
1 

 

Exploring Zoning Scenario Impacts upon Urban Growth Simulations Using a 1 

Dynamic Spatial Model 2 

Abstract 3 

 Dynamic spatial models are being increasingly used to explore urban changes and evaluate 4 

the social and environmental consequences of urban growth. However, inadequate representation 5 

of spatial complexity, regional differentiation, and growth management policies can result in urban 6 

models with a high overall prediction accuracy but low pixel-matching precision. Correspondingly, 7 

improving urban growth prediction accuracy and reliability has become an important area of 8 

research in geographic information science and applied urban studies. This work focuses on 9 

exploring the potential impacts of zoning on urban growth simulations. Although the coding of 10 

land-use types into distinct zones is an important growth management strategy, it has not been 11 

adequately addressed in urban modeling practices. In this study, we developed a number of zoning 12 

schemes and examined their impacts on urban growth predictions using a cellular automaton-based 13 

dynamic spatial model. Using the city of Jinan, a fast-growing large metropolis in China, as the 14 

study site, five zoning scenarios were designed: no zoning (S0), zoning based on land-use type 15 

(S1), zoning based on urbanized suitability (S2), zoning based on administrative division (S3), and 16 

zoning based on development planning subdivision (S4). Under these scenarios, growth was 17 

simulated and the respective prediction accuracies and projected patterns were evaluated against 18 

observed urban patterns derived from remote sensing. It was found that zoning can affect 19 

prediction accuracy and projected urbanized patterns, with the zoning scenarios taking spatial 20 

differentiation of planning policies into account (i.e., S2–4) generating better predictions of newly 21 

urbanized pixels, better representing urban clustered development, and boosting the level of spatial 22 

matching relative to zoning by land-use type (S1). The novelty of this work lies in its design of 23 

specific zoning scenarios based on spatial differentiation and growth management policies and in 24 
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its insight into the impacts of various zoning scenarios on urban growth simulation. These findings 25 

indicate opportunities for the more accurate projection of urban pattern growth through the use of 26 

dynamic models with appropriately designed zoning scenarios.  27 
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1. Introduction  33 

The past few decades have witnessed a rapid growth in both the world’s urban population and 34 

the amount of built-up land, particularly in a number of developing countries. This has led to 35 

significant changes in Earth’s land surface that threaten the integrity of global ecosystems (Rafiee 36 

et al., 2009). For example, although the proportion of people living in cities in China more than 37 

tripled between 1978 and 2015, the urban built-up land coverage increased by nearly seven times 38 

over the same period (The Yearbook of China’s Cities, 2015). Rapid urban land expansion has 39 

become the primary form of land-use change in China and has prompted concerns over loss of 40 

large areas of high-quality farmland and primary forest, inadvertent climate repercussions, and 41 

degradation in the overall quality of life (Ma et al., 2014; Song et al., 2015). 42 

Urban growth is a complex, dynamic process that is driven by multiple biophysical and socio-43 

economic factors (Irwin et al., 2009; Akιn et al., 2014; Maimaitijiang et al., 2015; Shafizadeh-44 

Moghadam and Helbich, 2015). Land-use change models can be used to explore urban growth and 45 

land-use change dynamics to aid planners and resources managers in understanding land-use 46 

changes and their potential socio-ecological consequences under different constraints (Yang and 47 

Lo, 2003; Liu et al., 2008). Over the years, various land-use change models have been developed, 48 

a number of which are suitable for urban growth simulation,. These include statistical models (e.g., 49 

Hu and Lo, 2007), artificial neural network models (e.g., Liu and Seto, 2008), cellular automaton 50 

(CA) models (e.g., Clarke et al., 1997; Arsanjani et al., 2013; Chowdhury and Maithani, 2014; 51 

Aburas et al., 2016; Ku, 2016), and agent-based models (e.g., Matthews et al., 2007; Valbuena et 52 

al., 2010). Whereas statistically-based models are generally static in nature and more appropriate 53 

for diagnostic or prescriptive applications, cellular automaton- and agent-based models are 54 

dynamic and can be used for exploring future urban development under different constraints 55 

(Torrens, 2011).  56 

In this paper, we look primarily at urban cellular automaton models based on their capability 57 

for exploring urban dynamics and on their general popularity (Torrens, 2011). Cellular automation 58 
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models simulate land cover or land use change using a set of rules which regulate cell (pixel) 59 

conversions depending on their location, spatial relationships with other cells and various 60 

landscape constraints. A well-known example of an urban cellular automata model is the Slope, 61 

Land-use, Exclusion, Urban extent, Transportation, and Hillshade (SLEUTH) model, which has 62 

been widely applied in urban growth prediction and forecasting (e.g., Clarke et al., 1997; Clarke 63 

and Gaydos, 1998; Silva and Clarke, 2002; Herold et al., 2003; Jantz et al., 2003, 2010; Yang and 64 

Lo, 2003; Berling-Wolff and Wu, 2004; Al-shalabi et al., 2012; Onsted and Chowdhury, 2014). At 65 

the same time, despite their successful track record of application and high overall accuracy, 66 

cellular automaton models can suffer from low pixel-matching precision (i.e., low local-scale 67 

precision) (Jantz et al., 2003). Thus, improving urban growth prediction accuracy and reliability 68 

has become an important area of research in geographic information science and applied urban 69 

studies (Torrens, 2011; Brown et al., 2013; Liu and Yang, 2015). Although much progress has been 70 

made in developing more technologically sophisticated urban cellular automaton models, there 71 

have been some persistent challenges to the applicability of these models in reproducing patterns 72 

resembling real cities, driven primarily by limitations on the availability of spatial data at required 73 

resolutions and difficulties in representing spatial complexity, regional differentiation, and growth 74 

management policies (see Yang and Lo, 2003; Torrens, 2011; Liu and Yang, 2015).  75 

The focus of this paper is the sensitivity of urban growth to development planning policies, 76 

which are important in urban growth management but have not been adequately addressed in urban 77 

modeling practices (e.g., Clarke et al., 1997; Silva and Clarke, 2002; Berling-Wolff and Wu, 2004; 78 

Lahti, 2008; Wu et al., 2009) due to difficulties in incorporating such development policies into 79 

the conversion rules used by cellular automaton-based urban models (see Torrens, 2002). One way 80 

to address this issue is to use an exclusion layer to indirectly integrate various development policies 81 

into the simulation process (e.g., Jantz et al., 2003; Silva et al., 2008; Akιn et al., 2014). However, 82 

this approach has had only limited success to date because other issues, including spatial 83 

complexity and regional differentiation, must be considered along with planning policies (e.g., 84 
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Goldstein et al., 2004). 85 

