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Steady, laminar, incompressible thermo-solutal natural convection flow of micropolar fluid from an inclined 

perforated surface with convective boundary conditions is studied. Thermal radiative flux and chemical reaction 

effects are included to represent phenomena encountered in high-temperature materials synthesis operations. 

Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Lie scaling 

group transformation is implemented to derive a self-similar form of the partial differential conservation equations. 

The resulting coupled nonlinear boundary value problem is solved with Runge-Kutta fourth order numerical 

quadrature (shooting technique). Validation of solutions with an optimized Adomian decomposition method algorithm 

is included. Verification of the accuracy of shooting is also conducted as a particular case of non-reactive micropolar 

flow from a vertical permeable surface. The evolution of velocity, angular velocity (micro-rotation component), 

temperature and concentration are examined for a variety of parameters including coupling number, plate inclination 

angle, suction/injection parameter, radiation-conduction parameter, Biot number and reaction parameter. Numerical 

results for steady state skin friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are 

tabulated and discussed. Interesting features of the hydrodynamic, heat and mass transfer characteristics are examined.  

 

KEYWORDS: Thermal radiation, chemical reaction, micropolar fluid, Lie symmetry analysis, shooting method, 

Adomian decomposition. 

 

1. INTRODUCTION 

Non-Newtonian materials processing [1] is a rich and vibrant area of modern fluid dynamics research providing a 

multi-disciplinary platform for theoretical, computational and laboratory-based investigations. Many different 

polymeric materials exist which exhibit a considerable range of shear-stress strain relationships that do not obey the 

classical Newtonian model. In many processes a polymer flows along a continuously moving belt which may be 

horizontal or inclined. When heat and mass transfer are also present, buoyancy effects become significant. Thermal 

treatment and species doping are common strategies employed in engineering materials for modern applications. 

Inclination may be effectively used to scale the contribution of thermal and solutal buoyancy forces. These can 

strongly influence the diffusion of heat and species in materials. The fundamental approach for simulating such flows 

is boundary-layer theory. Examples of applications of inclined plane non-Newtonian flows include rheometry [2], 

powder processing [3], thin film coating systems [4], environmental gravity-driven debris flows (landslides, 
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avalanches, mudslides, hazards) [5, 6]. When heat and mass transfer are also present in inclined plate flows with free 

convection and multi-physical effects (e.g. combustion, magnetic fields, electrical fields etc.), the resulting scenarios 

feature in many diverse technologies including plate fin heat sinks [7], external transport from titled solar collectors 

[8], geothermal energy heat pumps [9], flame dynamics [10], laser materials processing [11], hybrid desalination 

configurations [12] and supercritical flows in geothermosiphons [13]. Classical experimental studies of thermal 

convection flows from inclined plate geometries were presented by Shaukatullah and Gebhart [14] and Hasan et al. 

[15]. More recently Cianfrinia et al. [16] investigated thermal boundary flows from inclined plates. These studies 

however were confined to Newtonian fluids. Many different models have been implemented for non-Newtonian 

transport phenomena from inclined surfaces. These include Ostwald-DeWaele pseudo plastic models [17], dilatant 

power-law fluids [18], variable-viscosity (Reynolds) fluid [19], Jeffrey’s viscoelastic fluids [20], third grade 

differential fluids [21], viscoplastic fluids [22], modified power-law fluids [23] and couple stress fluids [25]. 

The above studies have generally neglected micro-structural features of the fluid. Even the most sophisticated 

viscoelastic models cannot provide a framework for this since they merely modify the shear stress tensor to include 

supplementary derivatives aimed at simulating (to varying degrees of accuracy) stress relaxation, retardation, shear 

thickening/thinning and other simple effects. Many polymeric and industrial fluids (propellants, gels, coolants etc) 

exist which possess a complex micro-structure that effectively contributes strongly to their performance 

characteristics. Motivated by constructing a comprehensive and rigorous continuum mechanics framework for 

addressing these fluids, Eringen [26] introduced micro-morphic fluid mechanics in the 1960s. He further derived the 

micropolar fluid model [27] as a special case of micro-morphic fluids with non-deformable micro-elements. A 

tremendous benefit of the micropolar model is that it reduces the original eighteen balance equations to a maximum 

of six momenta balance equations (three for linear and three for angular). Further it allows the extraction of the Navier-

Stokes classical viscous model as a very special case when micro-morphic effects are negated. The elegance of 

Eringen’s micropolar model has led to its adoption in a stunning range of applications. Building on fundamental 

solutions laid out in [25], and extended by Ariman and Cakmak [26], micropolar fluid mechanics has been applied to 

adhesive systems [27], hemodynamics [28], subsonic gas dynamics [29], bio-tribology [30], drilling muds for 

petroleum reservoirs [31], coating flows of aerospace propulsion ducts [32], drainage systems [33], magnetic materials 

processing [34], digestive propulsion [35] and geothermal systems [36]. A superb summary of the thermodynamics 

and hydrodynamics of micropolar fluids is provided in Eringen [37]. A number of inclined plate micropolar flow 
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models have also been developed, largely motivated by petro-chemical and materials fabrication applications. 

