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Abstract: When a cloud offering is provided to multiple users/tenants,
multitenancy isolation has to be implemented. While several approaches exist
for implementing multitenancy, little attention has been paid to implementing
the required degree of isolation since there are varying degrees of isolation
that can be implemented for each tenant. This paper presents a framework for
achieving the required degree of isolation between tenants accessing a cloud
offering so that the required performance, resource utilization and access privilege
of one tenant does not affect other tenants when there are workload changes.
The framework is composed of two main constituents (i) Component-based
approach to Multitenancy Isolation through Request Re-routing (COMITRE), (ii)
an optimization model for providing optimal solutions for deploying components
of a cloud-hosted service. We demonstrate using a case study of (i) a Cloud-hosted
Bug Tracking System and (ii) a synthetic dataset, that the required degree of
multitenancy isolation can be achieved, while at the same time providing optimal
solutions for deploying components of a cloud-hosted service. We also provide
challenges and recommendations for implementing the framework on different
layers of the cloud stack.
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1 Introduction

In recent times, Global Software Development (GSD) tools used for software processes such
continuous integration (CI), version control (VC) and bug tracking, are increasingly being
deployed on the cloud (Chauhan and Babar, 2012) (Ochei, Bass and Petrovski, 2015a).
For example, large companies like Apple and Oracle are using software tools like Hudson
to setup deployments and automate the management of cloud-based infrastructure (Moser
and O’Brien, 2016). As these software tools are used by multiple tenants/users, there is a
requirement for implementing multitenancy isolation, which entails isolating tenants’ data
and processes so that the performance, resource utilization and access privilege of one tenant
does not affect other tenants. Multitenancy isolation is especially required in a scenario
where one of the tenants accessing a cloud-hosted service or a component of cloud-hosted
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service suddenly receives a high workload in response to certain changes in the deployment
conditions of the cloud-hosted service (see Figure 1).

In architecting the design and deployment of multitenant cloud-hosted services, tenants
may require different degrees of isolation. Examples of such services include business
software such as CRM, software development tools such as Hudson, office applications
such as Google docs, web-based email, photo sharing, etc. At the very basic degree of
multitenancy, tenants would be able to share application components as much as possible
which translates to increased utilisation of underlying resources. However, while some
application components may benefit from a low degree of isolation between tenants, other
components may need a higher degree of isolation because the component may either be
too critical or not shareable due to certain laws and regulations.

The sharing of application components and the underlying resources between tenants
has the potential of improving the efficient utilization of resources and reducing the cost
of running the application. However, this sharing reduces the degree of isolation between
tenants because other tenants may experience performance degradation if one of the tenants
experiences a high load. This means that a high degree of isolation (e.g., a component
offering critical functionality) is important for avoiding performance interference, but
leading to high resource consumption and running cost while a low degree of isolation (e.g.,
a component that requires minimal reconfiguration) promotes resource sharing but is more
prone to performance interference when workload changes. Therefore an architect has the
task of implementing not just varying degrees of multitenancy isolation but also of resolving
these conflicting trade-offs in order to achieve the required degree of multitenancy isolation.

Motivated by this problem, this paper presents a framework that can be used to achieve
the required degree of isolation between tenants. The research question addressed in this
paper is: “How can we achieve the required degree of isolation as well as optimal
solutions for deploying multiple components (or tenants) associated with a multitenant
cloud-hosted service”.

We implemented three multitenancy patterns (i.e., shared component, tenant-isolated
component and dedicated component) by modifying Bugzilla (hosted on a private cloud)
in a way that isolates the data of different tenants. In addition, we also developed a model
for providing optimal solutions for deploying components of the cloud-hosted service. This
model was extensively evaluated using a synthetic testbed to show that the obtained solutions
are optimal and can be used to deploy components of service to the cloud.

This paper is an extension of the previous work by Ochei et al. (Ochei et al., 2016)
where the authors presented an approach for achieving the required degree of multitenancy
isolation for components of a cloud-hosted application. The previous work focused on
using a cloud-hosted bug tracking system (i.e., Bugzilla) as a case study to demonstrate the
applicability of the approach in a scenario involving multiple tenants submitting bugs at
varying frequency to the bug database. We extend our previous work by first developing an
optimization model for providing optimal solutions for deploying components of a cloud-
hosted service, and then combining it with the approach developed in the previous work
to produce a framework for achieving the required degree of multitenancy isolation for
deploying components of a cloud-hosted service.

This study aims to show that we can achieve the required degree of isolation while
providing empirical evidence of the evaluation of varying degrees of multitenancy isolation
for cloud-hosted software tools. The main contributions of this paper are:
1. Presenting a framework composed of two key constituents for achieving the required
degree of multitenancy isolation for a particular tenant:
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(i) Component-based approach to Multitenancy Isolation through Request Re-routing
(COMITRE) for implementing varying degrees of isolation between tenants.
(ii) an optimization model for providing optimal solutions for deploying components of a
cloud-hosted service.
2. Extensively evaluating and demonstrating the applicability of each component of the
framework in a case study involving both a real-world application (i.e., cloud-hosted bug
tracking system) and a synthetic testbed.
3. Presenting recommendations in terms of (i) suitable (multitenancy) cloud patterns, and
(ii) different implementation options on the different layers of the cloud stack, in order to
achieve multitenancy isolation.

The rest of the paper is organized as follows - Section two presents an overview of cloud
architectures for achieving multitenancy isolation. Section three discusses the conflicting
trade-offs for consideration in order to achieve the required degree of isolation. Section four
presents the framework for achieving the required degree of multitenancy isolation including
COMITRE and the optimization model. Section five is the evaluation of the approaches.
Section six presents the results and discussion. The recommendations and limitations of
the study are detailed in Sections seven and eight respectively. Related work is presented
in nine and Section ten concludes the paper with future work.

Figure 1. One of the tenants sends high workload to the multitenant application.
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2 Cloud Architectures for Achieving the Required Degree of Multitenancy
Isolation

Architectural and design patterns have long been used by software architects to provide
known solutions to a number of common problems facing a distributed system (Bass et al.,
2013). The architecture of a system determines whether or not the system’s required quality
attributes such as performance, availability and security will be satisfied (Bass et al., 2013)
(Vlissides et al., 1995). In the cloud computing environment, a cloud pattern represents a
well-defined format for describing a suitable solution to a cloud-related problem. This paper
uses the term "‘Cloud deployment pattern” instead of “Cloud patterns” to focus on a class
of architectural patterns that embody decisions as to how elements of the cloud application
will be assigned to the cloud environment where the application is executed.

In our previous work (Ochei, Bass and Petrovski, 2015a), we developed a taxonomy
for guiding a cloud deployment architect to focus on a particular architectural deployment
component. This could either be on the: (i) cloud-hosted environment, to map the business
requirement of an organization to cloud properties that cannot be changed (e.g., location
and ownership of the cloud infrastructure), or (ii) cloud-hosted application, to mitigate
certain cloud properties that can be compensated at an application level (e.g., improving the
availability of a component integrated into a cloud-hosted GSD tool). The framework and
the associated algorithms that are presented in this paper apply to multitenancy patterns,
which target the cloud-hosted application at the application level, and so are implemented
almost at runtime.

When multiple tenants are accessing components of a cloud application, an architect has
to implement “Multitenancy isolation” to ensure that the performance, stored data volume
and access privileges required by one tenant does not affect other tenants accessing the
component or functionality of a shared application component (Ochei, Bass and Petrovski,
2015b) (Ochei, Petrovski and Bass, 2015). Three multitenancy patterns which express the
degree of isolation between tenants accessing an application component have been presented
in (Fehling et al., 2014). These patterns are: shared component, tenant-isolated component
and dedicated component. The dedicated component represents the highest degree of
isolation whereas the shared component represents the lowest. The degree of isolation for
a component deployed based on a tenant-isolated component would be somewhere in the
middle. This is the case with hybrid deployment scenarios, where the distinction between
the shared component and the dedicated component is not binary. Instead, it is more of a
continuum, with many possible variations between the two extremes.