Urban planners often use zoning to differentiate land-use types as a method for controlling 86 

and guiding the growth and changes in urban land use (Onsted and Chowdhury, 2014). This top-87 

down growth control and management approach has been widely adopted in the developed world 88 

and is now being applied in a number of developing countries, including China (Tian and Shen, 89 

2011; Long et al., 2012). In China, all levels of government play very important roles in making 90 

urban development policies and in building urban public service facilities and infrastructures. A 91 

notable example of this is the establishment of several special economic zones by the central 92 

government in the early 1980s as part of the country’s economic reforms and policy of opening to 93 

the world. These economic zones have profoundly affected urban growth patterns in the country 94 

and made it necessary to consider zoning in urban growth modeling.  95 

Several studies have recognized the implications of zoning for urban expansion simulations 96 

and have noted how the appropriate use of zoning information can help improve simulation 97 

accuracy (Clarke et al., 1997; Onsted and Chowdhury, 2014). In this paper, “zone” is a term used 98 

to refer to any subdivision of the landscape and can categorize divisions by land-use type, 99 

administrative division, development planning subdivision, etc. Despite its advantages, zoning has 100 

rarely been incorporated in urban modeling practices because its ability to significantly affect the 101 

modeling outcomes has been generally disregarded or considered too difficult to demonstrate 102 

(Onsted and Chowdhury, 2014). For example, in a study by Lahti (2008) the SLEUTH model, a 103 

cellular automaton-based dynamic urban model, was successful in capturing bottom-up ecological 104 

processes but could not adequately reproduce top-down phenomena due to its difficulty in 105 

establishing a connection between bottom-up-oriented conversion rules and top-down urban 106 

development policies. In other studies, SLEUTH was found to be incapable of thoroughly 107 

capturing the characteristics of urban growth for various administrative divisions even when 108 

zoning was taken into account (e.g., Wu et al., 2009). It should be noted that in these previous 109 

studies zoning information was generally derived from either large administrative divisions (e.g., 110 
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Wu et al., 2009) or land-use types (e.g., Berling-Wolff and Wu, 2004; Rafiee et al., 2009; Jantz et 111 

al., 2010).  112 

The aim of this study was to explore the potential impacts of zoning on urban growth 113 

prediction and forecasting using the SLEUTH cellular automaton-based dynamic spatial model. 114 

SLEUTH was selected for the study because of its flexibility, openness, non-linearity, and adaptive 115 

ability (Clarke et al., 1997; Clarke and Gaydos, 1998). Using a set of urban growth rules, the 116 

SLEUTH model can simulate complex urban growth dynamics. The model can be calibrated using 117 

historical urban expansion data to obtain the best possible coefficient combinations. Detailed 118 

discussion on model design and implementation procedures can be found in previous studies (e.g., 119 

Clarke et al., 1997; Clarke and Gaydos, 1998; Silva and Clarke, 2002; Herold et al., 2003; Yang 120 

and Lo, 2003). Because of its rapid growth during the past several decades, the city of Jinan, 121 

Shandong Province, China was selected as the study site. Several distinct zoning scenarios based 122 

on land-use type, urbanization suitability, administrative division, and development planning 123 

subdivision were carefully designed and used to simulate urban growth. Based on the model results, 124 

the potential impacts of zoning were examined. Specifically, two questions were addressed: (1) 125 

Would zoning affect urban growth prediction accuracy and projected urbanized patterns? and (2) 126 

Which zoning scheme would allow the urban growth model to generate more accurate outcomes? 127 

The findings of this study provide a valuable reference for addressing zoning information in urban 128 

growth simulations and informing future urban planning and zoning policies.  129 

 130 

2. Study Area 131 

The study area represents a portion of Jinan, the capital city of Shandong Province in China. 132 

Jinan lies between Taishan Mountain to the south and the Yellow River to the north (Figs 1 a, b). 133 

The metropolitan area covers 8,117 km2 and comprises seven districts—Shizhong, Tianqiao, Lixia, 134 

Huaiyin, Licheng, Changqing, and Zhangqiu—and three counties—Pingyin, Jiyang, and Shanghe 135 

(Fig. 1c). Jinan has experienced rapid growth in its urban population along with an expansion of 136 
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built-up land from 80.4 km2 in 1949 to 383.3 km2 in 2015 (Statistical Year Book of Jinan, 2015). 137 

By the end of 2015, the total population of Jinan was 7.13 million, of whom 4.84 million were 138 

urban residents. The city of Jinan formulated a primarily top-down regional planning strategy for 139 

1996–2020 with the goal of promoting development toward the east, west, and north but restricting 140 

development toward the south owing to the presence of Taishan Mountain. More specific urban 141 

development plans were formulated in 2003, including development of a new district, old town 142 

renovation, and urban expansion toward both the east and west. As a result, the city of Jinan now 143 

comprises a central city and five development planning areas—East Metro, West Metro, Jibei 144 

Metro, the airport development zone, and the southern mountain water conservation area (Jinan 145 

Municipal Planning Bureau, 2006) (Fig. 1d). Rapid urban expansion in Jinan is closely related to 146 

economic development, land-use policies, and physiographic characteristics. Although the 147 

southern mountain area, serving as the water recharge area for the numerous springs in Jinan, has 148 

been designated a key protected region, the mountain area as a whole has witnessed massive urban 149 

expansion, which, in turn, has prompted an even stricter protection and development plan 150 

specifically targeting the southern mountain area and the springs in the city. In addition, Jinan has 151 

successively implemented a series of urban renewal projects and plans to create new districts. This 152 

planning has collectively affected the magnitude and direction of urban growth. In this study, we 153 

will specifically target an area of approximately 3,446 km2 that includes the six districts under the 154 

jurisdiction of Jinan and the Jibei metropolitan area in which the government and urban planners 155 

have implemented different development policies that can affect future urban development (Fig. 156 

1d). 157 
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 158 

Fig. 1 Location of the study area 159 

3. Research Methods 160 

3.1. Data acquisition and preprocessing 161 

As mentioned earlier, the SLEUTH model was used to explore the impacts of zoning scenarios 162 

on urban growth simulations. This process involved the use of several datasets during various 163 

stages of model implementation: Landsat Thematic Mapper (TM) images collected in April 1996, 164 

July 2001, May 2006, and June 2011; Landsat 8 Operational Land Imager (OLI) images collected 165 

in May 2016 (which were used for validation only); topographic maps at 1:50,000; and various 166 

urban planning documents from the Jinan five-year development plans (1996–2000, 2001–2005, 167 
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2006–2010, 2011–2015, and 2016–2020) and Jinan master plans (2006–2020 and 2016–2020).  168 

