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Abstract   

High temperature non-Newtonian materials processing provides a stimulating area for process 

engineering simulation. Motivated by emerging applications in this area, the present article 

investigates the time-dependent free convective flow of a chemically-reacting micropolar fluid 

from a vertical plate oscillating in its own plane adjacent to a porous medium. Thermal 

radiative, viscous dissipation and wall couple stress effects are included. The Rosseland diffusion 

approximation is used to model uni-directional radiative heat flux in the energy equation. 

Darcy’s model is adopted to mimic porous medium drag force effects. The governing two-

dimensional conservation equations are normalized with appropriate variables and transformed 

into a dimensionless, coupled, nonlinear system of partial differential equations under the 

assumption of low Reynolds number. The governing boundary value problem is then solved 

under physically viable boundary conditions numerically with a finite element method based on 

the weighted residual approach. Graphical illustrations for velocity, micro-rotation (angular 

velocity), temperature and concentration are obtained as functions of the emerging physical 

parameters i.e. thermal radiation, viscous dissipation, first order chemical reaction parameter etc. 

Furthermore, friction factor (skin friction), surface heat transfer and mass transfer rates have 

been tabulated quantitatively for selected thermo-physical parameters. A comparison with 

previously published paper is made to check the validity and accuracy of the present finite 

element solutions under some limiting cases and excellent agreement is attained. Additionally, a 

mesh independence study is conducted. The model is relevant to reactive polymeric materials 

processing simulation.  
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1. INTRODUCTION 

In recent years, non-Newtonian fluids have received significance interest, since they offer a more 

accurate framework for simulating the characteristics of a fluid with suspended particles than the 

classical Navier-Stokes (Newtonian) viscous model. Such fluids abound in complex industrial 

processes for example, in slurry and petro-chemical materials processing. Micro-structural fluids 

require additional balance equations corresponding to angular momentum. Eringen [1] proposed 

the theory of micropolar fluids (a simplification of his more complex micromorphic fluid model) 

by developing constitute equations that take into account the effects arising from the local 

structure and micro-motions of the micro elements. Also micropolar fluids can support the shear 

stress, couple stress, body couples and exhibit gyratory motions. By generalizing of micropolar 

fluids to heat conduction and other thermal effects, Eringen [2] developed a robust theory of 

thermo-micropolar fluids. These theories present an excellent mechanism for exploring new non-

Newtonian characteristics and simultaneously validating solutions to mathematical models. 

Interesting aspects of theory and applications of micropolar fluids can be found in books by 

Eringen [3] and Lukaswiascz [4]. Further details of applications in petro-chemical and process 

engineering are provided in the lucid review article of Airman et al. [5]. These investigations 

have addressed numerous multi-physical phenomena including thermal dispersion, thermal 

radiation, electrophoresis, wavy surfaces, body rotations, oscillatory flow, squeezing 

hydrodynamics, fluid dynamic stability and magnetohydrodynamics. The multi-scale, multi-

physical nature of materials processing systems therefore provides a rich arena for exploring 

micropolar transport phenomena. Recent investigations of micropolar materials processing 

include Gupta et al. [6] who used a variational finite element method to investigate free and 

forced convection of micropolar liquids in contracting sheet flow under strong radiative flux. 

Rahman and Sultana [7] analyzed the radiative heat transfer effects on micropolar flow with 

variable heat flux in a porous medium was examined by Considering the effects of MHD and 

radiation Reddy [8] investigated unsteady convection flow of micropolar fluid past a vertical 

porous plate with variable wall heat flux. Zueco et al. [9] used network electro-thermal 

simulation to analyze buoyancy-driven magnetic micropolar convection flows in vertical 

conduits containing complex porous materials. 



Conjugate heat and mass transfer problems have also stimulated considerable interest. Both 

numerical and analytical studies have ben communicated in this regard. This category of flow 

occurs as a result of combined buoyancy effects of thermal diffusion and diffusion through 

chemical species, which find important applications in industrial materials fabrication and 

chemical engineering. These include food drying, foodstuff processing and polymer production. 

The term conjugate heat transfer describes the interaction between the convective fluid and heat 

conduction through the bounding wall. The heat transfer coefficient or thermal boundary 

conditions become an integral part of solving such problems which deviate from the 

conventional boundary layer flow analysis, in which they are usually specified. This condition is 

necessary in the heat transfer analysis of extended surfaces where the thermal boundary 

conditions are specified only at the ends of the surfaces. It may be noted that 

conjugate/convective thermal boundary conditions are known arise in many diverse areas of 

technology including combustion in gas turbines, convective flows setup where the bounding 

surfaces absorb heat by solar radiation, design of efficient heat exchangers, optimization of 

turbine blade cooling system etc. An important analysis in this regard was presented by Aziz [10] 

who considered convective surface boundary conditions. This in turn has stimulated a number of 

investigations in boundary layer flows with convective surface boundary conditions for different 

physical scenarios. By employing finite difference schemes, Pop and Merkin [11, 12] studied 

conjugate heat transfer from a vertical plate in a saturated permeable medium. Conjugate forced 

convection heat transfer from a continuous and moving flat sheet was analyzed by Char et al., 

[13] employing a cubic spline collocation numerical method. Recently Khalid et al. [14] 

presented exact solutions (using a Laplace transform method) for conjugate heat and mass 

transfer in transient micropolar flow with wall couple stress. This has partly motivated the 

current investigation in which we extend the analysis in [14] to consider thermal radiation, 

viscous dissipation and first order chemical reaction effects, all of which may feature in realistic 

materials and process flow systems. Furthermore, detailed reviews of other investigations into 

conjugate heat transfer are provided by Chaudhary and Jain [15], Hussain [16], Zhang [17] and 