Multitenancy isolation is influenced by three main aspects of a system (Fehling et al.,
2014): performance, resource utilization, and accessibility to the functionality and data. Our
approach can be applied as an element of differentiation from several cloud perspectives
such as price, performance and confidential data. For example, the dedicated component
pattern can be implemented at the application level of platform level to provide the highest
degree of isolation for a tenant whose confidential data cannot be accessed or shared with
other tenants throughout the execution of the application.

3 Conflicting Trade-offs in Achieving Multitenancy Isolation

When implementing multitenancy, users may require varying or different degrees of
isolation between components. A high degree of isolation between components may be
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required to avoid interference, but this usually leads to high resource consumption and
running cost per component. A low degree of isolation promotes the sharing of components,
thus leading to low resource consumption and running cost, but with a high possibility
of performance influence when the workload changes and the application does not scale
up/down.

Therefore, the challenge is how to determine an optimal solution in the presence of
trade-offs between two or more conflicting objectives (Martens et al., 2010) (Legriel et al.,
2010). To resolve this trade-off, the problem is modelled as a multi-objective optimisation
problem. Many multi-objective optimisation problems result in a trade-off situation that
involve losing some quality of one objective function in return for gaining quality in some of
the other objective functions (Martens et al., 2010) (Legriel et al., 2010; Garg et al., 2012).
In our case, we either lose resource sharing capabilities to gain a higher degree of isolation
when implementing a dedicated component or suffer an increase in performance interference
to gain the ability to share resources, reduce running cost and resource consumption, and
target a large number of users when implementing a shared component.

Figure 2. Framework as part of an input-process-output model

4 A Framework for Achieving the Required Degree of Multitenancy Isolation

The framework is first captured in Figure 2 as part of an input-process-output (IPO) model,
an approach widely used in systems analysis and software engineering for describing the
basic structure of a service or process (Grady, 1995; Bahill and Madni, 2017). In our
case, this model represents a cloud-hosted service that can be designed to use or integrate
with several components and/or other services. In using the IPO model, the framework
receives inputs from a user (e.g., pattern repository, component repository, a configuration
file), carries out some analysis and optimization, and returns the results (e.g., a multitenant
component with the required degree of isolation, optimal solutions). Thereafter, we use a
(procedural) flowchart model in Figure 3 to illustrate the overall flow of tasks in using the
constituents of the framework to achieve the required degree of multitenancy isolation for
deploying components of a cloud-hosted service.

4.1 COMITRE: Component-based approach to Multitenancy Isolation through
Request Re-routing

We describe an improved version of an algorithm (i.e., Algorithm 1) that can be
used to achieve the required degree of isolation for a particular application component
that is accessed by multiple tenants. This algorithm has to be executed within the
COMITRE (Component-based approach to Multitenancy Isolation through Request Re-
routing) architecture. In a nutshell, COMITRE is anchored on shifting the task of routing
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Figure 3. A procedural flowchart for illustrating the framework

a request from the web server to a separate component (e.g., Java class or plugin) at the
application level of a cloud-hosted GSD tool. The structure of COMITRE is shown in Figure
4, and the full explanation of COMITRE plus the step-by-step procedure was presented in
Ochei et al. (Ochei, Bass and Petrovski, 2015b) (Ochei, Petrovski and Bass, 2015).

One of the main inputs to Algorithm 1 is the required isolation level for the deployed
component. This can be set to either 1, 2 or 3 to represent the shared component, tenant-
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Figure 4. Architectural diagram of COMITRE approach

isolated component, and dedicated component, respectively. If the isolation level is either
1 or 2, then the created component can be shared with other tenants and can be accessed
by all tenants irrespective of where it is located. However, for isolation level set to 2, the
tenant has to be authenticated first and then assigned a unique tenantID, which is used to
adjust the behaviour of the created component. If the isolation level is 3, then the created
component is marked as not to be shared with others, and so is dedicated exclusively for
one tenant.

Algorithm 1 assumes that the architect specifies the required isolation level for the
component. However, in a cloud environment such decisions have to be taken in almost real-
time, and so we also need an algorithm that can determine which isolation level is best for a
component or functionality to be created. Algorithm 2 presents an algorithm to determine the
isolation level for a tenant application function based on an existing application component
on the cloud infrastructure. In line 4, if sharedStatus is true, then the isolation level is set
to either 1 or 2, otherwise, control is transferred to line 14-15 to assign the isolation level
3. The first type of information is whether or not the application component is similar in
functionality or configuration to existing ones. This is captured in line 5-8 of Algorithm
2, where similar components are searched for in the component repository. Assuming that
components with similar configurations are found, then the isolation level is set to 1 in line
10, otherwise, it is set to 3.

Algorithm 1: COMITRE Algorithm
1: INPUT: tenantRequest, tenantConf-file, isolationLevel
2: OUTPUT: multApplFunctn
3: Get tenantID from incoming request
4: tenantConf← null
5: sameConf← false
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6: share← true
7: Select tenantData from tenantConf-file
8: if tenantData is found then
9: tenantConf← tenantData

10: end if
11: Create defaultApplFunctn
12: multApplFunctn← defaultApplFunctn
13: if tenantConf is not null then
14: if isolationLevel = 1 then
15: sameConf***← true
16: Create tenantApplFunctn
17: else if isolationLevel = 2 then
18: Authenticate tenantID
19: Create tenantApplFunctn
20: Adjust tenantApplFunctn with tenantID
21: else if isolationLevel = 3 then
22: Create tenantApplFunctn
23: share← false
24: end if
25: multApplFunctn← tenantApplFunctn
26: end if
27: return multApplFunctn

Algorithm 2: IsolationLevel Algorithm
1: INPUT: compRepository, shareStatus
2: OUTPUT: isolationLevel
3: sameConf← false
4: if shareStatus = true then
5: Search compRepository for comp. with similar conf.
6: if similar compConf is found then
7: sameConf← true
8: end if
9: if sameConf = true then

10: isolationLevel = 1
11: else
12: isolationLevel = 2
13: end if
14: else
15: isolationLevel = 3
16: end if
17: return isolationLevel

4.2 OptimalDep: A Model for Providing Optimal Solutions to Deploy Components
of a Cloud-hosted Service

For a cloud-hosted service that can be designed to use or be integrated with several
components in N different groups, and with m resource constraints, the problem of providing
optimal solutions that guarantee multitenancy isolation can be mapped to a 0-1 multichoice
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multidimensional knapsack problem (MMKP) (Martello and Toth, 1990; Kellerer et al.,
2004).

4.2.1 Description of the Optimal Deployment Problem

Suppose there are N groups of components (c1,..., cN ) with each having li (1 ≤ i ≤ N)
components that can be used to design (or integrate with) a cloud-hosted application. Each
application component is associated with: (i) the required degree of isolation between
components (Iij); (ii) the arrival rate of requests to the component λij ; (iii) the service
demand of the resources supporting the componentDij ; (iv) the average number of requests
that can be allowed to access the component Qij and (v) m resources which are required
to support the component, rαij = r1ij , r

2
ij ,..., r

m
ij . The total amount of available resources in

the cloud required to support all the application components isR = Rα (α = 1,...,m). The
objective of an MMKP is to pick exactly one component from each group for a maximum
total value of the collected items, subject to m resource constraints of the knapsack (Yu
et al., 2007; Akbar et al., 2006).

