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V. ABSTRACT 

Over the course of this work, the transfer matrix method (TMM) was implemented and 

studied for its potential in predicting the sound insulation characteristics of corrugated dual 

leaf roof structures. A model of periodically connected plates, using Fourier expansions, was 

derived independently and extended in this work to include the stiffness of connectors and 

orthotropic plates, and intermediate beams in the framework of the structure. The same 

principles were applied in deriving the transmission loss through periodically stiffened plates, 

as a proxy for corrugated panels. At the same time, corrugated plates were modelled as 

equivalent orthotropic panels, a process which is compatible with the TMM without 

particular modifications. Infill materials were modelled using simple fluid representations 

and more complex poroelastic behaviour. The point-connected plate models were combined 

with the TMM to enable multiple layers of infill materials between the two plates, by using 

an effective fluid approach. The stiffness of typical roof connectors was obtained with 

numerical simulations, and used in predicting transmission loss. Corrections were introduced 

to simulate diffuse laboratory conditions and enable meaningful comparisons to available 

data. The limitations of a simple orthotropic plate model compared to laboratory 

measurements and the ribbed plate model were identified. A number of measurements of dual 

leaf partitions and full roof systems were compared to the TMM and point-connected plate 

models, finding typically good agreement at low to mid-frequency, and a strong dependence 

of high frequency transmission loss on connector stiffness.  
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VI. ABBREVIATIONS AND SYMBOLS 

TL Transmission Loss 

TMM Transfer Matrix Method 

MCRMA Metal Cladding and Roof Manufacturers Association 

𝒙, 𝒚, 𝒛 Cartesian coordinates 

𝒗 Velocity 

𝒘 Displacement 

𝒑 Pressure 

𝝈 Stress 

𝑻 Transmitted wave complex amplitude 

𝑹 Reflected wave complex amplitude 

𝝉 Transmission loss 

𝒄 Speed of sound 

𝝆 Density 
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𝒌𝒙, 𝒌𝒚, 𝒌𝒛 Cartesian components of wavenumber vector 

𝒌𝒕 Trace wavenumber, 𝑘𝑡 = √𝑘𝑥
2 + 𝑘𝑦

2 

𝒄𝟎 Speed of sound in air 

𝝆𝟎 Density of air 

𝒌𝟎 Wavenumber in air 

𝜼 Loss factor 

𝑬 Young’s Modulus 

𝝂 Poisson’s ratio 

𝑰 Area moment of inertia 

𝑩 Bending stiffness 

𝒎′ Mass per unit area 

𝝎 Angular frequency 

𝜽 Angle of incidence 
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1 INTRODUCTION 

1.1 BACKGROUND 

The sound insulation properties of materials and structures are important in many areas of 

acoustics. In automotive engineering, sound insulation is a sought after parameter in the 

design of car bodies, mufflers and other details in determining the transmission of engine 

noise and other sources into and out of the vehicle. In building acoustics, an understanding of 

sound insulation is vital in many areas, for instance: the reduction of noise from ventilation 

ducts, in minimising privacy and disturbance issues, in reducing noise in classrooms, lecture 

theatres and other critical spaces, as well as preventing noise outbreak from industrial 

buildings. Several modelling techniques and measurement methods, some of which will be 

outlined here, have been developed over time to predict the acoustic features of such systems. 

The main focus of this work is in characterising the acoustic performance of roof structures 

with corrugated metal sheets, and dual leaf structures with multiple layers more generally. 

Laboratory measurements of sound insulation of building elements are carried out according 

to BS EN ISO 10140-2, in a test environment consisting of two reverberant rooms, the source 

and receiving rooms, either side of the element under test, as illustrated in Figure 1. The 

frequency range of most sound insulation measurements is between 50 Hz and 5 kHz, which 

will be the range considered over the course of this work. The rooms are specially designed 

to meet requirements of ISO 3741 which intend to maximise the diffusivity of the field, 

having very little acoustic absorption, large volumes, non-parallel walls and diffusers 

installed. The rooms are also well isolated from each other, ensuring that flanking 

transmission (transmission of sound via paths other than through the element under test) is 

minimal. The calculations employed to obtain the 1/3 octave band sound transmission loss, or 
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Sound Reduction Index (SRI), are based on the assumption of a perfectly diffuse field, and 

are limited to the high frequency region, above the Schroeder frequency of the reverberant 

chambers.  

Field measurements are carried out on buildings according to BS EN ISO 140-2. In this case 

too, sound insulation values are determined with the assumption of a perfectly diffuse field in 

both rooms, though the strict design criteria for reverberant chambers are not met. A major 

challenge in the prediction of reverberant sound transmission is accounting for all factors that 

influence and determine the measurement results, including: structure size, mounting and 

edge conditions, screws and fixings, coupling between layers (e.g. fully bonded versus 

partially bonded materials), seal imperfections, test room dimensions and diffusivity of the 

sound field.  

 

Figure 1: Sound insulation measurement setup for ISO 10140-2 

Another obstacle to our understanding, which will not be explored in this work, is the 

observed difference between in situ and laboratory measurements. While the determination of 

in situ characteristics is fundamental to any application, in laboratory conditions it is easier to 

control the variables involved. Having said that, a large variability between measurements of 

nominally identical structures has been observed across laboratories following the same 
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procedures (Fausti et al. 1999). This has been attributed to the factors listed above, including 

– importantly – those unrelated to the structure that is being evaluated for its sound 

transmission characteristics.  

This work will be focussing on the prediction of sound insulation of roof constructions with 

corrugated metal sheets, as part of a research project for the benefit of the Metal Cladding 

and Roof Manufacturers Association. Members of the association have been using the 

product of work carried out by Lam and Windle (1993) to predict the sound insulation of 

common roof structures over the last few decades. However, over this timespan, roof 

constructions have increased in depth and complexity, along with greater requirements for 

thermal and acoustic performance. Generally these are dual leaf structures, which have 

corrugated metal sheets on either side and are connected periodically by point-to-point 

connectors, often including beams in the framework. The profiled metal sheets have 

particular sound transmission characteristics related to their profiles which need to be 

accounted for. In such constructions, multiple layers of mineral or glass wool infill are often 

used, including high density materials, as well as additional rigid boards and membranes. The 

main challenge of the work will be to account for structure-borne transmission as well as the 

behaviour of profiled plates and multiple layers of infill, so the focus will be on the structures 

themselves as opposed to the influences of the test environment.  

1.2 AIM 

The aim of the project is to develop an approach to modelling sound transmission through 

multi-layered structures with corrugated and profiled sheets and structural connectors, with 

particular focus on roof systems. Different methods of modelling corrugated and profiled 

sheets are compared in the process. The effect of the test environment must be accounted for 
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to some degree in order to compare the models with available laboratory measurements. At 

the same time the aim is constrained by the requirement to produce a useable software tool to 

aid in the design of such structures. 

1.3 APPROACH 

A purely analytical approach to modelling is not feasible for complex multi-layered structures 

with structural connections. Throughout this thesis and in many of the referenced works, 

classically derived expressions for even geometrically simple point connected or framed 

structures can quickly become intractable. Useful design parameters in these cases are hard to 

obtain, making analytical approaches, in a practical sense, indistinguishable from numerical 

approaches if not for their relative computational efficiency. Modal approaches to finite 

structures become more cumbersome with each additional panel or layer; these approaches 

require accurate knowledge of the edge conditions of each subsystem.  

Accounting for multiple layers of infill materials will necessarily require including an 

approach which can handle multilayer systems. The transfer matrix method (TMM) was 

chosen for its unrivalled capability in modelling arbitrary arrangements of layers. The TMM 

is used in combination with analytical models of panels with periodic framework (point-to-

point connections and beams) by reducing multiple layers of materials to an effective single 

layer, making the analytical expressions much easier to derive. The averaging in 1/3 octave 

bands, which is commonplace in building acoustic measurements and standards, reduces the 

amount of detail in the transmission loss curve, making the TMM feasible despite its 

assumption of laterally infinite layers resulting in no modal behaviour. Methods also exist to 

artificially “finitise” an infinite structure and approximate laboratory conditions (Villot et al. 

2001; H. Kang et al. 2000). Alongside the transfer matrix model, finite element analysis will 
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be carried out in Comsol 4.3, for validation purposes and to derive the relevant mechanical 

properties of structural connections.  

The main novel areas of this research include: the implementation of corrugated and profiled 

plates within the transfer matrix framework, and its comparison against laboratory 

measurements of sound insulation; the combination of transfer matrix method with classical 

models of structural connections; a model of double plate systems with point-to-point 

connections onto beams. 

1.4 LAYOUT OF THE THESIS 

This thesis is structured in the following way. Chapter 2 contains details of common roof 

structures according to MCRMA specifications. Chapter 3 contains a review of the literature 

on sound transmission through dual leaf structures and all aspects relevant to this work. 

Chapter 4 lays out the theory and modelling approach to individual components in a dual leaf 

structure or general multilayer system of different material types, including different 

approaches to modelling corrugated panels. Chapter 5 outlines derivations of two analytical 

models to account for sound transmission in double plate systems with point-to-point 

connections, and details of their combination with the Transfer Matrix Method. Chapters 6 

and 7 are presentations of results and comparisons between measurement, FEM analysis and 

the modelling techniques presented in Chapters 4 and 5. Chapter 8 contains a summary of the 

findings. 
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2 DUAL LEAF ROOF SYSTEMS 

This chapter will provide details of the dual leaf roof structures under examination, based on 

information provided by the Metal Cladding and Roof Manufacturers Association. The 

elements here described will provide the focus for the modelling frameworks proposed in this 

thesis. 

The components of each roof include metal sheets, infill materials, structural framework and 

connectors. The possible configurations of roof systems include simple cladded roofs with a 

single layer of insulation, rooflights with no cavity infill, factory-made composites with an 

expanding foam core, and more complex structures with multiple connectors, internal beams, 

and high density boards. 

2.1 PROFILED METAL SHEETS 

The roof structures examined consist, at a minimum, of two profiled panels separated by a 

spacer kit to provide structure. The two sheets are referred to as the ‘top sheet’ and the ‘liner’ 

or ‘decking’ (depending on the profile) at the bottom. A list of common profiles was 

compiled by the MCRMA (see Table 1 for a list of profiles with depictions).  

Panel thicknesses range from 0.5 to 1.5 mm, and are made of steel, aluminium or glass-

reinforced plastics (in the case of rooflights). The most common types of profiles are 

trapezoidal for the liner, and ‘standing seam’ for the top sheet. Often sheets have additional 

smaller ridges to further increase stiffness. Profile depths for most sheets are between 20 and 

60 mm, except for decking, which can reach depths of up to 210 mm. Profiled sheets can also 

be perforated, to expose the absorptive cavity infill and reduce reverberation in a building.  
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Trapezoidal profiles are described by their pitch, crown, valley and depth, as shown in Figure 

2.  Standing seam profiles are common top sheets; their profile is not trapezoidal, as they 

have ribs that protrude in the normal direction to the panel with depths of 50-75 mm; the tips 

of the ribs have a circular roll, which allows joining each section together.  

 

Figure 2: Trapzeoidal profile diagram 
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Cladding type Schematic 

Top sheet: trapezoidal 

24-50mm depth 

 

Top sheet: ‘standing seam’ 

45-60mm depth 

 

Top sheet: secret fix 

45-60mm depth 

 

Liner sheet (bottom): trapezoidal 

19-37mm depth  

Decking sheet 

32-210mm depth 

 

Table 1: Common corrugated metal panels found in roof structures; MCRMA (2013) 
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2.2 INFILL AND CAVITY LAYERS 

Materials used as cavity infill in roof systems are usually mineral fibres, either glassfibre or 

rockfibre. The insulation is also often specially cut to fill the trapezoidal lags in the profiled 

metal sheets. They have a range of densities from 10 to 200 kg/m
3
; low density quilts are 

most common, between 10 and 50 kg/m
3
, while ‘high performance’ systems tend to have 

higher density materials, above 50 kg/m
3
. Quilts can be modelled to reasonable accuracy with 

a simple equivalent fluid, as waves through the solid portion contribute less to the overall 

transmission. Higher density materials are generally stiffer, and come in rigid slabs, adding 

mass to the system but also potentially affecting the vibration of panels in the system in more 

complex ways, through transmission of shear and compressional waves in the solid portion. 

Other possible layers in the space between the two profiled metal sheets are flat high density 

boards, of thicknesses between 8 and 20mm. Cement particle boards have a typical density of 

1250 kg/m
3
, and plasterboard a density of 850 kg/m

3
. Additionally, high density mats are 

often added to further increase the mass of the system. 

2.3 STRUCTURAL FRAME: SPACER KITS AND POINT-TO-POINT 

CONNECTIONS 

The roof structures under examination have spacer kits which serve as structural support, and 

separate the top sheet and liner/decking to form the cavity space. These kits contain point-to-

point connectors that come in two types: brackets and halters. 

Brackets are L-shaped connectors, typically made of galvanised steel, between 1 and 2mm 

thick and come in a variety of designs, typically with ridges along its length. They are 

commonly mounted in a ‘bar and bracket’ spacer kit, as shown in Figure 3. In mounting, the 
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top of the bracket is inserted into the ‘bar’, a U-shaped metal stud, and the bottom of the 

bracket is screwed directly to the bottom metal sheet, while the bar is screwed to the top 

sheet.  

 

Figure 3: Bar and bracket spacer kit; MCRMA (2013) 

Halters are T-shaped connectors, used in systems when the top sheets have a ‘standing seam’ 

profile. Their top portion is inserted in the ridges of the top sheet as shown in Figure 4, and 

they are commonly screwed directly to the liner/decking. They are most commonly made of 

aluminium, however steel or plastic are also used. The maximum height of this spacer kit is 

200mm. In roofs of greater depth, the halters are connected to top hat beams (purlins), as 

shown in Figure 5. Both types of point-to-point connectors can be found in the same roof 

structureto further increase depth; this is shown in in Figure 6. 
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Figure 4: Halter spacer kit, with standing seam top sheet 

 

 

 

Figure 5: Halter spacer kit with top-hat purlin 
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Figure 6: Combined halter and bar and bracket spacer kit 

2.4 ROOF SYSTEM SPECIFICATIONS 

One of the most common dual leaf roof systems is shown in Figure 7 (MCRMA Roof System 

Specification 1). It consists of two corrugated metal panels (a ‘top sheet’ and a ‘liner’ at the 

bottom in the same orientation), with a spacer kit (halters in this case), and a single layer of 

mineral wool. The rafter spacing is typically between 1m and 2.4m. The large beams at the 

base are the rafters of the building on which the roof is installed. All systems are mounted 

onto rafters, however this is typically not the case for laboratory tests of sound insulation; 

since the aim is to predict laboratory performance, rafters are not considered for acoustic 

modelling.  
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Figure 7: MCRMA Roof System Specification 1; MCRMA (2013) 

 

Figure 8: MCRMA Roof System Specification 2; MCRMA (2013) 
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The roof system shown in Figure 8 has an additional high density board between the liner and 

spacer (halters with top-hat purlins), and multiple layers of infill. When multiple layers are 

used, they tend to differ in density and can be combinations of soft quilts and hard slabs. 

Figure 9 shows a roof system specification which is the same as Spec. 2, but with perforated 

decking. 

