrey fluid model can be written as 

( )2

1

,
1

s 


= +
+

τ D D

                                                                      (3) 
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in which s is the viscosity coefficient, 1  is the ratio of relaxation and retardation times, 2  is the 

retardation time, D  is the deformation tensor and D  is the material derivative and these are given 

by 

( ) ,
T

= + D q q                                                                                       (4) 

.
t

 
= + • 

 
D q D

                                                                                     (5) 

 

Fig.1: Geometric model. 

 

The Jeffreys model arises naturally for polymer solutions if one decomposes the total stress into a 

Newtonian viscous stress for the solvent and an additional stress for the polymer. It was introduced 

for polymeric suspensions but has shown significant promise for multi-phase blood flows. The 

Jeffrey model is in fact a three-parameter viscoelastic model and as such more refined than the 

Maxwell model. It augments the time derivative of the shear rate tensor in the Maxwell model by 

supplementing the stress relaxation time with a retardation time [46]. 

The two-phase blood flow considered is electrically-conducting and magnetohydrodynamic 

effects are therefore invoked. The walls of the channel are considered to be electrically-insulated. 

The generalized Ohm’s law can be written as [64] 

Y
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( ) ,
e

1

en

 

= +  −  
 

J E q B J B

                                                             (6) 

where en the mass of the electron and e is the charge of the ions. Equation (6) can be solved in J  to 

yield the Lorentz body force vector in the form [64] 

( ) ( )
2

0

2
,

1

B
U mV i mU V j

m

−
 = − + +  +

J B
                                                         (7) 

whereU and V are components of the velocity vector and 
een

B
m 0
= is the Hall current parameter. 

Within the framework of continuum mechanics, the equations governing the unsteady 

conservation equations for mass and linear momentum for both fluid and particle phase are 

expressed as follows [65, 66]: 

 

Fluid phase 

0,
f fU V

X Y

 
+ =

                                                                  (8) 

( ) ( ) ( ) ( )

( ) ( )
2

0

2

1 1 1

1 ,
1

f f f XX XY
f f f p f

U U U P
C U V C C CS U U

t X Y X X Y

B
C U mV

m

 




       
− + + = − − + − + + −   

       

− − −
+ (9) 

( ) ( ) ( ) ( )

( ) ( )
2

0

2

1 1 1

1 .
1

f f f YX YY
f f f p f

V V V P
C U V C C CS V V

t X Y Y X Y

B
C mU V

m

 




       
− + + = − − + − + + −   

       

− − +
+ (10) 

Particulate phase 

0,
p pU V

X Y

 
+ =

                                                                (11) 

( ) ,p p p

p p p f p

U U U P
C U V C CS U U

t X Y X


    
+ + = − + − 

                                     (12) 

( ) ,p p p

p p p f p

V V V P
C U V C CS V V

t X Y Y


    
+ + = − + − 

                                       (13) 
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where X  and Y are Cartesian coordinates with X  is measured in the direction of wave 

propagation andY  is measured in the transverse direction of the channel walls, ( )ff VU , denotes fluid 

phase velocities, ( )pp VU , denotes particulate phase velocities, 
f  and 

p  are the actual densities of 

the materials constituting fluid and particulate phase respectively, ( ) fC −1 is the fluid phase 

density, 
pC  is the particulate phase density, P  is the pressure, C  denotes the volume fraction 

density of the particles, ( )Cs  is the particle-fluid mixture viscosity and S the drag coefficient of 

interaction for the force exerted by one phase on the other. The drag coefficient expression for the 

present problem is selected as [65, 66] 

( ) ( )
( )

2

0

22

9 4 3 8 3 3
, ,

2 2 3

C C C
S C C

a C


 

+ − +
= =

−                                            (14) 

in which, 0  is the fluid viscosity and a

 is the radius of the particle. Many empirical relations have 

been suggested to express the viscosity of the suspension as a function of particle concentration 

and viscosity of the suspending medium. Einstein was the first to showtheoretically that the 

viscosity of the suspension s was related to that of the suspending medium 0 for spheres in 

suspension by ( )Cs 5.210 −=  . However, the Einstein formula expresses the viscosity of the 

suspension only when C  is less than 0.05. As C  increases from 0.05, the suspension viscosity 

deviates from Einstein’s equation, as elaborated by Landau and Lifschitz[47].For the present 

problem, an empirical relation for the viscosity of the suspension is as follows: 

( )0 1107
, 0.07 exp 2.49 exp 1.69 ,

1
s C C

C T


 



 
= = + − 

−                                     (15) 

whereT  is the absolute temperature. The viscosity of the suspension expressed by this formula is 

found to be reasonably accurate up to .6.0=C Charmand Kurland [48] tested the equation (15) with 

a cone and plate viscometer and found it to be within ten percent agreement of blood suspensions. 