Concerning our problem, the goal is to deploy components of a cloud-hosted service by
selecting one component from each group to meet the resource constraints of the system
and maximise the optimal function G. There are unique features in our problem that lend
to solving it using an MMKP and an open multiclass problem. For example, the resources
supporting each component are mapped to the resources required by the object in MMKP
and are also mapped to the service centres of each class in the open multiclass QN.

The optimization problem faced by a cloud architect for deploying components of a
cloud-hosted application due to workload changes is thus expressed as follows:

Maximize G =
N∑
i=1

∑
j∈Ci

gij .aij

subject to
N∑
i=1

∑
j∈Ci

rαij .aij ≤ Rα(α = 1, 2, ...,m)

N∑
j∈Ci

aij = 1

aij ∈ 0, 1(i = 1, 2, ..., N), j ∈ Ci

(1)

where aij is set to 1 if component j is selected from group Ci and 0 otherwise. Note that
aij represents the components selected for deployment. Each component is associated with
an isolation value, the number of requests allowed to access it, and values for the amount
of resources it requires to operate (i.e., cpu, ram, disk and bandwidth size). The notation
rij = r1ij , r

2
ij ,..., r

m
ij , is the resource consumption of each application component j from

group Ci. The total consumption of all resources rαij of all application components must
be less than the total amount of resources available in the cloud infrastructure R = Rα

(α = 1,...,m).
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Given an isolation value of a component I, and the average number of requests Q, that
can be allowed to access the component:

gij = (w1× Iij) + (w2×Qij)− (w3× Pij)
The penalty, P, for violating the resource constraints is given as:

Pij =
m∑
j=1

Rjmax

{
0,

(
Rj −Rmaxj

Rmaxj

)}2 (2)

where w1,w2,w3 are the weights for isolation value (w1=100), number of
requests(w2=1) and penalty(w3=0.1). The weights are chosen based on problem-specific
knowledge so that more importance or preference is given to the isolation value and number
of requests which are parameters to be maximised in our model. The degree of isolation,
Iij , for each component, is set to either 1, 2, or 3 for shared component, tenant-isolated
component and dedicated component, respectively. It is important to note that the value
of Iij is not a continuum, and so it represents the three distinct categories of multitenancy
patterns (i.e., shared pattern, tenant-isolation pattern and dedicated pattern) which can be
used to deploy components to the cloud.

4.2.2 System Model and Assumptions

This research assumes that the cloud-hosted system is made up of multiple components
of the same tenant (e.g., user, team or department of a company) on the same underlying
cloud infrastructure. The components may be classified into different groups (e.g., storage
components, processing components), where some components may either have the same
functionality, and hence can be shared with other tenants or are exclusively dedicated to
some tenants or group of tenants. Each application component requires a certain amount of
resources of the underlying cloud infrastructure to support the number of requests it receives.
When there are workload changes (e.g., a component receiving a high load) the goal of the
model is to select components for deployment to maximize the degree of isolation between
components by ensuring that they behave as if they were components of different tenants
and, thus, are isolated from each other; and (ii) maximizes the number of requests allowed
to access the component without having the total resources used to exceed the available
resources (see Figure 5).

To calculate the number of requests, Qij that can be allowed to access the component,
an open multiclass QN model has to be solved (Menasce et al., 2004) for each component
using the arrival rate of each class of requests, and the service demands of each resource
required to support the component (i.e., CPU, RAM, Disk capacity, and Bandwidth).In
order to solve the QN model, it is important to make the following assumptions:
(i) a component is deployed to support a single cloud application, and so cannot support
different applications or applications at different system requirements; (ii) requests sent to
a component have significantly different behaviour whose arrival rate is independent of the
system state; (iii) the service demands at the CPU, RAM, Disk, and Bandwidth that support
each component are known or can be easily measured by either the SaaS provider or the
SaaS customer; (iv) the resources supporting each component are enough to handle the
magnitude of new incoming requests as the workload changes. This ensures that there is no
overload when all components are functional.
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Figure 5. System Model of a Cloud-hosted Service with multiple groups of components

4.2.3 Description of OptimalDep Algorithm

A high-level description of the optimalDep algorithm is as follows: when a request arrives
indicating a change in workload, the algorithm uses the open multiclass QN model to
determine for each class, the queue length (i.e., the average number of requests allowed to
access a component) as a function of the arrival rates (i.e., λ) for each class (lines 7-14).
The average number of requests is used to update the properties of each component (i.e.,
mmkpFile) (line 15). Then the metaheuristic search is run to obtain the optimal solution
for deploying the component with the highest degree of isolation and the highest number
of requests allowed per component (line 17). This algorithm assumes the optimal solution
is the one that guarantees the maximum degree of isolation and the highest number of
requests allowed to access the components and the whole cloud-hosted service. Clearly,
the algorithm can be extended to work for the required degree of isolation by including the
isolation value (i.e., isolation value 1, 2 or 3), as an input parameter both in the OptimalDep
algorithm and in the metaheuristics to search for and extract components that correspond
to the required degree of isolation.

Note that the algorithms described in this chapter are different from the autoscaling
algorithms offered by IaaS providers like Amazon and existing optimisation models
proposed for use by SaaS providers such as Salesforce.com (Aldhalaan and Menascé,
2015b). Saas providers may be able to monitor and estimate to a certain degree the
performance and resources utilization of applications components integrated within
applications running on VMs that they have rented out to SaaS customers. However, SaaS
providers do not know the required degree of isolation of each application component (e.g.,
components that offer critical functionality), the number of available components to be
deployed, and the number and capacities of resources required to support each component.
In some cases, it may also be necessary to associate a particular user/request to certain
components or group of components to guarantee the required degree of isolation. These
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Table 1 An example of optimal Component Deployment

GROUP 1 GROUP 2 GROUP 3
Item 1 Item 2 Item 1 Item 2 Item 1 Item 2

Initial State
Isolation 1 2 2 3 2 1
No. of Req. 0 0 0 0 0 0
Item Resources:
(CPU,MEM,DSK,BDW) 8,6,3,3 9,3,9,9 4,1,2,6 2,6,1,6 7,9,4 ,6 2,5,1,7

Service Demands:
(CPU,MEM,DSK,BDW)

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

Request to increase workload from 0 to 3.7req/min
No. of Req. (updated) 5.20 5.20 5.20 5.20 5.20 5.20

Current Solution
Solution Format = (F/ I/
Q)
Soln 1: 515.6/5/15.60 X X X
Soln 2: 415.6/4/15.60 X X X
Soln 3: 615.6/6/15.60 X X X
Soln 4: 515.6/5/15.60 X X X
Soln 5: 615.59/6/15.60 X X X
Soln 6: 515.59/5/15.60 X X X
Soln 7: 715.59/7/15.60 X X X
Soln 8: 615.59/6/15.60 X X X

details are only available to SaaS customers (e.g., a cloud deployment architect) since they
own the components and are also responsible for deploying and managing the components
to the cloud.

4.2.4 OptimalDep Algorithm Example

The following example shows the different solutions evaluated by optimalDep combined
with the SA(Greedy) algorithm to find an optimal solution to the optimization problem.
Every time there is a change in the workload, the optimalDep algorithm finds a new optimal
solution for deploying components with the highest degree of isolation and the highest
number of supported requests (see Table 1).

Let us assume that there are three groups of components (N=3) that can be designed to
use (or integrate with) a cloud-hosted service and each component has a maximum number
of requests that can be allowed to access it without having a negative impact on the degree
of isolation between components of the cloud-hosted service. Each component is supported
by four main resources: CPU, RAM, Disk capacity and bandwidth. The service demands for
CPU=0.25, RAM=0.23, disk=0.22, bandwidth=0.2, while the maximum capacity of each
of these resources is 20.

