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ABSTRACT
In 2012, Oscar Pistorius created history as the first amputee sprinter to compete in the Olympics.
Other athletes achieved amazing feats long before the Paralympics were introduced, including
gymnast George Eyser who won six medals at the 1904 Olympics with a wooden leg, and
others who competed in both Games. An exciting challenge of considerable interest is to
compare performances of Olympic and Paralympic athletes, so contributing to improving
integration of the two competitions. We generalise the recent dynamic shrinkage method for
class handicapping and apply it to competition results from equestrian individual dressage at
the London 2012 Summer Games and cross country skiing at the Sochi 2014 Winter Games. Our
analysis generates promising results and surprising revelations. It also offers a fair method for
comparing performances by athletes from other diverse groups, with potential benefits of extra
incentive and reward systems for motivating unified sporting participation in general settings.
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1. Introduction

The history of multi-sport competitions is rich and
can be traced back thousands of years. Major interna-
tionalmulti-sport competitions beganwith themodern
Olympic Games, with summer events starting in 1896
and winter events starting in 1924. Olympic Games are
open to all competitors, though there are now many
other international multi-sport competitions aimed at
specific communities. Perhaps surprisingly, the Deaf-
lympic Games for deaf athletes began in the summer
of 1924 and the winter of 1949, whereas the hugely
popular Paralympic Games for athletes with physical
disabilities began in the summer of 1960 and the winter
of 1976. Another important competition is the Special
Olympics World Games for athletes with intellectual
disabilities, which began in the summer of 1968 and the
winter of 1977. Other major international multi-sport
competitions include the Commonwealth, Asian, Pan-
American,All-Africa, Pacific, European,YouthOlympic,
and Invictus Games.

There are some remarkable stories of disabled ath-
letes who participated in open competition at Olympic
Games. Among the most notable of these are gymnast
GeorgeEyser (USA)whowon three goldmedals in 1904
despite a wooden leg, deaf-mute boxer Carlo Orlandi
(Italy) who won a gold in 1928, lower-leg amputee
Oliver Halassy (Hungary) who won golds for water
polo in 1932 and 1936, Károly Takács (Hungary) who
won golds for shooting in 1948 and 1952 with a badly
injuredhand, hammer throwerHaroldConnolly (USA)
who had Erbs Palsy yet won a gold in 1956, deaf fencer
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Ildikó Újlaky-Rejtő (Hungary) who won two golds in
1964, deaf swimmer Jeffrey Float (USA)whowon a gold
in 1984 and blind archer ImDong-Hyun (South Korea)
who won golds in 2004 and 2008.

Speakingbefore theLondon2012Olympic andPara-
lympic Games, the Chair of the Organising Committee,
Lord Coe, said: “We want to change public attitudes
towards disability, celebrate the excellence of Paralympic
sport and to enshrine from the very outset that the two
Games are an integrated whole”. This objective was
achieved with overwhelming success in London and
subsequently at the Rio de Janeiro Games in 2016.
Meanwhile, the operational research community has
shown considerable interest in performance measure-
ment for multi-sport competitions.

The predominant technique that has been used for
analysing the success of nations at the Olympic Games
is data envelopment analysis (Churilov&Flitman, 2006;
Gomes & Lins, 2008; Li, Lei, Dai, & Liang, 2015; Li,
Liang, Chen, & Morita, 2008; Lozano, Villa, Guerrero,
& Cortés, 2002; Yang, Li, & Liang, 2015; Zhang, Li,
Meng, & Liu, 2009). This procedure is inherently non-
parametric, which makes it robust against model mis-
specification at the cost of reduced power and clarity.
Another recent and relevant method, which is more
parametric innature, ismultiple attribute decisionmak-
ing (Ballι & Korukoǧlu, 2014; Li, Kou, Lin, Xu, & Liao,
2015; Rezaei, 2015). Both approaches offer ways for
combining observations of several different attributes
to compare individual units. The main differences be-
tween those formulations and the developments in this
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paper are that we focus on comparing a single measure
across units that belong to natural or contrived clusters.
In this respect, we add to the literature by tackling
the specific problem of comparing disparate groups of
competitors. The resulting methodology offers poten-
tial benefits for applications in many diverse situations.

In this paper, we consider how, and to what ex-
tent, we might compare the performances of Olympic
and Paralympic athletes in order to offer enhanced
integration of the two competitions. The next section
reviews a suitable methodology for making such com-
parisons and then we generalise this theory to enable
its application to a much wider variety of sports. After
this abstract development, we present some empirical
analyses based on data collected from sports compe-
titions at the London 2012 Summer Games and the
Sochi 2014 Winter Games. Then we extend these ideas
to consider applications of the generalised shrinkage
method to compare diverse categories. Finally, we con-
clude the paper by discussing these results, suggesting
how Olympic and Paralympic Games might develop
in future, and considering whether other population
subgroups could or should be integrated in a similar
manner.

2. Shrinkagemethod for class handicapping

The International Paralympic Committee invests con-
siderable effort in allocating athletes todisability classes,
in order to ensure that all athletes in any particular
class have similar physical and mental capacities, so
resulting in fair competition. However, athletes from
different classes in individual Paralympic sports of-
ten compete for the same medals to ensure fair re-
wards for effort when there are many classes or few
competitors.