Probably the first study of micropolar flow from an inclined surface was conducted by Wilson [38], who examined 

the hydrodynamic stability of thin film gravity-driven micropolar flow from an inclined plate using Yih’s expansion 

method, noting the significant influence of vortex viscosity on the delay of instability. Thermal convection in 

micropolar flow from an inclined plate was addressed by Rahman et al. [39] with Nachtsheim–Swigert iteration 

procedure. Das et al. [40] employed symbolic software Mathematica 7 to analyze reactive magnetic thermo solutal 

micropolar slip flow from an inclined plate with viscosity and thermal conductivity variation. Srinivasacharya and 

Bindu [41] used a spectral quasilinearization method to compute entropy generation under constant pressure gradient, 

noting a significant enhancement in Bejan number increases with greater plate inclination and also Brinkman number 

and a decrease with micropolar coupling number. Bég et al. [43] employed a network simulation code to analyze the 

magnetohydrodynamic thin film flow of a micropolar fluid from an inclined surface. 

In many manufacturing processes, high temperature conditions are imposed. These often invoke substantial 

contributions from thermal radiation heat transfer which may be employed to enhance anti-degradation characteristics 

of materials [43, 44]. Non-Newtonian radiative flow has been studied therefore by Cortell [45] although he employed 

a group of viscoelastic models (second-grade and Walters' liquid B models). More realistic simulations of actual high-

temperature materials processing therefore require simultaneous consideration of thermal conduction, convection and 

radiation. When the fluids are electro-conductive, magnetohydrodynamics must also be considered. Usually the most 

challenging aspect is the robust analysis of radiative heat flux. Many sophisticated models exist for a range of materials 

which capture complex radiative properties including transmission, reflection, absorption, gray, non-gray, opaqueness, 

variable optical thickness, specular and spectral aspects. However, to formulate boundary value problems which are 

solvable with most numerical methods it is necessary to simplify the integro-differential radiative transfer equation 

(RTE) to a flux model. Examples include Hamaker’s six flux model and the Rosseland diffusion approximation. These 

approaches transform the RTE into a system of algebraic equations which can be accommodated easily with iterative 

procedures, as elaborated by Viskanta [46].  

In the present work we develop a mathematical model for radiative micropolar thermo-solutal transport from a tilted 

two-dimensional permeable plate under steady-state conditions. The micropolar fluid contains a chemically-reactive 

species [35] and suction/injection effects are present at the plate. A convective boundary condition is also enforced at 

the plate. Lie group algebra is employed to extract a self-similar boundary value problem from the primitive partial 
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differential conservation equations. Shooting quadrature computational solutions are developed to elucidate the 

influence of Biot number, chemical reaction parameter, Eringen micropolar coupling number, plate inclination angle, 

suction/injection parameter, radiation-conduction parameter, Biot number on the key characteristics. Validation is 

included based on earlier studied and also with an optimized Adomian decomposition method (ADM) [47]. Extensive 

interpretation of computations is provided.  

 
2. REACTIVE RADIATIVE MICROPOLAR THERMO-SOLUTAL MODEL 

 

2.1 Problem formulation: 

We examine the two-dimensional, steady-state, incompressible, natural convective heat and mass transfer in the flow 

of an incompressible micropolar fluid from an infinite inclined moving porous plate orientated at an acute angle 

( )oo 900  to the vertical and suspended in a homogenous, isotropic, porous medium. The flow model with 

associated coordinate system is depicted in Fig. 1.  

 

Figure 1: Flow Geometry of the problem                       

Inclination angles with values of oo ,900 and oo 900  respectively signify the vertical, horizontal and inclined 

plate scenarios. The flow is assumed to be in the x -direction, and the y -axis is normal to it. It is assumed the free 

stream temperature and concentration are T and C respectively. The plate is either heated or cooled from the left 

by convection from micropolar fluid of temperature 
fT with 

 TT f
corresponds to a heated surface (assisting flow) 

and 
 TT f

corresponds to a cooled surface (opposing flow). The suction/injection velocity invoked by the plate 
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porosity is assumed as wv .Viscous dissipation and thermal dispersion and stratification effects are ignored. Thermal 

conduction follows the Fourier model. Further, the micropolar fluid contains a species which is reactive and obeys a 

first order homogenous chemical reaction. We assumed that the size of holes in the porous plate plays an important 

role to simplify the formulation of the boundary conditions. By taking the aforesaid assumptions into consideration 

the governing boundary layer equations with corresponding boundary conditions [48] for steady convective flow are 

as follows:  
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Here u and v  are velocity components along x and y   axis respectively, N  is the micro-rotation component 