 

 

Figure 9: MCRMA Roof System Specification 3; MCRMA (2013) 
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Figure 10: MCRMA Roof System Specification 4; MCRMA (2013) 

 

Spec. 4 roofs, as shown in Figure 10, are similar to Type 1, but have a decking sheet instead 

of a liner, at a 90 degree orientation from the top sheet. 

Spec. 5 roofs are as Spec. 4, but with multiple layers of infill and/or high density boards. The 

spacer kit in the example in Figure 11 is mounted directly on a mineral wool slab as opposed 

to a metal sheet. 

In all of the above roofs, 5-10mm sheets of rubber are often introduced to increase the overall 

mass and improve acoustic performance. These can be single layers, or multiple layers 

sandwiched between high density boards.  



16 

 

 

 

Figure 11: MCRMA Roof System Specification 5; MCRMA (2013) 

Rooflights are perhaps the simplest structures, where all sheets are made of glass-reinforced 

plastic (GRP), of mass per unit area between 2 and 5 kg/m
2
, with no absorptive layers in the 

cavity, except for a thin, clear membrane that has little impact on the transmission of sound. 

Liner sheets can be flat as well as corrugated. The top and liner sheets are secured with bolt 

fasteners. 

 

Figure 12: Rooflight cross-section; MCRMA (2013) 
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Figure 13: Factory-made composite cross-section; MCRMA (2013) 

Composites, shown in Figure 13, are roof structures with polyurethane (or similar) filler (the 

core) injected between two profiled metal sheets. They typically have profiled steel or 

aluminium sheets of smaller thickness than other systems, around 0.5mm, and smaller depth, 

especially for the liner.  

2.5  DUAL LEAF PARTITIONS 

Although the main focus of this thesis is the modelling of profiled metal constructions, there 

is value in studying simpler constructions as an intermediate step so as to reveal more clearly 

the influence of certain features. Double glazing and light weight plasterboard partitions are 

common and widely studied constructions, for which laboratory measured transmission loss 

data is available. 

Double glazing partitions consist of two glass layers separated by an empty cavity, filled with 

either air, a gas, or a vacuum for higher insulation. Any framework is typically confined to 

the outer edges of the structure, so that the geometry for the bulk of the partition is simple. 

The absence of cavity infill and framework make double glazing partitions an ideal candidate 

starting point before attempting to model more complex dual leaf structures. 
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Drywall partitions consist of, at a minimum, two plasterboard sheets (of thicknesses of 

around 10-15mm) separated by a cavity and connected by framework. In the majority of 

cases, and especially for high performance acoustic partitions, the cavity is filled with one or 

more sheets of fibrous insulation, like mineral wool or glass wool. The framework in the bulk 

of the partition typically consists of rectangular sections formed by studs, made of either 

timber or aluminium, with vertical studs at, commonly, 600-900mm spacing, and screwed to 

the panels at regular intervals. As such, the studs can be said to be in rigid contact with the 

plasterboard panels at the location of the screws. In most cases, plasterboard partitions have 

flat panels and low density mineral wool infill which make them more amenable to 

modelling. 

2.6 CONCLUSIONS 

In this chapter, all the common components of roof structures were described, with details 

provided by the MCRMA, as well as key details of plasterboard and glazing partitions.  

The roof systems under study are composed of two corrugated panels with various profile 

types, most commonly with a trapezoidal or ribbed shape. They contain cavity infill that 

ranges from soft quilt to hard, high density slabs of mineral or glass wool. Many roof 

structures examined have multiple layers of infill material. High density boards, cement and 

plasterboard, are also used in high performance roof constructions, as well as rubber matting. 

Spacer kits are structural elements which connect the top and bottom metal sheets. Two types 

of point-to-point connectors are commonly used, halters and brackets, which have different 

geometries and installation details. Halters are used with standing seam panels, which are 

ribbed panels of high depth, and are at times mounted on top of top-hat purlins (beams with a 
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top-hat profile). Brackets are commonly mounted as part of a ‘bar and bracket’ system, with 

their top portion inserted into a steel stud (the ‘bar’).  

In summary, the elements present in roof structures (and other dual leaf structures) which will 

need to be addressed to produce a complete modelling framework, are: 

 Profiled metal panels, with trapezoidal or ribbed geometry 

 Mineral wool and glass wool infill 

 Multiple, layered materials 

 High density boards 

 Rubber/damping mats 

 Point-to-point connectors – T-shaped ‘halters’ and L-shaped ‘brackets’ – in spacer 

kits which can include intermediate beams 

Most of these features will need to be addressed in order to produce a complete model of 

their behaviour, so in the following chapter, the relevant literature is surveyed to determine a 

suitable approach. 

 

 

  



20 

 

3 LITERATURE REVIEW 

In this chapter, the literature relating to the modelling of multilayer and dual leaf roof 

structures is reviewed, including existing approaches to corrugated and profiled metal sheets, 

fibrous infill and point-to-point connections. 

3.1 OVERVIEW OF MODELLING TECHNIQUES 

A survey of the existing literature revealed many techniques, and their relative benefits and 

drawbacks, for evaluating acoustic transmission through various common building elements. 

The models fall broadly within two categories: deterministic (analytical or numerical) and 

statistical. These are suited for different purposes, depending on whether one aims to 

reproduce the entire sound insulation measurement environment, a realistic finite structure in 

isolation, or an idealised and simplified equivalent. 

Deterministic approaches include analytical and numerical models. These vary in their 

assumptions, depending on how many features they include, whether they are investigating 

finite or infinite geometries, or resonant and non-resonant transmission. Analytical models 

are useful design tools which give the most direct access to relationships between geometry, 

material properties and transmission loss and other acoustic parameters.. Often their 

computational cost is low compared to other approaches. In practice,  for anything other than 

simple geometries and systems, they often involve many variables, infinite summations, and 

operations that can only be evaluated numerically. This makes it difficult to derive useful 

relationships between the parts of a system other than by carrying out a parametric survey. 

The Transfer Matrix Method (TMM) is one such framework, outlined in Section 3.5. The 

TMM models an arrangement of layers via ‘transfer matrices’, which represent the 

relationship between field variables either side of a single layer. The Finite Element Method 
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(FEM) is a powerful tool, in which all aspects of a system are modelled deterministically by 

subdivision of the entire domain into smaller elements. Its application to building acoustics, 

and in particular in the determination of sound insulation, has been limited to low frequency, 

especially when simulating the test rooms as well as the structure (Maluski & Gibbs 2000), as 

the computational cost increases with frequency and size of the geometry, due to the required 

increase in resolution. Attempts to improve computational efficiency in this domain have 

been carried out, among others by Brunskog and Davidsson (2004)who combined FEM with 

wave-based methods of determining the room response in acoustic transmission rooms to 

reduce the number of elements. FEM is also a popular choice for numerical validation of 

models, as it allows complete control over the variables and assumptions involved. Numerical 

methods like these can give accurate answers and allow freedom to determine all inputs at the 

cost of decreased computational efficiency and lack of access to the direct relationships 

between inputs and outputs;they act effectively as black boxes.  

Statistical models, such as Statistical Energy Analysis (SEA), are based on statistical 

assumptions about the nature of the systems involved and the energy transmission 

mechanisms. SEA features extensively in Hopkins (Hopkins 2007) and Craik and 

Smith(2000), and has shown to be a reliable modelling tool. It is particularly suited to 

problems with a large number of interacting elements which are not amenable to analytical 

solutions or simulations. SEA can be used as a design tool to identify the influence of 

different paths to total sound transmission. This method can work very well in cases where 

the modal density is high, so that contributions from different sources and paths can be said 

to add incoherently. Deterministic approaches, tend to be less reliable at higher frequencies as 

their accuracy is undermined by the effect of small variations in parameters, and uncertainties 

related to the determination of material properties and edge conditions of a real structure. 
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3.2 DUAL LEAF STRUCTURES 

Of particular importance to the aims of this thesis is the ability to predict sound insulation for 

dual leaf constructions and therefore in this section the development of relevant theories is 

reviewed. Early theoretical work on sound transmission through dual leaf structures was 

carried out by London (1950). Assuming layers of infinite extent, London modelled the 

normal incidence transmission loss through parallel plates in bending separated by a cavity, 

finding it was not sufficient to predict performance measured in a reverberant transmission 

suite. To overcome some of the limitations of the infinite model, modal analysis was 

introduced that accounts for modes resulting from finite panel and room sizes with various 

termination conditions. Classical modal models of sound transmission problems were 

formulated to calculate transmission of reverberant sound through single plates and dual leaf 

structures of finite size (Sewell 1970). This approach yielded insights into the mechanisms of 

sound transmission, with regards to the simple cases considered. Modal density increases 

with frequency; each sub-system introduces an additional modal expansion, leading the 

computational cost to increase with frequency and number of panels.  

In contrast to more detailed models, Sharp devised a prediction scheme (Sharp 1978) which 

is simple to implement and, as such, well known and applied in acoustic engineering. It is 

based on theory for infinite plates, and splits the frequency range of single and dual leaf 

structures into distinct regions that determine the slope per octave of reverberant transmission 

loss. It identifies, for single plates, the mass region at low frequency with 6dB per octave 

increase, a critical (or coincidence) frequency where transmission loss dips more or less 

sharply depending on internal panel damping, and the region above this frequency where it 

increases again. Each region is described by a single equation that describes diffuse field 

sound transmission loss. For dual leaf structures, the combined behaviour results in the mass-
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air-mass resonance due to the air cavity between the two panels acting as a lumped spring at 

low frequency, and greater slope between the m-s-m resonance and the critical frequencies of 

both panels. With Sharp’s formulation, the diffuse transmission loss of a double wall can be 

obtained approximately by knowing the transmission loss of each individual panel. This 

approach can be used in the design stage, but is limited to single and dual leaf walls with one 

layer of absorption.  

3.3 POINT CONNECTED STRUCTURES 

Structural connections in dual leaf systems (studwork, framework, connectors, and fasteners) 

are very common, being essential for installation, mounting and support of wall and roof 

systems. A number of existing models assume that transmission through studwork and 

through the bulk of the structure are separate paths, so that the energy transmission through 

each portion can be obtained independently. This assumption is reasonable in cases where 

modal density is high. There are plenty of examples of this approach in Cremer et al. (2005) 

and Vigran (2008). A model of this kind for point and line connections was developed and 

adapted to the Transfer Matrix Method (TMM) framework (described in the next section) by 

Vigran (2010), which accounts for periodicity effects of the framework, though, crucially, not 

for the interaction between the structure-borne and airborne paths. 

Many analytical models for infinite double plate structures with periodic framework have 

been developed. The approaches listed here make use of Fourier transforms of the equations 

of motion for plates in bending. Geometrically periodic components are introduced by way of 

Dirac comb functions, which are evaluated using the Poisson summation formula to represent 

them as harmonic series; this approach enables solutions to be found more easily. Lin and 

Garrelick (1977) modelled plates connected by spaced ribs, which is typical of lightweight 

partitions. Brunskog (2005), further, accounted for the finite cavities which are created by 
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structural ribs. A similar approach was taken by Xin and Lu (2011), in modelling double 

plate structures with a square grid of beams connecting both plates. Roof structures tend to 

have point-to-point connections, as has been shown in the previous chapter, so the work of 

Takahashi (1983) is particularly relevant, as it describes a model of point-excited double 

plates connected periodically by thin rods, which includes the rotational and compressional 

stiffness of the structural connectors. Takahashi found significant influence of connectors on 

transmission, with decreased stiffness being associated mostly but not always with lower 

transmission. Obtaining useful design parameters from the derived mathematical expressions 

is often not possible, even for geometrically simple structures, given the density of modes 

related to the periodic framework is often very high for common stud and connector spacings.  

3.4 PROFILED PLATES 

A key feature of the cladding constructions to be modelled is that the inner and outer leaf 

consist invariably of profiled metal panels. Any computational solution will need to account 

for such profiling and the relevant literature is therefore reviewed in this section. The motion 

of solid plates is often approached through ‘thin plate’ solutions, i.e. solutions to the bending 

wave equation (Cremer et al. 2005), which assumes the thickness of the plates is significantly 

smaller than the bending wavelength. When plates in a multilayer configuration are in contact 

with other solids, it is necessary to account for shear and longitudinal waves in each medium 

to characterise their combined behaviour. This can be achieved by treating the layer as a 

linear elastic solid (Folds & Loggins 1977), an approach that will also be implemented in the 

course of this work. The most popular, and simplest, method of modelling corrugated or 

ribbed panels is by constructing an equivalent flat, orthotropic thin plate in bending. This 

approach is described by Cremer (Cremer et al. 2005), with derivations of the bending 

stiffness formulas for sinusoidal and periodically ribbed plates. The bending stiffness of 
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trapezoidal profile plates can be found in Bies and Hansen (1996), and it can derived more 

generally for any geometry by calculating the area moment of inertia of the plate section. 

There are some examples in the literature of applications of this theory. Often there are large 

differences between the measured performance of profiled plates and equivalent orthotropic 

plates when predicting performance of single panels, e.g. in (Ng & Zheng 1998). Lam and 

Windle (1993) identified profile related resonances that changed with profile dimensions, that 

were independent of edge conditions. They were able to reproduce the location of resonances 

by finite element analysis of the plate vibration, concluding that the dips in transmission loss 

observed in diffuse field measurements were predominantly due to these vibrational modes. 

Fully periodic analytical approaches have been mostly limited to ribbed structures, as the 

motion of periodically spaced beams on plates is more tractable than taking into account a 

trapezoidal geometry, which can be more easily modelled with FEM. Early classically 

derived models of transmission of sound through infinite, periodically stiffened plates were 

formulated by Mace (1980), for point as well as airborne excitation, using Fourier transforms 

of the governing equations. As for the already mentioned models of periodic double plate 

structures, periodic elements are accounted for using Poisson summation to represent spatial 

Dirac comb functions as sums of complex exponentials. A similar route was taken by Maxit 

(2009) for beam stiffened plates with the inclusion of beam rotations, and Sakagami and Gen 

(1999) for the reflection of sound from ribbed panels with a back cavity. Maxit, among 

others, concludes that the behaviour at low frequency, where the bending wavelength is 

greater than the rib spacing, can be approximated by an equivalent flat orthotropic plate. 

There are, however, several limitations to comparing infinite, perfectly periodic models to 

real panels, some of which outlined by Mayr and Gibbs (2011) in their analysis of 

experimental results of ribbed floor constructions, showing that strong periodicity effects 

predicted by an exactly periodic model are rarely seen in practice. A review of the relevant 
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literature by Brunskog (Brunskog & Hammer 2000) suggested nearly-periodic models as an 

avenue to reduce this discrepancy, which was followed by the development of a method, 

applied to periodically ribbed panels, to account for small deviations from a perfectly 

periodic system, by introducing a randomly distributed phase disturbance in each space-

harmonic (Brunskog 2004). 