For some events, simple handicaps can be applied to
render all competitors equally able. Examples include
the use of eyeshades in goalball and upper bounds for
each team’s aggregate physical ability in wheelchair
basketball.Most events involve scaling the performance
measure, racing time perhaps, by a factor that relates to
the athlete’s disability class. For example, if the average
racing time in a specific class is 50% greater than that
of the average racing time in the best performing class,
then we scale the times of individual athletes in the spe-
cific class by a factor of 2/3 to enable fair comparisons.

Current practice is that each of these sports has a
committee to assign base factors to classes and to adjust
these factors following major sporting competitions.
However, this approach has some disadvantages: the
system lacks transparency and is complicated; base fac-
tors require frequent committee adjustments; historical
factors ignore the effects of current racing conditions;
changes in classifications and technology are difficult to
incorporate; the systemdoes not fully allow for different
class sizes.

In order to combat these problems, Percy (2011)
proposed a shrinkage method for class handicapping,
which uses data from only the current competition that
is in progress. This method is based on ideas developed
by Efron and Morris (1975), Efron and Morris (1977)
that relate to James-Stein estimators. Copas (1983) pro-
vides a comprehensive description of these estimation
procedures andWang, Huwang, and Yu (2015) present
a recent application of them in the context of quality
control charts. A subsequent paper by Percy (2013)
presents a mathematical justification for this shrinkage
method based on an objective Bayesian analysis of a
suitable probability model.

The shrinkagemethod for class handicapping can be
applied interactively, either immediately after events
where athletes compete together and results are ob-
served simultaneously, or dynamically during events
where athletes compete sequentially and results are not
observed simultaneously. There are two purposes of
the present paper: firstly to generalise this approach for
application to a considerably broader range of sports;
secondly to investigate how wemight use it to compare
the performances of Olympic and Paralympic athletes.
To facilitate this analysis, we start with a brief review of
the shrinkage method.

Suppose that we observe racing times rij for
i = 1, . . . ,m and j = 1, . . . , ni corresponding to athlete
j in class i. Define r̃i· to be the sample median racing
time of class i and r̃·· to be the overall sample median
racing time. The purpose of using medians rather than
means is for robustness and to avoid outliers; seeHuber
andRonchetti (2009).Next define aweighted geometric
mean of these measures

r̃′i· = (
r̃nii· r̃··

)1/(ni+1) (1)

to represent a shrinkage of r̃i· towards r̃·· by an amount
that is inversely correlated with the number of athletes
in class i. Geometric means are used rather than arith-
metic means here because racing times are positive,
so multiplicative models are more appropriate than
additive models.

This shrinkage towards the overall average is neces-
sary as the precision of sample class medians as esti-
mators of corresponding populationmedians increases
with sample size. Estimators based on small samples
are unreliable and empirical evidence alone cannot dis-
tinguish between the abilities of individuals and their
classes. By regressing class medians towards the global
average in relation to their sample sizes, shrinkage re-
duces the mean squared errors when estimating the
average racing times. Hence, it allows for varying class
sizes and enables fair comparisons among groups with
different numbers of competitors; see Everson (2007).
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The scaling factor for class i is then defined by the
ratio

xi = mini
(
r̃′i·

)
r̃′i·

(2)

and finally the scoring time corresponding to athlete j
in class i is given by

sij = xirij (3)

for i = 1, . . . ,m and j = 1, . . . , ni. These scoring
times are then compared across athletes and classes to
determine the winners and rank order of competitors.

3. Generalised shrinkagemethod for class
handicapping

The shrinkage method described above is useful for
performance measures that are constrained to be posi-
tive and for which the aim is to achieve small values.
Such measures are common and typically represent
times that arise in sports such as running, swimming,
cycling and skiing. It adapts easily to deal with the
situation where there is a non-zero lower bound, by
subtracting the bound fromeach athlete’s result prior to
calculations.However, we now generalise the shrinkage
method in two ways.

Firstly, we consider performance measures that are
again constrained to be positive but for which the aim
is to achieve large values. Such measures typically rep-
resent laps, distances, heights or weights that arise in
sports such as sailing, discus, high jump and weightlift-
ing. The extension to allow for maximisation simply
involves redefining the best class. This requires us to
replace the scaling factor in Equation (2) with

xi = maxi
(
r̃′i·

)
r̃′i·

(4)

and then calculate the scoring times from Equation (3)
as before.

Secondly, we consider performance measures that
more generally take values from any real interval, which
is an appropriate assumption for all sports and in-
cludes values taken from a countable subset of a real
interval. This extension includes unboundedmeasures,
such as displacement in sports like tug-of-war, and
boundedmeasures, such as points and ratings in sports
like archery, gymnastics, diving and figure skating.
Rather than develop separate algorithms for each of
these situations, we propose a unified algorithm for
class handicapping. We refer to this as the generalised
shrinkage method, as it models all these cases and in-
cludes the existing methods as special cases.