(i.e. gyratory motion of micro-elements is in the x - y plane),  is the density of micropolar fluid,  is the 

dynamic viscosity, k is the Eringen vortex viscosity, g is the acceleration due to gravity, T and c  are coefficient of 

thermal expansion and concentration expansion,   is a material property (gyroscopic viscosity) of the micropolar 

fluid, j is the micro inertia per unit mass , and   is thermal conductivity of the micropolar fluid. At constant pressure

p ,
pC is the specific heat, rq  is the radiative heat flux, D is the molecular diffusivity of the reactive species. The 

surface parameter n  assumes values between 0 and 1 that quantifies the relationship between the micro-gyration vector 

to the shear stress. When 0=n , this corresponds to the case where the micro-element (particle) density is sufficiently 

large so that microelements close to the wall are not able to rotate [49]. When 50.n = this indicates weak concentration 

of micro-elements and the disappearance of the anti-symmetric part of stress tensor, as elaborated by Ahmadi [50]. 
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When 01.n =  represents turbulent boundary layer flows as described by Peddieson [51] and Stokes [52]. However, 

when 50.n = or 01.n =  this case tends to accelerate the flow [51, 52]. It is also important to note that in the micro-

polar theory vectors are considered to be rigid directors as the micro-elements are non-deformable. 

Introducing the following no-dimensional variables 
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Following the Rosseland radiative diffusion approximation [53],  
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Here  is the Stefan-Boltzmann constant and k is the mean absorption coefficient. Using Taylor’s series expansion 
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Here   is the kinematic viscosity, ,CpCpPr //  == is the Prandtl number, D/Sc = is the Schmidt number, 

( )k/kN +=   is the Eringen micropolar coupling number ( )10  N , Gr/Lj 2=  is micro inertia density (where 

Gr is the thermal Grashof number) and  k/TR 3316 = is the radiation-conduction parameter, also variously 

known as the Stark number and Boltzmann number. 

2.2 Transformation of primitive equations by Lie group algebraic analysis: 

The solution of the system of non-similar partial differential equations (11)- (14) subject to the boundary conditions 

(15) is analytically not possible. Numerical methods are required. However, even with powerful algorithms, the 

equations remain challenging and expensive also. Therefore, it is necessary to transform these into self-similar ODEs 

using Lie group transformations. This effectively reduces the number of independent variables of the governing partial 
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Here 0 is the parameter of the Lie group   and ( )1021 ,......,isci =


 are arbitrary real numbers which are not 

all zeros. We seek the values of ( )1021 ,......,isci =


 such that equations (11) – (14) remain invariant under these 
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transformations as in [48]. These are in fact absolute invariants under this group of transformation and are those 

functions having the same form before and after the transformations. They are connected as follows: 
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The characteristic equations are therefore: 
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Solving equations (18) we get: 
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Here 
00 cT ,  are constant thermal and mass coefficients of expansion, 00 ,j  are microinertia density and micropolar 

spin gradient viscosity, respectively. 

2.3 Similarity ordinary differential equations: 

Substituting Eqn. (19) into Eqns. (11)- (14), yields the following transformed, dimensionless, 9th order nonlinear 

system of ordinary differential equations: 

( ) ( )
21

cos 0
1 1

N
f f f f h B

N N
  

   
   + − + + + =   

− −   
                                                  (20) 

( ) 02
122

2
=+









−
−−+









−

−
fh

N

N
hfhfh

N

N
                                                             (21) 

( ) 01 =++  fPrR                                                                                                                                             (22) 

0=−+  KrScfSc                                                                                                                                          (23) 

The boundary conditions (15) are converted to: 
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Here primes denote the differentiation w.r.t  , ( ) ( ) −−= TTCCB fTwc /
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  is the buoyancy ratio parameter 

(species i.e. solutal buoyancy force to thermal buoyancy force ratio),
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( ) w
/

w vGr/Lf 41−= is the wall lateral mass flux (suction/injection) parameter in which for suction 0wf , for 

injection (blowing) 0wf and for a solid (impermeable) plate surface, 0=wf .Note that all parameters are free from 

x  which confirms the true similarity solution of Eqns. (20)- (23) subjected to boundary conditions (24). 