3.5 THE TRANSFER MATRIX METHOD 

Multiple layers of infill are often present in roof structures. A suitable framework that can 

account for this is the transfer matrix method (TMM). The TMM is a wave-based method of 

obtaining the transmission, reflection or absorption of plane waves impinging on arbitrarily 

layered, laterally infinite systems, and can be found in a variety of applications. A detailed 

description of the method applied to acoustic fields can be found in Brouard et al. (1995) and 

Lauriks et al. (1992). A number of different media can be modelled, including poroelastic 

layers, and anisotropic materials. Allard and Atalla (2009) present a good overview of the 

method in its application to the calculation of sound insulation and absorption, including 

extensions and corrections to increase its predictive power. The TMM is flexible and has 

been used to characterise dual leaf wall systems, sandwich structures and other building 

acoustics. Layers in a TMM modelled system are assumed to be of infinite lateral extent, so 

on its own it cannot account for modal behaviour in the lateral dimensions, as well as 

structural connections, profiled panels and, in general, discontinuities along more than one 

dimension. The TMM can be combined with other modelling techniques to overcome its 

shortfalls. Dijckmans and Vermeir (2013) combined a wave-based model of laboratory rooms 

(with rectangular geometry) with the Transfer Matrix approach for structures with multiple 

layers including dual leaf walls, as well as a modal approach for plates; this model replicated 

as closely as possible the sound insulation measurement, with point sources placed in the 
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source room to simulate a loudspeaker excitation. Low frequency behaviour in particular was 

captured very accurately, as well as the effect of panel edge conditions.  

In the classical TMM method, the structures modelled extend to infinity in the plane. Short of 

modelling the measurement rooms as in this case, an important development was the 

introduction of finite size and diffuse field corrections. Often in the prediction of acoustic 

properties of single leaf walls in a diffuse field, the angle of incidence of waves onto the 

medium is artificially limited to around 80 degrees, on the assumption that grazing incidence 

waves are less likely. Two papers have explored this further, and introduced more refined 

correction factors. Villot et al. (2001) developed a spatial windowing correction by 

considering the radiation efficiency of a finite, rectangular structure. Kang et al. (2000), via 

ray tracing models, have determined the distribution of incident energy with angle at the 

walls of different sized rooms, determining an angle dependent weighting with a similar 

effect on transmission loss as with spatial windowing. These corrections have rendered the 

TMM useful in assessing non-resonant transmission of even small systems, particularly when 

results are averaged in fractional octave bands, as with most sound insulation measurements, 

though they are artificial in that they only affect the incident and transmitted fields as 

opposed to the vibration of the structure itself. 

3.6 POROUS MATERIAL MODELS 

Porous materials such as mineral fibres and open-celled foams are omnipresent as cavity 

infill in wall and roof system, for their acoustic as well as thermal isolation properties. A 

building acoustics model would not be complete without the inclusion of such materials, with 

theoretical or empirical models of their acoustic behaviour. 
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The simplest approaches tend to assume a rigid, fixed frame, so that they only need to deal 

with the transmission in the fluid portion of the material. A classical approach, the Rayleigh 

model, assumes that materials are a series of parallel fluid-filled cylinders surrounded by a 

rigid frame. Solving the Navier-Stokes equation, which includes viscous effects, leads to 

relationships between acoustical properties, flow resistance, density and speed of sound in the 

medium. Delany and Bazley discovered empirical relationships between flow resistivity and 

the acoustical properties of a range of fibrous materials (Delany & Bazley 1970). Their 

formulas are still widely used today in a range of applications. Their approach was later 

refined by separating the low and high frequency ranges (Miki 1990). Attenborough also 

developed a four-parameter analytical model for rigid-framed porous materials 

(Attenborough 1983). The contexts in which these equivalent fluid models can be applied 

range from room acoustics to the attenuation of duct insulation. This type of theory is often 

limited to materials of low density and stiffness, and which are not mounted or bonded to 

solid panels, as they lack the necessary stress components. Any of these methods may be 

used within the modelling frameworks presented in this work to characterise the behaviour of 

porous materials in the cavity of a dual leaf wall. 

Biot (1956) developed a complete theory for porous material acoustics, to model both fluid 

and solid stages of a porous material (its poroelastic behaviour) and the interaction between 

these stages. A number of assumptions which apply to fibrous materials allow for a 

simplification of the requirements for properties, which could be sufficient to provide 

reasonable accuracy in the prediction of full, built-up systems with mineral or glass wool 

infill. These principles are summarised in Allard and Atalla (2009).  

It has been seen that many of the elements identified in the introduction are important in the 

modelling of profiled panel constructions and have been studied in various contexts. 
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However, these elements have not previously been brought together. In the following chapter 

the key building blocks of the model will be described in more detail, before being combined 

into an overall modelling framework in the later chapters. 

4 BUILDING BLOCKS 

This chapter describes the individual building blocks required to model a full partition, roof 

system or multi-layer structure. Key equations and derivations are shown where necessary, so 

that the reader is able to reproduce the results. 

4.1 THE TRANSFER MATRIX METHOD 

4.1.1 Introduction 

This section describes the transfer matrix method (TMM), including a well-established 

approach to modelling layered systems with different material types, using interface matrices 

to relate fluids, porous and poroelastic materials, viscoelastic solids, and thin plates or 

membranes. A comprehensive paper on the method was written by Brouard et al. (1995) – 

similar notation is used in this section.  

4.1.2 Wavenumber domain 

Figure 14 shows the surface of the modelled system in grey, in relation to spatial coordinates. 

A plane wave's direction is represented by the wavenumber vector 𝑘, which has a fixed 

magnitude at each frequency, dependent on the medium, and is described over the course of 

this report in terms of the spherical coordinates, 𝜃 and 𝜙. 𝜃 is known as the angle of 

incidence, where 𝜃 = 0 represents normal incidence, and 𝜃 =
𝜋

2
rads represents grazing 
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incidence. 𝜙 is the angle of polarisation, which describes the orientation of the wave in the xy 

plane. 

 

Figure 14: Dimensions and wavenumber vector �⃗� , showing Cartesian coordinates x, y, z and spherical coordinates 𝜙 and 𝜃  

The components of the wavenumber vector are: 

 𝑘𝑥 = 𝑘 sin 𝜃 cos𝜙 (4.1) 

 𝑘𝑦 = 𝑘 sin 𝜃 sin𝜙 (4.2) 

 𝑘𝑧 = 𝑘 cos 𝜃 (4.3) 

The relationship between these components satisfies the Helmholtz equation for a given 

periodic pressure distribution 𝑝: 

 (∇2 + 𝑘2)𝑝 = 0 (4.4) 

The wavenumber in the medium 𝑘 is given by the sum of the squares of each component: 

 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 (4.5) 
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4.1.3 System geometry 

 

 

Figure 15: A layered system with n layers in the Transfer Matrix framework  

The transfer matrix method is a wave-based model in which matrices are used to represent 

transformations within a component of a system. In this thesis, a variant of the TMM is used 

that applies to modelling transmission of acoustic waves through systems of many laterally-

infinite layers.  

Consider the geometry shown in Figure 15, which is a system of 𝑛 layers, which may be 

different media, surrounded by semi-infinite fluid spaces either side. The TMM 

representation is two dimensional, as it considers the plane of the incoming wave, along z 

(through the layers) and x (along the layers). The surrounding fluid is air, with density 

𝜌0 = 1.213 kg/m3 and speed of sound 𝑐0 = 343m/s. An incident plane wave 𝑝𝑖 of 

amplitude equal to 1 is impinging on the leftmost layer, and takes the form: 

 𝑝𝑖 = 𝑒𝑖(𝑘𝑥0𝑥+𝑘𝑧0𝑧)𝑒−𝑖𝜔𝑡 (4.6) 

with wavenumber 𝑘0
2 = 𝑘𝑥0

2 + 𝑘𝑧0
2
, where 𝑘0 =

𝜔

𝑐0
. A plane wave is reflected, and one 

transmitted from the rightmost layer. The trace wavenumber 𝑘𝑡 is the same for all layers, 

being forced by the incident wave 𝑘𝑡
2 = 𝑘𝑥

2
0
, so that only the z components of wavenumber 
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vary between layers. A transfer matrix T is a matrix of size N by N which relates field 

variables at one side of a layer (point 𝑀1 for layer 1) to the field variables at the other side 

(point 𝑀2 for layer 1), where N is the number of field variables in the medium. 

𝑉(𝑀1) = 𝑇1 ×  𝑉(𝑀2)    

Where 𝑉(𝑀1) and 𝑉(𝑀2) are field variable vectors that define the medium (for a fluid, these 

are pressure and velocity) at, respectively, points 𝑀1 and 𝑀2. In this framework, more layers 

can be added by simply multiplying their transfer matrices together, provided that the 

matrices are of compatible dimensions: 

𝑉(𝐴) = 𝑇1 × 𝑇2 × …× 𝑇𝑛 ×  𝑉(𝐵) 

where 𝑇1, 𝑇2… are the transfer matrices for each layer, and 𝑛 is the total number of layers in 

the system. 

4.1.4 Fluid layers 

In a fluid, the field variables are pressure and velocity, so the vector 𝑉𝑓 (superscript f 

denoting a fluid) becomes: 

𝑉𝑓 = [
𝑝
𝑣𝑧

] 

where 𝑝 is pressure and 𝑣𝑧 is velocity in the z direction. The transfer matrix for a fluid layer 

is a 2 by 2 matrix 𝑇𝑓: 

 

𝑇𝑓 =

[
 
 
 cos 𝑘𝑧𝑑 𝑗

𝜔𝜌

𝑘𝑧
sin 𝑘𝑧𝑑

𝑗
𝑘𝑧

𝜔𝜌
sin 𝑘𝑧𝑑 cos 𝑘𝑧𝑑 ]

 
 
 
 (4.7) 
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where 𝜌 is the fluid density, and 𝑑 is the layer thickness in the 𝑧 direction, and 𝑘𝑧 is the 𝑧 

component of the wavenumber, given by: 

 
𝑘𝑧 = √𝑘2 − 𝑘𝑥

2
0
 (4.8) 

4.1.5 Elastic solids 

In a viscoelastic solid layer there are four field variables in total: longitudinal and shear stress 

together with their associated velocities. The field variable vector for a solid, 𝑉𝑠, is then:  

 𝑉𝑠 = [𝑣𝑥 𝑣𝑧 𝜎𝑧𝑧 𝜎𝑥𝑧]𝑇 (4.9) 

𝑣𝑧 and 𝑣𝑥 are the 𝑧 and 𝑥 components of velocity, 𝜎𝑧𝑧 and 𝜎𝑥𝑧 are, respectively, the 

longitudinal and shear components of stress. There are then two wave types in the solid 

medium, which are characterised by a longitudinal wavenumber 𝑘 and a shear wavenumber 

𝜅; these are found by knowing the longitudinal and shear wavespeed in the material: 𝑘 =
𝜔

𝑐𝑙
 

and 𝜅 =
𝜔

𝑐𝑠
. The z component of these wavenumbers are obtained by applying the usual 

relations that satisfy the Helmholtz equation: 

 
𝑘𝑧 = √𝑘2 − 𝑘𝑡

2 (4.10) 

 
𝜅𝑧 = √𝜅2 − 𝑘𝑡

2 (4.11) 
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The viscoelastic solid transfer matrix size is a four by four, relating longitudinal and shear 

stress and velocity either side of the layer. The elements 𝑎𝑖𝑗 of the transfer matrix are given 

by Folds and Loggins (1977), and are shown in Table 2. 

𝑎11 = 𝐺 cos 𝑃 + (1 − 𝐺) cos𝑄 

𝑎12 = 𝑖 [
(1 − 𝐺) sin 𝑃

𝐸
] − 𝑖𝐹𝐺 sin𝑄 

𝑎13 = −(
1

𝐻
) (cos𝑃 − cos𝑄) 

𝑎14 = −(
𝑖

𝐻
) [(

sin 𝑃

𝐸
) + 𝐹𝑛 sin𝑄] 

𝑎21 = 𝑖𝐸𝐺 sin𝑃 −
𝑖[(1 − 𝐺) sin𝑄]

𝐹
 

𝑎22 = (1 − 𝐺) cos 𝑃 + 𝐺 cos𝑄 

𝑎23 = −(
𝑖

𝐻
) (𝐸 sin 𝑃 +

sin𝑄

𝐹
) 

𝑎24 = 𝑎13 

 

𝑎31 = −𝐻𝐺(1 − 𝐺)(cos 𝑃 − cos𝑄) 

𝑎32 = −𝑖𝐻 {
[(1 − 𝐺)2 sin 𝑃]

𝐸
+ 𝐹𝐺2 sin 𝑄} 

𝑎33 = 𝑎22 

𝑎34 = 𝑎12 

𝑎41 = −𝑖𝐻 {𝐸𝐺2 sin 𝑃 +
[(1 − 𝐺)2 sin𝑄]

𝐹
} 

𝑎42 = 𝑎31 

𝑎43 = 𝑎21 

𝑎44 = 𝑎11 

𝐸 =
𝑘𝑧

𝑘𝑡
, 𝐹 =

𝜅𝑧

𝑘𝑡
, 𝐺 =

2𝑘𝑡
2

𝜅2 , 𝐻 =
𝜌𝜔

𝑘𝑡
, 𝑃 = 𝑘𝑧𝑑, 𝑄 = 𝜅𝑧𝑑 

𝜌 and 𝑑 are the density and thickness of each layer 

Table 2: Values of the four by four elastic solid transfer matrix 𝑎𝑖𝑗 
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Sandwich structures can be modelled this way, as continuity of shear stress and velocity at 

the boundaries between solids is accounted for. 

4.1.6 Porous layers 

Porous media are discussed in more depth in Section 4.2. Porous materials can be modelled 

in two ways: 

 As equivalent fluids 

 As poroelastic materials (that is, including waves travelling in the solid portion of the 

material) 

If they are treated as equivalent fluids, the transfer matrix is exactly the same as that for a 

fluid, except the impedance and wavenumber will generally be complex, in order to account 

for energy loss within the material, through viscosity and other mechanisms.  

If they are treated as a poroelastic medium, material properties of the frame are required and 

play an active role in the transmission of sound. In addition to longitudinal waves in the fluid 

portion, longitudinal and shear waves in the solid portion must be accounted for. This, in 

total, leads to three stress variables (longitudinal stress in the fluid, and longitudinal and shear 

stress in the framework), and three components of velocity: 

 𝑉𝑝𝑒 = [𝑣𝑥
𝑠 𝑣𝑧

𝑠 𝑣𝑧
𝑓

𝜎𝑧𝑧
𝑠 𝜎𝑥𝑧

𝑠 𝜎𝑧𝑧
𝑓  ]

𝑇
 (4.12) 

The superscripts s and f indicate, respectively, solid and fluid components, and superscript 𝑝𝑒 

indicates the layer is poroelastic. The transfer matrix for a poroelastic layer, 𝑇𝑝𝑒, is a 6 by 6 

matrix, relating field variables either side of the layer. The elements of the matrix can be 

found in the appendix to Lauriks et al. (1990). 
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4.1.7 Thin plates 

Within the transfer matrix scheme, thin plates can be modelled with a two by two matrix, 

similarly to a fluid. The elements of the matrix include the wall impedance term, 𝑍𝑝: 

 
[
𝑝0

𝑣0
 ] = [

1 𝑍𝑝

0 1
] [

𝑝1

𝑣1
 ] (4.13) 

The wall impedance term and the vibration of thin plates using Kirchhoff theory is discussed 

in more detail in Section 4.3.  

The bottom row of the transfer matrix enforces the condition that normal velocity is equal 

either side of the plate, 𝑣0 = 𝑣1. There is no continuity of shear stress and velocity, meaning 

two or more plates bonded to each other cannot be modelled this way as the shear stress 

continuity condition is not enforced.  