To eliminate the time dimension from the mathematical model, it is convenient to define the 

transformation variable from the fixed frame to the wave (laboratory) frame 

( ) ( ) ( ) ( ) ( ) ( ), , , ,, , , , , , , , , , , , , .f p f p f p f px X ct y Y u x y U X Y t c v x y V X Y t p x y p X Y t= − = = − = =
     

    (16) 

Using the above transformations, the governing partial differential equations in the wave frame for 

both fluid and particulate phaseassume the form: 
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Fluid phase 

0,
f fu v

x y

 
+ =

                                                                    (17) 

( ) ( ) ( ) ( )

( ) ( )
2

0

2

1 1 1

1 ,
1

f f xyxx
f f f p f

u u p
C u v C C CS u u

x y x x y

B
C u c mv

m






     
− + = − − + − + + −   

       

− − + −
+

                   (18) 

( ) ( ) ( ) ( )

( ) ( )( )
2

0

2

1 1 1

1 ,
1

f f yx yy

f f f p f

v v p
C u v C C CS v v

x y y x y

B
C m u c v

m

 




      
− + = − − + − + + −   

       

− − + +
+

                    

(19)

 

Particulate phase 

0,
p pu v

x y

 
+ =

                                                                       (20) 

( ) ,p p

p p p f p

u u p
C u v C CS u u

x y x


   
+ = − + − 

                                                 (21) 

( ) ,p p

p p p f p

v v p
C u v C CS v v

x y y


   
+ = − + − 

                                                  (22) 

It is further advantageous to normalize the conservation equations to circumvent the need for actual 

material properties of multi-phase blood. The following dimensionless parameters are therefore 

defined: 

2

1 2 1 1 2
1 2

1 1 1 1

2

1 2 1 1 1
0 1

1 1

, , , , , , , , , ,

, , Re , , , ,

s

s s s s

H H d p d dx y u v ct
x y u v h h t p d

d c c a d c d

a a cd d Sd
a b M B d N

d d c


    

 


   

= = = = = = = = = =

= = = = = =

(23) 

Here x is dimensionless longitudinal (axial) coordinate, y is dimensionless transverse 

coordinate, u is dimensionless axial velocity, v is dimensionless transverse velocity, h1 and h2are 

non-dimensional wall deformations, t is dimensionless time, p is dimensionless pressure,   is 
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dimensionless wave number, d is dimensionless channel width ratio, a is amplitude ratio of the 

upper wall wave, b is amplitude ratio of the lower wall wave, Re is the Reynolds number, M  

denotes Hartmann number,  is non-dimensional relaxation time and N  is the suspension 

parameter. Using the above non-dimensional quantities in the equations (17)-(22), and invoking 

the long wavelength and low Reynolds number approximations, the resulting equations for fluid 

phase and particulate phases emerge as: 

( )
( )

( )
2 2

2 2

1

1
1 ,

1 1 1

f

f p f

udp M NC
u u u

dx y m C
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( ) ,f p
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N u u
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= −

                                                                  (24b) 

The corresponding dimensionless boundary conditions take the form: 
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in the above expressions, 1 is the viscoelastic parameter and 












=

1d


 is the non-dimensional 

slip parameter. 

 

3. ANALYTICAL SOLUTIONS 

Using Eqns. (24a,b), with the corresponding boundary conditions (25) and (26), the exact solutions 

for the axial velocities for the fluid phase and particulate phase are: 
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For the fluid and particle phases, the volumetric flow rateis written as 
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                                                              (29) 
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                                                                 (30) 

The total volumetric flow rate is therefore simply given by: 

.pf QQQ +=
                                                                   (31) 

Using the equations (29) and (30) in the equation (31), we get 
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The pressure gradient  dxdp / is calculated with the help of above equation, it can be written as 
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The dimensionless form for pressure rise is evaluated numerically using the following formula: 

1

0
.

dp
p dx

dx


 
 =  

 