Data preprocessing was conducted as follows. First, a geometric correction procedure was 169 

applied to the remote sensor images with root mean square (RMS) errors of less than one pixel. In 170 

this procedure, the cubic convolution method was used for intensity interpolation between ground 171 

control points (GCPs) selected uniformly across the study area. Second, each image was clipped 172 

using the study site boundary and a supervised classification method was used to derive an urban 173 

extent map from each of the Landsat TM and OLI images (Fig. 2). The overall classification 174 

accuracy was found to be 93.2% as determined by error matrices and the Kappa index was found 175 

to be 0.91. Finally, a road network dataset comprising an updated road map for each of four 176 

different years, i.e., 1996, 2001, 2006, and 2011, was generated by manually digitizing the roads 177 

visible in each TM image (Fig. 3). 178 

   179 

Fig. 2 Spatial growth of urban extent in Jinan from 1996 to 2016. A-G: components of urban 180 

growth regions 181 
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 182 

Fig. 3 Road network maps for 1996, 2001, 2006, and 2011 183 

3.2. Model input 184 

To run the SLEUTH 3.0 model, five data layers are required as inputs: urban extent, 185 

transportation, slope, hillshade, and an exclusion layer. In this study, the urban extent layer was a 186 

binary raster of urban and nonurban land use derived from the TM images (Fig. 2). The roads 187 

(transportation) were not weighted following Chaudhuri and Clarke (2013), who found no 188 

significant difference in results from road weighting. The slope and hillshade layers were generated 189 

from a digital elevation model (DEM) (Fig. 4), with the slope expressed as a percentage 190 

representing the ratio of vertical to horizontal change and cells with slopes greater than 100% (out 191 

of a possible slope index from 0 to ∞) assigned slope values of 100. The exclusion layer was 192 

defined based on specific scenarios discussed in Section 3.3. Finally, as required by the model all 193 

data were converted to GIF format with a cell size of 60 m × 60 m. 194 
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  195 

Fig. 4 Two model input layers: slope (a) and hillshade (b) 196 

3.3. Zoning scenarios 197 

The SLEUTH model predicts future urban growth and land cover changes by modifying 198 

internal parameters or manipulating the exclusion layer in historical data. In this manner, SLEUTH 199 

can be used to support urban planning activities (Clarke et al., 1997, Clarke and Gaydos, 1998; 200 

Silva and Clarke, 2002; Jantz et al., 2003, 2010). The ability to relate the exclusion layer to specific 201 

land-use or policy constraints based on the integration of geographic information systems with 202 

remote sensor data is considered to be another important advantage of the SLEUTH model (Jantz 203 

et al., 2003). 204 

In China, the top-down approach has been widely used in urban and regional planning, which 205 

can significantly affect urban growth patterns (Long et al., 2012; Tian and Shen, 2011), as is further 206 

discussed in the context of Jinan in Section 4.1. To explore the possible impacts of various zoning 207 

methods on urban growth simulation, we specifically designed five different zoning scenarios and 208 

prepared an exclusion layer for each of them. 209 

3.3.1 Scenario S0: No zoning 210 

Scenario S0 (no zoning) served as a benchmark for examining the potential impacts of specific 211 

land-use and development policies on urban growth simulations based on a comparison of its 212 
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outcomes with those of other scenarios. For S0, an exclusion layer comprising large water bodies 213 

and parks (Figs. 2 and 5a) with assigned attribute values of 100 (complete preservation) was 214 

created, following the methodology of previous studies (e.g., Silva and Clarke, 2002; Rafiee et al., 215 

2009; Akιn et al., 2014).  216 

 217 

Fig. 5 Exclusion layers used for Scenarios S0 (a) and S1 (b). Note that pixels with the attribute 218 

value of 100 represent completely excluded areas 219 

3.3.2 Scenario S1: Zoning based on land-use type 220 

Zoning scenario S1 was designed to address the possible impacts of land-use policies by 221 

assigning specific values to different land uses. For example, forest land was assigned a higher 222 

value as it is generally more protected. User-defined options have often been used to valuate 223 

specific land-use types and design exclusion layers (e.g., Jantz et al., 2003, 2010; Berling-Wolff 224 

and Wu, 2004; Rafiee et al., 2009; Akιn et al., 2014) even when zoning is not explicitly mentioned. 225 

An exclusion layer was also generated as a user-defined option for S1 based on data on land-use 226 

in 1996. Under S1, an attribute value of 100 was assigned to large water bodies and parks (as under 227 

S0) and values of 75, 50, and 0 were assigned forests, agricultural areas, and areas with no 228 

preservation rules, respectively (Fig. 5b). However, the scenario did not consider development 229 

policies among different regions or spatial locations within a given land-use type. 230 
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3.3.3 Scenario S2: Zoning based on urbanization suitability 231 

Zoning scenario S2 was based on the evaluation of urban growth suitability in terms of both 232 

the impacts of land use and urban development policies related to protecting important natural and 233 

ecological spaces and regional differentiation of urban growth potential owing to accessibility. 234 

This methodology for designing exclusion layers was also used in a number of previous studies 235 

regarding smart-growth (e.g., Jantz et al., 2010; Mahiny and Clarke, 2012) or ecologically 236 

sustainable development scenarios (e.g., Jantz et al., 2003; Rafiee et al., 2009; Yin et al., 2015).  237 

The exclusion layer under S2 was generated using a multi-factor overlay analysis of eight 238 

thematic layers (Table 1), which were assumed to be the primary factors affecting land suitability 239 

for urban growth based on situation within the study area and data availability as well as from 240 

reference to previous studies (e.g., Mahiny and Clarke, 2012; Yin et al., 2015). The analytical 241 

hierarchy process (AHP) method (Saaty, 1980) was used to weight the thematic factors (Table 1). 242 

As factor five (proximity to rivers and water bodies) was a constraining factor, the minimum 243 

overlay method was specially adapted to combine it with the other seven weighted factors. 244 

 245 

Table 1 Data layers used in the multi-factor overlay analysis for urbanized suitability assessment 246 

and weights assigned to each of the seven factors  247 

No. Factor Weight 

1 Slope 0.114 

2 Relief 0.114 

3 Land use 0.051 

4 Forest density 0.052 

5 Proximity to rivers and water-bodies – 

6 Accessibility to urban edges 0.223 

7 Accessibility to city centers 0.223 

8 Accessibility to planned new district centers 0.223 

Note: the “proximity to rivers and water bodies” was set as constraining factor 248 