4.1.8 Interface matrices 

In systems of layers with different types of media (e.g. solids and fluids) with differing length 

of field variable vectors, the transfer matrices cannot be simply matrix multiplied. The system 

of equations can instead be solved with the use of interface matrices. These change the size of 

each transfer matrix to fit the neighbouring layers and enforce the appropriate continuity 

conditions between different media. At the interface between two layers, 𝑖 and 𝑗, continuity 

conditions are applied with the following matrix equation: 

 𝑉𝑖𝐼𝑖𝑗 + 𝑉𝑗𝐽𝑖𝑗𝑇
𝑗 = 0 (4.14) 

Where 𝐼 and 𝐽 are the interface matrices.  
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For the boundary between a fluid and a solid, shear stress is set to zero, and longitudinal 

pressure and velocity are preserved, resulting in the following matrices: 

 
𝐼𝑓𝑠 = [

0 −1
1 0
0 0

] , 𝐽𝑓𝑠 = [
0 1 0 0
0 0 1 0
0 0 0 1

 ] (4.15) 

The 𝑓𝑠 subscript indicates an interface from a fluid to a solid. 

For brevity, the reader is referred to Brouard et al. (1995) for a list of interface matrices.  

4.1.9 Termination conditions 

In order to solve the system of equations, appropriate termination conditions must be set, 

depending on whether the system is rigidly backed or if surrounded on both sides by semi-

infinite air layers. 

A rigid termination can be enforced by setting particle velocity to zero at the rigid end of 

layer. This will be relevant to modelling conditions in an impedance tube measurement setup 

(see Section 4.2.6 for its application in this work), as well as, for instance, for modelling the 

sound absorption characteristics of wall-mounted panels. The condition is expressed with a 

binary matrix 𝑌, applied to the field at the point 𝐵 (as per Figure 15): 

 𝑌 × 𝑉𝑓(𝐵) = 0 (4.16) 

For an arbitrary layered configuration using the full elastic, poroelastic or fluid transfer 

matrix, the rigid termination condition depends on whether the final layer is poroelastic, 

elastic or fluid.  



38 

 

𝑌𝑝

= [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 
𝑌𝑠 = [

1 0 0 0
0 1 0 0

] 𝑌𝑓 = [0 1] (4.17) 

When it is necessary to obtain the sound transmission through an element, the model must 

instead include semi-infinite fluid layers either side of the structure. For this purpose, an 

additional condition is included: 

 
[1

𝑍0

cos 𝜃
] × 𝑉𝑓(𝐵) = 0 (4.18) 

Where 𝑍0 is the characteristic impedance of the surrounding fluid (air): 𝑍0 = 𝜌0𝑐0, and 𝜃 the 

angle of incidence. The 
1

cos𝜃
  term applies to radiation of an infinite structure; the radiation of 

a laterally infinite system into a finite sized opening is discussed in Section 4.1.11. 

4.1.10 Impedance, Transmission, Reflection and Absorption coefficients 

A global matrix 𝐷′ is formed which satisfies all boundary conditions. The elements of the 

matrix (which depend on the number and types of layers) can be found in Brouard et al. 

(1995), and contain all transfer matrices and interface matrices, as well as the termination 

conditions. 𝐷′ is used to determine the surface impedance, 𝑍𝑠: 

 
𝑍𝑠 = −

|𝐷1
′|

|𝐷2
′ |

 (4.19) 

Where |𝐷1
′| and |𝐷2

′ | are the determinants of the 𝐷′ matrix where, respectively, the first and 

second columns have been removed. From 𝑍𝑠, three commonly measured acoustic properties 

can be obtained: 
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 The reflected pressure amplitude 𝑹,  

 
𝑅 =

𝑍𝑠 cos 𝜃 − 𝑍0

𝑍𝑠 cos 𝜃 + 𝑍0
 (4.20) 

where 𝑍0 is the characteristic impedance of the surrounding medium (generally, air) 

 The absorption coefficient 𝜶,  

 𝛼 = 1 − |𝑅|2 (4.21) 

 The transmitted pressure amplitude 𝑻, 

 
𝑇 = (1 + 𝑅)

|𝐷𝑁−1
′ |

|𝐷1
′|

 (4.22) 

where |𝐷𝑁−1
′ | is the determinant of the 𝐷′ matrix with column 𝑁 − 1 (second to last) has 

been removed.  

The transmission coefficient, the ratio of incident to transmitted power, is given by the square 

of the transmitted pressure amplitude: 

 𝜏 = |𝑇|2 (4.23) 

The diffuse field transmission loss is obtained by integrating the transmission coefficient over 

a hemisphere: 

 

𝜏diff(𝜔) =
∫ ∫ 𝜏(𝜔, 𝜃, 𝜙) sin 𝜃 cos 𝜃 𝑑𝜃𝑑𝜙

𝜋
2
0

2𝜋

0

∫ ∫ sin 𝜃 cos 𝜃 𝑑𝜃𝑑𝜙
𝜋
2
0

2𝜋

0

 (4.24) 
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Finally, the transmission loss in decibels, of particular interest to this thesis in making 

comparisons with available measured values, is given by the base ten logarithm of the 

transmission coefficient (either diffuse or angle dependent). 

 TL = −10 log10 𝜏 (4.25) 

4.1.11 Finite size corrections 

The transmission loss calculated using the transfer matrix method for infinite layers is 

generally much lower compared to laboratory diffuse field measurements, with differences in 

the order of 20 or 30 decibels, especially for dual leaf structures (see Figure 17). One cause of 

these differences is the fact that the source room pressure field is not perfectly diffuse, 

another is the particular radiation characteristics of the panels.  

 

Figure 16: Angle of incidence correction factor (Gauss) with two different values of 𝛽, compared to field incidence, and a 
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ray tracing model of sound energy at the walls of a reverberation room (H. Kang et al. 2000) 

 

Figure 17: Double glazing 1/3 octave band transmission loss; laboratory measurement versus TMM with no corrections 

(∞), Gaussian incidence (𝛽 = 1 and 2), and field incidence with a limiting angle of 78 degrees.  

A commonly used method of bringing the calculated transmission loss (or absorption 

coefficient) into agreement with laboratory measurement results is to limit the angle of 

incidence to an arbitrary angle close to grazing incidence. An angle of 𝜃 = 78° is often used, 

referred to as a field incidence correction, with some evidence suggesting it provides the a 

good fit with results. However, for dual leaf partitions and other multilayer systems it can 

give rise to unrealistic results, as shown in Figure 17 (red curve). Kang et al. (2000) proposed 

a distribution in incidence angles based on ray tracing models of rooms of different 

geometries, obtaining a Gaussian formula for weighting transmission loss: 

 𝐺(𝜃) = 𝑒−𝛽𝜃2
 (4.26) 
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Where 𝐺(𝜃) is the weighting as a function of incidence angle 𝜃. The term 𝛽 has a value 

between 1 and 2 depending on room characteristics. There is no formula to determine this 

value, although Kang obtained values for a small selection of room sizes.  

This term is applied to transmission loss when integrating over the hemisphere, resulting in 

the formula: 

 
𝜏diff, Gauss = 2 ∫ 𝐺(𝜃)𝜏(𝜃) cos 𝜃 sin 𝜃 𝑑𝜃

𝜋
2

0

 (4.27) 

 

Figure 18: Gaussian incidence (H. Kang et al. 2000) versus radiation efficiency correction (Villot et al. 2001) 

An approach taken by Villot et al. (2001), but also found in Cremer (2005), has been used to 

account for the effect of radiation efficiency of a finite, rectangular structure. The factor is 

referred to as a spatial windowing, and is only dependent on the lateral dimensions of the 

radiating structure.  
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The window is derived by considering a laterally infinite structure radiating through a finite 

rectangular area on the 𝑥𝑦 plane, of dimensions 𝐿𝑥 and 𝐿𝑦. The normal velocity 𝑣𝑛 over the 

plane has a distribution that, for a finite structure, depends on the edge contitions and type of 

excitation (point, line, plane wave, etc.). Independent of the velocity distribution, the radiated 

power 𝑊rad is obtained by integrating the pressure and velocity over the surface: 

 
𝑊rad =

1

2
Re (∫ ∫ 𝑝𝑣𝑛𝑑𝑥𝑑𝑦

𝐿𝑦

0

𝐿𝑥

0

) (4.28) 

Where 𝑝 is the pressure. Villot assumed the spatial distribution of 𝑣𝑛 to have the same form 

as the incident field, as is the case for infinite structures. On that basis, the expression for 

radiated power in terms of the trace wavenumber on the surface, 𝑘𝑡, and wave orientation 𝜙, 

is:  

 𝜎𝑟(𝑘𝑡 , 𝜙) =

=
𝐿𝑥𝐿𝑦

𝜋2
× ∫ ∫

1 − cos(𝑘𝑟 cos𝜓 − 𝑘𝑡 cos𝜙 𝐿𝑥)

[(𝑘𝑟 cos𝜓 − 𝑘𝑡 cos 𝜙)𝐿𝑥]
2

1 − cos(𝑘𝑟 cos𝜓 − 𝑘𝑡 cos 𝜙 𝐿𝑦)

[(𝑘𝑟 cos𝜓 − 𝑘𝑡 cos𝜙)𝐿𝑦]
2

2𝜋

0

𝑘0

0

d𝜓d𝑘𝑟 
(4.29) 

The integration over wavenumber 𝑘𝑟 is up to 𝑘0, to include all wavenumbers of propagating 

waves. The transmission coefficient obtained via the TMM (or other method) can then be 

adjusted by including 𝜎𝑟 into the diffuse field integration: 

 
𝜏diff, Gauss = 2∫ (𝜎𝑟 cos 𝜃)𝜏(𝜃) cos 𝜃 sin 𝜃 𝑑𝜃

𝜋
2

0

 (4.30) 

The frequency averaged radiation efficiency correction is compared to the incidence 

correction 𝐺(𝜃) in Figure 18. Both corrections have been applied simultaneously for 

comparisons with laboratory measurement results in Chapters 6 and 7. 
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4.1.12 Excitation mechanism 

The incident field in the TMM can be modified to include different types of excitation. Point 

excitation can be introduced and used to model impact noise reduction and rainfall. A point 

force input is modelled by decomposing the excitation force into its plane wave components, 

via spatial Fourier transform, and feeding each individually into the TMM calculation. An 

approach to modelling rain noise excitation, including obtaining the radiated power in a 

diffuse field, is shown in Appendix A. 

4.1.13 Conclusions 

In this section, the Transfer Matrix Method was described, detailing the ways in which 

different material types can be modelled and interfaced to each other in a layered system. 

Modifications to the basic formulation (Brouard et al. 1995) in order to produce a better fit 

with diffuse field laboratory measurements were shown, with spatial and incident angle 

windowing. 

4.2 POROUS MATERIAL MODELLING 

4.2.1 Introduction 

Porous materials feature in most cladding constructions, partly for acoustic and partly for 

thermal reasons, and it is therefore important to include their effect in any acoustic model. In 

this section, the main approaches are discussed.  

The solid portion of a porous material is referred to as its frame. An important characteristic 

of these materials is their porosity, 𝜙, which is a value from 0 to 1 indicating the ratio of fluid 

to frame, where 0.99 would indicate a high porosity material with 99% fluid and 1% frame. 
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This value is typical for commercially available “acoustic” foams and mineral fibres, and is 

not far from the value for even the highest density materials (>200 kg/m3) measured over the 

course of this work.  

Some relevant existing theoretical and empirical models for porous materials are described in 

this section. There are broadly two approaches: rigid-frame models and porous-elastic (or 

poroelastic) models. Rigid-frame models only deal with transmission through the fluid 

portion of the material. Poroelastic models include movement of the frame and interactions 

between fluid and frame. A simple experimental method was used to determine many 

material properties of fibrous materials from a single impedance tube measurement.  

4.2.2 Measurement method 

The acoustic properties of absorbent materials, such as effective wavenumber and impedance, 

surface impedance, transmission loss etc. are generally measured on a small scale using an 

impedance tube. Surface impedance and, consequently, the absorption coefficient can be 

obtained with the use of a single microphone, one frequency at a time, as detailed in ISO 

10534-1, or with two-microphones, over a broad frequency range, as described in ISO 10534-

2, with the sample in both cases being placed on one end of the tube. The effective 

impedance and wavenumber can also be measured directly using four microphones (Jung et 

al. 2008), where two microphones are placed either side of the sample, and obtaining the 

properties via a transfer matrix, knowing the transmitted and reflected pressure amplitudes. 

The measured properties are for a normal incidence wave, as the geometry of the tube 

dictates. In practice, this limits determination of elastic properties to locally reacting isotropic 

materials.  Nevertheless, the impedance tube results can be imported into TMM models of 

layered systems as will be described later.  
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4.2.3 Equivalent fluids 

An equivalent fluid model uses an adjusted speed of sound and density based on either 

theoretical considerations or empirical curve fitting. This type of model usually assumes that 

the frame is rigid, thereby neglecting transmission of shear and longitudinal sound waves 

through the frame itself. Unlike lossless fluids described in 2.1, porous layers have complex 

impedance and wavenumber, which give rise to losses within the material. 

4.2.4 Simple approaches 

At a first approximation, a porous absorber can be modelled as a series of parallel tubes. The 

resulting impedance and wavenumber based on the Rayleigh model (based on solutions to the 

Navier-Stokes equation for waves in a narrow tube) are: 

𝑧 =
𝑧0

𝜙
√1 − 𝑗

𝜎𝜙

𝜌0𝜔
 (4.31) 

𝑘 = 𝑘0√1 − 𝑗
𝜎𝜙

𝜌𝜔
 

(4.32) 

𝑘0, 𝑧0, and 𝜌0 are, respectively, the wave number, impedance and density of air (or of the 

surrounding fluid) and 𝜎 and 𝜙 are the flow resistivity (in Nsm−4) and porosity of the 

material. 

Delany and Bazley (1970) developed an empirical equivalent fluid model that is based on the 

observed relationship between measured surface impedance and airflow resistivity for a range 

of low-density, high porosity mineral fibres. The impedance and wavenumber of such 

materials can be predicted from the flow resistivity of the material. 



47 

 

𝑧 = 𝑧0(1 + 0.0571𝐸−0.754 − 𝑗0.087𝐸−0.732) (4.33) 

𝑘 = 𝑘0[0.0978𝐸−0.7 − 𝑗(1 + 0.189𝐸−0.595)] (4.34) 

Where 𝐸 =
𝑓𝜌0

𝜎
. The model has enjoyed extensive use in the field, and has been improved 

upon since its inception. Mechel (1988) split the parameters into low and high frequency 

regions for a better fit. Further corrections to the original model were introduced by Miki 

(1990), by constraining the values to be causal (important for time domain simulations), 

improving at the same time low frequency asymptotic behaviour  

Other rigid-frame analytical models, such as those proposed by Attenborough (1983; 2014), 

are not discussed here. While there is scope for increasing accuracy in modelling different 

types of porous materials, simpler models were considered sufficient. The drawback of fluid 

models, including the more advanced ones, is that mechanical coupling to adjacent materials, 

which can be important in the layered structures studied here, is not allowed for. 

Additionally, the improvement in accuracy from using more complex models would be 

overshadowed by other uncertainties when forming part of a multilayer structure.  