When a request arrives indicating a change in workload (i.e., in our case, this means
an arrival rate between 0 to 3.7 req/min), an open Multiclass Queuing network is solved
to find the average number of requests that can access the components. The ninth row
shows the updated problem instance with the current number of requests (i.e., 5.2) that
can access the components in each group. The updated problem instance is then solved
with the metaheuristic and the state with the highest optimal function value is returned.
Solution 1 (in row twelve) shows the optimal value of 515.6 for selecting a solution that
deploys the first component from all the groups. This solution results in an optimal value
of 515.6 (isolation value=500; and number of request=15.60). Note that no component can
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be selected for deployment and hence no changes can be effected on the cloud environment
until the search is over and a better solution is found.

Up to this point, all the solutions have been evaluated and only the solution with the
optimal value is returned as the optimal solution. In this example, the optimal solution with
the highest fitness value is solution 7 with a utility value of 715.60. Note that this example
assumes a fixed service demand for all components in each group. In an ideal situation,
components would have different service demands. This would lead to different values for
the number of requests, thus further opening up different options for the selection of an
optimal solution.

4.2.5 Metaheuristic Algorithm for Solving the Model

The optimisation problem described in the previous section and then mapped to an MMKP
is an NP-hard problem which has been known to have a feasible state space that grows in
a combinatorial way (Yu et al., 2007) (Chipperfield et al., 1999). The number of feasible
states for our optimal component deployment problem is given by the following expression:{(

l

j

)}N
(3)

Equation 2 above represents the number of ways for selecting one component (j items) from
each a group (made of up l items) out of several (N) groups of components to integrate with
or designed to use a cloud-hosted application when workload changes in a particular time
interval. Thus in response to the workload changes, the number of ways of selecting one
component (i.e., j=1) each from twenty groups (i.e., N=20) containing ten items in each
group (i.e., l=10) will result in approximately 10.24 x 1012 states. Depending on the number
of times and frequency with which the workload changes, the number of states could grow
very large at a much faster rate.

Therefore, an efficient heuristic is needed to find an optimal solution to the optimisation
problem, which must be solved by the decision support system and provided to the SaaS
customer (or a cloud deployment architect) in almost real-time. Algorithm 4 shows a simple
metaheuristic named SA(Greedy) based on simulated annealing that can be utilized with
OptimalDep (see line 17 of Algorithm 3). The algorithms for optimalDep and SA(Greedy)
are presented as Algorithm 3 and Algorithm 4, respectively. A high-level description of
these algorithms is provided below:

Algorithm 3: OptimalDep Algorithm
1: optimalDep (workloadFile, mmkpFile)
2: optimalSoln← null
3: Accept workload from SaaS users
4: Load workloadFile, mmkPfile; populate global variables
5: repeat
6: /*Compute No. of req. using QN Model*/
7: for i← 1, NoGroups do
8: for i← 1,GroupSize do
9: Calculate Utilization

10: Calculate No. of req.
11: Calculate Total No. of req.
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12: Store fitValue, Isol, qLength of optimal soln.
13: end for
14: end for
15: Update the mmkpFile with qLength
16: /*Run Metaheuristic*/
17: SA(Greedy)( )
18: /*Display optimal solution for deployment*/
19: until no more workload
20: Return (optimalSoln, fitValue, Isol, qLength)

The SA(Greedy) algorithm combines simulation annealing and a greedy algorithm to
find an optimal solution to our optimization problem which has been modelled as an MMKP.
The algorithm loads the MMKP problem instance and then populates the global variables
(i.e., arrays of varying dimensions that store the values of isolation, and the average number
of requests, and component resource consumptions). A simple cooling schedule is used
which is expressed as:

Tt = T0 − ηt (4)

Algorithm 4: SA(Greedy) Algorithm
1: SA(Greedy) (mmkpFile, N)
2: Randomly generate N solutions
3: Set initial temperature T0 to st. dev. of all optimal values
4: Create greedySoln a1 with optimal value g(a1)
5: optimalSoln← g(a1)
6: bestSoln← g(a1)
7: for i← 1, N do
8: Create neighbouring soln a2 with optimal value g(a2)
9: Mutate the soln a2 to improve it

10: if a1 < a2 then
11: bestSoln← a2

12: else
13: if random[0,1) < exp(-(g(a2) - g(a1))/T) then
14: a2 ← bestSoln
15: end if
16: end if
17: Ti+1 = T0 − ηt /*see Equation 4*/
18: end for
19: optimalSoln← bestSoln
20: Return (optimalSoln)

The above cooling schedule (equation 4) is linear and which means that T decreases every
t iterations by an amount ηt (Karasakal and Köksalan, 2000). Since the introduction of this
linear cooling schedule shown in Equation 4 by the authors in (Kirkpatrick et al., 1983), it has
been widely used in several optimization models relying on simulated annealing (Zoraghi
et al., 2012; Huang, 2003). In the above cooling schedule, the variable η is computed as
follows:

η =

(
T0

max(t)

)
(5)
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Our strategy for setting the initial temperature T0 is to randomly generate a number of
solutions equal to the size of the number of groups in the problem instance, before the
simulated annealing algorithm runs, and then to set the initial temperature T0 to the standard
deviation of all the randomly generated optimal solutions (line 2-4). Another option could
be to set T0 to the standard deviation of a set of solutions from a heuristic whose initial
solution was generated randomly. In line 4, a greedy solution is then created as an initial
solution. The simulated annealing process improves the greedy solution and provides the
optimal solution for deploying components to the cloud (line 5-19).

A simple dry run of the algorithm for the instance C(20,20,4) is as follows: 20 optimal
solutions are randomly generated and then the standard deviation of all the solutions is
computed. Assuming this value is 5.26, the T0 is set to 5. At the first iteration, g(a2) =
151634.9773 and g(a1)= 151535.7984 and the current temperature then becomes 4.999995.
At the next iteration, the current temperature is expected to reduce further (see equation
5). After five iterations, the algorithm constructs an initial/first solution with g(a1) =
151732.4362, a current/second random solution with g(a2) = 151733.9821 and with a
current temperature of 4.999975. The solution a2 will replace a1 with probability, P =exp(-
(1.5459)/4.999975)=0.7340, because g(a2) > g(a1). In lines 13 to 15, a random number
between 0 and 1 (i.e., rand = 0.0968) is generated, and since rand < 0.7340, a2 replaces
a1 and the algorithm continues with a2. Otherwise, the algorithm continues with a1. At
the next iteration, the temperature T is reduced which now becomes T6 = 4.99997 (line
17). The iteration continues until N (i.e., the number of iterations set for the algorithm to
run) is reached, and so the search converges with a high probability to the optimal solution.
Another variant of the simulated annealing (i.e., SA(Random)) is possible; that is, instead
of constructing an initial greedy solution, a random solution is simply generated and then
passed to the simulated annealing process to become the initial solution.

5 Evaluation

In this section, we present the evaluation of each component of the framework including
the case study implementation, experimental design and procedure.

5.1 Case Study 1: Evaluating Varying Degrees of Multitenancy Isolation

In this section, we discuss the selection of the case study application (i.e., a cloud-hosted bug
tracking system), its implementation to support multitenancy isolation and experimental
design and procedure.

5.1.1 Implementing Multitenancy Isolation on Bugzilla

An empirical study conducted in previous work revealed some common software tools (and
associated software processes) used in large-scale distributed enterprise global software
development projects: JIRA, VersionOne, Hudson, Subversion and Bugzilla (see details in
(Ochei, Bass and Petrovski, 2015a)). In this study, we use Bugzilla, a widely used cloud-
hosted bug and issue tracking system.