Topographic slope and relief are two important factors affecting urbanized suitability. In this 249 

study, areas with slopes greater than 25% and/or reliefs of more than 40 m were considered 250 
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unsuitable for development and were assigned a value of zero. The values of other areas were 251 

linearly fuzzified using a monotonically decreasing trend and normalized to a scale from 0 (least 252 

suitable) to 100 (most suitable) (Fig. 6a, b). Fuzzy values for the five land-use categories were 253 

defined through a user-defined option. To maintain consistency with the Scenario S1 schema, 254 

attribute values of 0, 25, 50, and 100 were assigned to large water bodies and parks, forests, 255 

agricultural areas, and areas that were absolutely suitability for urban growth, respectively (Fig. 256 

6c). The normalized difference vegetation index (NDVI) was used to represent forest density, with 257 

NDVI values greater than 0.45 assigned a value of 0, indicating an absolutely protected area that 258 

should not be used for urban development, and those with NDVIs of less than 0.45 assigned a 259 

value of 50 (Fig. 6d). 260 

As a constraint factor, the distances to rivers and water bodies were also weighted through a 261 

user-defined option. To protect water resources and riparian vegetation and prevent flood damage 262 

to settlements, all rivers and water bodies and their respective buffer zone areas (200 m from the 263 

Yellow River and 100 m from all other rivers and water bodies) were assigned a value of zero, 264 

indicating restricted areas that were not suitable for urban growth. 265 

Accessibility to urban edges, urban centers, and planned new district centers are important 266 

driving factors for urban growth (Hansen, 1959; Geurs and Van Wee, 2004). In this case, 267 

accessibility can be defined as “the ease with which any land-use activity can be reached from a 268 

location using a particular transport system” (Dalvi and Martin, 1976), which can be easily 269 

calculated using the cost-distance method by any GIS software package such as ArcGIS (e.g., 270 

Kong et al., 2012). In this study, travel speed was defined as 40 km per hour and cost-distance as 271 

15 min/10 km along all types of road in the road network. Areas with no roads were defined as 272 

walking networks and assigned cost values according to three categories: rivers and water, 1,000; 273 

mountains, 500; and others, 120. Three different levels of accessibility were also identified. If an 274 

area’s accessibility to urban edges or planned new district centers was less than 10 min and that to 275 

urban centers was less than 30 min, it was assigned 100 to indicate highest suitability. Similarly, if 276 
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the urban edge/planned new district center and urban center accessibilities were within 10–30 and 277 

30–60 min, respectively, the accessibility values were linearly fuzzified using a monotonically 278 

decreasing trend and normalized to 25–100. Accessibilities to urban edges and planned new district 279 

centers urban centers greater than 30 and 60 min, respectively, resulted in an assigned value of 25 280 

(low suitability) (Fig. 7a, b, c). 281 

 282 

Fig. 6 Four factors used in multi-factor overlay analysis for urbanized suitability assessment 283 

To yield an urbanized suitability map, an overlay operation was used to sum the weighted 284 

factors. As the highest suitability corresponded to the lowest value in the excluded layer, the values 285 

of urbanized suitability were, therefore, reversed with respect to the values in Scenario S1 (Fig. 286 

7d). 287 
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 288 

Fig. 7 Accessibility factors used in multi-factor overlay analysis for urbanized suitability 289 

assessment and the exclusion layer used in Scenario S2 290 

3.3.4 Scenario S3: Zoning based on administrative division 291 

Zoning scenario S3 was used to assess urbanized suitability and the potential impacts of 292 

development policies on different administrative divisions. Different top-down development 293 

policies can result in different urban growth patterns (Yu and Ng, 2007); in this study, a 294 

development policy impact coefficient layer was created to represent such impacts, and the 295 

exclusion layer in Scenario S3 was derived by combining the urbanized suitability layer derived 296 

for Scenario S2 with this policy impact coefficient layer.  297 

The study area was first subdivided based on the present administrative divisions. As some 298 

administrative divisions in downtown Jinan had already become completely urbanized and were 299 
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mostly adjacent to each another, these divisions were grouped into one division, resulting in a 300 

study area comprising sixty divisions (Fig. 8a). To create the development policy impact 301 

coefficient layer, the respective policies related to the expansion of urban land use were first 302 

categorized. The primarily executive urban and regional development policies in Jinan are listed 303 

in Table 2. These policies were then divided into four different levels (national, provincial, 304 

municipal, district or below) and assigned the user-defined values of 1.45, 1.30, 1.15, and 1.00, 305 

respectively (Table 2). Finally, urban growth areas were classified and assigned zoning values by 306 

policy level to create the development policy impact coefficient layer. Using this layer, the 307 

development policies in different administrative divisions could be evaluated with respect to 308 

specific policy level (Fig. 8a).  309 

A policy-restricted urban growth suitability layer for Scenario S3 was generated by 310 

multiplying the urbanization suitability layer values for Scenario S2 with those of the respective 311 

administrative division-based development policy impact coefficient layer areas (with all of the 312 

resulting values larger than 100 set to 100). The values in the resulting layer were then reversed to 313 

generate the final exclusion layer for Scenario S3 (Fig. 8b). 314 

 315 
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Fig. 8 Administrative division-based development policy impact coefficient layer (a) and exclusion 316 

layer used in Scenario S3 (b). Note that pixels with attribute values of 100 represent completely 317 

excluded areas 318 

 319 

Table 2 List of major urban and regional development policies for Jinan since 1996 and their 320 

respective policy levels 321 

No. Policy Policy makers 
Policy level 

Weighted 

value 

1 Jinan high and new technology 

industrial development zone (1991–-) 

Shandong provincial government 

(National level) 
National 1.45 

2 Jinan Economic Development Zone 

(1999–) 

Shandong provincial government 

(Provincial level) 
Provincial 1.30 

3 Jinan ninth five-year development 

plan (1996–2000) 

Jinan development and reform 

commission, Jinan Municipal government 
Municipal 1.15 

4 Jinan master planning (1996–2010) Jinan municipal planning bureau Municipal 1.15 

5 Jinan big changes in five years (1997–

2002) 

Shandong provincial government 

Jinan municipal government Provincial 1.30 

6 Jinan tenth five-year development plan 

(2001–2005) 

Jinan development and reform 

commission, Jinan Municipal government Municipal 1.15 

7 Jinan master planning (2006–2020) Jinan municipal planning bureau Municipal 1.15 

8 Jinan eleventh five-year development 

plan (2006–2010) 

Jinan development and reform 

commission, Jinan Municipal government Municipal  

9 Jinan twelfth five-year development 

plan (2011–2015) 