4.2.5 Poroelastic behaviour 

High stiffness mineral wool placed in a wall cavity affects the vibration of adjacent panels, 

and consequently transmission loss, in a way that cannot be predicted with equivalent fluid 

models. Only by including motions of the solid frame can this be addressed.Poroelastic 

models include frameborne waves in the material, and can account for mechanical coupling 

between solid and porous media in a multilayer configuration.   

Three different types of waves can propagate in a poroelastic medium, and they derive from 

the solution to three wave equations: two longitudinal waves in the fluid and solid 
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respectively, with wavenumber 𝑘𝑙1
 and 𝑘𝑙2

, and one rotational wave 𝑘𝑠, due to the elastic 

solid nature of the frame. 

 
𝑘𝑙1

2 =
𝜔2

2(𝑃𝑅 − 𝑄2)
(𝑃𝜌22 − 𝑅𝜌11 − 2𝑄𝜌12 − √Δ) (4.35) 

 
𝑘𝑙2

2 =
𝜔2

2(𝑃𝑅 − 𝑄2)
(𝑃𝜌22 − 𝑅𝜌11 − 2𝑄𝜌12 + √Δ) 

(4.36) 

 Δ = (𝑃𝜌22 + 𝑅𝜌11 − 2𝑄𝜌12
2 )2 − 4(𝑃𝑅 − 𝑄2)(𝜌11𝜌22 − 𝜌12

2 ) (4.37) 

 
𝑘𝑠

2 =
𝜔2

𝜇
(
𝜌11𝜌22 − 𝜌12

2

𝜌22
)  

(4.38) 

Symbols and their meanings are shown in Table 3, along with formulae to determine 

poroelastic properties assuming the material has an incompressible frame, which is valid for 

typical mineral wools consisting of either glass or rock fibres. In Table 4, further 

approximations are shown that are valid for fibrous materials.  
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Property Symbol/Equation 

Atmospheric pressure 𝑃0 = 101.32 kPa 

Density of air 𝜌𝑎 = 1.213 kgm-3 

Ratio of specific heats (air) 𝛾 = 1.4 

Prandtl number (air) 𝑃𝑟 = 0.71 

Shear viscosity (air) 𝜂 = 1.84 × 10−5 

Speed of sound (air) 𝑐0 = 343 

Elastic modulus 𝐸 

Poisson ratio 𝜈 

Density of frame material  𝜌1 

Static tortuosity 𝛼0 

Porosity 𝜙 

Flow resistivity 𝜎 

Shear modulus 
𝜇 =

𝐸

2(1 + 𝜈)
 

Viscous characteristic length 
Λ =

1

𝑐
(

8𝜂𝛼∞

𝜎𝜙
)
0.5

 (Johnson et al. 1987) 

With c close to 1 

Thermal characteristic length Λ′ 

Static viscous permeability 𝑞0 =
𝜂

𝜎
 

Elasticity coefficients  

(incompressible frame  

material) 

𝑃 =
4

3
𝑁 + 𝐾𝑏 +

(1 − 𝜙)2

𝜙
𝐾𝑓 

𝑄 = 𝐾𝑓(1 − 𝜙) 

𝑅 = 𝜙𝐾𝑓 

Bulk modulus of frame 
𝐾𝑏 =

2𝑁(𝜈 + 1)

3(1 − 2𝜈)
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Property Value for fibrous materials 

Fibre length per unit volume 
𝐿 =

1 − 𝜙

𝜋𝑅2
 

 

Static tortuosity 
𝛼 =

1

𝜙
 

Viscous Characteristic Length 
Λ =

1

2𝜋𝐿𝑅
 

Thermal Characteristic Length Λ′ = 2Λ 

Table 4: Approximation of properties for fibrous materials  

Of the properties requiring measurement, material and framework density are straightforward 

to obtain. Fibre radius can be obtained from the manufacturer, or measured with an Optical 

Fibre Diameter Analyser or similar instrument. Flow resistivity can be measured directly in a 

specialised rig, or can be estimated using an empirical formula based on fibre radius and 

material density (Bies & Hansen 1980): 

 
σ =

0.79 × 10−9

R2ρ1
−1.53  

(4.39) 

The remaining parameters are discussed in the following sections. 

4.2.6 Determining porous material properties 

The Young’s modulus, Poisson ratio and flow resistivity remain to be measured. Assuming a 

Poisson ratio equal to zero is a reasonable assumption at least for common mineral fibres 

(Tarnow 2005). Current measurement methods of determining the Young’s modulus can be 



51 

 

measured using a shaker, applying a preload to the material (Pritz 1980), affecting its 

mechanical properties; this may be useful in the case of dual leaf systems in which the cavity 

infill is compressed between the two sheets.  

When the material is bonded to the rigid termination of the impedance tube, it will exhibit a 

quarter wavelength frame-borne resonance, dependant on its bulk modulus K and its density 

𝜌, of frequency.  

 

𝑓 =
1

4𝑙
√

ℜ(𝐾)

𝜌
  (4.40) 

where 𝑙 is the thickness of the sample. The resonance is noticeable in the measured surface 

impedance of stiffer and low damping samples and provides a way to access the mechanical 

properties of a porous material without introducing a static preload which would alter its 

stiffness.  

The iterative method used in this work to determine Young’s modulus and flow resistivity is 

shown schematically in Figure 19.  A transfer matrix model for a single layer of mineral 

wool with a rigid termination (Section 4.1.9) is used to simulate the impedance tube 

measurement conditions. 
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Figure 19: Diagram of an iterative method used to determine Young’s modulus and flow resistivity of fibrous materials. 

RMSE = root mean square error.  

First, a broad range of flow resistivity and Young’s modulus values are determined. Then, the 

surface impedance is calculated for each of the input parameter values. The parameter values 

with the lowest root mean square error (RMSE) are chosen as the centres of a new, narrower 

range of input values. The impedance is then recalculated and the smallest error values 

chosen again. The process is repeated n times, or until it converges so that there is no further 

significant reduction in RMSE. The process must be guided as the frame-borne resonance 

frequency is not always automatically identified. The loss factor of each sample was 

estimated by the size of the resonant dip. The Delany-Bazley formulas cannot account for the 

frame-borne resonance, as can be seen in Figure 20, though the high frequency impedance is 

close to the measurement. A full poroelastic model correctly replicates the resonance, as in 

Figure 21. 
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Figure 20: Real and imaginary parts of normalised surface impedance of high density mineral wool (140 kg/m3); 

comparison of impedance tube measurement (dashed lines) with transfer matrix model using Delany-Bazley equivalent fluid 

formulation (solid lines)  

 

Figure 21: Real and imaginary parts of normalised surface impedance of high density mineral wool (140 kg/m3); 

comparison of impedance tube measurement (dashed lines) with transfer matrix model using a poroelastic layer (solid lines)  
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The method described has clear limitations and relies on several assumptions, in this case 

applicable to fibrous materials. The method could be extended to other kinds of porous 

materials, with several caveats. First of all, the size of the sample in the impedance tube 

influences the location of solid wave resonances, which are crucial in determining the 

properties of the solid frame. Solids are strongly affected by their size and mounting 

conditions; it’s therefore difficult to accurately quantify the difference between behaviour of 

a small 100 mm radius sample mounted in a tube, and a large scale partition.  

Higher density materials (over 60 kgm
-3

) tend to be stiffer and have a lower loss factor, 

resulting in a pronounced resonance which is easy to identify. Low density materials on the 

other hand tend to exhibit a broader and fainter resonance (if at all visible) due to their high 

loss factor and low stiffness in the solid portion. For this reason, poroelastic properties of low 

density materials are more difficult to determine with the method described in this section. 

With these materials, it’s best to assume a rigid, fixed frame and fluid motion only. 

This method of determining material properties still requires substantial user input as the 

results need to be evaluated on a case by case basis to determine if the frame-borne resonance 

has been correctly identified. The relationship between Young’s modulus and density for a 

range of mineral wool samples measured over the course of this work, so that they may be 

used to model full roof and partition structures, can be seen in Figure 22 and Figure 23. The 

Young’s Modulus and flow resistivity were both found to correlate with material density. The 

values of flow resistivity obtained with the reverse method are lower than what is given with 

the Bies-Hansen empirical formula, Equation (4.39).  
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Figure 22: Relationship between density and Young’s 

Modulus of mineral wool samples, with a fitted curve 

Figure 23: Relationship between density and flow resistivity 

of mineral wool samples, showing an exponentially fitted 

curve to the measured data, and the Bies-Hansen empirical 

formula (Equation (4.39)) 

4.2.7 Conclusions 

In this section, available porous material models were described, with both fluid and 

poroelastic approaches. Formulas for the poroelastic properties of fibrous materials are given, 

based on assumptions about their geometry. A best-fit, inverse method of obtaining flow 

resistivity and Young’s Modulus of fibrous materials was described, based on measuring the 

surface impedance of a sample and obtaining the closest match to a TMM model with a rigid 

termination condition. The values obtained with this method will be used to model full roof 

and partition systems with glass or mineral wool infill. 

4.3 PLATES 

In this section, thin plate theory is briefly presented, which is required to model metal sheets 

and other panels in full roof and partition systems. The following methods of modelling 

plates with periodic profiles are outlined, to be later compared in Chapter 6: 
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 The equivalent orthotropic plate model, as an approximation of corrugated and ribbed 

panels 

 A classically derived periodic ribbed plate model 

 The Finite Element Method, using Comsol 

4.3.1 Thin plate theory 

For a thin plate in free vibration lying along the xy plane, the normal displacement along the 

plate, 𝑤𝑧, obeys the Kirchhoff-Love bending wave equation: 

 (𝐵∇4 + 𝛿𝑡
2𝑚′)𝑤𝑧   = 0 (4.41) 

Where B is the bending or flexural stiffness, and 𝑚′ is the mass of the plate, both per unit 

area. The second order time derivative of displacement can be replaced by 𝛿𝑡
2 = −𝜔2 

assuming time harmonic motion. The fourth order Laplacian ∇4 can be replaced by ∇4=

(𝑘𝑥
2 + 𝑘𝑦

2)
2
  assuming the displacement is space harmonic. The bending stiffness is the 

product of elastic modulus, 𝐸, and area moment of inertia, 𝐼:  

 𝐵 = 𝐸𝐼 (4.42) 

The area moment of inertia of a flat plate about its neutral axis is: 

 
𝐼 =

ℎ3

12
 (4.43) 

where h is the plate's thickness. The bending stiffess is then given by: 
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𝐵 =
𝐸

(1 − 𝜈2)

ℎ3

12
 (4.44) 

where 𝜈 is the Poisson ratio of the material. For a plate immersed in a fluid, displacement 

along the plate is proportional to the pressure difference across the plate, 𝑝0 − 𝑝1. 

 (𝐵𝑝(𝑘𝑥
2 + 𝑘𝑦

2)
2
− 𝜔2𝑚𝑝 )

𝑣𝑧

𝑖𝜔
  = 𝑝0 − 𝑝1 (4.45) 

Here normal displacement from Equation (4.41) was replaced by normal velocity, 𝑣𝑧, 

assuming time-harmonic displacement, 𝑤 = 𝑊𝑒𝑖𝜔𝑡. An important assumption in bending 

plate theory is that normal velocity is the same either side of the plate, 𝑣0 = 𝑣1. With this in 

mind, 𝑝0 and 𝑣0 can be expressed in terms of 𝑝1 and 𝑣1, giving rise to a formulation 

compatible with the transfer matrix scheme. 

 
[
𝑝0

𝑣0
 ] = [

1 𝑍𝑝

0 1
] [

𝑝1

𝑣1
 ] (4.46) 

𝑍𝑝  is known as the plate or wall impedance, being the ratio of pressure difference across the 

plate and velocity along the plate: 

 
𝑍𝑝 =

(𝑝0 − 𝑝1)

𝑣𝑧
= (𝐵𝑝(𝑘𝑥

2 + 𝑘𝑦
2)

2
− 𝜔2𝑚𝑝 ) (4.47) 

Damping is introduced by a complex Young's modulus 𝐸𝜇:  

 𝐸𝜇 = 𝐸(1 + 𝑗𝜇) (4.48) 

Where 𝜇 is the dimensionless loss factor. Equation (4.45) can be rearranged in terms of 

velocity: 
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 𝑣𝑧   = 𝑖𝜔
𝑝0 − 𝑝1

𝑍𝑝
 (4.49) 

The poles in the velocity function, i.e. where plate impedance is zero, represent specific 

combinations where the plate is no obstacle to sound transmission; this happens when the 

trace wavenumber on the plate, 𝑘𝑡 = √𝑘𝑥
2 + 𝑘𝑦

2, matches the bending wavenumber, 𝑘𝐵 =

√𝜔√
𝑚

𝐵

4
. This results in the so called coincidence or critical frequency, which only occurs at 

oblique incidence. At grazing incidence, 𝜃 =
𝜋

2
, the trace wavenumber is 𝑘𝑡 = 𝑘0, and the 

coincidence occurs at the lowest frequency: 

 
𝑓𝑐 =

𝑐0
2

2𝜋
√

𝑚

𝐵
 (4.50) 

where 𝑐0 is the speed of sound in the surrounding medium. For an incident plane wave in air, 

there is one such frequency for every angle of incidence. Below this frequency, the plate does 

not couple efficiently with air, and the response to an incident wave is dominated by mass; 

this sub-critical frequency behaviour is known as mass law. As long as the plate's thickness is 

smaller than 1/6 of the bending wavelength, this type of thin plate theory is considered 

adequate (Cremer et al. 2005).  

4.3.2 Orthotropic plate model 

Profiled plates were modelled as equivalent flat, orthotropic plates. Orthotropic materials are 

defined as having distinct properties in each orthogonal spatial dimension. This approach is 

compatible with the transfer matrix method, requiring only an adjustment to the plate 

impedance term 𝑍𝑝 in the 2 by 2 transfer matrix described in Section 4.1.7. Profiled panels, 
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for example periodically rib-stiffened plates, are an example of a transversely orthotropic 

structure, as their bending stiffness varies depending on the bending axis.  

 

Figure 24: Incident wave orientation with respect to panel corrugations; the wave fronts on the 

surface of the plate are shown in red.   

The first analysis that can be carried out is to determine the bending stiffness from the 

geometry. The bending stiffness of a structure about an axis is the product of the Young’s 

modulus and area moment of inertia. For a flat, homogeneous, laterally infinite plate the area 

moment of inertia about the x and y axes is the same. For profiled plates, the area moment of 

inertia is different with respect to each axis. Transfer matrices for orthotropic plates are the 

same as for isotropic plates, except bending stiffness differs in each dimension, making the 

plate impedance, 𝑍𝑝, vary with incident wave orientation: 

 𝑍𝑝 = 𝐵𝑥𝑘𝑥
4 + 𝐵𝑦𝑘𝑦

4 + 𝐵𝑥𝑦𝑘𝑥
2𝑘𝑦

2 − 𝜔2𝑚′  (4.51) 

The mixed 𝐵𝑥𝑦 term is often approximated to 𝐵𝑥𝑦 = √𝐵𝑥𝐵𝑦. The mass per unit area 𝑚′ 

requires adjusting based on the profile shape. A profiled plate is stiffest when bent in the 

direction parallel to its ribs or corrugations, 𝜙 = 90∘ in Figure 24. It is then expected that 

such a plate would exhibit a lower critical frequency, as the bending wave speed 𝑐𝐵, will also 

be greater. Bending stiffness normal to the ribs is similar to the stiffness of the flat plate, 

meaning a second critical frequency is also expected closer to (but still lower than) the flat 
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plate critical frequency. In measurements of profiled panels of thicknesses close to 1 mm 

these features are difficult to identify, and numerous additional dips can be seen in the 

frequency response; this point will be examined in more detail in Chapter 6. 