Bejan [18]. In recent years, conjugate natural convection flows with radiative heat transfer have 

mobilized some interest owing their significance in high-temperature engineering systems such 

as heat exchangers, combustion chambers and materials synthesis. These flows require a more 

sophisticated approach to radiative heat transfer in the system which can substantially influence 



performance and modify characteristics of manufactured products. In addition to this, such 

regimes are strongly influenced by thermal boundary conditions. Arpaci [19] conducted seminal 

work on analyzing thermal radiation effects in laminar free convection from a heated vertical 

plate. England and Emery [20] computed the impact of thermal radiation of an optically-thin 

gray gas on the laminar free convection flow past a stationary vertical plate. Thereafter many 

researchers further studied thermal radiation problems in fluid dynamics including Özisik [21] 

who considered the interaction of thermal radiation transfer with both thermal conduction and 

convection. Bestman and Adjepong [22] presented an analysis on unsteady hydromagnetic free 

convection flow with radiative heat transfer in a rotating fluid. Other studies of relevance include 

convection-radiation flow along a vertical wavy surface as examined by Molla and Hossain [23]. 

Jang et al. [24] studied flows in rotating horizontal rectangular ducts with radiation effects.  Jang 

et al. [25] further investigated radiative flows in stationary rectangular ducts. Free convective 

transport along an inclined flat plate with temperature-dependent viscosity was studied by 

Siddiqa et al. [26].  Siddiqa and Hossain [27] investigated mixed convection with radiative flux 

effects. In the context of micropolar flows, several researchers have also examined thermal 

radiative heat transfer. Abo-Eldahab and Ghonaim [28] evaluated radiation effects on heat 

transfer of a micropolar fluid through a porous medium. Olajuwon and Oahimire [29] obtained 

perturbation solutions for the double-diffusive convection in time-dependent radiative 

hydromagnetic micropolar convection. Kundu et al. [30] studied thermo-diffusive and radiative 

effects on rotating micropolar convection flows.  

In the most of the above investigations, viscous heating has generally been neglected on the 

premise that under normal conditions the Eckert number is small based on an order of magnitude 

analysis. The viscous dissipation effect however can have a significant influence in materials 

processing operations, in particular those associated with rheological (non-Newtonian) 

processes, as elaborated by Warren [31]. Chen [32] described the effects of heat and mass 

transfer in MHD free convection with Ohmic heating and viscous dissipation. Gnaneswara and 

Bhaskar [33] investigated the radiation and mass transfer effects on transient magneto-

convection with viscous dissipation.  

In numerous process engineering systems, chemical reactions take place. These can markedly 

modify heat and mass transfer rates. Most analytical studies consider first order chemical 

reaction effects and assume the reaction to be destructive. Recently Srinivasacharya and Upender 



[34] have considered the composite effects of thermal radiation and chemical reaction on 

magnetic free convection heat and mass transfer in micropolar fluids. Sheri and Shamshuddin 

MD [35] have addressed the problem of coupled heat and mass transfer in 

magnetohydrodynamic micropolar flow with both viscous dissipation and chemical reaction 

effects. Sheri and Shamshuddin [36] have further presented finite element numerical solutions 

for diffuso-thermal and chemical reaction effects on transient free convection micropolar flow. 

Further studies of reactive micropolar flows include Rawat et al. [37] (which considered double 

diffusive convection in reactive micropolar flow from an extending sheet) and Pal and Talukdar 

[38].  

The presence of oscillatory flow in materials fabrication processes is also of great importance. 

This invokes time-dependent effects and these can dramatically modify momentum, heat and 

species diffusion characteristics, as elaborated by Reis [39]. Many insightful investigations have 

been reported concerning oscillatory transport phenomena. These include Pan and Li [40], 

Adesanya et al. [41], Bhargava et al. [42] (who used finite element methods and considered 

cross-diffusion), Adesanya [43] who considered momentum slip effects at the wall and Rajesh et 

al. [44] who considered hydromagnetic enrobing flow over a curved geometry with reactive and 

thermal oscillation behavior. Further studies include Adesanya et al. [45] who considered 

viscous heating in pulsatile porous media pumping, Maqbool et al. [46] who presented Fourier 

solutions to a family of oscillatory non-Newtonian ferromagnetic gel flows, Adesanya et al. [47] 

who considered transient boundary conditions in magnetic heat transfer and Bég et al. [48] who 

developed network electro-thermal solutions for oscillatory heat transfer of magnetized polymers 

in a spinning channel.  

The above oscillatory studies all confirmed the considerable impact that oscillation frequency 

exerts on shear stress, wall heat transfer rates and in some cases [46] also on vorticity fields. 

However they did not consider species diffusion or the micropolar model. In the present 

problem, therefore, we extended the analytical work of Khalid et al. [14] by taking into account 

of thermal radiation, viscous dissipation and first order chemical reaction effects and deriving 

finite element numerical solutions for generalized micropolar radiative-convection flow from a 

vertical surface in a porous medium. The closed-form exponential solutions presented by Khalid 

et al. [14] provide a benchmark for the current computational solutions. The effects of various 

emerging thermo-physical parameters on the velocity, micro-rotation velocity, temperature and 



concentration profiles as well as on local skin friction coefficient and wall couple stress are 

visualized and tabulated. Furthermore, a mesh-independence study is also conducted. The current 

problem, to the best knowledge of the authors, has not been communicated thusfar in the 

technical literature. 