Ourproposal involves transforming theperformance
measure onto the set of real numbers and then applying
an additive version of the theory presented above. This
procedure is reminiscent of generalised linear models

(Nelder & Wedderburn, 1972) and we shall see that it
corresponds to the existing analysis for performance
measures that are constrained to be positive. We need
to consider just four possibilities: proper and bounded
[a, b]; left-bounded and right-unbounded [a,∞); left-
unbounded and right-bounded (−∞, b]; unbounded at
both ends (−∞,∞) = R. We define a transformation
tij = f (rij) according to the support of the performance
measure, which takes one of the forms

t = f (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln
(
r−a
b−r

)
if r ∈ [a, b]

ln (r − a) if r ∈ [a,∞)

− ln (b − r) if r ∈ ( − ∞, b]
r if r ∈ ( − ∞,∞)

(5)

for simplicity and consistency. These forms ensure that
tij ∈ R and retain thedirectionof achievement,whereby
small or large values represent the best results. Al-
though finite bounds map onto infinity for these trans-
formations, this does not present a problem in practice.
Appendix 1 presents a theoretical justification for the
choice of transformations in Equation (5).

As we use medians rather than means and the above
transformations are strictly increasing functions, it fol-
lows that the medians of the transformed performance
measures equal the transformed medians of the per-
formance measures. This implies that we can save on
computational effort by calculating class and overall
medians before transformation, rather than transform-
ing all the data before calculating the medians. Hence,
t̃i· = f (r̃i·) for i = 1, . . . ,m and t̃·· = f (r̃··) from
Equation (5).

Having transformed the class and overall medians
onto the set of real numbers, we now use additive mod-
els, rather than multiplicative models, when evaluating
the scoring results. In this case, we replace Equation (1)
with the weighted arithmetic mean

t̃ ′i· = nit̃i· + t̃··
ni + 1

(6)

and then determine the arithmetic adjustment or dif-
ference for class i. This replaces Equation (2) and is
defined by

yi = min
i

(
t̃ ′i·

) − t̃ ′i· (7)

if scoring results close to the lower bound of r are
desirable, or

yi = max
i

(
t̃ ′i·

) − t̃ ′i· (8)

if scoring results close to the upper bound of r are
desirable. In both cases, the transformed scoring result
for athlete j in class i is given by

uij = yi + tij (9)

and this enables us to determine the corresponding
untransformed scoring result for this athlete. This is
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given by
sij = f −1 (

uij
)

(10)

where

s = f −1(u) =

⎧⎪⎪⎨
⎪⎪⎩

a+beu
1+eu for s ∈ [a, b]
a + eu for s ∈ [a,∞)

b − e−u for s ∈ ( − ∞, b]
u for s ∈ ( − ∞,∞)

(11)

from Equation (5), which replaces Equation (3). It is
easy to prove that this generalised shrinkage method
reduces to the existing shrinkage method for minimis-
ing racing times that satisfy rij ∈ [0,∞).

Before proceeding, we note that exceptional athletes
can achieve perfect scores in some sports, particularly
those with bounded ranges such as diving or figure
skating. However, this does not pose a problem as the
arithmetic adjustmentswithin generalised shrinkage do
not require transformations of individual scoring times,
merely of class and overall medians. Although transfor-
mations of individual scoring times are includedwithin
Equations (9) and (10), the net effect of transforming,
adjusting and back-transforming a perfect score is the
same perfect score, so the analysis will rightly recom-
mend the gold medal for such an athlete.

We also note that small class sizes can be included
in the analysis, though this leads to the possibility of
collusion. However, the use of medians, rather than
means, provides security against this and pooling very
small classes would also help to avoid collusion. In the-
ory, it would even be possible to introduce a continuum
disability scale, which effectively assigns a different class
to each athlete. However, this scheme would be very
difficult to implement in practice. The main problem
is that the classification of each athlete would be very
subjective and susceptible to bribery and corruption, so
rendering this analysis unworkable.

4. Comparing Olympic and Paralympic
athletes

Percy (2011) applied the shrinkage method to compare
the performances of athletes in different Paralympic
classes. We now investigate whether the method is able
to compare such performances with those of Olympic
athletes, effectively regarding the latter as belonging
to a different disability class. The purposes are not
to remove open competition, but rather to enable fair
comparisons of athletes with different abilities.

We define the adjective “fair” in this context as rank-
ing competitors from the classes under consideration
in order of their departures from corresponding class
averages, such that exceptional relative performances
are rated best. In particular, though somewhat tauto-
logically, the rankings are determined by the values of
the transformed scoring results uij of Equation (9).

The transformation and shrinkage that are applied
to the observed results are designed to map the data
onto the set of real numbers, such that the differences
between classes merely represent additive disparities
and the variances of different classes are roughly equal.
This is a common assumption in generalised linear
modelling, specifically the analysis of variance, which is
much related to the methodology considered here. The
transformed scoring results are then compared directly
to identify athletes that performed exceptionally well
relative to other competitors in their particular classes.