 

2.4 Quantities of engineering interest: 

Gradients of the key variables at the plate surface are important for engineering design considerations, in particular in 

materials processing. Here ( )
0=









+




+=

y

w Nk
y

u
k is dimensional wall shear stress, ( ) 0== yw y/Nm  is 

dimensional wall couple stress, ( ) 0=−= yw y/Tq  is wall heat transfer coefficient and ( )
0=

−=
ym y/CDq is 

species (mass) transfer coefficient. The reduced non-dimensional skin friction 
22 = uC /wf  , takes the form: 

 

( )
( )1/ 4

2 1
0

1
f

x

nN
C f

NGr 

− 
=  

− 

,                                        (25) 

The non-dimensional wall couple stress coefficient i.e. wall micro-rotation gradient
2

= ucC /ww  may be defined 

as: 

( )0
22

21
h

N

N

Gr
C

x

w 








−

−
=



,               (26) 

The non-dimensional local Nusselt number ( )−= TTkqNu fw / is given by: 

( )0
41
 −= 

/
xGrNu                  (27) 

The non-dimensional local Sherwood number ( )−= CCDqSh wm /  emerges as:  

( )0
41
−= 

/
xGrSh                  (28) 

Here 
2

u is the characteristic velocity and ( ) 23

0
 /xTTgGr fTx −=  is the local thermal Grashof number. 

3. NUMERICAL SHOOTING QUADRATURE SOLUTION 

To obtain the solution of Eq. (20) to Eq. (23) with corresponding boundary conditions (24), we have applied Runge-

Kutta fourth order method. The coupled nonlinear ordinary differential equations are converted into simultaneous 

nonlinear differential equations of first order and further transformed into an initial value problem by applying the 
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shooting technique. Computational step size is specified as 0010.=  to obtain solutions upto the desired accuracy. 

The ordinary differential equations (20) to (23) are written as follows: 

987654321 y,y,y,y,yh,yh,yf,yf,yf =========                                           (29) 

( ) 







−−

−
−+−−= 865

2
231

1
1 ycosBycosy

N

N
yyyNf                                                                                 (30) 

( )







+

−
++−

−

−
= 344251 2

12

22
yy

N

N
yyyy

N

N
h                                                                                                      (31) 

71
1

yy
R

Pr

+
−=                                                                                                                                                       (32) 

( )891 yKryySc −−=                                                                                                                                             (33) 

( ) ( ) ( ) ( )
( ) ( )( ) ( ) 




=−−=

−===

,y,yBiy

,yny,y,fy w

10010

00000

867

3421
                                                                                                     (34) 

In order to integrate we require with unknown values ( ),y 03 ( ),y 05 ( )07y and ( )09y . Suitable values of ( ),y 03

( ),y 05 ( )07y and ( )09y are chosen and integration is performed. Verification of solutions has been performed 

against Ram Reddy et al [48] for the case of vanishing chemical reaction and in the absence of radiative heat flux on 

a vertical plate. The present numerical shooting solutions are compared with those of Ram Reddy et al [48] in Table 

1 for shear stress ( )0f  at the plate (skin friction), couple stress ( ),h 0 temperature gradient ( ),0 − (Nusselt number), 

rate of mass transfer, ( )0− (Sherwood number). Very good correlation is achieved. 

 

 ( )0f   ( )0h  ( )0 −  ( )0−  

Shooting 

Method 0.6779733 -0.338987 0.0773751 0.2290111 

Ram 

Reddy et 

al. [48] 0.6779733 -0.338987 0.0773751 0.2290111 

 

Table 1: Validation of shooting numerical code with published studies [48] for N = 0.5, n= 0,  

= 0 (vertical plate), 110710 === B,.Bi,.Pr  and all other parameters negated in general model. 

 

4. GENERAL NUMERICAL VALIDATION WITH ADM 

To verify the accuracy of the generalized micropolar model with all parameters invoked, an alternative numerical 

method is required. We employ the efficient Adomian decomposition method (ADM) which is a semi-numerical 
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technique utilizing special Adomian polynomials to achieve very accurate solutions which may be evaluated using 

symbolic packages such as Mathematica. An advantage of this method is that it can provide analytical approximation 

or an approximated solution to a wide class of nonlinear equations without linearization, perturbation closure 

approximation or discretization methods. ADM has found great popularity in modern engineering sciences and has 

been implemented in periodic (pulsatile) Newtonian flows [61], Sisko non-Newtonian thin film flows [62], enzyme 

dynamics [63], bio-magnetic   orthopaedic lubrication flows [64]. It has also been successfully used in micropolar 

hydrodynamics in channels [65], second law thermodynamic analysis of multi-mode heat transfer in micropolar 

porous media flows [66] and stagnation-point micropolar flows [67]. ADM [35] deploys an infinite series solution for 

the unknown functions and utilizes recursive relations. For example, for the Eqns. (14) -(17), we assume infinite series 

solution for the unknown linear velocity, micro-rotation, temperature and concentration functions )(f  , )(h  ,  

)( , )( , defined as follows: 




=

=

0n

n )(f)(f                                                     (35)  




=

=

0n

n )(h)(h                     (36) 




=

=

0n

n )()(                   (37) 




=

=

0n

n )()(                      (38)  

The components .....f,f,f 210 , .....h,h,h 210 , .....,, 210   and  .....,, 210  are usually determined recursively by an 

appropriate relation, as elaborated further by Bég et al. [68]. The resulting decomposition series converges very 

quickly and relatively few terms are needed to achieve high accuracy. Table 2 presents the comparison between 

shooting and ADM solutions for selected values of certain parameters. Excellent correlation is obtained. Confidence 

in the shooting solutions for the general micropolar transport model is therefore very high. 
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Table-2: Skin friction coefficient, couple stress coefficient, Nusselt number and Sherwood number 

for fixed values of 110710 === B,.Bi,.Pr  with both shooting quadrature and ADM. 