 

2. MATHEMATICAL MODEL 

Consider the unsteady, laminar incompressible, free convective heat and mass transfer flow of 

micropolar fluid from an infinite porous oscillating vertical plate adjacent to a porous medium. 

Thermal radiation, viscous dissipation and chemical reaction effects are included. The coordinate 

system is such that the x axis is taken along the plate and y  axis is taken perpendicular to the 

plate. The micropolar fluid saturates the porous half space 0y . The schematic model of the 

coordinate system and physical model is represented in Figure 1. Initially at the time 0t , both 

the fluid and the plate are at rest with constant temperature 
T and constant concentration 

C . At 

time 0t the plate is given sudden impulse, and the motion is induced against gravity such that  

plate begins to oscillate in its own plane with velocity    itCostHUV

  .Here  tH   is the 

Heaviside (unit step) function, U is the amplitude of the motion, i


is the unit vector in the 

vertical flow direction and  is the frequency of oscillation. The temperature wT and 

concentration wC  of the plate are raised linearly with respect to time and thereafter maintained as 

constant. It is assumed that the plate is infinite in extent and hence all physical quantities depend 

on y  and t only. By virtue of these assumptions the governing equations for unsteady natural 

convective flow under Boussinesq’s approximations may be formulated as follows, by extending 

the model of Khalid et al. [14] to include the radiative flux and porous media terms in Rahman 

and Sultana [7], the viscous dissipation term in the model of Zueco et al. [9] and Reddy et al. 

[33] and the chemical reaction term in the model of Srinivasacharya and Upender [34] we arrive 

at the new generalized model:   

The linear momentum equation: 
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The angular momentum equation: 
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The energy equation: 
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The concentration equation:
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The corresponding initial and boundary conditions are given by : 
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Where u  is velocity,  is micro-rotation i.e. angular velocity component (spin direction is in the 

xy plane, o is spin gradient viscosity,  is the density of micropolar  fluid,
 

g is the acceleration 

due to gravity, t  is time, f and C  are volumetric coefficient of thermal expansion and 

concentration expansion,  is the kinematic viscosity, /K  is the kinematic micro-rotation 

viscosity, j  is the micro inertia per unit mass, 
 TT , are temperature of fluid at boundary layer 

and far away from surface. At constant pressure p , pC is the specific heat,   is the thermal 

conductivity, rq  is the heat flux, 
 CC , are concentration of the solute and far away from surface, 

t is the phase angle and mD is the molecular diffusivity. Here 10  n . The case of 0n  

indicates 0 at the wall i.e. microelements close to the wall surface are unable to rotate due to 

presence of concentrated particles at the walls. The case of 2/1n , corresponds to weak 

concentration of micro elements. For 1n , the flow is turbulent, and this case is not considered in 

the present simulations. These details are also elucidated in Srinivasacharya and Upendar [49] 

Following Rahman and Sultana [7] and Magyari and Pantokratoras [50], we adopt the Rosseland 

approximation for radiative flux rq  in the y  direction which is given by: 
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Here  and k are the Stefan-Boltzmann constant and mean absorption coefficient respectively. 

Hence the fluid medium is assumed optically-thick for the present analysis. Eqn. (6) results in a 

highly nonlinear energy equation inT and it is difficult to obtain a solution. However, researchers 

have resolved this problem by assuming small temperature differences with in the fluid flow (see 

[51]-[53]). In this situation, Rosseland’s model can be linearized about ambient temperature 
T

assuming that the difference in the temperature with in the flow such that 4T  can be expressed as 

linear combination of the temperature. Using Taylor’s series expansion about T   the expansion 

of  4T   can be written as follows, neglecting higher order terms:  

4334
4
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Differentiating equation (6) w.r.t y  and using (7), we obtain:  
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Now simply replacing 3T in Eq. (6) with 3

T , Eq. (3) can be expressed as follows: 
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In order to write the governing equations and boundary conditions in dimensionless form, the 

following non-dimensional quantities are introduced: 
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Here U represents scale of free stream velocity. Furthermore, the spin gradient viscosity 
o

  

which connects the coefficient of viscosity and micro-inertia is defined as follows:  
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Here  denotes the dimensionless viscosity ratio parameter or microrotation parameter, in which 

 is the coefficient of gyro-viscosity (Eringen’s vortex viscosity) and J  is the dimensionless 

micro inertia coefficient. By introducing the non-dimensional quantities in eqns. (10), (11), eqns. 

(1)-(4) reduce to the following dimensionless form : 
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then given by the following dimensionless equations 
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3. NUMERICAL SOLUTIONS WITH FINITE ELEMENT METHOD (FEM) 

The finite element method (FEM) is employed to solve the transformed, coupled boundary value 

problem defined by eqns. (12)-(15) under (16). FEM is the most versatile technique available for 

engineering analysis and equally adept at handling ordinary or partial differential equations as 

well as integral equations. The general details of the variational finite element method are 

documented succinctly in Reddy [54] and Bathe [55]. FEM has been applied to study many 

complex boundary value problems in micropolar fluid mechanics, many of which are considered 

in Bég et al. [56]. Micropolar heat and mass transfer applications also include [57]-[59].The 

fundamental steps involved in the finite-element analysis of a problem are as follows:  

 Discretization of the infinite fluid domain into finite elements  

 Derivation of element equations 

 Assembly of Element Equations 

 Imposition of boundary conditions 

 Solution of assembled equations 

 

The final matrix equation obtained can be solved by any efficient iterative scheme. 