                                                                 (34) 

The expression for dimensionless stream function satisfying equation of continuity is defined as 

, ,

, ,, ,
f p f p

f p f pu v
y x

  
= = −

                                                  (35) 

 

4. NUMERICAL RESULTS AND INTERPRETATION 

In this section, selected graphical results for the influence of different parameters on the fluid phase 

and particulate phase are elaborated. We consider the effects of volume fraction density, Hall 

current parameter, wall slip, viscoelastic parameter, suspension parameter and Hartmann number 

on fluid velocity, particulate velocity, fluid/particle fluid and particulate volumetric flow rates, 
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axial pressure gradient, pressure rise, skin friction distribution and streamline distributions. The 

expression for pressure rise i.e. eqn. (34) is evaluated numerically. Selected results are depicted in 

Figs 2-9.  

 

 

 

 

(a) 

 

(b) 
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Figure 2: Effects of different fluid parameters on the velocity profile in the fluid phase for 
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Figure 3: Effects of different fluid parameters on the velocity profile in the particulate phase for 
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Figure 4: Effects of different fluid parameters on the pressure gradient for 
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Figure 5: Effects of different fluid parameters on the pressure rise for 
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Figure 6: Effects of different fluid parameters on the skin friction profile for 
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(a) 3.0=C                                                              (b) 4.0=C  

 

                                   (c) 5.0=C                                                                (d) 6.0=C  

Figure 7: Streamline patterns for different values of volume fraction density of the particles for 

.5.0,5.0,2,5.0,2,0,1,1,5.0,5.0 1 ==========  mNQMdba  
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(a) 0.0=                                                                 (b) 1.0=  

 

                              (c)   2.0=                                                                (d) 5.0=  

Figure 8: Streamline patterns for different values of slip parameter for 

.4.0,5.0,1,5.0,2,0,1,1,5.0,5.0 1 ========== CmNQMdba   
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(a) 0.0=m                                                            (b) 5.0=m  

 

                                    (c) 0.1=m                                                               (d) 5.1=m  

Figure 9: Streamline patterns for different values of Hall parameter for 

.4.0,5.0,1,5.0,2,0,1,1,5.0,5.0 1 ========== CNQMdba   
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Figs. 2 a-f illustrate the impact of the Hall parameter (m), slip parameter (), Hartmann magnetic 

number (M), viscoelastic parameter (1), particulate suspension parameter (N) and volume fraction 

(C) on fluid phase velocity (uf) distributions. In Fig. 2a an increase in the Hall current parameter 

clearly enhances the axial fluid velocity component across the micropump channel span. The 

parameter m arises as a quotient in the magnetic body force term, viz ( )1
1 2

2

+
+

− fu
m

M
 in the fluid 

phase momentum eqn. (24a). The presence of stronger Hall currents depletes the effect of the 

magnetic body force. This serves to accelerate the axial flow. The maximum axial fluid velocity 

therefore arises when Hall current vanishes (m→0). Similar observations have been made by 

Sutton and Sherman [49], Datta and Jana [50] etc. Symmetry of axial fluid velocity profiles is not 

broken by the Hall current effect. Peak velocity is consistently computed at the channel centerline. 

No overlap in profiles is observed. With increasing wall slip parameter (), as seen in Fig. 2b, 

there is a distinct acceleration in fluid velocity at the channel boundaries; however towards the 

core zone of the channel the flow is decelerated. The non-adherence of the biofluid to the channel 

(pump duct) walls is maximized at the walls. This effect is progressively reduced with distance 

from the wall. The wall slip effect is therefore localized to the near-wall zones and is non-trivial 

here. Fig 2c shows that as magnetic Hartmann number is increased, there is a substantial 

retardation in the axial fluid phase velocity. The profiles also evolve from the classical parabolic 

configuration to strong oblate plateaus which are characteristic of MHD duct flows [50]. 