Jinan development and reform 

commission, Jinan Municipal government Municipal 1.15 

10 The main function zoning in Shandong 

province (2013) 

Shandong provincial government 

Shandong provincial development and 

reform commission 
Provincial 1.30 

11 Jinan thirteenth five-year development 

plan (2016-2020) 

Jinan development and reform 

commission, Jinan Municipal government 
Municipal 1.15 

12 Jinan master planning (2016–2020) Jinan municipal planning bureau Municipal 1.15 

13 The ecological protection red line 

planning in Shandong province (2016–

2020) 

Shandong provincial government 

Environmental protection bureau of 

Shandong Province 
Provincial 1.30 

*Note: A series of district or below level policies were published in the past few years and have been 322 

weighted as “1” for this study. 323 

3.3.5 Scenario S4: Zoning based on development planning subdivision 324 

Zoning scenario S4 was developed as an extension of Scenario S2 to reflect the potential 325 

impacts of development policies on different planning subdivisions (functional groups). A detailed 326 
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planning scheme (Jinan Municipal Planning Bureau, 2006) defines six major functional areas in 327 

Jinan, namely, the central area, the East Metro district, the West Metro district, the Jibei Metro 328 

district, the airport development zone, and the southern mountain ecological conservation district 329 

(Fig. 1d). The scheme also specifies eighty-four functional groups (Fig. 9a). Scenario S4 330 

incorporates subdivisions additional to those in Scenario S3, particularly in the urban development 331 

planning area, i.e., the East Metro, West Metro, and Jibei Metro districts (Fig. 8a, Fig. 9a). The 332 

same data processing procedure used in Scenario S3 was used to create S4, with the generation of 333 

a functional group-based development policy impact coefficient layer (Fig. 9a) followed by the 334 

generation of an exclusion layer (Fig. 9 b).  335 

 336 

Fig. 9 Functional group-based development policy impact coefficient layer (a) and exclusion layer 337 

used in Scenario S4 (b). Note that pixels with attribute values of 100 represent completely excluded 338 

areas 339 

3.4. Model calibration 340 

Urban model calibration is carried out to obtain sets of parameters that can be used to 341 

accurately reproduce historical urban growth, which in turn enables the simulation of future urban 342 

growth in support of land-use planning activities (Dietzel and Clarke, 2007; Akιn et al., 2014). The 343 

success of model simulation depends significantly on the calibration process (Silva and Clarke, 344 
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2002). In this study, a brute-force Monte Carlo method was used for model calibration in a three-345 

step process of coarse, fine, and final calibration. The set of growth coefficients obtained in each 346 

step was used as input for the calibration in the next step, which progressively narrowed the range 347 

of each parameter. Each calibration involved several Monte Carlo experiments. Although 348 

comparison of experimental results such as these with data generated from remotely sensed images 349 

can generate series of statistics to quantify simulation accuracy, there remain controversies over 350 

which indices can best characterize the accuracy of a model (Clarke et al., 1997; Silva and Clarke, 351 

2002; Herold et al., 2003; Jantz et al., 2003; Onsted and Chowdhury, 2014). Here, the Optimal 352 

SLEUTH Metric (OSM), representing the product of seven metrics—Compare, Pop, Edges, 353 

Cluster, Slope, Xmean, and Ymean—was used for model calibration (Table 3). The selection of 354 

metrics was largely based on the research conducted by Dietzel and Clarke (2007), who found that 355 

these metrics are weakly correlated and can be used to quantify model simulation accuracy. 356 

 357 

Table 3 Description of metrics used for evaluation of the calibration results (Dietzel and Clarke, 358 

2007). 359 

Metric name Description 

Compare Comparison of modeled final urban extent to real final urban extent 

Pop r2 Population: Least-squares regression score of modeled urbanization compared with 

actual urbanization for control years 

Edges Edge r2: Least-squares regression score for modeled urban edge count compared with 

actual urban edge count for control years 

Cluster R2 cluster: Least-squares regression score of modeled urban clustering compared with 

known urban clustering for control years 

Slope Average slope r2: Least-squares regression of average slope of modeled urbanized cells 

compared with average slope of known urban cells for control years 

Xmean X- r2; Center of gravity [X]: Least-squares regression of average X values for modeled 

urbanized cells compared with average X values of known urban cells for control years 

Ymean Y- r2; Center of gravity [Y]: Least-squares regression of average Y values for modeled 

urbanized cells compared with average Y values of known urban cells for control years 

OSM Optimal SLEUTH Metric, the product of the preceding seven indices  

 360 
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The 1996 data were used as the initial layers, while the existing urban extents of 2001, 2006, 361 

and 2011 were used for model calibration. Coefficient calibration was carried out under the five 362 

designed scenarios using their respective exclusion layers. During the coarse and fine calibration 363 

steps, data were resampled into 240 m × 240 m and 120 m × 120 m pixels using five and seven 364 

Monte Carlo iterations, respectively. The OSM was calculated in each phase of the model 365 

calibration, with the results with the ten highest OSM values selected to determine the optimum 366 

combination of the five coefficients for narrowing down the coefficient range, thereby generating 367 

five new coefficient ranges. In the final calibration, nine Monte Carlo iterations were performed 368 

to extract the five optimum coefficient combinations with the highest OSM values, after which the 369 

command “Derive” was executed with a step length of one. One hundred Monte Carlo iterations 370 

were used to generate the five final coefficients.  371 

The final calibrated coefficients were then used to initialize the prediction module and 372 

generate a simulated urban development probability map for 2011. The urbanization thresholds on 373 

the probability maps under the respective scenarios were set based on the fact that the urban land 374 

use had increased by 285.89 km2 during 1996–2011, so any cells with probabilities greater than 375 

this threshold value were considered to be the urban areas. To quantify the model simulation 376 

accuracy, a comparative analysis between the simulated and remote sensing-derived 2011 urban 377 

extent was performed on a pixel scale.  378 

3.5. Model predictions and validation 379 

The model predictions based on the exclusion layers under Scenarios S1–S4 were validated 380 

against the 2011 urban land-use map (Fig. 10) (under Scenario S0, the exclusion layer remained 381 

unchanged from that in the actual map). Using the 2011 urban extent, exclusion layers, slope 382 

gradients, hill shading, and 2011 and 2030 roadway networks as initial input data, 100 Monte Carlo 383 

iterations were performed in the model’s prediction mode. The method described in Section 3.4 384 

was then used to obtain urban growth simulation results for 2016 and 2040 under the five specified 385 

scenarios. The thresholds (88% for S0, 30% for S1, 75% for S2, and 85% for S3 and S4) used in 386 
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the urbanization probability maps for these scenarios were the same as those in the model 387 

calibration stage and were used to reconstruct the urban extent in 2016 and 2040. To examine the 388 

zoning scenario impacts, the predicted 2016 maps under the respective scenarios were compared 389 

with the 2016 urban extent map derived by remote sensing. 390 

 391 

Fig. 10 Exclusion layers used for simulations under Scenarios 1–4. Note that pixels with attribute 392 

values of 100 represent completely excluded areas 393 

4. Results 394 

4.1. Historical urban growth during 1996–2016 395 

 The urban extent in the study area grew rapidly from 1996 to 2016 (Fig. 2). During 1996–396 