N  n    wf  R  Sc  Kr  ( )0f   ( )0h  ( )0 −  ( )0−  

0 0 /2 0.1 0.5 0.22 0 
2.6573667 
(shooting) 

8.4615193 
 

0.0556598 
 

0.111403 
 

“ “ “ “ “ “ “ 
2.6574001 

ADM 
8.4616432 

ADM 
0.0556610 
ADM 

0.111397 
ADM 

0.5 0 0 0.1 0.5 0.22 0 
0.6779733 
(shooting) 

-0.338987 
 

0.0773751 
 

0.2290111 
 

“ “ “ “ “ “ “ 
0.6779804 

ADM 
-0.338996 

ADM 
0.0773762 

ADM 

 
0.2290126 

ADM 

0.5 1.5 /4 0.1 0.5 0.22 0 
1.1096598 
(shooting) 

-1.66449 
 

0.0790626 
 

0.2483065 
 

“ “ “ “ “ “ “ 
1.1096607 

ADM 
-1.66463 

ADM 
0.0790648 

ADM 
0.2483101 

ADM 

0.5 0.5 /4 0.1 0.5 0.22 0.1 
0.6634934 
(shooting) 

-0.331747 
 

0.0771155 
 

0.2668805 
 

“ “ “ “ “ “ “ 
0.6634951 

ADM 
-0.331765 

ADM 
0.0771172 

ADM 
0.266822 

ADM 
 

 

5. NUMERICAL SHOOTING QUADRATURE RESULTS AND DISCUSSION 

A detailed set of solutions for the influence of the key control parameters is presented in Table 3 and visualized in 

Figures 2-14. In the graphs we illustrate the impact of Eringen micropolar coupling number, angle of inclination, 

suction/injection parameter, radiation-conduction parameter, Biot number and chemical reaction parameter on the 

velocity, angular velocity, temperature and concentration functions. In Table 3 we document the shooting solutions 

for  shear stress ( )0f  at the plate(skin friction), couple stress ( ),h 0 temperature gradient ( ),0 − (Nusselt number), 

rate of mass transfer, ( )0−  i.e. (Sherwood number) at the plate for different values of ,N ,n , ,f w ,R ,Sc and .Kr  

Inspection of Table 3 reveals that as suction, radiation and surface condition parameter increase, skin friction and 

couple stress coefficients both increase in magnitude whereas the reverse trend is observed with an increase in the 

values of material parameter, Schmidt number, injection and chemical reaction parameter. Also, Nusselt number i.e. 

wall heat transfer rate and Sherwood number i.e. rate of mass transfer rare both reduced with an increase in suction 

and surface condition parameter whereas material parameter and thermal radiation induce the converse effect. 

Moreover, as Schmidt number and chemical reaction parameter (destructive i.e. Kr negative) increase, Sherwood 
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number increases whereas increasing constructive chemical reaction (positive Kr) manifests in a decrease in Sherwood 

number. Hence heavier species achieves favorable enhancement in the rate of species diffusion (mass transfer) at the 

wall. 

 

Table-3: Shooting solutions for skin friction coefficient, couple stress coefficient, Nusselt 

number and Sherwood number for the fixed values of 110710 === B,.Bi,.Pr . 

 

N  n    wf  R  Sc  Kr  ( )0f   ( )0h  ( )0 −  ( )0−  

0 0 /2 0.1 0.5 0.22 0 2.6573667 8.4615193 0.0556598 0.111403 

0  /4     0.8893763 -0.444688 0.0782222 0.2370888 

0.5       0.6779733 -0.338987 0.0773751 0.2290111 

 1.5      1.1096598 -1.66449 0.0790626 0.2483065 

 0.5  0    0.6704779 -0.335239 0.0759218 0.2174584 

   -0.1    0.6629606 -0.33148 0.0743411 0.2062957 

   0.1 0.3   0.6711521 -0.335576 0.0785741 0.2281409 

    0.1   0.6637289 -0.331864 0.0799077 0.2272447 

    0.5 0.6  0.6056885 -0.302844 0.075762 0.3560022 

     0.78  0.5853579 -0.292679 0.0752676 0.4007132 

     0.22 -0.1 0.6944734 -0.347237 0.077656 0.1871738 

0.5 0.5 /4 0.1 0.5 0.22 0.1 0.6634934 -0.331747 0.0771155 0.2668805 
 

 

Fig. 2 shows the effect of coupling number on velocity distribution with all other pertinent parameters constrained. 