To demonstrate the practicality of our approach, we modified Bugzilla to support
multitenancy at the database level. We implemented our algorithm in a special
extension we created and then "‘hooked"’ it into Bugzilla using the hook named
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install_before_final_checks. This particular hook allows the execution of custom code
before the final checks are done in checksetup.pl (Bugzilla, 2016).

5.1.2 Experimental Procedure for Case Study 1

In order to evaluate the algorithm, we performed an experiment to evaluate the effect of
isolation between tenants in a scenario where there is variation in the inter-arrival times of
requests. This scenario is applicable in distributed bug tracking in which some bug trackers
like Fossil and Veracity are either designed to use (or integrated with) distributed VC or CI
systems, thus allowing bugs to be created automatically and inserted into the database at
varying frequencies. We configured JMeter BeanShell sampler to send multiple requests to
the bug database. The experimental procedure outlined (Ochei, Bass and Petrovski, 2015b)
and (Ochei, Petrovski and Bass, 2015) was followed in this study.

Figure 6. Changes in response time for each pattern relative to other patterns-2

5.2 Case Study 2: Optimizing the Deployment of Components of a Cloud-hosted
Service

In this section, we discuss the selection of the case study application, its implementation to
support multitenancy isolation and experiment design, setup and procedure.
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Figure 7. Changes in throughput for each pattern relative to other patterns-2

5.2.1 Dataset and Instance Generation

The dataset used for simulation experiments to illustrate the provision of optimal solutions
to deploy components was based on a simulation testbed. There are two datasets used in
this study: the MMKP instance file and the workload file.
(a) MMKP Instance file: Due to the unique nature of our problem, the multichoice
multidimensional knapsack (MMKP) instances used in the experiments were randomly
generated and not based on a publicly available dataset of MMKP instance. However, the
instance was generated based on a standard approach widely used in literature (Parra-
Hernandez and Dimopoulos, 2005; Cherfi and Hifi, 2010).
(b) Workload file: Workload file contains the values that are used to simulate the workload
offered to the system. The key values it contains are the arrival rate of requests and the
service demands of each resource supporting the components.

Several problem instances of various sizes and densities were randomly generated. After
that, these instances were solved using each variant of the metaheuristic. Two categories
of instance were generated and tailored on the instances widely cited in literature: (i) OR
benchmark Library (Beasley, 1990) and other standard MMKP benchmarks (Cherfi and
Hifi, 2010; Hifi et al., 2004), and (ii) the new irregular benchmarks used by Shojaei et al.
(Eckart and Marco, n.d.). These benchmarks are usually used for single objective problems.
This benchmark format was modified and extended to conform to a multiobjective case
by associating each component with two different profit values: isolation values and the
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Figure 8. Changes in CPU for each pattern relative to other patterns-2

average number of requests (Zitzler and Thiele, 1999). Values of the dataset were generated
as follows:
(1) Values for different degrees of isolation were randomly generated in the interval
[0.05,0.25].
(2) Values for resource consumption were randomly generated in the interval [1,9].
(3) Values for service demand were randomly generated in the interval [0.05,0.25].
(4) Values workload were randomly generated following a Poisson distribution in the
interval [1,5].
(5) Values for resource capacities generated were generated by setting it to half of the
maximum possible resource consumption (Cherfi and Hifi, 2010).

5.2.2 Applicability of the Generated Instances to Real-life Cloud Deployment
Scenario

The MMKP problem instances represent a repository of components configuration that can
be used to deploy components designed to use (or integrate with) a cloud-hosted service.
A component could be a database, database table, a message queue, VM or even Docker
container. It is also important to note that although the weight values (i.e., the resource
consumption of the components) generated in the MMKP instance may appear to be in
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Figure 9. Changes in memory for each pattern relative to other patterns-2

the same interval, in reality these values could be normalised (or transformed) to represent
different resources units of the components.

As an illustration, one of Amazon’s EC2 instance types, named "‘compute optimized
(c4.xlarge model)"’, has the following specification: 4 vCPU, 8 GiB of memory, EBS-
optimized only storage (which is similar to an IOPS provisioned on an Amazon Elastic
Block store volume (EBS)) and 750 Mbps of dedicated EBS bandwidth (Amazon, 2016).
An Amazon EBS can be created with Provisioned IOPS SSD(io1) volumes up to 16 TiB in
size. So assuming the weights of a component on a generated MMKP instance is given as
[4, 8, 8, 8], this specification could easily be transformed to the actual specification of the
above named Amazon EC2 instance using this normalisation format: [CPU, RAM, DISK/2,
BANDWIDTH/100]. This means that this particular component is supported with 4 virtual
CPUs, 8GB of memory, 8 TB of disk space and 8 Mbps of bandwidth.

5.2.3 Experimental Procedure for Case Study 2

The problem/MMKP instances used for our experiments were generated as described in the
previous section. The instance generating program and the algorithms were written using
Java programming with Netbeans IDE 7.3.1. All experiments have been carried out on the
same computation platform, which is a Windows 8.1 running on a SAMSUNG Laptop with
an Intel(R) CORE(TM) i7-3630QM at 2.40GHZ, with 8GB memory and 1TB swap space
on the hard disk. Table 2 shows the parameters used for the experiments. Each instance is
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Table 2 Parameter values used in the experiments.

Open Multiclass QN
Model

Value

λ (offered load) [0,4]
Isolation Value [1,2,3]
No. of Requests [1,10]
Resource consumption [1,10]
Service Demands [0.15, 0.24]
SA(Greedy)
Algorithm
No of Iterations N=1000000
No. of Runs 20
Temperature T0 = st. dev of N randomly generated

solutions (N=no. of groups)
Cooling Schedule Tt = T0 − ηt (see equation 3 and 4)

tested with a workload associated with it. The exhaustive search algorithm was incapable
of solving large instances. This was because of the low memory of the used machine. And
so a small MMKP instance, C(4,5,4) was used for the evaluation and comparison of the
algorithms.
Aim of the experiment: The aim of the experiment is to evaluate the performance (i.e.,
regarding obtained solution quality, robustness, scalability and computational effort) of
the different variants of the metaheuristic when integrated into the model-based decision
support system (i.e., optimalDep).

6 Results and Discussion

In this section, we will first present the results of the case study that empirically evaluates
the varying degrees of isolation and thereafter the case study that provides optimal solutions
for deploying components of a cloud-hosted service.

6.1 Results on Evaluating Varying Degrees of Isolation

We analyzed the experimental results based on the plots of estimated marginal means of
change (EMMC) in combination with ANOVA (plus post hoc test) and paired sample test
results from SPSS output. The purpose of the statistical test was to determine if tenants
deployed using a particular pattern changed significantly, thus giving an indication as to
whether or not the workload created by one tenant affected the other tenants. Further details
can be seen in (Ochei, Bass and Petrovski, 2015b) (Ochei, Petrovski and Bass, 2015).
Due to space limitations, we only discuss the results and show the EMMC diagrams for
response time, throughput, CPU and memory (see Figure 6 - Figure 9).

(1) Response time, Throughput: The results showed that response time changed
significantly, and so an architect should expect a low degree of isolation when a component
is deployed using a shared component. The tenant-isolated component and dedicated
component offered a higher degree of isolation. As expected, throughput changed
significantly for dedicated component (compared to the other patterns). The implication for
an architect is that when there is variation in the frequency with which bugs are submitted
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to the database, the shared component cannot be used to improve performance.
(2) CPU and Memory: The paired sample test showed that there was a significant change
in both CPU and Memory usage. Bug trackers are not known to consume much CPU
and Memory. However, some operations such as compression of large bugs files and
attachments could cause high consumption (Bugzilla, 2016). Therefore when there is
variation in the frequency with which bugs are submitted to the bug database, then the
dedicated component can be used to optimize the CPU and RAM consumption more
efficiently than the other patterns.