2001, the urban expansion primarily involved sprawling and infilling (new growth occurring 397 
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through infilling of free spaces within the developed area) growth at the urban edges. Note that 398 

there was nearly no growth in the urban center, primarily because of the implementation of the 399 

“Great Changes of Jinan in Five Years” policy (1997–2002) that aimed to enhance the old town 400 

and improve the city center environment (Jinan Municipal Planning Bureau, 1997). During 2001–401 

2006, the rapid urban growth primarily occurred in the centers and edges of the new urban areas. 402 

For example, in Fig. 2 regions A, D, F, and G exhibit generally spread patterns of these new growth 403 

centers, whereas B, C, and E show typical edge-growing patterns. These regions all correspond to 404 

the functional groups identified in the Development Plans for the East Metro and West Metro 405 

districts since 2003. During 2006–2016, urban growth again comprised primarily edge sprawling 406 

and infilling in the newly developed district centers (A–G). These newly developed urban centers 407 

saw a rapid development of road networks and accessibility as a result of policy support. The 408 

historical urban growth progress appears to be closely related to the development policies. The 409 

2011–2030 Jinan master plan specified the promotion of development in the East Metro and West 410 

Metro districts, the Jibei Metro area, and the airport development district; these areas are likely to 411 

be the primary urban growth areas, and the new planning policies are likely to induce a resumed 412 

period of rapid urban growth in Jinan. 413 

4.2. Model calibration results under different scenarios 414 

The data in Table 4 show that each of the seven calibration metrics for the five scenarios is 415 

above 0.79, indicating an overall satisfactory simulation performance. The OSM metrics from 416 

Scenarios S0 to S4 gradually increase, indicating an improving overall simulation performance, 417 

although the improvements among S2, S3, and S4 are all quite limited. The Xmean and Ymean 418 

metrics of Scenarios S2, S3, and S4 are significantly higher than those for S0 and S1, indicating 419 

better performance in simulating the final urban spatial distribution. The Cluster and Edge metrics 420 

increase from Scenarios S0 to S4, indicating that the urban cluster and edge development are also 421 

well simulated. The variations seen in the calibration metrics suggest that zoning can affect overall 422 

simulation accuracy.  423 
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Table 4 Summary of calibration metrics for different scenarios 424 

Scenarios 

Calibration metrics 

Compare  Pop Edges Cluster Slope Xmean Ymean OSM 

S0 0.8183 0.9426 0.8807 0.8790 0.9664 0.8144 0.8105 0.3809 

S1 0.8174 0.9368 0.8807 0.8807 0.9413 0.8815 0.7933 0.3916 

S2 0.8018 0.9219 0.9100 0.9089 0.9108 0.8766 0.9982 0.4872 

S3 0.8184 0.9192 0.9147 0.9139 0.9278 0.9009 0.9280 0.4877 

S4 0.8342 0.9194 0.9175 0.9126 0.9250 0.9017 0.9181 0.4957 

   425 

    The final calibration coefficients differ significantly among the five scenarios (Table 5). Each 426 

of the diffusion coefficient values exceeds 98, indicating a clear spontaneous growth pattern. The 427 

breed coefficient for Scenario S0 is 48, as compared to 90 and 96 for Scenarios S3 and S4, and 428 

100 for Scenarios S1 and S2, respectively. This indicates that zoning affected the simulation results 429 

in terms of growth of new urban centers. Each of the spread values is greater than 85, indicating 430 

that the simulations all accurately captured edge growth. The slope coefficient value in Scenario 431 

S0 is 21 but is 1 for the other four scenarios, suggesting that slope had a limited impact on urban 432 

growth, which is potentially partially attributable to the fact that, during 1996–2011 most urban 433 

growth occurred in low slope areas or because the impact of terrain had been considered in 434 

generating the exclusion layers. The road gravity coefficient values are all larger than 56, 435 

indicating that the road network significantly affected urban growth. However, the values 436 

gradually decrease from Scenarios S0 to S4, suggesting that zoning weakened road-influenced 437 

urban growth. 438 

 439 

Table 5 Final coefficients for respective scenarios 440 

Scenarios Diffusion Breed Spread Slope Road gravity 

S0  98  48  95 21 90 

S1 100 100  85  1 89 

S2 100 100 100  1 85 

S3 100  90 100  1 61 
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S4 100  96 100  1 56 

 441 

Table 6 Accuracy assessments of 2011 predictions under different scenarios 442 

Scenarios Nonurban Urban New urban Overall accuracy (%) 

          Status as of 2011 826200 131060 79414 – 

S0 Modeled pixels 826708 130552 78906 – 

Number of correct pixels 775769 80137 28491 89.41 

Producer accuracy (%) 93.89 61.15 35. 88 – 

User accuracy (%) 93.84 61.38 36.11 – 

S1 Modeled pixels 826419 130841 79195 – 

Number of correct pixels 774356 78956 27310 89.14 

Producer accuracy (%) 93.73 60.24 34.39 – 

User accuracy (%) 93.70 60.34 34.48 – 

S2 Modeled pixels 821302 135958 84312 – 

Number of correct pixels 781716 91490 39844 89.90 

Producer accuracy (%) 94.62 69.81 50.17 – 

User accuracy (%) 95.18 67.29 47.26 – 

S3 Modeled pixels 826853 130407 78761 – 

Number of correct pixels 789028 93156 41510 92.16 

Producer accuracy (%) 95.50 71.08 52.27 – 

User accuracy (%) 95. 43 71.43 52.70 – 

S4 Modeled pixels 825639 131621 79975 – 

Number of correct pixels 789553 93990 42344 92.19 

Producer accuracy (%) 95.56 71.72 53.32 – 

User accuracy (%) 95.63 71.41 52.95 – 

     443 

Comparative analysis at the pixel level between the simulated 2011 urban extent and the urban 444 

extent derived from remote sensing reveals overall accuracies of above 89% for all scenarios, with 445 

a small but persistent increase from Scenarios S0 to S4 (except for Scenario S1) (Table 6). The 446 

results indicate that the model performed better under zoning scenarios S2, S3, and S4 than under 447 

the non-zoning (S0) or simplified zoning (S1) scenarios. Except for Scenario S1, the producer 448 

accuracy increases by 10.57% from S0 to S4, with the user accuracy following a similar trend. 449 