Although Olympic and Paralympic Games are held
at the same venues at about the same times, there is still
little true integration as a result of which Paralympic
sports remain marginalised. The shared competitions
proposed in this paper are certainly not replacements
for the separate games. Rather, they are intended to
generate supplementary rewards that encourage further
cooperation. Thesemight take the formof an extra layer
of medal awards that appeals to sponsors and competi-
tors, so offering incentives for tournament organisers
to integrate the sports. Sponsors, including broadcast
media and sports manufacturers, benefit through extra
publicity and marketing opportunities. Competitors,
both Olympic and Paralympic, benefit by higher pro-
files and improved unification of the two games.

Some sports are offered in only one of these two
types of games, in which case comparisons of this na-
ture are inappropriate. Even so, it is still possible to
unite Olympics and Paralympics further by merging
events and ceremonies andby introducingmoreunified
sports. Extracting results data from the websites www.
olympic.org and www.paralympic.org, we now con-
sider two sports where such comparisons are possible.

4.1. London 2012 Summer Games

The summer sport that we consider here is mixed-
sex equestrian individual dressage, where the best per-
formance corresponds to the largest percentage score
achieved of the form rij ∈ [0, 100]. Corresponding to
this event, medals were awarded for open competition
in the Olympic Games and for each of five functional
classes in the Paralympic Games:

(I) riders with impaired limb function, or poor bal-
ance and good upper limb function (subdivided
into classes Ia and Ib);

(II) riders with locomotion impairment;
(III) blind riders with moderate locomotion impair-

ment;
(IV) riders with some visual impairment or impaired

function in one or two limbs.

Figure 1 contains a plot of grouped individual values
that displays the observed and scoring percentages, the
latter transformedusing generalised shrinkage, for each
Paralympic functional class and for the Olympic open

www.olympic.org
www.olympic.org
www.paralympic.org
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Figure 1. Observed and scoring percentages for London 2012.

class. As expected, the last of these classes performed
best and so its observed and scoring results are equal.
The rankings of individual athletes within each class are
unchanged by transformation.

The tables in Appendix 2 present the numerical val-
ues of the observed and scoring percentages for each
functional class, along with overall rankings based on
the transformed results using generalised shrinkage.
Ourmethodwould allocate the gold and bronzemedals
to Olympic athletes from Class O, Charlotte Dujardin
(GBR) and Adelinde Cornelissen (NED) respectively,
and the silver medal to a Paralympic athlete from Class
Ia, Sophie Christiansen (GBR). Interestingly, Sophie
Christiansen graduated with amaster’s degree inmath-
ematics from Royal Holloway, University of London,
which hosted the Operational Research Society’s 2014
conference where the author first presented this re-
search. The reasons for these combined medal alloca-
tions are clear from Figure 1 and Appendix 2. These
three winning athletes achieved considerably larger ob-
served percentages than those of other competitors in
their respective classes.

4.2. Sochi 2014Winter Games

The winter sport that we consider here is men’s cross
country skiing, where the best performance minimises
a time of the form rij ∈ [0,∞). Corresponding to this
event, medals were awarded for open competition over
15km in the Olympic Games and for each of three
functional classes in the Paralympic Games:

(I) 20km classical technique visually impaired;
(II) 15km sitting;
(III) 20km classical technique standing.

The race distances vary among these classes for his-
torical reasons, though they are reasonably similar.Con-
sequently, the loglinear transformation of Equation (5),
which generalised shrinkage applies in this setting, en-
sures that the classes are comparable. Figure 2 contains
a plot of grouped individual values that displays the ob-
served and scoring times (hours), the latter transformed

Figure 2. Observed and scoring times (hours) for Sochi 2014.

using generalised shrinkage, for each Paralympic func-
tional class and for theOlympic open class. As expected,
the last of these classes performed best in terms of the
observed values and so its observed and scoring results
are equal. The rankings of individual athletes within
each class is unchanged by transformation.

The tables in Appendix 3 present the numerical val-
ues of the observed and scoring times (hours, minutes
and seconds) for each functional class, along with over-
all rankings based on the transformed results using
generalised shrinkage. Our method would allocate all
three medals to Paralympic athletes from Class III,
Rushan Minnegulov (RUS), Ilkka Tuomisto (FIN) and
Vladislav Lekomtcev (RUS) respectively.

The reasons for these combined medal allocations
are clear from Figure 2 and Appendix 3. These three
winning athletes achieved considerably smaller observed
racing times than those of other competitors in their
class, whereas the best results in other classes were less
distinct from those of other competitors in their respec-
tive classes. Note that although there are considerably
more athletes in the open Olympic class than in any
of the Paralympic classes for this event, the generalised
shrinkage method allows for differing class sizes and
treats competitors in large classes fairly.

4.3. General observations

Before proceeding, it is important to reflect on the feasi-
bility of the assumptions behind the shrinkage method.
Inparticular, the theoretical justifications givenbyPercy
(2013) relate to comparisons betweenParalympic classes
within a single sport. By extending the analysis to in-
cludeOlympic classes, our investigations seem topresent
no problems and the analysis works well as intended.
Here, Paralympic andOlympic classesmerely represent
different levels of physical or mental ability.