6.2 Results on Optimal Solutions for Deployment

This section presents a comparison of solutions obtained from the optimalDep algorithms.

6.2.1 Comparison of Solutions obtained from optimalDep Algorithm with the
Optimal Solution

The solutions obtained from the optimalDep algorithm (when running either with
SA(Random) or SA(Greedy)) are compared with the optimal solutions obtained by running
the OptimalDep algorithm with an exhaustive search for a small problem size. The quality
of the optimal solutions was measured in terms of the percent deviation from the optimal
solution. The instance used is C(4,5,4) because it was small enough to cope with the
requirements of the machine. The workload (i.e., the arrival rate) for each component was
randomly generated between 0.0 and 4.

The results are summarised in Table 3. Each row of the first column shows a different
workload with an arrival rate ranging from 2.7-3.9. The second column shows the optimal
function variables as (OP/IV/RV), which stands for the value of the optimal function,
isolation value, and the number of allowed requests, for the optimal solution. The third
and fourth columns show the optimal function variables as (OP/FEval), which stand for the
value of the optimal function and the number of function evaluations to attain the optimal
solution.

As shown in Table 4, all the four variants of the metaheuristic produced results that were
the same as the optimal solution for all workloads. This means that the four variants of the
metaheuristic attained a 100% success rate and 0% percent deviation. The similarity seen
in the results may be due to the small size of the instance. This small size was chosen to
cope with the machine used for the experiments which could not solve problem instances
larger than C(4,5,4) due to limitations in its hardware requirements (i.e., CPU and RAM).
Notice that the number of function evaluations required to produce the optimal solution for
the greedy variations of the algorithm is 0. This is due in part to the small size of the MMKP
instance, and the fact that some effort has already been put in to produce the greedy solution
and so the optimal solution is attained very quickly with little or no computational effort in
terms of the number of function evaluations.

6.3 Comparison of Solutions obtained from optimalDep algorithm with the Target
Solution

As an optimal solution could not be obtained with large instances (e.g., C(500,20,4)), the
results were compared to a target solution as proposed by (Talbi, 2009). In our case, the
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target solution represents a requirement defined by a decision maker on the quality of the
solutions to obtain. This is expressed as:

TargetSoln = Ivalue+Qvalue

where the Ivalue is given as:
Ivalues = ((n×max(I)× w1)

and the Qvalue is given as:
Qvalue = (0.05× (n×max(Q)× w2)))

(6)

where n is the number of groups, max(I) is the maximum isolation value, max(Q) is the
maximum possible number of requests (calculated based on the upper limit of the arrival
rate) and w1 assigned to I and w2 is the weight assigned to the Q. This equation, when
used to compute the target solution of C(4,5,4) with an arrival rate of 2.7 req/sec gives
1219.2, which is very close to the optimal solution shown in Table 4. The target solution
for all instance sizes ranging from C(10,20,4) to C(1000,20,4) is shown in Table 6 and 7.
The optimal values obtained for each instance were the same for all the variants of the
metaheuristic. The rest of the experiment was conducted with an arrival rate of 3.9 requests
per second.

It should be noted that the simulation ran for 1000000 function evaluations in order to
be able to attain the best possible solution for the algorithm. Therefore, the success rate
would be expected to be nearly 100%, with the corresponding performance rate since the
optimal solution would have converged. Because of this, this study extends the evaluation to
cover scenarios where there is: (i) limited resource or a need to optimise available resources
while providing optimal solutions; and (ii) limited time to provide optimal solutions, for
example, when the algorithm can run for only 1000 iterations.

6.3.1 Measuring the Quality of Solutions

The quality of the solutions was measured in terms of the percent deviation from the target
solution (see equation 3.3). As shown in Table 5, the percent deviation for all the variants
of the metaheuristic was the same. It was noticed that the percent deviation of solutions is
lower when the number of components per group is high. For example, the percent deviation
for C(500,5,4) is 3.5 when the number of components is 5 and the percent deviation of
C(500,20,4) and then 1.49 when the number of components is increased to 20. This means
that the quality of solutions is a function of the number of components per group. The more
choices of a particular type of component there are, the better the chance of obtaining an
optimal configuration. This is particularly important for large open-source projects that are
either designed to use a large number of components within the cloud-hosted service or be
integrated with several components residing in other locations.

6.3.2 Measuring the Robustness of the Solutions

Robustness refers to how sensitive the solutions are, against small deviations in the input
data or other parameters; the lower the variability, the better the robustness(Talbi, 2009).
The standard deviation was used as a measure of this variability. Table 6 and Table 7 show
the standard deviation for several instances of varying sizes and densities in the variable,
Opt/Std. For example, 0.27 is the value for standard deviation for C(1000,20,4). It was
observed that the standard deviation for instances with size m=20 was more than that of m=5.



24 L. Ochei et al.

This seems to suggest that when there are more components in a group, the robustness of the
solutions will be low when the optimalDep is run either with SA(Random) and SA(Greedy).
This means that metaheuristic based on simulated annealing was less stable and robust for
instances with large densities (i.e., m > 5), especially as the size of the instance increases
(i.e., n > 100).

6.3.3 Measuring the Computational Effort

The estimated execution time required by each variant of the metaheuristic to reach the
target solution for different instance sizes was also computed. The estimated execution time
is presented in Table 8. Each row of the first column shows a different problem/instance size
ranging from C(10,20,4) to C(1000, 20, 4). The second, fourth, and sixth columns show
the mean execution times for obtaining a greedy solution, random solution and optimal
value from a randomly generated solution, respectively. The third column, fifth, and seventh
column show the standard deviation of the mean execution times for obtaining a greedy
solution, random solution and optimal value, respectively. Columns eight, nine, ten, and
eleven show the execution times for reaching the target solution for each of the variants of
the metaheuristic.

As expected, Table 8 shows that the average execution times for producing the initial
greedy solution is larger than that of the random solution. The execution time required to
produce an initial greedy solution is 400 times in most of the cases over that of random
solutions. However, because the average number of function evaluations required by the
metaheuristic that starts with greedy solutions (i.e., SA(Greedy)) is far less than those that
start with random solutions. Thus, the overall execution time of SA(Greedy) is still less than
that of SA(Random). Therefore, the variants of the metaheuristic that start with the greedy
solution used less computational effort regardless of the variant of the metaheuristic.