The following are the equations used to obtain the bending stiffness of trapezoidal and ribbed 

plates. 

The bending stiffness of trapezoidal profiles, a diagram of which is shown in Figure 25, is 

found in (Bies et al. 1996). Their key dimensions are pitch (or period), crown, valley and 

depth. 

𝐵𝑥 =
𝐸ℎ

(1 − 𝜈2)
∑𝑏𝑖 (𝑧𝑖

2 +
ℎ2 + 𝑏𝑖

2

24
+

ℎ2 − 𝑏𝑖
2

24
cos 2𝜃𝑖)

𝑁

𝑖=1

 

𝐵𝑦 =
𝐸ℎ3

12(1 − 𝜈2)𝑙
∑𝑏𝑛

𝑛

 

𝐵𝑥𝑦 ≈ √𝐵𝑥𝐵𝑦 

The neutral axis 𝑧𝑛 can be obtained from the reference axis: 

𝑧𝑛 =
∑ 𝑥𝑖𝑏𝑖ℎ𝑖

𝑁
𝑖=1

∑ 𝑏𝑖
𝑁
𝑖=1 ℎ𝑖

 

 

Figure 25: Trapezoidal plate geometry 
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The orthotropic stiffness of periodically ribbed plates can be found in (Cremer et al. 2005), 

and reproduced below, with reference to the diagram in Figure 26. 

𝐵𝑥 = 𝐸𝐼 

𝐼 =
𝑎𝑎

3
(𝑠1

2 − 𝑠2
2) +

𝑎𝑅

3
(𝑠2

2 + 𝑠3
2) 

𝑠1 =
1

2

𝑎𝑎ℎ𝑤
2 + (𝑎𝑎 − 𝑎𝑅)ℎ2

𝑎𝑎ℎ𝑤 + (𝑎𝑎 − 𝑎𝑅)ℎ
, 𝑠2 = 𝑠1 − ℎ, 𝑠3 = ℎ𝑊 − 𝑠1 

𝐵𝑦 =
𝐸ℎ3

12

𝑎𝑎

𝑎𝑎 − 𝑎𝑅 (1 −
ℎ3

ℎ𝑤
3 )

 

𝐵𝑥𝑦 ≈
𝐸

3(1 + 𝜇) 
(ℎ3 +

ℎ𝑤
3 𝑎𝑅

𝑎𝑎
)  

 

 

Figure 26: Ribbed plate dimensions; ℎ𝑤 is the total depth, 𝑎𝑅 the rib width, 𝑎𝑎 the pitch, and ℎ the plate thickness 

4.3.3 Conclusions 

In this section, classical theory for modelling thin plates in bending was outlined. The 

equivalent orthotropic plate theory was also described, being required to model profiled 

plates within the TMM and analytical models presented in Chapter 5, and the orthotropic 

bending stiffness values for corrugated and ribbed plates were given.  
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4.4 RIBBED PLATE: PERIODIC MODEL 

Corrugated panels can be thought of as periodically stiffened plates, where the ridges in the 

profile act as stiffening elements. This is particularly the case for standing seam profiles, 

described in Table 1. In the following section, an analytical model of an infinite, periodically 

ribbed plate is derived, following the method and notation produced by Smirnov (2015), 

included in full in Appendix B, a classical approach using Fourier series to represent Floquet 

periodic fields. These decompositions are known as space-harmonics. In this approach, the 

orthogonality of the Fourier basis functions is exploited to solve the system harmonic by 

harmonic in relatively few steps, in contrast to other established models by Mace (1980) and 

Mead (1978), which make use of Fourier transforms. The outputs of this model are the 

transmitted and reflected plane wave coefficients, which can be easily manipulated to obtain 

effective fluid properties and arrange the ribbed plates into layers.  

4.4.1 Floquet periodicity and pressure fields 

Before moving to the system equations for a periodically ribbed plate, the technique used to 

model a geometrically periodic system excited by plane waves will be outlined. 

When a system is periodic in x and y with periods 𝐿𝑥 and 𝐿𝑦, and excited by a wave of x and 

y wavenumber components of 𝑘𝑥0
 and 𝑘𝑦0

; the solution and all fields must satisfy the 

Floquet principle, so that any field f is periodic, in x and y, down to a phase shift 

𝑒
𝑖(𝑘𝑥0𝑥+𝑘𝑦0

𝑦)
 introduced by the excitation:  

 
𝑓(𝑥 + 𝑚𝐿𝑥, 𝑦 + 𝑛𝐿𝑦) = 𝑒

𝑖(𝑘𝑥0𝑚𝐿𝑥+𝑘𝑦0
𝑛𝐿𝑦)

𝑓(𝑥, 𝑦) (4.52) 
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In all following derivations, harmonic time dependence 𝑒−𝑖𝜔𝑡 is assumed for all fields, so that 

solutions are presented in the frequency domain. Any Floquet periodic three-dimensional 

pressure field 𝑝(𝑥, 𝑦, 𝑧) in a fluid medium can be written in terms of a Fourier series with 

unknown coefficients 𝐴𝑚𝑛 to represent the component that is periodic in 𝐿𝑥 and 𝐿𝑦, 

multiplied by the phase offset term 𝑒
𝑖(𝑘𝑥0𝑥+𝑘𝑦0

𝑦)
:  

 
𝑝(𝑥, 𝑦, 𝑧) = 𝑒

𝑖(𝑘𝑥0𝑥+𝑘𝑦0
𝑦)

∑𝐴𝑚𝑛(𝑧)𝑒
𝑖(

2𝜋𝑚
𝐿𝑥

𝑥+
2𝜋𝑛
𝐿𝑦

𝑦)

𝑚,𝑛

= ∑𝐴𝑚𝑛

𝑚,𝑛

(𝑧)𝜓𝑚𝑛(𝑥, 𝑦) 

(4.53) 

The exponential terms dependent on x and y have been lumped into the variable 𝜓𝑚𝑛: 

 
𝜓𝑚𝑛 = 𝑒

𝑖(𝑘𝑥0𝑥+𝑘𝑦0
𝑦)

𝑒
𝑖(

2𝜋𝑚
𝐿𝑥

𝑥+
2𝜋𝑛
𝐿𝑦

𝑦)
= 𝑒𝑖(𝑘𝑥𝑚𝑥+𝑘𝑦𝑛

𝑦)
 (4.54) 

where 𝑘𝑥𝑚
= 𝑘𝑥0

±
2𝜋𝑚

𝐿𝑥
 and 𝑘𝑦𝑛

= 𝑘𝑦0
±

2𝜋𝑛

𝐿𝑦
. 𝜓00 is the phase offset term 𝑒

𝑖(𝑘𝑥0𝑥+𝑘𝑦0
𝑦)

. 

The z dependence of 𝐴𝑚𝑛 is obtained by knowing that the field must satisfy the Helmholtz 

equation, (4.4): 

 (∇2 + 𝑘2)∑𝐴𝑚𝑛

𝑚,𝑛

(𝑧)𝜓𝑚𝑛(𝑥, 𝑦) = 0 (4.55) 

where 𝑘 is the wavenumber in the medium. The Laplacian operator can be replaced with its 

Cartesian components 𝛿𝑥,𝑦,𝑧: ∇2= 𝛿𝑥
2 + 𝛿𝑦

2 + 𝛿𝑧
2 The derivatives of 𝜓𝑚𝑛 with respect to 𝑥 

and 𝑦 are known, given the periodicity of the pressure distribution, and are 𝛿𝑥
2𝜓𝑚𝑛 = −𝑘𝑥𝑚

2
 

and 𝛿𝑦
2𝜓𝑚𝑛 = −𝑘𝑦𝑛

2
, leading to the following: 
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 (−𝑘𝑥𝑚
2 − 𝑘𝑦𝑛

2 + 𝛿𝑧
2 + 𝑘2)∑𝐴𝑚𝑛

𝑚,𝑛

(𝑧)𝜓𝑚𝑛(𝑥, 𝑦) = 0 (4.56) 

The orthogonality of complex exponentials can be invoked to easily solve equations that 

contain these kinds of infinite series. Integrating the product of exponential functions 

𝑒
𝑖2𝜋𝑚𝑥

𝐿𝑥 𝑒
𝑖2𝜋𝑝𝑥

𝐿𝑥  , where 𝑝 is an integer, over their period 𝐿𝑥 returns a value of 1 when 𝑚 = 𝑝 and 

𝑛 = 𝑞, and zero everywhere else, as the functions are orthogonal: 

 
∫ 𝑒

𝑖2𝜋𝑚𝑥
𝐿𝑥 𝑒

𝑖2𝜋𝑝𝑥
𝐿𝑥 𝑑𝑥

𝐿𝑥

0

= {
1,𝑚 = 𝑝
0,𝑚 ≠ 𝑝

 (4.57) 

When an equation is composed of such series, then both sides of the equation can be 

multiplied by a function 𝜓𝑝𝑞, with p and q being integers, and integrated over the unit cell so 

that the unknown coefficients can be solved for mode for mode. Applying this process to 

Equation (4.56) gives the values of 𝐴𝑚𝑛 for each mode combination of 𝑚 and 𝑛: 

 
∫ ∫ (−𝑘𝑥𝑚

2 − 𝑘𝑦𝑛

2 + 𝛿𝑧
2

𝐿𝑦

0

𝐿𝑥

0

+ 𝑘2)∑𝐴𝑚𝑛

𝑚,𝑛

(𝑧)𝜓𝑚𝑛(𝑥, 𝑦)𝜓𝑝𝑞(𝑥, 𝑦) dxdy = 0 

(4.58) 

 𝛿𝑧
2𝐴𝑚𝑛(z) + 𝑘𝑧𝑚𝑛

2 𝐴𝑚𝑛(z) = 0 (4.59) 

where 𝑘𝑧𝑚𝑛
2 = 𝑘2 − 𝑘𝑥𝑚

2 − 𝑘𝑦𝑛

2
, and is the z component of wavenumber in the medium. 

Equation (4.59) amounts to a one dimensional Helmholtz equation, the solution to which is: 

 𝐴𝑚𝑛(𝑧) = 𝐴𝑚𝑛
+ 𝑒−𝑖𝑘𝑧𝑚𝑛𝑧 + 𝐴𝑚𝑛

− 𝑒𝑖𝑘𝑧𝑚𝑛𝑧 (4.60) 
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𝐴𝑚𝑛
+  are the coefficients for the waves travelling in the positive z direction, while 𝐴𝑚𝑛

−  for 

waves in the negative direction. Substituting this solution back into Equation (4.53), the 

pressure field 𝑝 is now represented in terms of forward and backward travelling waves: 

 𝑝(𝑥, 𝑦, 𝑧) = ∑𝐴𝑚𝑛
+ 𝑒−𝑖𝑘𝑧𝑚𝑛𝑧𝜓𝑚𝑛(𝑥, 𝑦)

𝑚𝑛

+ ∑𝐴𝑚𝑛
− 𝑒𝑖𝑘𝑧𝑚𝑛𝑧𝜓𝑚𝑛(𝑥, 𝑦)

𝑚𝑛

 

(4.61) 

The A coefficients are constant in x, y and z. 

This process will be applied to solve the system equations in the following section, as well as 

in Chapter 5 for periodic dual leaf structures. 

4.4.2 Geometry and definitions 

 

Figure 27: Periodically beam-stiffened plate geometry, showing incident, reflected and transmitted pressure wave vectors 

The geometry of the beam stiffened plate is shown in Figure 27. The structure is periodic in x 

with period Lx. The top and the bottom of the plate are homogeneous fluids (in this case, both 

air), that obey the Hemholtz equation. The incident plane wave has a wavenumber 𝑘0 =
𝜔

𝑐0
, 

where 𝑐0 is the speed of sound in air.  
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The pressure above the plate is the sum of incident and reflected (or scattered) pressure 

waves 𝑝𝑖 and 𝑝𝑟. As the geometry is periodic, the fields are Floquet periodic and take the 

form shown in the previous sectionwith summations over 𝑚 and coefficients 𝐼𝑚 and 𝑅𝑚: 

 𝑝𝑡𝑜𝑝 = 𝑝𝑖 + 𝑝𝑟 = ∑(𝐼𝑚𝑒𝑖𝑘𝑧0𝑚
𝑧 + 𝑅𝑚𝑒−𝑖𝑘𝑧0𝑚

𝑧)

𝑚

𝜓𝑚 (4.62) 

where 𝐼𝑚 = {
1
0
    

for 𝑚 = 0
for 𝑚 ≠ 0

 and 𝜓𝑚 = 𝜓0𝑒
𝑖2𝜋𝑚𝑥

𝐿𝑥 = 𝑒
𝑖((𝑘𝑥0+2

𝑚𝜋

𝐿𝑥
)𝑥+𝑘𝑦0

𝑦) 
= 𝑒

𝑖(𝑘𝑥𝑚𝑥+𝑘𝑦0
𝑦)

 

It is important to note that the wavenumber in the x direction, 𝑘𝑥𝑚
= 𝑘𝑥0

+ 2
𝑚𝜋

𝐿𝑥
, is an 

infinite series of values, which also leads the z direction wavenumber in the surrounding fluid 

𝑘𝑧0𝑚
 having an infinite number of terms, given the relations between wavenumber 

components to satisfy the Helmholtz equation:  𝑘𝑧
2
0𝑚

= 𝑘0
2 − 𝑘𝑥𝑚

2 − 𝑘𝑦.  