However, our analysis of the Sochi Winter games
reveals an interesting variation, as the actual race dis-
tances differ among theOlympic andParalympic classes.
Following transformations as described earlier in this
paper, the generalised shrinkage method implicitly as-
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sumes similar locations, dispersions and skewnesses
for all classes, in order that all competitors have equal
opportunities to excel from their class packs. Hence, we
must question whether this assumption is still valid for
this scenario.

Although the race distances vary for cross-country
skiing, a glance at Figure 2 is sufficient to show that the
locations and dispersions of observed racing times are
comparable across all Olympic and Paralympic classes.
Moreover, the skewnesses of observed racing times in
the different classes are all positive. Consequently, the
assumptions underlying this method are reasonable for
this analysis and suggest that comparisons of Olympic
and Paralympic performances might generally be fair
within any particular sport.

5. Comparing diverse categories

As the generalised shrinkage method appears to com-
pare results fairly among differing classes of ability,
it is natural to ask what other comparisons are fea-
sible. Perhaps the most exciting prospect in this re-
gard would be to compare the performances of male
and female athletes, so that occasional competitions
might enable them to compete fairly for an overall
prize. However, other opportunities with significant
benefits would arise by facilitating comparisons among
youth, adult and senior competitors. And why not even
compare different events after standardising the corre-
sponding results?

In order to compare different events, we first need
to standardise the results to allow for different dis-
tributions. As this algorithm already transforms the
observed results onto the set of real numbers for in-
termediate calculations, we use the transformed results
tij fromEquation (5) as the basis of this standardisation.
Specifically, we propose that the tij should be mapped
linearly for each event, via translation and scaling, so
that themean and standard deviation of all transformed
results for each event are 0 and 1, respectively, and so
that better performances correspond to positive scores
rather than negative scores.

This use of mean and standard deviation is appro-
priate as the transformed results are real numbers, and
the values 0 and 1 arbitrarily but conveniently corre-
spond to the additive and multiplicative identities for
the complete ordered field of real numbers. Denoting
the mean and standard deviation of the transformed
results by μ and σ respectively, the appropriate linear
transformation is

zij = ±
(
tij − μ

σ

)
(12)

where the plus sign is used if the aim is to maximise the
original performance measure and the minus sign is
used if the aim is to minimise the original performance

Figure 3. Standardised scoring results for London 2012 and
Sochi 2014.

measure. Pleasingly, this is also the linear equation that
is used to standardise the normal probability distribu-
tion.

Figure 3 displays the standardised scores resulting
from both events considered earlier, mixed-sex eques-
trian individual dressage at London 2012 and men’s
cross country skiing at Sochi 2014. The best rated per-
formances are those with the largest values. As the stan-
dardisation formula in Equation (12) involves a linear
mapping, the performances across all classes within
each event are ranked exactly as for the separate analy-
ses presented in the previous section. However, it is
very clear that performances across all classes are now
comparable between these otherwise unrelated events.
This offers a remarkable prospect for enhancing the
appeal of competitive sports, across different categories
and activities.

Actual comparisons between these two events lead to
the conclusion that the gold, silver and bronze medal-
lists would be the three respective equestrian winners
identified previously, when generalised shrinkage was
used to compare classes. This is slightly disappointing,
as it leads us to question whether skiers are treated
unfairly by this standardisation approach, particularly
as there were more skiers than equestrians. Glancing
back at Figures 1 and 2, it is tempting to suggest that the
skewness of results explains why equestrians perform
better than skiers in this combined analysis. Specifi-
cally, the equestrian results in this study tend to cluster
around an average with a few exceptionally good per-
formances, whereas the skiing results in this study tend
to cluster around an average with a few relatively bad
performances.

However, these differences in skewness are less im-
portant than they seem, as our standardisation algo-
rithm applies to the transformed results tij of Equation
(5) rather than the observed results rij. Moreover, six
skiers finished in the top twenty places of the combined
analysis. These include the threewinning skiers inClass
III, who finished in fourth, seventh and eighth posi-
tions. Regardless of skewness directed towards good
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or bad performances, it is entirely reasonable that the
declared winners are those athletes who registered per-
formances that were considerably better than those of
the other elite athletes in their sport, which is what
occurred here. Nevertheless, these observations suggest
that caution should be exercised when comparing per-
formances from different sports if the class skewness
varies substantially.

6. Discussion

This article generalises the shrinkage method for class
handicapping that was proposed by Percy (2011, 2013),
by extending it to allow for maximisation of perfor-
mance measures and to allow for bounded and un-
bounded performance measures. It applies this new
generalised shrinkage method in a novel way, to com-
pare theperformances ofParalympic athleteswith those
of Olympic athletes. It uses sets of data from two repre-
sentative sports, mixed-sex equestrian individual dres-
sage (London 2012) and men’s cross country skiing
(Sochi 2014), to illustrate these comparisons. Our
results demonstrate that such comparisons among ath-
letes of mixed abilities are fair, according to the defi-
nition presented in this article, and enable new layers
of incentives and rewards further to integrate Olympic
and Paralympic Games.