Maximum deceleration of the flow arises at the channel boundaries. Hartmann number effectively 

expresses the ratio of the Lorentz drag force to the hydrodynamic viscous force. The two forces 

are of the same order of magnitude when M = 1 and the former exceeds the latter for M> 1.Effective 

regulation (damping) of the axial flow is clearly attained with stronger magnetic fields i.e. higher 

Hartmann numbers. With increasing viscoelastic parameter (1), as plotted in Fig. 2d, the 

relaxation time of the biofluid is increased relative to the retardation time. For small values of 1, 

the time scale of fluid movement is much greater than the relaxation time of elastic forces and 

behavior is closer to a normal viscous fluid. This manifests in acceleration in the flow. As values 

of 1, the elastic effect is greater and the fluid takes longer to respond to shear. This results in a 

strong deceleration in the flow. Again irrespective of non-Newtonian effect the symmetry in 

profiles is sustained across the micro-pump duct. Jefferys model is a special viscoelastic model 

which exhibits shear thinning characteristics, yield stress, and high shear viscosity. The Jeffreys 
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fluid model is known to degenerate to a Newtonian fluid at a very high wall shear stress, i.e., when 

wall stress is much greater than yield stress. It does however capture important characteristics of 

blood flow and deviates significantly from Newtonian results. With an increase in the particle drag 

suspension parameter, N, (Fig. 2e) there is a considerable reduction in axial fluid phase velocity. 

The presence of larger particles increases the drag coefficient in the flow. This induces flow 

retardation. For N = 0 the particle drag effect is negated and this is the case for single phase blood. 

Evidently the axial velocity is a maximum for this indicating that single phase models over-

estimate values. At high N values a significant oblateness is generated in the profile which is absent 

for very small N values. Similar findings have been reported by for example Srivastava and 

Srivastava [38] and Kamelet al.[44]. Fig. 2f shows that with increasing volume fraction density of 

the particles (C), there is again a strong deceleration in the fluid phase velocity. This parameter is 

more related to the concentration of particles rather than their geometrical size. Interestingly the 

profiles, while modified, do not deviate from the parabolic case even at high values of C. 

Furthermore in all plots it is apparent that negative values of fluid phase velocity arise across the 

entire channel. 

 

Figs. 3 a-f illustrate the response in particle phase velocity (up) distributions with a variation in 

respectively, the Hall parameter (m), slip parameter (), Hartmann magnetic number (M), 

viscoelastic parameter (1), particulate suspension parameter (N) and volume fraction (C). 

Comparing with figs. 2a-f, some similar trends are observed as with the fluid phase velocity. 

However two immediate differences are evident. Magnitudes of the particle phase velocity are an 

order of magnitude larger than fluid phase velocity and they are always positive indicating that the 

direction of motion is opposite. Of the six parameters studied all except the slip parameter arise in 

the fluid phase momentum conservation eqn. (24a). However only the suspension (drag) 

parameter, N, arises in the particle phase momentum conservation eqn. (24b). However both the 

slip parameter () and viscoelastic parameter (1) feature in the fluid phase wall boundary 

conditions (25) and (26). The influence of Hall parameter (m), Hartmann magnetic number (M), 

viscoelastic parameter (1), slip parameter () and volume fraction (C) on particle phase velocity 

is therefore experienced indirectly via coupling with the fluid phase momentum eqn. (24b). A 

much weaker decrement in particle phase velocity is witnessed over the same increment of Hall 

parameter (m) as shown in Fig. 3a. The parabolic characteristic profiles are retained however. With 
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greater wall slip effect (Fig. 3b), a much stronger enhancement in particle phase velocity at the 

walls is induced (magnitudes are approximately doubled) and the reduction zone in the core region 

is widened compared with the fluid velocity phase response (Fig. 2b). The depletion of particle 

velocity is also therefore generated in the core region as with the fluid phase velocity with greater 

wall hydrodynamic slip. Increasing Hartmann number, corresponding to stronger transverse 

magnetic field is found to cause the opposite response in particle phase velocity i.e. a marked 

elevation. The reduction in fluid phase momentum (Fig. 2c) is re-distributed to the suspended 

particles. This creates acceleration in particle phase velocity although the effect is less prominent 

than the fluid phase deceleration. The response to viscoelastic effect (Fig. 3d) is also very different 

compared with the fluid phase. Increasing relaxation to retardation time ratio is known to increase 

the orientation of rheological fluids in one direction and in polymers corresponds to enhancement 

in stretching. The blood therefore takes longer to relax in comparison with the rate at which the 

flow is deforming it as (1) is enhanced. This is accompanied by stretching of the blood and 

increased delay in its return to the unstressed state. Fluid momentum development is therefore 

impeded and this is transferred to the suspended particles manifesting in acceleration. For the 