 

3.1 Variational formulation 

The variational formulation associated with Eqns. (12) - (15) over a typical two-node linear 

element  1, ee yy  is given by: 
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Here ,1w ,2w 3w  and 4w are arbitrary test functions and may be viewed as the variations in  ,u

  ,   and   respectively and  11A , 2A , 











1

3A ,  NA  1
Pr

1

4  . After dropping the 

order of integration and non-linearity, we arrive at the following system of equations. 
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3.2 Finite Element formulation 

The finite element model may be obtained from Eqs. (21) - (24) by substituting finite element 

approximations of the form: 
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The finite element model of the equations for the the  element thus formed is given by.  
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,1,( nm  )4,3,2,  are the set of matrices of order 22  and 12   respectively and )(prime

indicates
dy

d . These matrices are defined as follows: 
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In one dimensional space, linear and quadratic elements or higher order can be taken. Here the 

entire flow domain is considered by dividing it into successively sized grids of order 81x81, 

101x101 and 121x121 in the y-axis direction. After many tests a grid size with 101 intervals has 

been adopted. Thus all the computations are executed with 101 intervals of equal step size 0.01. 

At each node, 4 functions are to be evaluated and after assembly of the element equations, a set 

of 404 non-linear equations are obtained which necessitate an iterative solution subject to the 

specified boundary conditions. The iterative process is terminated when the following condition 

is met: 6

,

1 10 
ji

nn  where  ,,,U and n denote the iterative step. In order to see 

the effects of step size (h) the finite element code is run with step sizes as h=0.01 and very good 

agreement is obtained for different profiles. Hence, this method has been proven to be adequate 

and gives accurate results for the conservation equations. It is also important to compute 

engineering quantities of primary interest, which are the skin-friction, wall couple stress (surface 

micro-rotation gradient), Nusselt number and Sherwood number. 

Skin-friction is obtained as, 
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Wall couple stress is defined as,
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The Nusselt number is computed as, 
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The Sherwood number is evaluated as, 
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3.3 Study of Grid Independence  

In general, to study the grid independency (or) dependency, we check how the mesh size should 

be varied at different mesh (grid) sizes and get a range at which there is no subsequent variation 

in the solutions. For this purpose, we have presented numerical values of velocity, temperature 

and concentration for different values of mesh sizes at time 2.0t in the Table 1, which shows 

that no variations in velocity, angular velocity, temperature and concentration. Hence the results 

are independent of mesh size. 

 

4. VALIDATION OF NUMERICAL RESULTS 

 

To verify the accuracy and validity of the numerical results employed by the weighted residual 

approach and the Galerkin finite element method, the results have been compared to the 

analytical solutions for local skin friction coefficient and wall couple stress coefficient reported 

by Khalid et al. [14] for different values of , ,n Pr, ,Gr ,Gm ,Sc ,t and t  in Table 2. These 

solutions negate thermal radiation, viscous dissipation and homogeneous chemical reaction 

effects, since these terms were ignored in the model of Khalid et al. [14]. Generally, very good 

correlation is achieved.  Table 2 further shows that in the absence of radiative flux, chemical 

reaction or viscous heating, skin friction increases as , Pr, ,Sc t  increase but decreases with a 

rise in ,n ,Gr ,Gm t . Further, it is observed that wall couple stress decreases as , ,n Pr, ,Gr

,Gm ,Sc ,t and t  increase. 

5. GRAPHICAL RESULTS AND DISCUSSION 

In order to gain a clear insight into the physical problem, numerical calculations for distribution 

of the velocity, microrotation (angular) velocity, temperature and concentration for different 

values of the control parameters are illustrated in Figs. (2) - (27). In order to study the effects of 



pertinent parameters in fluid flow explicit computations were carried out by varying micro-

rotation parameter , dimensionless spin gradient viscosity parameter , microelement surface 

condition ,n Grashof number ,Gr species Grashof number ,Gm Prandtl number Pr, radiative-

conduction parameter ,N Eckert number ,Ec Schmidt number ,Sc phase angle t and chemical 

reaction parameter .  

Figures 2-3 illustrate the influence of micro-rotation parameter   on velocity and micro-

rotation profiles. It is evident that velocity distribution is greater for a Newtonian fluid ( =0) 

with the given parameters, as compared with non-Newtonian fluid (micropolar fluid). Peak   

values are attained close to the plate and these migrate away from the plate with increasing . 

All profiles decay from the peak to vanish in the free stream velocity. In addition, the micro-

rotation (fig. 3) i.e. angular velocity takes negative values throughout the regime. The lowest 

values are at the plate surface and approach zero as one moves away from the plate surface 

which agrees with the imposed boundary condition on micro-rotation. Hence micro-rotation 

velocity profiles increase as   increases.  

Figures 4, 5 present the velocity and angular velocity (micro-rotation) profiles for various 

values of spin gradient viscosity parameter .  It is observed from that velocity increases as spin 

gradient viscosity parameter  increases whereas micro-rotation is strongly reduced i.e. the 

gyratory motion of the micro-elements is decelerated with greater spin gradient viscosity. Drag 

in the linear velocity field is however reduced and significant acceleration induced with greater 

spin gradient viscosity and indeed this concurs with many other studies in micropolar fluid 

mechanics including Hossain and Chowdhury [60].  