We do not advocate the removal of any existing
medal structure, but merely hope to enhance diversity
and inclusivity in sport. This could supplement other
methods that are currently used to achieve improved
cooperation between Olympic and Paralympic com-
petitions, including the merging of events and cere-
monies, and the introduction of more unified sports.
In a distinct section, we even consider the application
of generalised shrinkage to compare the results aris-
ing from the two distinct events considered previously,
with interesting andpleasing conclusions.However, the
possibilities seem to be considerably more varied than
this.

First, this method is generic and might be used to
compare results arising from different competitions,
perhaps to determine the best performing golfer or ten-
nis player in any given year (Bozóki, Csató, & Temesi,
2016), the greatest hockey or football team of all time
(Baker & McHale, 2015), or the best all-time athlete
in any particular sport relative to peer competitors.
For example, it might provide an alternative method
for comparing the boxing achievements of former and
current heavyweight champions Muhammad Ali and
Manuel Charr, or determining who is the greatest foot-
ball player of all time from among the likes of Pele,
Maradonna, Ronaldo and Messi. An early application
of shrinkage in a similar sporting context (American
football) was presented by Everson (2007).

Second, and perhaps most remarkably, generalised
shrinkage could be applied to compare results aris-

ing from different sports, as demonstrated above. This
could potentially offer a further level of reward for
achievement in multi-sport competitions, such as
determining an overall best achieving athlete or gym-
nast, primarily for entertainment purposes. At least,
such inter-sport rewards would encourage cooperation
and collaboration that might lead to shared knowledge
and resources. This methodology could potentially also
lead to fairer scoring systems for multi-event com-
petitions such as triathlon, heptathlon, decathlon and
modern pentathlon. In the heptathlon and decathlon,
for example, the final event is a middle distance race
that is widely considered to be the hardest in which
to achieve a good points score. Perhaps generalised
shrinkage could help address such issues. The use of
operational research in contexts like this offers an op-
portunity to illustrate the potential of our field to a wide
audience in an interesting and easily digestible way.

Third, there is tremendous potential for this method
fairly to compare different categories of competitor in
any particular sport. Examples for which this could
offer substantial benefits include comparisons of pro-
fessionals and amateurs, classes that employ different
forms of technology, male and female athletes, and
various age groups such as youth, adult and senior.
Such combined results would enhance existing com-
petitions by encouraging between-category activity. In-
deed, many amateur sports involve distinct open and
handicapped tournaments, and these comparisons could
offer considerable benefits for the latter by reducing
the amount of subjective handicapping required, so
avoiding accidental and intentional bias.

Fourth, it is possible to broaden the scope of this
algorithm substantially by applying it to non-sporting
competitions. For example, consider students’ marks
for several modules on a degree programme (Dalziel,
1998). The assessments might be of different standards
and need not involve exactly the same students. Gen-
eralised shrinkage could be used, as an alternative to
existing approaches, to standardise the marks for accu-
rate ranking. Also in the context of higher education,
this approach could be used by governing authorities
to determine whether universities discriminate in their
admission of undergraduate students or whether em-
ployers discriminate in their recruitment of graduates.
Such possibilities clearly offer many opportunities for
future applications of operational research.
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Appendix 1. Justification of transformations in Equation (5)

Our challenge is to determine a convenient, coherent mapping of all possible results ranges onto the set of real numbers, in
order to apply an additive version of the shrinkage method for class handicapping.
Theorem: The transformations inEquation (5)uniquely comprise the simplest bijective function r �→ f (r) thatmaps [a, b] → R

and is consistent as a → −∞, b → ∞ or both.

Proof: Nelder and Wedderburn (1972) show that the canonical link function for mapping [0, 1] → R in generalised linear
modelling is the logit link defined by r �→ ln{r/(1 − r)}. Accordingly, this is the natural bijective function to use as a default
basis for constructing appropriate maps that apply to other ranges.

For r ∈ [a, b] a linear transformation of r extends this logit link to give

r �→ ln
(
r − a
b − r

)
. (A1)

However, ln{(r − a)/(b − r)} → ±∞ as a → −∞ or b → ∞, so we scale the argument in Relation (A1) by a constant ratio
of linear terms involving a and b to ensure that the function does not diverge as either limit becomes infinite. This gives

r �→ ln
{

(b − c)(r − a)
(c − a)(b − r)

}
(A2)

in terms of an unspecified constant c ∈ (a, b). As these limits separately become infinite, the function of r defined by Relation
(A2) satisfies

lim
a→−∞ ln

{
(b − c)(r − a)
(c − a)(b − r)

}
= ln

(
b − c
b − r

)
(A3)

and
lim
b→∞

ln
{

(b − c)(r − a)
(c − a)(b − r)