Newtonian case (1=0) this effect is negated and the particle phase velocity is suppressed taking 

an approximately invariant profile across the micro-pump duct. The profiles evolve into parabolic 

plots across the micro-pump duct span with increasing viscoelastic effect.  Fig. 3e indicates that 

increasing drag suspension parameter (N) results in a strong deceleration in the particle phase 

velocity, again the converse response to the fluid phase velocity (Fig. 2e). The enhanced drag effect 

(related to size of the suspended particles) will inevitably slow them down and simultaneously will 

enable acceleration of the fluid phase in the micro-pump duct. Although there is also a decrease in 

particle phase velocity with increasing volume fraction, C, as plotted in Fig. 3f, the impact is 

considerably more dramatic. Decreases from 20 for C = 0.05 to 4 for C = 0.20 at the duct centerline 

constituting a 500% decrease compared with a less than 10% depression for the fluid phase 

velocity over the same change in volume fraction. Concentration of suspended particles is 

massively elevated with increasing C values. This decreases the momentum distribution per 

particle considerably and results in substantial deceleration. The implication is therefore that dense 

blood suspensions will respond very differently to lighter suspensions in practical MHD pumping 

operations. 
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Figs. 4a-f depict the axial pressure gradient (dp/dx) response with axial coordinate (x) again for 

the six key control parameters i.e. Hartmann magnetic number (M), slip parameter (), Hall 

parameter (m), viscoelastic parameter (1), particulate suspension parameter (N) and volume 

fraction (C). Pressure gradient is significantly reduced with increasing Hartmann number i.e. less 

pressure per unit length is generated along the micro-pump duct. The periodic nature of the 

pressure gradient is captured in the snapshot given in Fig. 4a. Increasing slip is also found to 

strongly reduce the pressure gradient (Fig. 4b). This behavior is maintained along the duct length. 

The maximum pressure gradient corresponds to the no-slip case ( = 0). On the other hand an 

increase in Hall parameter demonstrably elevates the axial pressure gradient (Fig. 4c).The case of 

vanishing Hall parameter implies an absence of secondary (cross) flow in the duct. This achieves 

the lowest pressure gradient. The Hall current effect is therefore beneficial to pressure gradient 

enhancement. Increasing viscoelastic parameter (larger stress relaxation time of the blood), as 

illustrated in Fig. 4d, however impedes pressure gradient very strongly since it is associated with 

deceleration in the fluid phase. The Newtonian case (1 =0) achieves the greatest axial pressure 

gradient which is consistent with other studies- see for example Shahidian et al. [49]. With 

increasing particle suspension (Fig. 4e) and volume fraction (Fig. 4f) pressure gradient is 

respectively increased and decreased considerably. In all the figures, positive values are sustained 

for dp/dx at all values of x i.e. reverse pressure gradient is not generated which is characteristic of 

peristaltic pumping and very attractive from the view point of more efficient MHD micro-pumps 

in medical applications. The magnetic field decelerates the peristaltic flow and therefore 

dramatically alters pressure distributions (velocity and pressure are inversely related). Slip also 

exerts an influence on velocity and momentum and this manifests in a modification in the pressure. 

 

Figs. 5a-f present the pressure rise i.e. pressure difference across one wavelength (p) with 

volumetric flow rate (Q) for again for the six key control parameters i.e. Hartmann magnetic 

number (M), slip parameter (), Hall parameter (m), viscoelastic parameter (1), particulate 

suspension parameter (N) and volume fraction (C). An advantage of peristaltic micro-pumps is 

that different pumping regimes can be achieved. These were first identified by Shapiro et al.[51] 

and designated as the pumping region (p> 0), the augmented pumping region (p< 0), and the 

free pumping region (p=0). Different responses are computed for the same parameter in these 

different regions Fig. 5a shows that in the pumping region, pressure difference slightly decreases 
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with increasing Hartmann number (M) whereas in the augmented pumping region it is enhanced. 

The transverse magnetic field therefore exerts a different influence depending on the pumping 

zone considered. In Fig. 5a and all other plots the p-Q relationship is clearly an inverse linear 

relationship i.e. pressure difference decreases with increasing volumetric flow rate which is also 

characteristic of peristaltic propulsion systems [52]. Fig 5b shows that with increasing wall slip 

the in the pumping region, pressure difference is also weakly reduced whereas in the augmented 

pumping region it is greatly elevated. Conversely with increasing Hall current parameter (m) as 

seen in fig 5c pressure difference is reduced in the augmented pumping zone whereas it is weakly 

increased in the pumping zone. Increasing viscoelastic parameter (Fig. 5d) strongly boosts the 

pressure difference in the augmented zone whereas it slightly reduces it in the pumping zone. 