The transmitted pressure is likewise a Fourier series, this time with a single term, as there are 

no waves travelling back towards the plate: 

 𝑝𝑡 = ∑𝑇𝑚

𝑚

𝜓𝑚 (4.63) 

The normal velocities, which must be matched either side of the plate, are obtained by 

applying Euler’s equation: 

 Δp = −𝜌𝑖𝜔𝑣  (4.64) 

To obtain the z direction velocity, 𝑣𝑧, the z component of the pressure gradient is used. At 

𝑧 = 0, the location of the plate, the z velocity is given by the pressure gradients immediately 

above and below the plate: 
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𝑣𝑧𝑡𝑜𝑝

= ∑
1

𝑍𝑚

(−𝐼𝑚 + 𝑅𝑚)𝜓𝑚 

𝑚

 (4.65) 

 
𝑣𝑧𝑏𝑜𝑡𝑡𝑜𝑚

= ∑
−𝑇𝑚

𝑍𝑚
𝜓𝑚 

𝑚

 
(4.66) 

Here the impedance term 𝑍𝑚 is introduced for simplicity: 

 𝑍𝑚 =
𝜌0𝜔

𝑘𝑧𝑚

 
(4.67) 

4.4.3 The forced plate equation 

The inhomogeneous, time-harmonic, bending wave equation for a plate, lying on the xy plane 

at 𝑧 = 0, with an incident and transmitted sound pressure, 𝑝𝑖 and 𝑝𝑡, and the pressure applied 

by a beam pb is: 

 
(𝐵𝑝∇4 − 𝜔2𝑚𝑝)

𝑣𝑧(𝑥, 𝑦, 0)

𝑖𝜔
 

= 𝑝𝑖(𝑥, 𝑦, 0) + 𝑝𝑟(𝑥, 𝑦, 0) − 𝑝𝑡(𝑥, 𝑦, 0) − 𝑝𝑏(𝑥, 𝑦, 0) 

(4.68) 

Here 𝑚𝑝 is the mass per unit area of the plate, 𝐵𝑝 is the bending stiffness of the plate, given 

by its area moment of inertia I and Young’s Modulus E: 

 𝐵𝑝 = 𝐸𝐼 (4.69) 

Given the known spatial distribution of velocity 𝑣𝑧 being 𝜓𝑚, the spatial derivative ∇4 term is 

given by: 
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 ∇4= 𝑘𝑥m
4 + 𝑘𝑦0

4 + 2𝑘𝑥
2
m

𝑘𝑦
2
0
 (4.70) 

This value is replaced on the left hand side of Equation (4.68) (all terms are at 𝑧 = 0): 

 [𝐵𝑝 (𝑘𝑥m
4 + 𝑘𝑦0

4 + 2𝑘𝑥
2
m
𝑘𝑦

2
0
) − 𝜔2𝑚𝑝]

𝑣𝑧 

𝑖𝜔
= 𝑝𝑖 + 𝑝𝑟 − 𝑝𝑡 − 𝑝𝑏 (4.71) 

For convenience, the term in square brackets on the left hand side of this equation is collected 

into a single term, the plate impedance, 𝑍𝑝𝑚
: 

 

𝑍𝑝m
=

[𝐵𝑝 (𝑘𝑥m
4 + 𝑘𝑦0

4 + 2𝑘𝑥
2
m

𝑘𝑦
2
0
) − 𝜔2𝑚𝑝]

𝑖𝜔
 (4.72) 

Replacing this term into Equation (4.71) results in more manageable notation: 

 𝑍𝑝𝑚
𝑣𝑧   = 𝑝𝑖 + 𝑝𝑟 − 𝑝𝑡 − 𝑝𝑏 (4.73) 

This formulation neglects matching moments and angular velocity of the plate at the 

interfaces between the plate and the beams (Cremer et al. 2005).  

The beam term 𝑝𝑏 remains to be derived. 

4.4.4 Beam forces 

Reaction force due to a single beam at 𝑥 = 0, which obeys the bending wave equation, is 

given by: 

 
𝑝𝑏,1 = (𝐵𝑏𝑘𝑦

4 − 𝜔2𝑚𝑏′′)
𝑣𝑧(0, 𝑦)

𝑖𝜔
 (4.74) 
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Where 𝑚𝑏′′ is the mass per unit length of the beam, and 𝐵𝑏 its bending stiffness.  

The total force for a series of such beams 𝑝𝑏𝑡𝑜𝑡
 at intervals of Lx is given by the force for a 

single beam repeated at spatial offsets of L_x to infinity, i.e. multiplied by the Dirac comb 

function Π(
𝑚𝑥

𝐿𝑥
) = ∑ 𝛿(𝑥 − 𝑚𝐿𝑥)𝑚 , and multiplied by the phase offset determined by the 

incident wave 𝜓0 = 𝑒
𝑖(𝑘𝑥0𝑥+𝑘𝑦0

𝑦)
: 

 
𝑝𝑏tot

= 𝜓0Π(
𝑚𝑥

𝐿𝑥
) 𝑝𝑏,1 (4.75) 

Applying the Poisson summation formula, the Dirac comb function can be expressed as a 

Fourier series:  

 
Π(

𝑚𝑥

𝐿𝑥
) =

1

𝐿𝑥
∑ 𝑒

𝑖2𝜋𝑚𝑥
𝐿𝑥

∞

𝑚=−∞

 (4.76) 

Replacing this equation into Equation (4.75) leads to the value of 𝑝𝑏𝑡𝑜𝑡
 in terms of the 

familiar Fourier expansion: 

 
𝑝𝑏tot

= 𝜓0

𝑝𝑏,1

𝐿𝑥
∑ 𝑒

𝑖2𝜋𝑚𝑥
𝐿𝑥

∞

𝑚=−∞

= 𝑃𝑏 ∑𝜓𝑚(𝑥)

𝑚

 (4.77) 

where 𝑃𝑏 =
𝑝𝑏,1

𝐿𝑥
 and 𝜓𝑚 = 𝜓0𝑒

𝑖2𝜋𝑚

𝐿𝑥
𝑥

= 𝑒
𝑖(𝑘𝑥0𝑥+𝑘𝑦0

𝑦)
𝑒

𝑖2𝜋𝑚

𝐿𝑥
𝑥
 . 

 The value of the beam reaction pressure must exhibit Floquet periodicity, as every other 

field. This can be shown by verifying that 𝑝𝑏𝑡𝑜𝑡
 is periodic  at intervals of 𝐿𝑥 with a phase 

shift of 𝑒𝑖𝑘𝑥0𝑥, i.e. that the following condition is met: 
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 𝑝𝑏𝑡𝑜𝑡
(𝑥 + 𝑚′𝐿𝑥) = 𝑝𝑏𝑡𝑜𝑡

(𝑥)𝑒𝑖𝑘𝑥0𝑚′𝐿𝑥 (4.78) 

where 𝑚′ is an integer. The value of 𝑝𝑏𝑡𝑜𝑡
(𝑥 + 𝑚′𝐿𝑥) is: 

 
𝑝𝑏𝑡𝑜𝑡

(𝑥 + 𝑚′𝐿𝑥) = 𝑒𝑖𝑘𝑥0
(𝑥+𝑚′𝐿𝑥) 𝑝𝑏,1

𝐿𝑥
∑ 𝑒

𝑖2𝜋𝑚(𝑥+𝑚′𝐿𝑥)
𝐿𝑥

∞

𝑚=−∞

= 𝑒𝑖𝑘𝑥0𝑥𝑒𝑖𝑘𝑥0𝑚′𝐿𝑥
𝑝𝑏,1

𝐿𝑥
∑ 𝑒

𝑖2𝜋𝑚𝑥
𝐿𝑥 𝑒𝑖2𝜋𝑚𝑚′

∞

𝑚=−∞

 

(4.79) 

𝑒i2𝜋𝑚𝑚′ is equal to 1, given that 𝑚 and 𝑚’ are integers, leading to: 

 

 
𝑝𝑏𝑡𝑜𝑡

(𝑥 + 𝑚′𝐿𝑥) = 𝑒𝑖𝑘𝑥0𝑥
𝑝𝑏,1

𝐿𝑥
∑ 𝑒

𝑖2𝜋𝑚𝑥
𝐿𝑥

∞

𝑚=−∞

𝑒𝑖𝑘𝑥0𝑚′𝐿𝑥 (4.80) 

Since the value of 𝑝𝑏𝑡𝑜𝑡
(𝑥) is the following:  

 
𝑝𝑏𝑡𝑜𝑡

(𝑥) = 𝑒𝑖𝑘𝑥0𝑥
𝑝𝑏,1

𝐿𝑥
∑ 𝑒

𝑖2𝜋𝑚𝑥
𝐿𝑥

∞

𝑚=−∞

 (4.81) 

 It follows that, by replacing this value into Equation (4.80):  

 ∴  𝑝𝑏𝑡𝑜𝑡
(𝑥 + 𝑚′𝐿𝑥) = 𝑝𝑏𝑡𝑜𝑡

(𝑥)𝑒𝑖𝑘𝑥0𝑚′𝐿𝑥 (4.82) 

4.4.5 Transmission and Reflection coefficients 

Finally, replacing (4.62), (4.63) and (4.77) into (4.73) gives the forced bending equation of 

the plate in terms of Fourier series: 
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∑

1

𝑍𝑚

(−𝐼𝑚 + 𝑅𝑚)𝜓𝑚 

𝑚

𝑍𝑝

= ∑(𝐼𝑚 + 𝑅𝑚)

𝑚

𝜓𝑚 − ∑𝑇𝑚

𝑚

𝜓𝑚

− 𝑃𝑏 ∑𝜓𝑚

𝑚

 

(4.83) 

Using the principle of orthogonality, multiplying both sides by 𝜓𝑝 and integrating between 0 

and Lx,results in a series of equations, one for each m, given that 𝜓𝑚 and 𝜓𝑝 are orthogonal 

to each other when 𝑝 ≠ 𝑚, resulting in ∫ 𝜓𝑚𝜓𝑝 = 0 for 𝑝 ≠ 𝑚, and ∫ 𝜓𝑚𝜓𝑝 = 1 for 𝑝 = 𝑚:  

 0 = (𝑍𝑚 + 𝑍𝑝)𝐼𝑚 + (𝑍𝑚 − 𝑍𝑝)𝑅𝑚 − 𝑍𝑚𝑇𝑚 − 𝑍𝑚𝑃𝑏 (4.84) 

Matching z-velocity above and below the panel gives the following equation: 

 
𝑣𝑧𝑡𝑜𝑝

= 𝑣𝑧𝑏𝑜𝑡𝑡𝑜𝑚
= ∑

1

𝑍𝑚

(−𝐼𝑚 + 𝑅𝑚)𝜓𝑚 

𝑚

= ∑
1

𝑍𝑚

(−𝑇𝑚)𝜓𝑚 

𝑚

 

(4.85) 

Again applying orthogonality, this equation can be broken down in to a series of equations: 

 𝑇𝑚 = 𝐼𝑚 − 𝑅𝑚 (4.86) 

The two equations, (4.84) and (4.86), are solved for 𝑅𝑚 and 𝑇𝑚: 

 𝑇𝑚 =
2𝑍𝑚𝐼𝑚 − 𝑍𝑚𝑃𝑏

2𝑍𝑚 − 𝑍𝑝
 (4.87) 
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𝑅𝑚 =

𝑍𝑚𝑃𝑏 − 𝑍𝑝𝐼𝑚

2𝑍𝑚 − 𝑍𝑝
 

(4.88) 

𝑃𝑏 can be found by replacing the expression for normal velocity 𝑣𝑧 into Equation (4.77): 

 

𝑣𝑧(0,0,0) = −∑
𝑇𝑚

𝑍𝑚
𝑚

= −∑
1

𝑍𝑚
𝑚

2𝑍𝑚𝐼𝑚 − 𝑍𝑚𝑃𝑏

2𝑍𝑚 − 𝑍𝑝
 

 

(4.89) 

 𝐵𝑏(𝑘𝑦
4 − 𝜔2𝑚𝑏/𝐵𝑏)

𝑖𝜔
∑

2𝐼𝑚 − 𝑃𝑏

2𝑍𝑚 − 𝑍𝑝
𝒎

= −𝑃𝑏𝐿𝑥 (4.90) 

To simplify this equation, a beam impedance term Zb is introduced: 

 
𝑍𝑏 =

𝐵𝑏(𝑘𝑦
4 − 𝜔2𝑚𝑏/𝐵𝑏)

𝑖𝜔
 (4.91) 

Finally the 𝑃𝑏 term, the contribution from the beam array, can be found: 

 

𝑃𝑏 =

∑
2𝐼𝑚

2𝑍𝑚 − 𝑍𝑝
𝒎

(∑
1

2𝑍𝑚 − 𝑍𝑝𝑚
𝒎 −

𝐿𝑥

𝑍𝑏
)

 (4.92) 

Replacing this term into equations (4.87) and (4.88) yields the reflection and transmission 

coefficients, 𝑇𝑚𝑛 and 𝑅𝑚𝑛, from which transmission loss and effective properties can be 

determined. Setting the 𝑃𝑏 term to zero will yield the transmission through a flat plate. To 

obtain the far field wave amplitudes, modes 𝑚 in which 𝑘𝑧𝑚
 is imaginary are neglected, as 

they represent evanescent waves. 
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The outputs of this model are shown in comparison to FEM simulations and the equivalent 

orthotropic plate formulation in Chapter 6. 

4.4.6 Conclusions for ribbed plates 

In this section, a periodic analytical model of a ribbed plate was classically derived, with 

notation and methodology provided by Smirnov (2015), a classical approach based on 

Fourier expansions. This model will be applied in Chapter 6, to understand the behaviour of 

profiled panels, and the limitations of the equivalent orthotropic plate representation. 

4.5 CONCLUSIONS 

In this chapter, the elements involved in modelling a full roof system or partition were 

described. All models assume a laterally infinite structure. The components of a roof system 

are: corrugated or flat metal sheets, high density boards such as plasterboard, structural 

framework such as point-to-point connections or supporting beams, and thermo-acoustic 

insulation, such as mineral or glass wool. 

The transfer matrix method is used to model layered media; an approach by Brouard (1995) 

was used, which describes a method of coupling together layers of different material types: 

solid, fluid and porous. Because the model assumes that the system is laterally infinite, 

corrections are applied by weighting the incidence angle with a Gaussian distribution (H. 

Kang et al. 2000) that rolls off the contributions at more oblique incidence angles. Another 

correction is introduced to improve low frequency estimation of transmission loss by 

calculating the radiation efficiency over the finite area of the structure (Villot et al. 2001). 

Thin plate theory is used to model metal sheets. Corrugated panels in this framework are 

treated as equivalent orthotropic plates. The orthotropic model is simple and can be included 
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in the TMM with minor adjustments; the limitations of this approach will be discussed in 

Chapter 6. A periodic analytical model of a ribbed plate was also developed, based on a 

classical approach, and will be used to evaluate the performance of the equivalent orthotropic 

plate. 

In the next chapter, models of point-connected double plate structures are developed, and the 

integration of these with the TMM is described. 
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5 POINT-CONNECTED PLATE MODELS 

In the following sections, an analytical model of two parallel plates connected by periodically 

spaced thin elastic rods is developed, and subsequently modified to include internal beams in 

the framework. This method forms the basis of the model used to calculate the transmission 

loss of dual leaf roof constructions with framework. 

These periodic models are then combined with the Transfer Matrix Method in order to 

account for multiple layers of infill, by deriving the effective fluid properties of the cavity 

layers. The strengths and limitations of this approach are discussed.   

5.1 POINT CONNECTED PLATES 

5.1.1 Introduction 

The following derivation was developed by Smirnov (Appendix B) and is based on classical 

theory for modelling geometrically periodic systems using Fourier series expansions. This 

method differs from existing approaches in that the orthogonality of  pressure fields is 

exploited to solve the equations of motion of each system, as opposed to the Fourier 

transform approach found in Takahashi (1983) and Mace (1980). 

In this section, an analytical model for double plates connected by rods is derived, as an 

approximation of a dual leaf roof system with point-to-point connectors. The rods will have a 

compressional stiffness which will allow modelling different connector designs. 

The approach is here extended by including point-to-point connector stiffness, a distinct 

cavity fluid and plates, and orthotropic bending stiffness.  
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5.1.2 System description 

 

Figure 28: Double plate model diagram 

The modelled structure consists of two parallel laterally infinite thin plates in the 𝑥𝑦 plane, at 

locations 𝑧 = 0 and 𝑧 = 𝑑, connected by periodically spaced thin rods in a rectangular grid, 

with spacing 𝐿𝑥 and 𝐿𝑦 (so that a unit cell is a rectangular section of lengths 𝐿𝑥 and 𝐿𝑦), with 

semi-infinite layers of air (or a generic inviscid fluid) either side of the plates, and a fluid 

filling the cavity, of depth 𝑑, with a specified wavenumber and density. A diagram of the 

system is shown in Figure 28.  