}
= ln

(
r − a
c − a

)
(A4)

both of which remain finite.
Unfortunately, these expressions show that r �→ 0 for all r as both a → −∞ and b → ∞, which is inconsistent with the

required generality to encompass the unbounded results range r ∈ R. To avoid this problem, consider the Mercator series
expansion ln (1 + x) = x − x2/2 + x3/3 − . . . for −1 < x ≤ 1. Fixing r and allowing b to vary in the mapping of Equation
(A3) gives

ln
(
b − c
b − r

)
= − ln

(
1 − r − c

b − c

)
= r − c

b − c
+ O

(
b−2) (A5)

for c < (b + r)/2 so that |(r − c)/(b − c)| < 1. Fixing r and allowing a to vary in the mapping of Equation (A4) gives

ln
(
r − a
c − a

)
= ln

(
1 − c − r

c − a

)
= r − c

c − a
+ O

(
a−2) (A6)

for c > (a+r)/2 so that |(c−r)/(c−a)| < 1.Hence, we can avoid this asymptoticmapping to zero for all r as both a → −∞ and
b → ∞ by scaling the function in Equation (A2) by a factor (b− c)(c− a), which is the product of the principal denominators
in Equations (A5) and (A6). In order to ensure that our mapping remains strictly increasing and finite as either limit becomes
infinite, we divide this product by the simplest factor that guarantees this property, which is (b − a).

Collating all these results leads to the general functional forms

f (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b−c)(c−a)
(b−a) ln

{
(b−c)(r−a)
(c−a)(b−r)

}
if r ∈ [a, b]

(c − a) ln
(
r−a
c−a

)
if r ∈ [a,∞)

(b − c) ln
(
b−c
b−r

)
if r ∈ ( − ∞, b]

r − c if r ∈ ( − ∞,∞)

(A7)

where in each case the constant c lies inside the corresponding range of r values. Although we imposed further constraints on
c in order to analyse variable bounds, these can now be relaxed as the results ranges are fixed for all sporting competitions.
These functions are consistent with one another and offer a simple bijective mapping from any real interval onto the set of
real numbers R. Moreover, any strictly increasing linear transformations of these functions yield identical results in practice,
as users see only the back-transformed scoring results s as determined by Equation (11).

Finally, we simplify the formulae in Equation (A7) for practical applications by specifying suitable values for the constant c
in these four situations. These values may differ as every implementation of this method involves only one results range with
fixed bounds. The simplest expressions arise by setting c to be (a+ b)/2, a+ 1, b− 1 and 0, respectively. We then scale the first
term by a constant factor of 4/(b − a) for convenience as justified in the previous paragraph, which then uniquely generates
the functional forms in Equation (5).
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Appendix 2. Mixed-sex equestrian individual dressage (London, 2012)

Observed Scoring Rank
(%) (%) (medallist)

Class Ia

82.75 89.32 2 (SC)
76.70 85.16 7
73.65 82.97 18
70.40 80.56 33
70.00 80.26 37
69.20 79.66 42
68.80 79.35 44
68.65 79.24 50
68.05 78.78 59
67.70 78.51 62
67.70 78.51 62
67.30 78.20 66
65.05 76.44 81
64.00 75.60 85

Class Ib

75.83 84.90 10
75.39 84.59 11
75.04 84.35 12
70.35 80.96 28
69.74 80.51 35
69.30 80.18 38
69.00 79.95 40
68.09 79.27 49
66.26 77.87 68
65.96 77.64 70
65.26 77.10 76
62.83 75.18 86
62.83 75.18 86
62.61 75.00 88
59.30 72.31 92

Class II

76.86 85.52 5
76.05 84.95 8
76.00 84.92 9
74.48 83.84 15
73.43 83.09 17
71.86 81.95 22
70.14 80.68 30
70.10 80.65 31
69.91 80.51 34
69.05 79.87 41
68.29 79.29 47
68.10 79.14 53
67.38 78.60 61
66.95 78.27 64
66.00 77.54 72
65.14 76.87 78
64.62 76.46 79
64.57 76.42 82
63.76 75.78 84
61.67 74.10 89
58.81 71.74 93

Class III

73.47 83.38 16
71.27 81.80 24
71.23 81.77 25
69.70 80.65 32
68.77 79.95 39
67.80 79.23 51
67.43 78.95 56
66.23 78.04 67
65.73 77.65 69
65.33 77.35 74
60.20 73.26 90

(Continued)



JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 11

Observed Scoring Rank
(%) (%) (medallist)

Class IV

77.07 85.74 4
76.32 85.23 6
73.10 82.94 19
71.61 81.87 23
70.26 80.87 29
68.52 79.57 43
68.23 79.35 45
68.00 79.18 52
67.58 78.86 57
67.58 78.86 57
65.77 77.47 73
65.16 77.00 77
64.10 76.16 83
60.10 72.94 91

Class O

90.09 90.09 1 (CD)
88.20 88.20 3 (AC)
84.34 84.34 13
84.30 84.30 14
82.86 82.86 20
82.00 82.00 21
81.66 81.66 26
81.38 81.38 27
80.29 80.29 36
79.32 79.32 46
79.29 79.29 48
79.09 79.09 54
79.05 79.05 55
78.73 78.73 60
78.21 78.21 65
77.61 77.61 71
77.29 77.29 75
76.45 76.45 80

Appendix 3. Men’s cross country skiing (Sochi, 2014)