Figures 6 and 7 depict the effect of microelement surface condition (n) on both velocity and 

micro-rotation profiles. Micro element parameter ,n describes the relation between micro-

gyration vector and shear stress. It is observed that the velocity increases with increasing values 

of n . Furthermore the momentum boundary layer thickness is decreased with greater n values, 

and this is attributable to the smaller micro-gyration vector. The impact of increasing n however 

diminishes with greater distance from the plate. Micro-rotation velocity increases as n  increases, 

although values are always negative. All profiles converge smoothly to zero in the free stream 

i.e. the influence of n strongly decreases with progressive distance from the plate.   



Figures 8 and 9 shows the variations in velocity and microrotation velocity profiles for 

various values of thermal Grashof number,Gr . Gr  quantifies the relative magnitude of the 

buoyancy force and the opposing frictional (viscous) forces acting on the micropolar fluid. 

Physically the positive, negative and zero )00,0.,.(  GrandGrGrei  values of the Grashof 

number represents the cooling, heating of the boundary surface and absence of free convection 

currents respectively. The velocity profiles are significantly elevated with an increase in thermal 

Grashof number, since buoyancy assists in momentum development. The flow is therefore 

strongly accelerated for the case where the plate is cooled (Gr >0). Velocity profiles exhibit a 

parabolic distribution, ascending from the plate, achieving a peak value near the plate and then 

decaying to vanish in the free stream, far from the plate. Conversely an increase in thermal 

Grashof number strongly damps the micro-rotation field i.e. decreases angular velocity of the 

micro-elements. Again values are consistently negative indicating a reverse spin in the micro-

elements. As with linear velocity, in the free stream micro-rotation vanishes and is generally 

minimized at the plate.  

Figures 10, 11 present the response in linear velocity and micro-rotation to a variation in 

species (solutal) Grashof number i.e. Gm . This parameter embodies the relative contribution of 

species buoyancy force to viscous hydrodynamic force. With increasing Gm, the mass diffusion 

effect leads to an acceleration in the flow i.e. increase in velocity values and an associated 

decrease in hydrodynamic boundary layer thickness. We note that for the case Gm = 0, species 

buoyancy effect vanishes and the momentum eqn. (12) is de-coupled from the species diffusion 

(concentration) eqn. (15). Micro-rotation values are significantly reduced with increasing Gm 

values i.e. increasing species buoyancy (associated with greater concentration gradient) exerts a 

similar influence to increasing thermal buoyancy and strongly damps the angular velocity. The 

spin of the micro-elements is therefore markedly inhibited with greater buoyancy effects. 

Figures 12-13 illustrate the evolution in linear velocity and micro-rotation distributions with 

different values of phase angle t . A weak oscillatory behavior is computed for the linear 

velocity and with increasing phase angle (three different values are chosen) there is a progressive 

deceleration in the flow. Infact at maximum phase angle, flow reversal is induced since the linear 

velocities attain negative values at  t  = π. At zero phase angle the maximum velocity is 

achieved at the plate whereas for t  = π, the maximum velocity is attained in the free stream. 



Strong damping is therefore generated in the flow with increasing phase angle. Conversely an 

increase in phase angle is observed to enhance the micro-rotation i.e. it increases angular 

velocity. Greater oscillation of the plate encourages spin of the micro-elements and in all cases 

the minimum micro-rotations (maximum negative values) arise at the plate eventually vanishing 

in the free stream.  

Figures 14-16 illustrate the influence of Prandtl number (Pr) on the linear, angular velocity 

(micro-rotation) and temperature profiles. With greater Prandtl number, it is observed in fig. 14, 

that the velocity is significantly decreased throughout the boundary layer. Prandtl number 

represents the relative rate of momentum diffusion to energy diffusion. For Pr < 1 energy 

diffusion rate exceeds momentum diffusion. Also fluids with higher Prandtl number possess 

greater viscosities and as Pr increases from 0.3 through 0.5, 0.7 to 0.9, the viscous resistance 

leads to depletion in velocity. This will also manifest in an increase in momentum 

(hydrodynamic) boundary layer thickness.  Similarly there is a strong depression in micro-

rotation (fig. 15) with increasing Prandtl number. The coupling of the linear and angular 

momentum equations manifests in an indirect deceleration in the micro-element gyratory 

motions (micro-rotation) due to damping of the linear velocity field. Temperature is also 

significantly suppressed with greater Prandtl number, as plotted in fig. 16. Greater Prandtl 

number corresponds to a lower thermal conductivity. This leads to a reduction in thermal energy 

convected through the fluid from the plate (Gr >0 i.e. plate cooling) and also depresses the 

thermal boundary layer thickness. These trends have also been computed by numerous other 

researchers including Rahman and Sultana [7]. 

Figures 17-19 present the effect of thermal radiation-conduction parameter ( N  ) on 

respectively linear velocity, micro-rotation and temperature profiles. This parameter is defined as 
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It defines the relative contribution of thermal radiation heat transfer to thermal conduction heat 

transfer. When N <1 thermal conduction dominates. When N = 1 both thermal conduction and 

thermal radiation contributions are equal. For N >1 thermal radiation dominates over thermal 

conduction. In the present simulations, we confine attention to the last of these three cases. Fig. 

17 clearly reveals that there is a strong deceleration in the linear velocity with increasing N 



values. The energizing of the flow enhances thermal diffusion but counteracts momentum 

diffusion. This leads to an increase in momentum boundary layer thickness. A similar 

observation has been reported by Abo-Eldahab and Ghonaim [28] and Olajuwon and Oahimire 

[29]. Conversely increasing N values are found to elevate the micro-rotation of micro-elements 

as observed in fig. 18. Increasing radiation-conduction parameter is also found to decrease 

temperatures in the boundary layer (fig. 19). Thermal boundary layer thickness is therefore also 

reduced with greater values of N.  