6.3.4 Summary of Results

The results of the study can be summarised as follows:
(i) Percent deviation for all variants was nearly the same. For large instances, percent
deviation of variants based on greedy solutions was smaller and more stable.
(ii) Standard deviation of solutions were higher (which implies a low robustness) for
instances with large densities (i.e., the number of components per group), especially when
the size of the instance is larger than 100.
(iii) Metaheuristics that started with greedy solutions attained a 100% success rate much
faster and used less execution time than those that started with random.
(iv) Small instance size had no significant effect on robustness and quality of solutions.
However, as with large instance sizes, the variants of the metaheuristics that start with a
greedy solution required fewer function evaluations to reach the target solution.
(v) Instances with more components per group had less percent deviation, hence a higher
chance of producing better quality solutions

The implication of the results are as follows: The benefit of our model-based decision
support system is in monitoring, evaluating, adjusting and deploying components of cloud-
hosted service (especially for large-scale projects) for guaranteeing multitenancy isolation
when there are workload changes. For large-scale cloud-hosted services, running the model-
based decision support system with a metaheuristic whose initial solution starts with a
greedy solution (compared to random solutions) can significantly boost the quality and
robustness of the solutions produced. The results show that solutions from the metaheuristic
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Table 3 Comparing the SA(Greedy) with optimal solution

Workload(λ) Optimal SA(Rand) SA(Greedy)
2.7 1220.8/12/20.8 1220.8/41 1220.8/0
2.9 1225.69/12/25.69 1225.69/51 1225.69/0
3.1 1232.38/12/32.38 1232.38/60 1232.38/0
3.3 1242.14/12/42.14 1242.14/38 1242.14/0
3.5 1257.99/12/57.99 1257.99/41 1257.99
3.7 1289.77/12/89.77 1289.77/32 1289.77/0
3.9 1415.09/12/215.09 1415.09/18 1415.09/0

Table 4 Average performance on different instance sizes (m=5, m=20)

Instance Size SA(rn) SA(gr) Instance Size SA(rn) SA(gr)
C(10,5,4) 7.64 7.64 C(10,20,4) 1.38 1.38
C(20,5,4) 0.7 0.7 C(20,20,4) 1.98 1.98
C(30,5,4) 1.44 1.44 C(30,20,4) 0.09 0.09
C(40,5,4) 1.34 1.34 C(40,20,4) 1.39 1.39
C(50,5,4) 3.38 3.38 C(50,20,4) 1.4 1.4
C(60,5,4) 1.99 1.99 C(60,20,4) 2.04 2.04
C(70,5,4) 0.96 0.96 C(70,20,4) 1.03 1.03
C(80,5,4) 4.08 4.08 C(80,20,4) 1.36 1.36
C(90,5,4) 1.62 1.62 C(90,20,4) 2.01 2.01
C(100,5,4) 5.03 5.03 C(100,20,4) 2.11 2.11
C(200,5,4) 3.79 3.79 C(200,20,4) 1.48 1.48
C(300,5,4) 5.22 5.22 C(300,20,4) 1.13 1.13
C(400,5,4) 3.7 3.7 C(400,20,4) 1.28 1.28
C(500,5,4) 3.53 3.53 C(500,20,4) 1.48 1.48
C(600,5,4) 3.36 3.36 C(600,20,4) 1.25 1.25
C(700,5,4) 3.78 3.78 C(700,20,4) 1.24 1.24
C(800,5,4) 3.84 3.84 C(800,20,4) 1.43 1.43
C(900,5,4) 3.44 3.44 C(900,20,4) 1.11 1.11
C(1000,5,4) 4.28 4.28 C(1000,20,4) 1.16 1.16
AVG 3.32 3.32 AVG 1.39 1.39
STD 1.66 1.66 STD 0.45 0.45

based on simulated annealing were more stable and robust when applied to small instances.
Metaheuristics that started with greedy solutions were more scalable and require fewer
function evaluations to reach the target solution when compared to metaheuristics that start
with random solutions.

7 Related Work

The varying degrees of multitenancy isolation based on three multitenancy patterns and
different aspects of isolation are described in (Fehling et al., 2014). In (Guo et al., 2007)
different isolation capabilities were evaluated for authentication, information protection,
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Table 5 Optimal values and standard deviation of different instances(m=5)

Instance Target Solution SA(Rand) SA(Greedy)
C(10,5,4) 3048 2815.09/0.0 2815.09/0.0
C(20,5,4) 6096 6053.26/1.5E-4 6053.26/1.50
C(30,5,4) 9144 9012.30/0.0 9012.30/0.0
C(40,5,4) 12192 12028.67/0.0 12028.67/0.0
C(50,5,4) 15240 14725.40/0.0 14725.40/0.0
C(60,5,4) 18288 17923.88/0.0 17923.88/0.0
C(70,5,4) 21336 21130.88/7.3E-4 21130.89/7.3E-4
C(80,5,4) 24384 23389.81/0.00 23389.81/0.00
C(90,5,4) 27432 26987.22/0.0 26987.22/3.5E-4
C(100,5,4) 30480 28945.60/0.00 28945.60/0.00
C(200,5,4) 60960 58647.47/0.01 58647.47/0.01
C(300,5,4) 91440 86662.77/0.02 86662.77/0.02
C(400,5,4) 121920 117405.15/0.04 117405.14/0.05
C(500,5,4) 152400 147023.73/0.09 147023.77/0.07
C(600,5,4) 182880 176734.98/0.10 176734.94/0.10
C(700,5,4) 213360 205301.49/0.12 205301.44/0.14
C(800,5,4) 243840 234472.51/0.16 234472.44/0.16
C(900,5,4) 27432 264882.74/0.20 264882.83/0.18
C(1000,5,4) 304800 291762.78/0.27 291762.85/0.17

Table 6 Optimal values and standard deviation of different instances(m=20)

Instance Target Soln SA(Rand) SA(Greedy)
C(10,20,4) 3048 3090.18/0.0 3090.18/0.0
C(20,20,4) 6096 6216.57/2.1E-4 6216.57/2.11
C(30,20,4) 9144 9151.83/0.00 9151.83/0.00
C(40,20,4) 12192 12361.50/0.00 12361.50/0.00
C(50,20,4) 15240 15452.76/0.01 15452.76/0.01
C(60,20,4) 18288 18661.62/0.01 18661.62/0.01
C(70,20,4) 21336 21555.85/0.03 21555.85/0.03
C(80,20,4) 24384 24715.80/0.01 24715.77/0.06
C(90,20,4) 27432 27982.69/0.03 27982.68/0.03
C(100,20,4) 30480 31124.28/0.03 31124.28/0.03
C(200,20,4) 60960 61861.11/0.17 61861.10/0.16
C(300,20,4) 91440 92473.23/0.28 92473.13/0.40
C(400,20,4) 121920 123486.36/0.52 123486.44/0.42
C(500,20,4) 152400 154662.53/0.70 154662.7/0.60
C(600,20,4) 182880 185158.51/0.67 185158.34/0.71
C(700,20,4) 213360 216010.27/1.26 216010.57/0.95
C(800,20,4) 243840 247325.61/1.28 247325.92/1.18
C(900,20,4) 27432 277354.00/1.46 277353.75/1.86
C(1000,20,4) 304800 308344.05/2.00 308344.64/1.67
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faults, administration etc. Other work related to multitenancy isolation can be seen in (Krebs
et al., 2013) (Krebs and Loesch, 2014).

None of the above work considers implementing multitenancy in a way that guarantees
the required degree of isolation between tenants. In our previous work (Ochei, Bass and
Petrovski, 2015b) and (Ochei, Petrovski and Bass, 2015), we described an architecture for
implementing multitenancy isolation as well as an algorithmic framework for evaluating
empirically the required degree of isolation between tenants accessing a cloud-hosted GSD
tool. This paper extends our previous work (Ochei, Bass and Petrovski, 2015b) and (Ochei,
Petrovski and Bass, 2015) by describing the algorithm in more detail and also presents
an additional algorithm that can be used to determine the isolation level of an application
component or functionality in almost real-time. In addition, we also present supporting
algorithms for providing optimal solutions for deploying components of a cloud-hosted
service.

Similar to our proposed approach, most cloud offerings (Amazon’s Auto Scaling and
EC2 (Amazon, 2016), and Microsoft Azure’s Web Role (Microsoft, 2016)) also implement
techniques that are able to intercept a user request, inspect it, and then decide what
level of isolation is required. This is typically what production systems do across the
overall application logic, for example, when providing subscriptions with different levels
of isolation at different price tiers. However, while carrying out these provisioning and
decommissioning operations, most cloud providers do not guarantee the availability and
multitenancy isolation of specific components/individual IT resources (for example, a
particular virtual server or disk storage), but only for the offering as a whole (for example,
starting new virtual servers). Our algorithm can address this problem by initially tagging
each component and thereafter identifying which isolation level is suitable for deploying a
component based on the metadata of existing components. This will allow the component
and the application to run efficiently and also help in optimizing the deployment of the
cloud application.