The coupling number N characterizes the coupling of rotational and linear motion arising from the fluid particles. It 

is interesting to observe that with an increase in coupling number N  linear velocity is reduced i.e. flow deceleration 

is caused, closer to the plate surface. However, the reverse effect is enforced with further distance from the plate. This 

variation is probably associated with the space available for gyration of micro-elements. With greater N values the 

micropolar vortex viscosity is increased relative to the dynamic Newtonian viscosity. This impedes rotation nearer the 

wall but further into the boundary layer it aids gyration of micro-elements. Via coupling with the linear momentum 

field i.e. the term, h
N

N










−
+

1
, the linear velocity is therefore damped closer to the plate surface whereas it is 

enhanced further from it. The coupling number clearly modifies the linear velocity field substantially as is anticipated 

from the significant contribution of the high order shear term, f
N










−1

1
 in eqn. (20). The findings concur with 
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numerous other investigations in the literature including Rahman et al. [39] and Das [40], in particular the drag 

enhancement closer to the boundary and drag reduction further from it. Asymptotically smooth convergence of profiles 

in the free stream is achieved confirming the imposition of an adequately large infinity boundary condition in the 

shooting numerical code. 

Fig. 3illustrates the effect of coupling number on micro-rotation distribution, h (). Micro-rotation is significantly 

enhanced with greater N values since the micropolar vortex viscosity is increased relative to the dynamic Newtonian 

viscosity. The profiles grow from the plate surface markedly and vanish in the asymptotic limit in the free stream.  In 

the Newtonian case (N =0) the micro-rotation equation is negated. With increasing N there is a progressively greater 

micro-rotation overshoot which is progressively displaced further from the wall. Generally leading to an following 

this overshoot the negative angular velocities become positive indicating a reversal in micro-rotation of micro-

elements. The maximum micro-rotation therefore arises at intermediate distances from the plate surface. This may be 

associated with the absence of antisymmetric part of the stress. It is certainly intimately associated with enhanced 

freedom of micro-elements to spin, even with greater concentrations, a characteristic which is stifled near and at the 

plate surface. 

Fig. 4depicts the impact of plate angle of inclination on translational velocity profiles. It is clearly observed that 

velocity is decreased with greater inclination. The inclination is simulated via the appropriate thermal and species 

buoyancy forces in the linear momentum equation i.e.  cosB,cos ++ . As  increases these thermal and 

combined species/thermal buoyancy forces decrease. The maximum buoyancy force arises for → 0 i.e. cos→1 

which corresponds to the vertical plate scenario. The minimum buoyancy force is associated with →/3 i.e. 

cos/2→0.5. In the present computations we vary the plate inclination from the vertical case through /6, then /4 

and finally /6. The horizontal plate case i.e. →/2 is not considered. The implication is therefore that the convective 

currents generating buoyancy diminish in influence with greater plate inclination and this decelerates the linear 

velocity field. Momentum development is inhibited significantly more the majority of the boundary layer regime with 

the most prominent effect closer to the plate surface. For the range of inclinations studied the buoyancy forces are 

effectively halved in magnitude. 

Fig. 5 presents the effect of inclination on micro-rotation profiles. Closer to the plate surface, initially as increases 

there is distinct acceleration in angular velocity (micro-rotation) profiles with decreasing buoyancy forces. The 

depletion in linear momentum is compensated for by a boost in angular momentum via coupling of the two momenta 
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equations. These terms are h
N

N
,f

N










−
+









− 11

1
 in eqn. (20) and ( )fh

N

N
,hf,hf +









−
−−+ 2

1
in eqn. (21). 

The former are linear terms whereas the latter are strongly non-linear. Both exert a considerable indirect influence 

from the buoyancy force in the linear momentum field on the angular momentum field. In the near-wall zone angular 

velocity is always negative indicating spin reversal of micro-elements. This is associated both with the surface 

boundary condition and the constraint on micro-elements which cannot perform gyratory motions with the same 

freedom near a solid boundary. Similar findings have been reported by Guram and Smith [49] and Ahmadi [50] 

although they only considered flat plate scenarios. However, with further progress into the boundary layer transverse 

to the wall, the micro-elements are provided with greater space for spinning and magnitudes are substantially boosted 

and positive. The prescribed vanishing micro-rotation boundary condition in the free stream is also approached very 

smoothly again indicating the prescription of a sufficiently large infinity boundary condition in the shooting program. 