Figures 20-22 present the effects of the viscous dissipation parameter i.e., the Eckert 

number Ec on the velocity, micro-rotation and temperature fields. Eckert number signifies the 

quantity of mechanical energy converted via internal friction to thermal energy i.e. heat 

dissipation. Increasing Ec values will therefore cause an increase in thermal energy contributing 

to the flow and will heat the regime. Positive Eckert number implies cooling of the wall and 

therefore a transfer of heat to the micropolar fluid. Convection is enhanced and we observe in 

consistency with this that at the fluid is accelerated i.e. linear velocity is elevated (fig. 20). 

Similarly there is an enhancement in micro-rotation in the micropolar fluid with increasing Ec 

values (fig. 21). Temperatures are markedly increased with greater Eckert number (fig. 22). For 

all non-zero values of Ec the temperature overshoot near the wall is distinct, this overshoot 

migrates marginally further into the boundary layer with an increase in Ec. Very smooth decays 

in temperature profiles are observed for all values of Eckert number and the convergence of 

profiles in the free stream indicates that an adequately large infinity boundary condition has been 

imposed in the finite element model. 

Figures 23-25 illustrate the velocity, micro-rotation and concentration profiles for different 

values of Schmidt number, Sc. The Schmidt number embodies the ratio of the momentum to the 

mass diffusivity i.e. DvSc / . The Schmidt number therefore quantifies the relative 

effectiveness of momentum and mass transport by diffusion in the hydrodynamic (velocity) and 

concentration (species) boundary layers. For 1Sc  momentum diffusion rate exceeds the 

species diffusion rate. The opposite applies for Sc < 1. For Sc =1 both momentum and 

concentration (species) boundary layers will have the same thickness and diffusivity rates will be 

equal.  It is observed that as the Schmidt number increases velocity, angular velocity and 

concentration all decrease. The momentum boundary layer thickness is also reduced with greater 

Schmidt number. The suppression in micro-rotation is associated with a deceleration in the linear 



velocity field. The depression in concentration magnitudes is due to the reduction in molecular 

diffusivity which manifests in a stifled migration of species. Concentration boundary layer 

thickness is therefore also decreased with increasing Schmidt number.  

Figures 26-27 represents the influence of chemical reaction parameter ( ) on the velocity 

and concentration profiles. The reaction parameter is based on a first-order irreversible chemical 

reaction which takes place both in the bulk of the fluid (homogeneous) as well as at plate which 

is assumed to be catalytic to chemical reaction. Although chemical reactions generally fall into 

one of two categories i.e. homogenous or heterogenous, the former is of interest in the present 

study. Homogenous chemical reactions take place uniformly throughout a given phase and are 

similar in nature to an internal source of heat generation. We consider the destructive type of 

homogenous chemical reaction. Increasing the chemical reaction parameter   produces a 

decrease in velocity (fig. 26). The momentum boundary layer thickness is therefore increased 

substantially with greater chemical reaction effect. It is noticed that concentration distributions 

decrease when the chemical reaction increases. Physically, for a destructive case, chemical 

reaction takes place and progressively destroys the original species. This, in turn, suppresses 

molecular diffusion of the remaining species which leads to a fall in concentration magnitudes 

and a decrease in concentration boundary layer thickness.  

Finally fig. 28 illustrates the difference in linear velocity for Newtonian and micropolar 

fluids. Strong deceleration is present for the micropolar case. The presence of micro-elements 

therefore achieves lower acceleration compared with Newtonian fluids which ignore 

microstructural effects.  

 

 

6. CONCLUSIONS 

In this work motivated by applications in materials processing of slurry systems, a mathematical 

model has been developed for conjugate free convection heat and mass in transient flow of an 

incompressible, micropolar fluid from an oscillating vertical plate in porous media. Viscous 

heating, thermal radiation and homogeneous chemical reaction effects have been incorporated 

into the model. The conservation equations for momentum, angular momentum (micro-rotation 

component), energy and concentration have been non-dimensionlized with appropriate variables. 

The resulting non-linear, transient, coupled system of partial differential equations and set of 



initial and boundary conditions has been solved numerically, using the variational finite element 

method with Galerkin weighted residual scheme. Validation for solution for selected cases has 

been conducted with previous published works i.e. Khalid et al. [14] and excellent correlation 

achieved. A grid independence study has also been performed. The computations have been 

executed in MATLAB software, and have shown that: 

 

 The flow is accelerated and momentum boundary layer thickness decreased with increasing 

values of ,  ,n  ,Gr  ,Gm and Ec . 

 The flow is decelerated and momentum boundary layer thickness increased with increasing 

values of ,  Pr,  ,t  ,N  Sc and . 

 Angular velocity (micro-rotation) is suppressed and micro-rotation boundary layer thickness 

increased with increasing of ,  ,n  ,Gr  ,Gm Pr and Sc . Conversely angular velocity is 

elevated with increasing values of   ,  ,t  N  and Ec . 

 Increasing radiation-conduction parameter and Prandtl number decrease temperatures and 

thermal boundary layer thickness.  

 Increasing Eckert number elevates temperatures and enhances thickness of thermal boundary 

layer. 

 Increasing Schmidt number decreases velocity, micro-rotation and also concentration values 

and furthermore increases momentum boundary layer thickness but reduces concentration 

boundary layer thickness. 