Research work on optimal deployment and allocation of cloud resources on the cloud
are quite significant (Yusoh and Tang, 2012; Shaikh and Patil, 2014; Westermann and
Momm, 2010; Candeia et al., 2015; Abbott and Fisher, 2009). Most of this research
focuses on minimising the cost of using the cloud infrastructure resources (Yusoh and
Tang, 2012; Westermann and Momm, 2010). Previous work does not use metaheuristic to
provide optimal solutions for deploying components of a cloud-hosted service in a way that
guarantees the required degree of multitenancy isolation. Most of the research concerning
optimization of cloud resources does not use heuristic at al, although a few use simple
heuristics. For example, the authors in (Aldhalaan and Menascé, 2015a,b) used a heuristic
based on hill climbing for minimising the cost of a SaaS cloud providers with response time
SLAs constraints. Our work, unlike others, focuses on providing an optimal solution for
deploying components of a cloud-hosted application in a way that guarantees the required
degree of multitenancy isolation.

8 Recommendations

In Table 8, we provide recommended patterns for achieving multitenancy based on the
paired t-test and the plots of the EMMC. This will also help in optimizing the performance
and resource consumption of tenants. Table 9 provides different options for applying the
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Table 8 Recommended Patterns for achieving Multitenancy Isolation

Isolation
Aspects Factors Shared Tenant

-isolated Dedicated

Performance
and Security

Response
time

X X

Error% X X
Throughput X X

Resource
Utilization

CPU X X
Memory X X
Disk I/O X X X
System
Load × - -

Table 9 Implementing Multitenancy Isolation in Different Deployment Conditions with regard to
Application Stack Level

Multitenancy
Patterns

Application layer Platform layer IaaS layer

Shared
Component

Multiple tenants
share a single
instance of bug
database. Degree of
isolation would be
low

Tenants can use
the bug database
installed on a shared
database platform

Set up bug database
multiple times on a
shared server

Tenant-
Isolated
Component

Tenants can share the
bug database, and
introduce a tenant-id
field to tables to
differentiate different
tenants

Bug database are
deployed on virtual
spaces specially
created on the
database platform;
virtual spaces isolates
DB against DB of
other tenants

Set up bug database
schemas or databases
for each tenant using
different hypervisors

Dedicated
Component

Associate each
tenant with one bug
database instance or
a certain number of
instances of the bug
database

Install multiple
bug databases on
a hypervisor for
different tenants.
Instantiate same
implementation for
shared component
exclusively for one
tenant

Each tenant uses
the bug database
installed on its own
instance of virtual
hardware/servers
they use; the number
of tenants served may
be limited
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COMITRE approach to implement multitenancy isolation in different layers of the cloud
stack for each multitenancy pattern.

The COMITRE approach we have put forward is to be implemented dynamically
at runtime because we are dealing with components in most cases rather than the
whole virtual server or application hosted on the server. This makes it easy for the
algorithm to collect information for adjusting the behaviour of the component and/or the
application (e..g, provisioning/decommissioning specific components hosted on virtual
servers, increasing/decreasing the amount of storage, enabling/disabling networking
connectivity etc.) in line with the required degree of isolation.

With respect to providing optimal solutions for deploying components of a cloud-hosted
service, we make the following recommendations:
(1) There is a greater chance of obtaining better quality solutions when there are more
components to choose from in the component repository.
(2) The result seems to suggest that starting a metaheuristic with an initial set of solutions
(e.g., greedy solution) can significantly boost the optimal solutions obtained in order to
guarantee multitenancy isolation.
(3) When there is limitation in terms of time and available resources, then a variant of
metaheuristic based on simulated annealing would produce more stable and robust solutions.
(4) The variant of the metaheuristic that starts with a greedy solution would be more
suitable for handling large projects that may have a significant number of interdependent
components.

9 Limitations of the Study

This study focused on demonstrating the applicability of the algorithm for achieving the
required degree of isolation between tenants based on the three multitenancy patterns. Due
to the small size of the cloud infrastructure used for the experiments (i.e., Ubuntu Enterprise
Cloud), we simulated the scenario with a large instant request to compensate for the large
volume of requests that would have been required to create a significant effect on the tenants.

The algorithm requires an initial contribution from the software architect in the sense
that the component has to be tagged to differentiate the varying degrees of isolation. This
is at least necessary to populate the component repository and generate initial metadata for
the algorithm. Subsequently, the tagging of each component is done dynamically by relying
on the metadata of existing components.

With respect to the optimization model, it is assumed that the resources supporting each
component are enough to handle incoming requests. If this condition cannot be guaranteed,
we recommend using an elastic queue to control incoming requests. Another option could
be to implement some form of admission control mechanism, for example, limiting the
number of requests that are handled concurrently by each component, to avoid overloads
or any degradation in the component’s performance.

This research assumed a small-medium size search space (i.e., in the order of 1012

states). Although this is not the kind of magnitude expected when solving optimization
problems (e.g., cost-minimization of resources) in large data centres, this research chose
simulated annealing because they are well suited for problems with a small-to-medium
size search space, and also make our approach scalable under the experimental conditions
(Rothlauf, 2011). It would be interesting to challenge our approach with other heuristics
such as constraints programming, genetic algorithm and estimation distribution algorithm.
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The findings of this study are limited to cloud-hosted services developed and deployed
using a multitenant architecture, and so should not be generalized to components developed
for all types of commercial applications that may also be deployed to the cloud. Although
the three multitenancy patterns were implemented by modifying Bugzilla deployed to cloud,
the same approach (i.e., COMITRE) can also be used to implement multitenancy isolation
in other cloud-hosted software tools (e.g., Hudson, Subversion).

The study assumed a private cloud that receives a small-to-medium size number of
requests. Therefore, it is important to carefully vary the number of requests that would cope
with the size of the cloud infrastructure used especially when implementing the approach
and associated algorithms in a production environment. The framework and the associated
algorithms that we have presented in this work apply to cloud-hosted applications at the
application level, and so are implemented almost at runtime.

10 Conclusion and Future Work

In this paper, we have described a framework for achieving the required degree of
multitenancy isolation for a cloud-hosted service. The two constituents of the framework
have been described: (i) applying COMITRE to implement varying degrees of multitenancy
isolation using a bug tracking system (i.e., Bugzilla) and (ii) an optimization model
for providing optimal solutions for deploying components of a cloud-hosted service to
guarantee multitenancy isolation.

This study contributes to literature on achieving the required degree of multitenancy
isolation for cloud-hosted services, and in particular, cloud-hosted Global Software
Development tools. The study demonstrated the applicability of the framework in a case
study involving multiple tenants submitting bugs at varying frequency to the bug database.
This study also presented an optimization model together with a metaheuristic solution
for providing optimal solutions for deploying components of a cloud-hosted service while
guaranteeing multitenancy isolation.

We plan to apply the algorithm to different cloud deployment scenarios such as when
locking is enabled in both SQL and NoSQL databases used in distributed bug tracking
environments. In the future, we plan to develop a simulation model (i.e., a simulator) or a
rule-based model which is based on computer programs that emulate the different aspects
of a system as well as their static structure. The simulator will allow us to capture and
analyse different architectural components of a cloud-hosted service in situations where
requirements are often difficult and complex to interpret and could change suddenly due to
workload interference.
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