However, the simulation accuracy for predicting newly urbanized pixels between 1996 and 2011 450 

increases by only about 17% from S0 to S4, suggesting that the zoning scheme based on land-use 451 
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type (S1) barely helped to improve the simulation accuracy, although the other three zoning 452 

schemes (S2–S4) did help boost the model’s capability in this regard. Nevertheless, it was still 453 

quite difficult to accurately model newly urbanized areas.  454 

 455 

Fig. 11 Existing (a) and simulated (b-f) urban extents in 2011 under different scenarios.  456 
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 457 

Further comparison of the simulated and remote sensing-derived 2011 urban extent (Fig. 11) 458 

reveals that, under Scenarios S0 and S1, the model performed well in projecting urban growth 459 

along edges and roads but not very well in predicting clustered growth (Fig. 11b, c). This suggests 460 

that when zoning is not considered or is represented in a simplified manner (as in Scenario S1), it 461 

is difficult to accurately reproduce the clustered growth that can be spurred by urban development 462 

policies or strategies. Even though spatial growth along urban edges and roads remains the 463 

dominant pattern under zoning scenarios S2–S4, clustered growth and newly urbanized centers 464 

begins to rise in varied patterns across Regions A–G (Fig. 11d-f). For example, the clustered 465 

growth in Regions A, C, and G under Scenario S2 was much smaller than under Scenarios S3 and 466 

S4. Compared with the other scenarios, S3 and S4 yielded the most extensive clustered growth, 467 

closely matching the urban growth patterns revealed by remote sensing. This suggests that 468 

appropriate zoning schemes can help improve model performance in projecting the clustered urban 469 

growth that can be spurred by development policies and strategies. 470 

4.3. Urban growth predictions under different zoning scenarios 471 

Two snapshots (2016 and 2040) of predicted urban growth were generated and the remote 472 

sensing-derived and modeled urban extents of 2016 were compared to examine the impacts of 473 

zoning scenario on urban growth simulation accuracy. The 2016 simulation accuracies obtained 474 

using the selected metrics for the respective scenarios (Table 7) follow trends similar to those of 475 

2011 (Table 6). Specifically, identical to the 2011 results a high level of overall accuracy 476 

(universally greater than 96%) was achieved by using the calibrated SLEUTH model to predict the 477 

urban growth in 2016 under each scenario. Except for Scenario S1, the overall accuracy gradually 478 

increased from Scenarios S0 to S4 (Table 7), suggesting that the model performed better under the 479 

latter three zoning scenarios than under the non-zoning (S0) or simplified (S1) zoning scenarios. 480 

The producer and user accuracies of the simulated non-urban and urbanized areas for 2016 were 481 

all higher than those for 2011 but lower for the simulated newly urbanized area (Tables 6, 7). A 482 
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comparison of the 2011 and 2016 newly urbanized pixels (Fig. 12) reveals a decrease from 79,414 483 

to 14,862 pixels over this period with a corresponding reduction in the number of clustered growth 484 

areas. The lower accuracy for the newly urbanized areas suggests that the simulation was more 485 

difficult for such areas than for other (non-urban and urban) areas. These results indicate that some 486 

newly urbanized areas developed primarily in conjunction with the implementation of urban 487 

planning policies, although the decrease in the impacts of zoning on projected urban growth might 488 

have contributed to the observed reduced producer and user accuracies. 489 

Table 7 Assessment of the accuracy of 2016 predictions under different scenarios 490 

Scenarios Nonurban Urban New urban Overall accuracy (%) 

            Status as of 2016 811338 145922 14862 – 

S0 Modeled pixels 817204 140056 8996 – 

Number of correct pixels 804080 132798 1738 97.87 

Producer accuracy (%) 99.11 91.01 11.69 – 

User accuracy (%) 98.39 94.81 19.32 – 

S1 Modeled pixels 798999 158261 27201 – 

Number of correct pixels 788527 135450 4390 96.52 

Producer accuracy (%) 97.19 92.82 29.54 – 

User accuracy (%) 98.69 85.59 16.14 – 

S2 Modeled pixels 804314 152946 21886 – 

Number of correct pixels 793864 135172 4112 97.05 

Producer accuracy 97.85 92.63 27.67 – 

User accuracy (%) 98.70 88.38 18.79 – 

S3 Modeled pixels (%) 806193 151067 20007 – 

Number of correct pixels 795489 135218 4158 97.23 

Producer accuracy (%) 98.05 92.66 27.98 – 

User accuracy (%) 98.67 89.51 20.78 – 

S4 Modeled pixels 806413 150847 19787 – 

Number of correct pixels 795702 135211 4151 97.25 

Producer accuracy (%) 98.07  92.66 27.93 – 

User accuracy (%) 98.67  89.63 20.98 – 

 491 
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The predicted urban extent for 2040 indicates that the simulated urban growth under Scenario 492 

S0 is primarily characterized by edge and infilling development (Fig. 12b), reflecting the patterns 493 

observed during the calibration stage. The model output map shows that the urban growth within 494 

Regions A–F, H, and I comprised primarily edge growth without significant clustered growth (Fig. 495 

12b). This result might be related to the fact that the state of a cell within the SLEUTH model 496 

depends significantly on the state of its neighboring cells; thus, an existing urban cell will tend to 497 

expand outward rapidly, but the spread of new growth center tend to be slower (Akιn et al., 2014; 498 

Jantz et al., 2003, 2010). Scenario S1 also shows an obvious edge growth pattern (Fig. 12c), which 499 

indicates that the model still cannot capture future clustered growth caused by regional 500 

differentiation of urban development policies despite the consideration of land-use type-based 501 

zoning. 502 

The clustered growth in Zones A, B, F, and G under Scenarios S2, S3, S4 was significantly 503 

greater than under S0 and S1 (Fig. 12), indicating that the model is able to incorporate zoning 504 

information into urban development and differentiate urban growth within various zones 505 

accordingly. Relative to the other four scenarios, S4 produced the most clustered growth in Zone 506 