Observed Scoring Rank
(h:m:s) (h:m:s) (medallist)

Class I

0:52:37 0:39:02 7
0:53:43 0:39:51 21
0:56:35 0:41:59 59
0:57:56 0:42:59 79
0:58:23 0:43:19 83
0:58:37 0:43:30 86
0:59:06 0:43:51 93
0:59:22 0:44:02 96
0:59:28 0:44:07 99
1:07:19 0:49:56 128
1:10:32 0:52:20 132

Class II

0:40:52 0:38:25 4
0:41:55 0:39:24 11
0:42:09 0:39:37 14
0:42:09 0:39:37 15
0:42:54 0:40:19 32
0:43:07 0:40:32 36
0:44:00 0:41:21 53
0:44:19 0:41:40 55
0:44:58 0:42:16 61
0:44:59 0:42:17 63
0:45:13 0:42:30 68
0:45:21 0:42:37 69
0:45:22 0:42:39 71
0:46:03 0:43:17 82
0:49:31 0:46:33 114

(Continued)
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Observed Scoring Rank
(%) (%) (medallist)

0:50:12 0:47:11 117
0:51:24 0:48:19 119
0:51:43 0:48:37 122
0:52:20 0:49:11 125
0:55:25 0:52:06 131
0:56:51 0:53:26 133

Class III

0:50:55 0:36:55 1 (RM)
0:51:32 0:37:21 2 (IT)
0:51:45 0:37:30 3 (VL)
0:54:10 0:39:16 10
0:55:31 0:40:14 27
0:56:06 0:40:40 39
0:56:32 0:40:58 43
0:57:02 0:41:21 52
0:58:31 0:42:25 65
1:00:30 0:43:51 94
1:00:51 0:44:06 98
1:02:47 0:45:31 107
1:04:00 0:46:24 112
1:04:02 0:46:25 113
1:07:21 0:48:49 124
1:09:39 0:50:29 129
1:10:37 0:51:11 130
1:17:04 0:55:52 136

Class O

0:38:30 0:38:30 5
0:38:58 0:38:58 6
0:39:08 0:39:08 8
0:39:09 0:39:09 9
0:39:29 0:39:29 12
0:39:31 0:39:31 13
0:39:38 0:39:38 16
0:39:42 0:39:42 17
0:39:43 0:39:43 18
0:39:47 0:39:47 19
0:39:50 0:39:50 20
0:40:03 0:40:03 22
0:40:07 0:40:07 23
0:40:08 0:40:08 24
0:40:09 0:40:09 25
0:40:11 0:40:11 26
0:40:14 0:40:14 28
0:40:15 0:40:15 29
0:40:15 0:40:15 30
0:40:18 0:40:18 31
0:40:23 0:40:23 33
0:40:28 0:40:28 34
0:40:28 0:40:28 35
0:40:33 0:40:33 37
0:40:37 0:40:37 38
0:40:41 0:40:41 40
0:40:42 0:40:42 41
0:40:53 0:40:53 42
0:40:59 0:40:59 44
0:41:01 0:41:01 45
0:41:03 0:41:03 46
0:41:12 0:41:12 47
0:41:14 0:41:14 48
0:41:16 0:41:16 49
0:41:17 0:41:17 50
0:41:20 0:41:20 51
0:41:30 0:41:30 54
0:41:45 0:41:45 56
0:41:49 0:41:49 57
0:41:50 0:41:50 58
0:42:06 0:42:06 60
0:42:16 0:42:16 62
0:42:22 0:42:22 64
0:42:26 0:42:26 66
0:42:28 0:42:28 67
0:42:39 0:42:39 70
0:42:42 0:42:42 72
0:42:42 0:42:42 73
0:42:45 0:42:45 74
0:42:45 0:42:45 75
0:42:50 0:42:50 76

(Continued)
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Observed Scoring Rank
(%) (%) (medallist)

0:42:55 0:42:55 77
0:42:55 0:42:55 78
0:43:02 0:43:02 80
0:43:07 0:43:07 81
0:43:22 0:43:22 84
0:43:23 0:43:23 85
0:43:30 0:43:30 87
0:43:36 0:43:36 88
0:43:39 0:43:39 89
0:43:39 0:43:39 90
0:43:39 0:43:39 91
0:43:44 0:43:44 92
0:43:52 0:43:52 95
0:44:05 0:44:05 97
0:44:07 0:44:07 100
0:44:15 0:44:15 101
0:44:35 0:44:35 102
0:44:35 0:44:35 103
0:45:08 0:45:08 104
0:45:16 0:45:16 105
0:45:28 0:45:28 106
0:45:36 0:45:36 108
0:45:44 0:45:44 109
0:45:47 0:45:47 110
0:46:16 0:46:16 111
0:46:42 0:46:42 115
0:47:01 0:47:01 116
0:47:16 0:47:16 118
0:48:30 0:48:30 120
0:48:35 0:48:35 121
0:48:45 0:48:45 123
0:49:11 0:49:11 126
0:49:20 0:49:20 127
0:55:13 0:55:13 134
0:55:39 0:55:39 135
1:06:29 1:06:29 137
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