Increasing drag suspension parameter, N, (Fig. 5e) significantly decreases pressure difference in 

the augmented region and causes an increase in the pumping region. A rise in volume fraction, C, 

(fig 5f) leads to a considerable boost in pressure difference in the augmented pumping zone and to 

a minute reduction in the pumping region. In all cases the maximum pressure difference is 

computed at the largest value of negative flow rate whereas the minimal pressure difference is 

obtained at the maximum positive flow rate.  

 

Figs 6a-d depict the response in wall skin friction (dimensionless surface shear stress) with four 

selected control parameters, namely slip parameter (), Hartmann magnetic number (M), 

viscoelastic parameter (1) and particulate suspension parameter (N), plotted for variation in 

volume fraction (C). The skin friction is computed of course from the fluid phase velocity and is 

always negative. Increasing slip (Fig. 6a) is observed to generally enhance the skin friction, which 

is expected owing to the acceleration at the boundary with greater hydrodynamic slip, as computed 

earlier. Initially skin friction grows strongly with increasing particulate volume fraction. However 

a critical C values is reached beyond which the skin friction begins to decrease. This implies that 

an optimum concentration of suspended particles in the flowing blood exists up to which flow 

acceleration is attainable and above which it is lost. The peak skin friction corresponds to 

approximately C = 0.35. Fig 6b indicates that with increasing Hartmann number (M), skin friction 

is also enhanced and attains an optimal value between C = 0.3 and 0.4. The optimal value 

corresponds to a lower volume fraction progressively as Hartmann number is is increased i.e. the 

peak of the plot is displaced towards the left. With greater viscoelastic parameter the skin friction 
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is also elevated. The viscoelastic cases (1>0) however achieve a much lower magnitude of skin 

friction at vanishing volume fraction (single phase streaming blood, C = 0) compared with the 

Newtonian case (1=0). However unlike the response with variation in wall hydrodynamic slip 

parameter () and Hartmann number (M), the profiles in fig 6c converge as volume fraction reaches 

a peak value (0.6). The implication is that skin friction cannot grow indefinitely with greater 

viscoelasticity and will eventually attain a peak irrespective of the nature of the blood. Fig 6d 

demonstrates that with drag suspension parameter increasing (N) there is a sizeable reduction in 

skin friction which is physically viable. Again an optimum skin friction is attained at values of 

volume fraction, C, between 0.3 and 0.4. No asymptotic limit is attained for maximum volume 

fraction as in the case of the viscoelasticity variation (Fig. 6c). 

 

Figs. 7a-d to 9a-d visualize the streamline distributions in the peristaltic flow regime volume 

fraction (C), slip parameter () and Hall current parameter (m), respectively. The entire micro-

pump channel space is considered. These figures highlight a key characteristic of peristaltic flows, 

namely trapping phenomena which relate to the stream lines circulation and formation of a trapped 

bolus. Trapping permits the determination of reflux characteristics and also vortex growth and 

circulation intensity in peristaltic flows. Two sets of trapping zones are present – one above the 

centre line and one below and the structure is asymmetric owing to the imposition of different 

peristaltic waves at the lower and upper boundaries. These zones contain large boluses near the 

upper channel and lower channel with streamlines around the channel central zone remaining 

largely parallel and undistorted. In figs. 7a-d increasing volume fraction density of the particulate 

suspension is observed to encourage bolus growth in the upper and lower layers and eliminates the 

initially tightly constrained streamlines around the channel centerline. Volume fraction (C) 

features in the fluid phase momentum equation in the velocity difference term 
𝑁𝐶

(1−𝐶)
(𝑢 𝑝 −

𝑢 𝑓) . With increasing C values (with magnitudes which are always less than unity i.e. 0.3, 0.4, 

0.5, 0.6 respectively in figs. 7a, b, c,d), for constant suspension parameter, N (=2), the fraction 

C/(1-C) increases substantially from 3/7, to 2/3, 1 and to a maximum of 1.5.  In the momentum 

eqn. (24a) the axial pressure gradient as defined below is positively influenced by the volume 

fraction term, ( )
( )