 Increasing homogeneous chemical reaction parameter decreases velocity and concentrations 

i.e. increases momentum boundary layer thickness and reduces concentration boundary layer 

thickness. 

 The velocity magnitudes are lower for micropolar fluid compared with Newtonian fluids. 

 

The present study has shown that the finite element method is very versatile in simulating 

unsteady micropolar materials processing transport phenomena. However a relatively simple 

radiative heat flux model has been used and also reaction effects restricted to first order. Future 

studies will consider more complex radiative models [61] and also higher order chemical 

reaction and will be communicated soon.  
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C   Concentration of the solute [
3mmol ] V  Plate velocity 

f
C  Skin friction coefficient x     Axis along the plate [ m ]       

mC  Wall couple stress                                                       y   Axis perpendicular to the plate [ m ] 

pC   Specific heat at constant pressure [
11  KKgJ ]      4321 ,,, wwww  Arbitrary test functions 

wC  Concentration of the solute at the plate [
3mmol ]     

C  Free stream concentration [
3mmol ]  

mD  Molecular diffusivity [
12 sm ]                                    

Ec   Eckert number                                                              


g  Acceleration due to gravity [ 1ms ]                              Greek letters          

mG Solutal Grashof number      Frequency oscillations                                                                 

rG  Grashof number                                                               Viscosity ratio parameter                                                            

H  Unit step function                                                         c  Volumetric coefficient of concentration expansion[
1

K ] 

i


 Unit vector in flow direction                                         
f

   Volumetric coefficient of concentration expansion [
1

K ] 

J   Micro inertia coefficient                                                 Dimensionless spin gradient viscosity ratio parameter 

n  micro-element surface condition                                  t  Phase angle 

N  Radiative-conduction parameter                                    Density of micropolar fluid [
3mkg ] 

Nu  Nusselt number                                                               Thermal conductivity [
11  KWm ] 

p  constant pressure                                                                  Mean absorption coefficient [
1m ] 

rP  Prandtl number                                                               Stefan-Boltzmann constant [
42  KWm ] 

rq  Radiative heat flux [ 2mW ]                                        Kinematic viscosity [
12 sm ] 

xRe Local Reynolds number                                                Coefficient of gryo-viscosity 

Sc  Schmidt number                                                             Fluid dynamic viscosity 

xSh Sherwood number                                                        o  Spin gradient viscosity 

 t  dimensionless time                                                         Dimensionless chemical reaction parameter 

T  Temperature of the field in the boundary layer [ K ]         Dimensionless temperature 

wT  wall temperature of the fluid [ K ]                                      Dimensionless concentration 

T Temperature of the fluid in free stream [ K ]                    Shape function 

U  Amplitude of the motion                                                   Microrotation component   

            

 

 

 

 

 



 

Figures  

 

              

           Figure 1: Flow configuration and coordinate system 

 

 
Figure 2: Velocity profiles for various values of  , when 3/,6.0,5.1,2.0   tnt    

1,2.0,01.0,3,3.0Pr,10,5  ScEcNGmGr . 
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Figure 3: Micro-rotation profiles for various values of  , when 3/,6.0,5.1,2.0   tnt    

1,2.0,01.0,3,3.0Pr,10,5  ScEcNGmGr . 

 

 
Figure 4: Velocity profiles for various values of , when ,3/,6.0,5.0,2.0   tnt    

1,2.0,01.0,3,3.0Pr,10,5  ScEcNGmGr . 



 

Figure 5: Micro-rotation profiles for various values of , when 3/,6.0,5.0,2.0   tnt    

1,2.0,01.0,3,3.0Pr,10,5  ScEcNGmGr . 

 

 
 

Figure 6: Velocity profiles for various values of n , when 3/,5.1,5.0,2.0   tt    

1,2.0,01.0,3,3.0Pr,10,5  ScEcNGmGr . 



 

 
Figure 7: Micro-rotation for various values of n , when ,3/,5.1,5.0,2.0   tt    

1,2.0,01.0,3,3.0Pr,10,5  ScEcNGmGr  

 

 
 

Figure 8: Velocity profiles for various values of Gr , when ,3/,5.1,5.0,2.0   tt

1,2.0,01.0,3,3.0Pr,10,6.0  ScEcNGmn . 



 
 

 
Figure 9: Micro-rotation for various values ofGr , when 3/,5.1,5.0,2.0   tt    

1,2.0,01.0,3,3.0Pr,10,6.0  ScEcNGmn . 

 

 
Figure 10: Velocity profiles for various values ofGm , when 3/,5.1,5.0,2.0   tt    

1,2.0,01.0,3,3.0Pr,5,6.0  ScEcNGrn . 



 

 
Figure 11: Micro-rotation for various values ofGm , when ,5.1,5.0,2.0  t    

1,2.0,01.0,3,3.0Pr,5,3/,6.0   ScEcNGrtn . 
 
 

 
Figure 12: Velocity profiles for various values of t , when ,6.0,5.1,5.0,2.0  nt     

1,1,01.0,3,3.0Pr,10,5  ScEcNGmGr . 



 
 

Figure 13: Micro-rotation profiles for various values of t , when ,5.1,5.0,2.0  t    

1,1,01.0,3,3.0Pr,10,5,6.0  ScEcNGmGrn . 

 

 
Figure 14: Velocity profiles for various values of Pr , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,01.0,3,10,5,3/   ScEcNGmGrt . 

 



 
Figure 15: Micro-rotation for various values of Pr , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,01.0,3,10,5,3/   ScEcNGmGrt . 
 