Fig. 6 and 7 exhibits the effect of plate inclination ( ) on both temperature and concentration evolution. Increasing 

plate inclination decreases both thermal buoyancy force and thermal: species buoyancy force magnitudes. This serves 

to strongly elevate the temperature (fig. 6). The micropolar fluid is in contact with the hot plate surface. Heat induces 

a molecular separation and scattering resulting in less dense micropolar fluid. This generates migration of fluid and 

increasing density in cooler fluid. The boost in natural convection current enhances thermal diffusion which elevates 

temperatures in the boundary layer as the hotter volume transfers heat towards the cooler volume of fluid. Thermal 

boundary layer thickness is therefore significantly elevated in the laminar flow. The primary impact is experienced 

via the thermal buoyancy term,  cos+  which couples the linear momentum field to the temperature field. However, 

with regard to the species concentration (fig. 7) the coupling is via the composite buoyancy force term i.e. cosB+

. This connects the linear momentum field (20) to the species field (23). Coupling is further enforced via the convective 

diffusion term, + fSc  in eqn. (23). In the same way that heat induces molecular separation, changes in 

concentration buoyancy force modify the species diffusion through the micropolar fluid. As expected species 

concentration is also significantly boosted with increasing plate inclination owing to the associated depletion in species 

buoyancy force, which is a characteristic feature of thermo-solutal convection. Concentration boundary layer thickness 

is therefore also elevated. In both figs 6 and 7, the trends are sustained throughout the boundary layer i.e. there is no 

cross-over in profiles at any location.  
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Figs. 8-11 present the response in linear (translational) velocity, angular velocity (micro-rotation component), 

temperature and concentration profiles to variation in wall mass flux i.e. suction/injection parameter ( wf ). Here 

0wf represents suction and 0wf denotes injection. Porous surfaces are an inexpensive and established 

methodology for modifying momentum, thermal and species diffusion characteristics in materials processing [1]. In 

the case of suction, a markedly lower linear velocity is computed when compared with injection (fig. 8). The extraction 

of micropolar fluid via the plate pores, destroys momentum in the boundary layer. This causes retardation and a 

thickening of the hydrodynamic (momentum) boundary layer thickness. The converse effect is generated with 

injection of micropolar fluid through the wall (blowing) which elevates momentum development and manifests in 

strong acceleration and a thinner velocity boundary layer thickness. Drag is therefore reduced with injection and 

increased with suction. The velocity overshoot near the plate is also trans-located steadily towards the plate with 

greater suction owing to the enhanced adhering of the boundary layer to the plate. Separation and back flow are never 

observed irrespective of the nature or strength of the lateral mass flux condition ( wf ). The solid wall case, wf =0, 

evidently is intercalated between the suction and injection profiles. Fig. 9 indicates that the response in micro-rotation 

to lateral mass flux is dependent in the location in the boundary layer transverse to the wall i.e. -coordinate. In close 

proximity to the wall, injection induces a weak acceleration in spin of micro-elements. However, this is reversed 

further from the wall where injection decelerates the angular velocity. The trend is further reversed again deeper into 

the boundary layer in the post-overshoot region. Here suction is found to accelerate the micro-rotation. Clearly 

therefore the behavior of micro-elements is space-dependent and depending on the location the mass flux wall 

condition exerts a different influence. Figures 10 and 11 demonstrate that both temperature and concentration of the 

fluid is elevated with wall injection, whereas it is suppressed with wall suction. The associated thermal and solutal 

(species) boundary layer thicknesses are therefore both increased with greater blowing effect (injection) which is 

inevitably induced by the enhancement in thermal and species diffusion with momentum development. The different 

wall temperatures are caused by the thermal convective boundary condition, associated with the Biot number in eqn. 

(24). Concentration at the wall however is always unity as the convective boundary condition does not influence the 

species field at the plate.  

Fig. 12 illustrates the impact of the radiation effect on temperature profiles. It is observed that an increase in radiation 

parameter enhances the temperature magnitudes substantially. The radiation-conduction parameter, 
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 k/TR 3316 =  relates the relative input of thermal radiative heat transfer to thermal conduction heat transfer. 

This is a reasonable approximation for optically thick micropolar flows, as considered here. This approximation 

however cannot simulate variation in optical thickness which requires a more sophisticated flux model- see Bég et al. 

[69]. R arises in the augmented thermal diffusion term, ( ) + R1  in the heat conservation eqn. (22). Increasing R 

serves to energize the boundary layer and elevates the input of thermal energy which is scaled with a cubic variation 

in free stream temperature for thermal radiation compared with the linear variation for thermal conduction. The result 

is that thermal boundary layer thickness is increased and significant enhancement in thermal diffusion is induced. The 

case R = 0 implies total thermal conduction dominance i.e. vanishing radiative flux and clearly achieves a minimum 

temperature. Evidently the benefit of high temperature processing of materials is confirmed with radiative transfer 

contribution. 

Fig. 13 exhibits the effect of Biot number Bi on the temperature profiles and demonstrates that a high Biot number 

indicates higher internal thermal resistance of the plate than boundary layer resistance, i.e. ( ( ) 10 =  as →Bi ). As 

Biot number increases, temperature of the fluid increases, although as per the imposition of a convective wall boundary 

condition, the greatest influence is at the plate surface itself. The impact is diminished with distance from the plate. 