H (the center of the Jibei Metro area) (Fig. 12f), suggesting that zoning based on development 507 

planning can help effectively project clustered development stimulated by urban development 508 

policies and strategies.  509 

The data in Fig. 13 indicate that the urban area is predicted to grow quickly during 2011–2040 510 

under all five scenarios, with Scenario S0 producing among the fastest urban growth. Under this 511 

scenario, the urbanized area increases by 451 km2 at an annual growth rate of 2.34%. By 512 

comparison, Scenario S4 produces the least urban growth, with an urbanized area increasing by 513 

only 377 km2 at an annual growth rate of 2.05%. The projected urban growth areas under Scenarios 514 

S1–S3 are all slightly larger than under Scenario S4 and differ significantly from S4 during 2012–515 

2020. This indicates that Scenario S0, which does not incorporate any zoning scheme, projects a 516 

higher rate of urbanization than Scenarios S1–S4. These findings suggest that designing specific 517 
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zoning scenarios based on spatial differentiation and growth management policies can help not 518 

only in revealing the impacts of different zoning scenarios on urban growth simulation results but 519 

also improve performance in predicting future urban growth.  520 

 521 

Fig. 12 Simulated urban extents in 2016 and 2040 under different scenario s: (a) actual and (b-f) 522 
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modeled urban growth. 523 

 524 

Fig. 13 Growth of urban built-up land during 2011–2040 under the five scenarios 525 

 526 

5. Discussion and Conclusions 527 

In this study, the city of Jinan, China was used as a case study to demonstrate the potential 528 

impacts of planning policies and strategies on urban growth prediction patterns and accuracy using 529 

a cellular-automaton-based urban growth model. To date, it has been difficult to integrate planning 530 

policies into the conversion rules used by the SLEUTH model (Torrens, 2011), and many case 531 

studies have indicated that this model could not effectively characterize the potential impacts of 532 

urban development policies on urban land use (Clarke et al., 1997; Silva and Clarke, 2002; Lahti, 533 

2008; Wu et al., 2009). However, we found that using an appropriate method to incorporate zoning 534 

can help improve simulation accuracy and therefore the capability of simulating the effects of 535 

urban development policies (Chaudhuri and Clarke, 2013; Akιn et al., 2014; Onsted and 536 

Chowdhury, 2014).  537 

Four zoning scenarios (S1–S4,) as well as a scenario that did not include zoning (S0), were 538 

developed through the generation of different types of exclusion layers. The SLEUTH 3.0 model 539 

was used to simulate urban growth in 2011, 2016, and 2040 under various scenarios and the results 540 
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were assessed at the pixel level. The main conclusions are as follows. (1) At the pixel level, overall 541 

accuracy is not quite meaningful in representing model accuracy; instead, producer or user 542 

accuracy of newly urbanized pixels might be more appropriate. (2) Incorporating planning policies 543 

into zoning information can help improve the prediction accuracy of newly urbanized pixels, better 544 

represent clustered development, and boost the level of spatial matching, while zoning based on 545 

land-use type does not offer such improvements. (3) Compared with the no-zoning scenario (S0), 546 

the scenario in which zoning was based on development planning subdivisions (S4) generated the 547 

largest improvement in the prediction accuracy, followed by scenarios S3, S2, and S1. Using the 548 

city of Jinan as a case study, the study demonstrated that more detailed (i.e., more finely divided) 549 

zoning, particularly in areas with high probability of urban growth, can yield more accurate 550 

predictions. The scenarios taking into account the spatial differentiation of development planning 551 

policies (S2–S4) generated better predictions than the scenario considering land-use type only (S1), 552 

as the former scenarios incorporated more finely divided zoning schemes. In a summary, 553 

incorporating zoning information based on spatial differentiation and growth management policies 554 

can help improve simulation accuracy and spatial matching degree, thus allowing the more 555 

accurate projection of urbanizing patterns through the use of appropriately designed zoning 556 

schemes. 557 

Although a number of previous studies examined the impacts of zoning on simulation 558 

accuracy (e.g., White and Engelen, 1993; Berling-Wolff and Wu, 2004; Onsted and Chowdhury, 559 

2014), the potential impact of different zoning schemes on simulation accuracy has not been 560 

thoroughly investigated. For example, Berling-Wolff and Wu (2004) considered agricultural land 561 

to be a separate category in simulating the urban landscape dynamics of the city of Phoenix in the 562 

United States in an approach similar to that used in other studies that did not consider zoning 563 

information (Jantz et al., 2003, 2010; Rafiee et al., 2009; Akιn et al., 2014). Models in which 564 

various protection levels (or conversion probabilities) were assigned to different land-use types 565 

based on urban development policies have proven capable of capturing the spatial consequence of 566 
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urban development policies. Onsted and Chowdhury (2014) considered three types of zoning, i.e., 567 

developmental, interim, and agricultural zoning, using various zoning assignment methods and 568 

evaluated the model accuracy variation in terms of the amounts or rates of urban growth under 569 

different assignment methods using the OSM metric. Unlike these previous studies, this study 570 

explored the impacts of several zoning schemes based on land-use type, urbanized suitability, 571 

administrative division, and planning subdivision (functional groups), with the prediction accuracy 572 

evaluated at the pixel level using the OSM metric. Our findings should be useful in improving the 573 

performance of urban growth predictions through the use of appropriately designed zoning 574 

scenarios. 575 

However, several issues may require further attention. First, an alternative weighting method 576 

might help better capture the zoning information within a model, as the demand on urban land use 577 

in different areas often varies (Goldstein et al., 2004) and land-use change can be significantly 578 

influenced by local land-use policies. Under Scenarios S3 and S4, the development policy impact 579 

coefficient layer was used to indicate the impact of development policies on regional differences 580 

in urban growth using a user-defined option. However, the relationship among different levels of 581 

development policy is usually difficult to quantify precisely, and therefore the values of policies at 582 

various levels requires further testing. Second, further research is required on choosing an 583 

appropriate zoning scale, as this can significantly affect the simulation outcome. A study conducted 584 

by Wu et al. (2009) on the Shenyang Metropolitan area found that the SLUETH model did not 585 

perform well when modeling a zoning scheme with large administrative districts (~700 km2). In 586 

our study, the use of more detailed zoning schemes in conjunction with development policy, such 587 

as the schemes in Scenarios S3 and S4 based on administrative districts (av. 57.43 km2) and 588 

development functions (av. 41.02 km2), respectively, helped boost the simulation accuracy. 589 

Similarly, the scheme used for S2 featuring more detailed zoning granularity but not considering 590 

spatial differences in development policy yielded moderate simulation accuracy. Thus, further 591 
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research is needed to examine the development policy effects of scale on simulation accuracy 592 

through the application of measurable weighting methods under various zoning schemes.   593 
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