 
Figure 16: Temperature profiles for various values of Pr , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,01.0,3,10,5,3/   ScEcNGmGrt . 
 



 
Figure 17: Velocity profiles for various values of N , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,01.0,10,5,3/   ScEcGmGrt . 
 

 
Figure 18: Micro-rotation for various values of N , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,01.0,10,5,3/   ScEcGmGrt . 
 



 
Figure 19: Temperature profiles for various values of N , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,01.0,10,5,3/   ScEcGmGrt . 
 
 

 
Figure 20: Velocity profiles for various values of Ec , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,3,10,5,3/   ScNGmGrt . 
 



 
Figure 21: Micro-rotation for various values of Ec , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,3,10,5,3/   ScNGmGrt . 
 
 

 
Figure 22: Temperature profiles for various values of Ec , when ,6.0,5.1,5.0,2.0  nt     

1,2.0,3,10,5,3/   ScNGmGrt . 
 



 

 
Figure 23: Velocity profiles for various values of Sc , when ,6.0,5.1,5.0,2.0  nt     

1,01.0,3,10,5,3/   EcNGmGrt . 
 

 
Figure 24: Micro-rotation for various values of Sc , when ,6.0,5.1,5.0,2.0  nt     

1,01.0,3,10,5,3/   EcNGmGrt . 
 



 
Figure 25: Concentration for various values of Sc , when ,6.0,5.1,5.0,2.0  nt     

1,01.0,3,10,5,3/   EcNGmGrt . 
 

 
Figure 26: Velocity profiles for various values of , when ,6.0,5.1,5.0,2.0  nt     

2.0,01.0,3,10,5,3/  ScEcNGmGrt  . 
 
 



 
Figure 27: Concentration profiles for various values of  , when ,6.0,5.1,5.0,2.0  nt     

2.0,01.0,3,10,5,3/  ScEcNGmGrt  . 
 

 
Figure 28: Comparison of micropolar fluid velocity (when 1 ), with Newtonian fluid velocity 

(when 0 ) and 0t  
 

 



Tables 

 

Table 1. The numerical values of ,u ,  and  for different mesh (grid) sizes at 2.0t  
 Mesh size = 0.01 Mesh size = 0.001 Mesh size = 0.0001 

 

 

 

 

 

 

2.0t  

u        
u        

u        

0.5000 -1.3500 1.0000 1.0000 0.5000 -1.3500 1.0000 1.0000 0.5000 -1.3500 1.0000 1.0000 

0.5108 -1.3177 0.9844 0.9819 0.5108 -1.3177 0.9844 0.9819 0.5108 -1.3177 0.9844 0.9819 

0.5217 -1.2862 0.9690 0.9641 0.5217 -1.2862 0.9690 0.9641 0.5217 -1.2862 0.9690 0.9641 

0.5323 -1.2554 0.9539 0.9466 0.5323 -1.2554 0.9539 0.9466 0.5323 -1.2554 0.9539 0.9466 

0.5422 -1.1961 0.9390 0.9295 0.5422 -1.1961 0.9390 0.9295 0.5422 -1.1961 0.9390 0.9295 

0.5510 -1.1674 0.9244 0.9127 0.5510 -1.1674 0.9244 0.9127 0.5510 -1.1674 0.9244 0.9127 

0.5587 -1.1395 0.9100 0.8961 0.5587 -1.1395 0.9100 0.8961 0.5587 -1.1395 0.9100 0.8961 

0.5649 -1.1122 0.8959 0.8799 0.5649 -1.1122 0.8959 0.8799 0.5649 -1.1122 0.8959 0.8799 

0.5697 -1.0856 0.8819 0.8640 0.5697 -1.0856 0.8819 0.8640 0.5697 -1.0856 0.8819 0.8640 

0.5730 -1.0342 0.8682 0.8483 0.5730 -1.0342 0.8682 0.8483 0.5730 -1.0342 0.8682 0.8483 

0.5748 -1.0094 0.8547 0.8329 0.5748 -1.0094 0.8547 0.8329 0.5748 -1.0094 0.8547 0.8329 

 

 

 

Table 2: Effects of ,  ,n  Pr,  ,Gr  ,Sc  ,Gm  ,t tand on ,fC mC in the absence of ,N ,Ec and   

 Khalid et al. [14] Present results 

  n  Pr  Gr  Gm  Sc  t  t  f
C  mC  f

C  mC  

0.5 0.6 0.3 5.0 5.0 0.2 4/  0.6 3.2386 2.1322 3.238602 2.132215 

2 0.6 0.3 5.0 5.0 0.2 4/  0.6 3.3057 1.9754 3.305718 1.975408 

0.5 0.9 0.3 5.0 5.0 0.2 4/  0.6 2.5837 1.4587 2.583707 1.458719 

0.5 0.6 0.7 5.0 5.0 0.2 4/  0.6 3.4454 1.6312 3.445409 1.631202 

0.5 0.6 0.3 7.0 5.0 0.2 4/  0.6 2.0142 0.7485 2.014211 0.748507 

0.5 0.6 0.3 5.0 7.0 0.2 4/  0.6 2.6354 1.3651 2.635421 1.365116 

0.5 0.6 0.3 5.0 5.0 0.5 4/  0.6 3.5012 2.0392 3.501208 2.039202 

0.5 0.6 0.3 5.0 5.0 0.2 2/  0.6 3.4441 1.9929 3.444102 1.992904 

0.5 0.6 0.3 5.0 5.0 0.2 4/  0.9 2.9097 1.0834 2.909714 1.083421 

 