The "thermally thick" scenario (Biot number > 0.1) is addressed only since this is more relevant to polymeric 

processing. 

Fig. 14 shows the modification in species concentration with both Schmidt number (Sc) and chemical reaction 

parameter (Kr). It is seen that as Kr increases positively there is a reduction in concentration. However, with a negative 

reaction parameter the opposite effect is generated. The chemical reaction model employed is based on a first-order 

irreversible chemical reaction which takes place both in the bulk of the fluid (homogeneous) as well as at the plate. 

For the constructive i.e. generative ( 0Kr ) case, the original species is depleted whereas for the destructive chemical 

reaction (Kr<0) the converse effect is induced. Concentration boundary layer thickness is boosted with greater 

destructive chemical reaction. An increase in Schmidt number significantly reduces species concentration irrespective 

of the nature of the chemical reaction.  
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Fig.2 Effect of N on velocity profile for 

01010220710504150 ========= Kr,.Bi,.wf,.Sc,.Pr,.R,/,B,.n    

 

 

 
Fig.3 Effect of N on micro-rotation profile for  

01010220710504150 ========= Kr,.Bi,.wf,.Sc,.Pr,.R,/,B,.n   
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Fig.4 Effect of  on velocity profile for  

050101022071050150 ========= Kr,.N,.Bi,.wf,.Sc,.Pr,.R,B,.n  

 

 

 
Fig.5 Effect of  on micro-rotation profile for 

050101022071050150 ========= Kr,.N,.Bi,.wf,.Sc,.Pr,.R,B,.n  
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Fig.6 Effect of  on temperature profile for 

050101022071050150 ========= Kr,.N,.Bi,.wf,.Sc,.Pr,.R,B,.n  

 

 

 

Fig.7 Effect of on concentration profile for 

050101022071050150 ========= Kr,.N,.Bi,.wf,.Sc,.Pr,.R,B,.n  
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Fig.8 Effect of wf  on velocity profile for  

05010220710504150 ========= Kr,.N,.Bi,.Sc,.Pr,.R,/,B,.n   

 
 

 
Fig.9 Effect of wf on micro-rotation profile for  

05010220710504150 ========= Kr,.N,.Bi,.Sc,.Pr,.R,/,B,.n   
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Fig.10 Effect of wf on temperature profile for 

05010220710504150 ========= Kr,.N,.Bi,.Sc,.Pr,.R,/,B,.n   

 
 

 
Fig.11 Effect of wf  on concentration profile for  

05010220710504150 ========= Kr,.N,.Bi,.Sc,.Pr,.R,/,B,.n   
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Fig.12 Effect of R on temperature profile for 

05010102207104150 ========= Kr,.N,.Bi,.wf,.Sc,.Pr,/,B,.n   

 
 

 
Fig.13 Effect of Bi on temperature profile for 

05010220507104150 ========= Kr,.N,.wf,.Sc,.R,.Pr,/,B,.n   
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Fig.14 Effect of Sc and Kr on concentration profile for 

105010507104150 .Bi,.N,.wf,.R,.Pr,/,B,.n ========   

 

 
6. CONCLUDING REMARKS 

A steady-state mathematical model has been presented for laminar, incompressible, thermo-solutal natural convection 

flow of micropolar transport from a tilted porous plate with convective boundary conditions. Both chemical reaction 

and radiative heat transfer have also been considered. Via Lie scaling group algebraic transformations, a self-similar 

boundary value problem has been derived in ordinary differential form. This 9th order, multi-degree system is solved 

subject to physically realistic boundary conditions with 4th order numerical quadrature and a shooting technique. 

Verification of solutions has been conducted against published literature (for the non-reactive, non-radiative vertical 

plate case) and also with a modified Adomian decomposition method (ADM) (for the generalized multi-physical 

model with all parameters present). Selected computations have been visualized graphically. The study has shown 

that: 

• Increasing plate inclination () decelerates the linear velocity, accelerates micro-rotation near the plate and also 

enhances the temperature and concentration magnitudes. 

• Increasing suction effect decreases the linear velocity and skin friction, wall couple stress (micro-rotation gradient), 

Nusselt number and Sherwood number. 
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• Increasing Eringen micropolar coupling number decreases translation velocity near the plate whereas it accelerates 

it further form the plate. Furthermore, micro-rotation is boosted strongly with greater coupling number. 

• Increasing radiative effect and Biot number (convective surface effect) both elevate the temperature magnitudes. 

• Increasing positive chemical reaction parameter depresses concentration magnitudes. 

• Increasing Schmidt number reduces species concentration boundary layer thickness. 

 

FUTURE SCOPE: 

The present model has considered Fourier conduction and Fickian diffusion approaches. Future studies will explore 

non-Fourier (Cattaneo) models which incorporate thermal relaxation and also non-Fickian models, both of which may 

provide more elegant insight into polymer processing systems.  
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