( )
2 2

2 2

1

1
1 ,

1 1 1

f

f p f

udp M NC
u u u

dx y m C


= − + + −

+  + −
where it arises in the ultimate 
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term. This is characteristic of particulate flows i.e. suspensions. The increase in pressure gradient 

encourages a lateral spread in the trapped zones and this explains why enhancement in volume 

fraction density of the particulate suspension promotes bolus growth in the upper and lower layers 

and relaxes the streamline distributions around the central core zone. The impact of particle volume 

fraction increasing is to decelerate axial velocity and enhance pressure gradient, and this has also 

been observed by other researchers e.g. Bhatti and Zeeshan [67] and with extensive verification in 

terms of peristaltic pumping by Jiménez-Lozano et al. [68].   In figs 8a-d increasing slip parameter 

is also found to assist in bolus expansion in both upper and lower zones, although the central core 

streamlines are not modified to any great degree. Conversely in figs 9a-d with increase Hall current 

parameter there is a slight contraction in boluses and a weak intensification in streamlines near the 

channel centre axis.  

 

5. CONCLUSIONS 

A two-dimensional mathematical model has been developed to simulate the viscoelastic two-phase 

dynamics of blood in a peristaltic magnetohydrodynamic micro-pump with wall slip and Hall 

current effects. Stress relaxation and retardation in the blood have been studied via the Jefferys 

non-Newtonian model. The case of a two-dimensional asymmetric channel with different 

peristaltic wave trains propagating along the walls has been addressed. The transformed 

conservation equations for the fluid and particulate phases, with an appropriate particle drag factor 

incorporated have been solved analytically. Numerical evaluation of these solutions has been 

achieved. The computations have shown that: 

• An increase in Hall current parameter decreases bolus growth in the channel, particle phase 

velocity and pressure difference in the augmented pumping region whereas it increases 

fluid phase velocity, axial pressure gradient and pressure difference in the pumping region. 

• An increase in hydrodynamic slip parameter accelerates both particulate and fluid phase 

flow at and close to the channel walls, enhances wall skin friction, boosts pressure 

difference in the augmented pumping region and increases bolus magnitudes. However 

increasing wall slip decreases both particulate and fluid phase flow in the central (core) 

region, reduces pressure difference in the pumping region and strongly depresses axial 

pressure gradient across the channel span. 

• Increasing Hartmann (magnetic) number decreases fluid phase velocity, enhances particle 
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phase velocity, decreases axial pressure gradient, elevates pressure difference in the 

augmented pumping region and decreases pressure difference in the pumping region. 

• Increasing viscoelastic parameter (stress relaxation time to retardation time ratio) 

decelerates the fluid phase flow, accelerates the particle phase flow, decreases axial 

pressure gradient, elevates pressure difference in the augmented pumping region and 

reduces pressure difference in the pumping region.  

• Increasing drag particulate suspension parameter decelerates the particle phase velocity, 

accelerates the fluid phase velocity, strongly elevates axial pressure gradient, reduces 

pressure difference (across one wavelength) in the augmented pumping region, weakly 

increases pressure difference in the classical pumping region and increases skin friction. 

• Increasing particulate volume fraction density enhances bolus magnitudes in both the upper 

and lower zones of the channel and elevates pressure rise in the augmented pumping region 

whereas it decreases fluid phase velocity, particulate phase velocity,  axial pressure 

gradient and weakly reduces pressure rise in the pumping region. 

 

The current study has examined a relatively simple geometry for the MHD pumping duct (channel) 

and considered the biofluid (blood) to be two-phase and viscoelastic. Interesting characteristics 

have been computed of relevance to biomimetic magnetic micro-pumps. However, the geometry 

in real systems exhibits curvature and flows are also generically three-dimensional in nature. The 

careful analysis of these systems for better visualization of flow structures requires computational 

fluid dynamics (CFD) codes e.g. ANSYS FLUENT, COMSOL Multiphysics, ADINA etc. 

These allow the coupled solution for Maxwell electromagnetic fields with multi-phase material 

models and laminar/turbulent flows and also deformable conduits (fluid structure interaction) are 

currently being explored [10]. Furthermore, more generalized viscoelastic models in conjunction 

with Eringen micro-morphic models (which simulate spin of particles in blood suspensions) will 

undoubtedly provide a deeper insight into the biorheology of such pumping systems and this aspect 

is also being considered [69, 70].  
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