A plane wave is incident on the top plate, and is represented as a pressure field 𝑝𝑖 of 

amplitude 𝐼: 

 
𝑝𝑖 = 𝐼𝑒

−𝑖(𝑘𝑥0𝑥+𝑘𝑦0
𝑦+𝑘𝑧0𝑧)

 (5.1) 

Harmonic time dependence 𝑒−𝑖𝜔𝑡 is assumed; solutions are presented in the frequency 

domain. 



77 

 

The reader is referred to 4.4.1 for the Floquet principle, used as a basis for the following 

derivation. 

5.1.3 Pressure in the fluid spaces 

The total sound pressure everywhere above the top plate will be the sum of the incident field 

𝑝𝑖 and the scattered (or reflected) field 𝑝𝑟.  

𝑝𝑖 is a Fourier series with all 𝑚 and 𝑛 harmonics equal to zero except for 𝑚 = 0 and 𝑛 = 0, 

where 𝐼00 = 1, so that it matches the defined incident wave: 

 
𝑝𝑖 = ∑𝐼𝑚𝑛𝑒𝑖𝑘𝑧0𝑚𝑛

𝑧𝜓𝑚𝑛

𝑚,𝑛

= 𝐼00𝑒
𝑖(𝑘𝑥0𝑥+𝑘𝑦0

𝑦+𝑘𝑧0𝑧)
 (5.2) 

The total pressure in the top semi-infinite space is 𝑝top = 𝑝𝑖 + 𝑝𝑟 

 𝑝top = 𝑝𝑖 + 𝑝𝑟

= ∑𝐼𝑚𝑛𝑒−𝑖𝑘𝑧0𝑚𝑛
𝑧𝜓𝑚𝑛

𝑚,𝑛

+ ∑𝑅𝑚𝑛

𝑚,𝑛

𝑒
𝑖𝑘𝑧0𝑚𝑛

𝑧
𝜓𝑚𝑛 

(5.3) 

The coefficient 𝑅𝑚𝑛 is the complex amplitude of the reflected waves; the squared amplitude 

is the reflection coefficient. 

The pressure in the cavity space 𝑝𝑐 also consists of forward and backward travelling waves, 

with unknown coefficients 𝐴𝑚𝑛 and 𝐵𝑚𝑛: 
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 𝑝𝑐 = ∑𝐴𝑚𝑛

𝑚𝑛

𝑒−𝑖kz𝑐𝑚𝑛
𝑧𝜓𝑚𝑛 + ∑ 𝐵𝑚𝑛

𝑚𝑛

𝑒𝑖kz𝑐𝑚𝑛
𝑧𝜓𝑚𝑛 (5.4) 

where 𝑘𝑧𝑐𝑚𝑛
 is the z direction wavenumber in the cavity space, given by: 

𝑘𝑧𝑐𝑚𝑛
= √𝑘𝑐

2 − 𝑘𝑥𝑚
2 − 𝑘𝑦𝑛

2
 

In the space below the bottom plate, from 𝑧 = −𝑑, the transmitted pressure field 𝑝𝑡 only has 

one z wave direction (there are no reflections from 𝑧 = −∞): 

 𝑝𝑡 = ∑𝑇𝑚𝑛

𝑚𝑛

𝑒−𝑖𝑘𝑧0mn
(𝑧−𝑑)𝜓𝑚𝑛 (5.5) 

Here a phase shift of 𝑘𝑧0
𝑑 has been introduced so that the value of the exponential function 

would be zero at 𝑧 = 0, simplifying later operations. The value 𝑇𝑚𝑛 is the amplitude of the 

transmitted waves, the squared value of it being the transmission coefficient of each mode. 

Velocities normal to the plates (i.e. the z components 𝑣𝑧) are found by way of Euler’s 

equation: 

 
𝑣𝑧 =

𝑖

𝜔𝜌
𝛿𝑧𝑝 (5.6) 

Following this equation, the normal velocity on the surface of the top plate, 𝑣𝑧1
, at 𝑧 = 0, can 

be written in terms of the z gradient of the pressure above and below the plate, 𝑝𝑡𝑜𝑝 and 𝑝𝑐: 
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𝑣𝑧1

=
𝑖

𝜔𝜌0
𝛿𝑧𝑝𝑡𝑜𝑝

=
𝑘𝑧0𝑚𝑛

𝜔𝜌0
∑(𝐼𝑚𝑛𝑒−𝑖𝑘𝑧0mn

0 − 𝑅𝑚𝑛𝑒𝑖𝑘𝑧0mn
0)𝜓𝑚𝑛

𝑚𝑛

=
𝑘𝑧0𝑚𝑛

𝜔𝜌0
∑(𝐼𝑚𝑛 − 𝑅𝑚𝑛)𝜓𝑚𝑛

𝑚𝑛

 

(5.7) 

 
𝑣𝑧1

=
𝑖

𝜔𝜌0
𝛿𝑧𝑝𝑐 =

1

𝜔𝜌𝑐
∑𝑘𝑧𝑐𝑚𝑛

(𝐴𝑚𝑛 − 𝐵𝑚𝑛)

𝑚𝑛

𝜓𝑚𝑛 (5.8) 

The same process is applied to the normal velocity of the bottom plate, 𝑣𝑧2
: 

 
𝑣𝑧2

=
𝑖

𝜔𝜌𝑐
𝛿𝑧𝑝c =

1

𝜔𝜌𝑐
∑𝑘𝑧𝑐𝑚𝑛

(
𝐴𝑚𝑛

𝜉𝑐
− 𝐵𝑚𝑛𝜉𝑐)

𝑚𝑛

𝜓𝑚𝑛 (5.9) 

 
𝑣𝑧2

=
𝑖

𝜔𝜌𝑐
𝛿𝑧𝑝𝑡 =

1

𝜔𝜌0
∑𝑘𝑧0𝑚𝑛

𝑇𝑚𝑛

𝑚𝑛

𝜓𝑚𝑛 (5.10) 

The cavity phase term 𝜉𝑐𝑚𝑛
 is dependent on the cavity depth, and is given by: 

𝜉𝑐𝑚𝑛
= 𝑒𝑖𝑘𝑧𝑐𝑚𝑛

𝑑
 

The velocities either side of each plate are then matched: 

 1

𝜔𝜌0
∑ 𝑘𝑧0𝑚𝑛

(𝐼𝑚𝑛 − 𝑅𝑚𝑛)𝜓𝑚𝑛

𝑚𝑛

=
1

𝜔𝜌𝑐
∑𝑘𝑧𝑐𝑚𝑛

(𝐴𝑚𝑛 − 𝐵𝑚𝑛)

𝑚𝑛

𝜓𝑚𝑛 

(5.11) 
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∑

𝑘𝑧0𝑚𝑛

𝜔𝜌0
(
𝐴𝑚𝑛

𝜉𝑐
− 𝐵𝑚𝑛𝜉𝑐)

𝑚𝑛

𝜓𝑚𝑛 = ∑
𝑘𝑧0𝑚𝑛

𝜔𝜌0
𝑇𝑚𝑛

𝑚𝑛

𝜓𝑚𝑛 
(5.12) 

Using the principle of orthogonalityby multiplying both sides of equations (5.11) and (5.12) 

by 𝜓𝑝𝑞 and integrating over the unit cell, the values of 𝐴𝑚𝑛 and 𝐵𝑚𝑛 in terms of 𝐼𝑚𝑛, 𝑅𝑚𝑛 

and 𝑇𝑚𝑛 are found: 

 
𝐴𝑚𝑛 =

𝜉𝑐𝑚𝑛

(1 − 𝜉𝑐
2
𝑚𝑛

)

𝑧𝑐𝑚𝑛

𝑧0𝑚𝑛

(𝑇𝑚𝑛 + 𝑅𝑚𝑛𝜉𝑐𝑚𝑛
− 𝐼𝑚𝑛𝜉𝑐𝑚𝑛

) (5.13) 

 
𝐵𝑚𝑛 = (𝑅𝑚𝑛 + 𝑇𝑚𝑛𝜉𝑐𝑚𝑛

− 𝐼𝑚𝑛)
𝑧𝑐𝑚𝑛

𝑧0𝑚𝑛

1

(1 − 𝜉𝑐
2
𝑚𝑛

)
 (5.14) 

For simplicity, the term 
𝑘𝑧0𝑚𝑛

𝜔𝜌0
 was replaced by 

1

𝑧0𝑚𝑛

 and likewise 
𝑘𝑧𝑐𝑚𝑛

𝜔𝜌𝑐
 by 

1

𝑧𝑐𝑚𝑛

. The zeroth 

terms 𝑧000
 and 𝑧𝑐00

 are the characteristic impedances of the fluid media. These values will be 

used in the next section so that the equations of motion of the plates may be solved for 𝑅 and 

𝑇. 

No forcing terms from the rods appear in these equations, as the assumption is that the rods in 

the cavity are sufficiently thin that they do not cause significant interference with the cavity 

pressure field. If the size of the connectors is of the order of the wavelength, then it would be 

necessary to account for reflections from the connectors themselves. For example, dual leaf 

systems with beams connecting both plates, commonly drywall partitions, would separate the 

cavity into smaller sections; the effect of these kinds of structures has been investigated by 

Brunskog and Xin & Lu (Brunskog 2005; Xin & Lu 2011).  
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5.1.4 Plate equations of motion 

Both plates are represented physically as thin plates in bending. For this kind of plate, the 

assumption is that normal velocity is the same above and below the layer. This condition is 

used to determine the amplitudes of the scattered pressure.  

The bending wave equation takes this form: 

 (𝐵∇4 − 𝜔2𝑚′)
𝑣𝑛

𝑖𝜔
= 𝑓 (5.15) 

where 𝐵 is the bending stiffness per unit area, 𝑚′ the mass per unit area, 𝑓 is the forcing 

function per unit area. Forces 𝑓 per unit area acting on the plate are the pressure fields either 

side of them, and the rods at periodic intervals.  

The top plate is forced by the incident and reflected pressure on top, and the cavity forward 

and backward travelling pressure on the bottom, as well as the rod forces at 𝐿𝑥 and 𝐿𝑦 

spacing. 

 (𝐵1∇
4 − 𝜔2𝑚1

′ )
𝑣𝑧1

𝑖𝜔
= 𝑝𝑡𝑜𝑝 − 𝑝𝑐 − 𝑝1 (5.16) 

 (𝐵2∇
4 − 𝜔2𝑚2

′ )
𝑣𝑧2

𝑖𝜔
= 𝑝𝑐 − 𝑝𝑡 − 𝑝2 (5.17) 

𝑝1 and 𝑝2 are the values of pressure contributed by the rods on the top and bottom plates, and 

will be derived in the next section; at this point all that can be said about these terms is that 

they also obey the Floquet principle, and can therefore be represented with the familiar 

Fourier expansions, with coefficients 𝑊1𝑚𝑛
 and 𝑊2𝑚𝑛

:  
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 𝑝1,2 = ∑𝑊1,2𝑚𝑛
𝑚,𝑛

𝜓𝑚𝑛 (5.18) 

By substituting pressures and velocities in Equation (5.16) with their respective Fourier 

series, we obtain the equation in terms of the unknown coefficients 𝐴𝑚𝑛, 𝐵𝑚𝑛, 𝑅𝑚𝑛, 𝑇𝑚𝑛 and 

the known properties of the materials, and the amplitude of the incident wave 𝐼𝑚𝑛. 

 
𝑧𝐵1𝑚𝑛

𝑘𝑧𝑐

𝜔𝜌𝑐
∑(𝐴𝑚𝑛 − 𝐵𝑚𝑛)

𝑚𝑛

𝜓𝑚𝑛

= ∑𝐼𝑚𝑛𝑒−𝑖𝑘𝑧0𝑧𝜓𝑚𝑛

𝑚𝑛

+ ∑𝑅𝑚𝑛

𝑚𝑛

𝑒𝑖𝑘𝑧0𝑧𝜓𝑚𝑛

− ∑𝐴𝑚𝑛

𝑚𝑛

𝑒−𝑖𝑘𝑧0𝑧𝜓𝑚𝑛 − ∑𝐵m𝑛

𝑚𝑛

𝑒𝑖𝑘𝑧0𝑧𝜓𝑚𝑛

− ∑𝑊1𝑚𝑛
𝜓𝑚𝑛

𝑚,𝑛

 

(5.19) 

where 𝑧𝐵1𝑚𝑛
=

(𝐵1(𝑘𝑥𝑚
2 +𝑘𝑦𝑛

2)
2
−𝜔2𝑚1

′ )

𝑖𝜔
, being the plate impedance; the differential operator ∇4 

applied to the quasi-periodic velocity field results in ∇4= (𝑘𝑥𝑚
2 + 𝑘𝑦𝑛

2)
2

. 

Both sides of the equation are multiplied by 𝜓𝑝𝑞 and integrated over the unit cell to solve for 

each mode individually: 

 𝑧𝐵1𝑚𝑛

𝑧𝑐𝑚𝑛

 (𝐴𝑚𝑛 − 𝐵𝑚𝑛) = 𝐼𝑚𝑛 + 𝑅𝑚𝑛 − 𝐴𝑚𝑛 − 𝐵𝑚𝑛 − 𝑊1𝑚𝑛
 (5.20) 

The same process is carried out for the bottom plate equation (5.17) resulting in: 
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 𝑧𝐵2𝑚𝑛

𝑧𝑐𝑚𝑛

(
𝐴𝑚𝑛

𝜉𝑐
− 𝐵𝑚𝑛𝜉𝑐) =

𝐴𝑚𝑛

𝜉𝑐
+ 𝐵𝑚𝑛𝜉𝑐 − 𝑇𝑚𝑛 − 𝑊2𝑚𝑛

 (5.21) 

where 𝑧𝐵2𝑚𝑛
=

(𝐵2(𝑘𝑥𝑚
2 +𝑘𝑦𝑛

2)
2
−𝜔2𝑚2

′ )

𝑖𝜔
, being the impedance of the bottom plate, and 𝑊2 =

𝑓2

𝐿𝑥𝐿𝑦
. 

Combining equations (5.13), (5.14), (5.20) and (5.21) gives the values of the transmitted and 

reflected waves, 𝑇𝑚𝑛 and 𝑅𝑚𝑛: 

 
Rmn =

(2Q2mn
+ amn)Imn − Q2𝑚𝑛

𝑊1mn
− 𝑏𝑚𝑛W2𝑚𝑛

𝑎
 (5.22) 

 
Tmn =

2bmnImn − W1𝑚𝑛
𝑏𝑚𝑛 + W2𝑚𝑛

Q1𝑚𝑛

𝑎𝑚𝑛
 (5.23) 

The values of variables collected for simplicity are: 

𝑎𝑚𝑛 = (𝑏𝑚𝑛
2 + 𝑄1𝑚𝑛

𝑄2𝑚𝑛
) 

𝑏𝑚𝑛 = 2(
𝑧𝑐𝑚𝑛

𝑧0𝑚𝑛

ξc𝑚𝑛

(1 − 𝜉𝑐
2
𝑚𝑛

)
) 

𝑄1𝑚𝑛
= (

𝜉𝑐
2
𝑚𝑛

+ 1

(1 − 𝜉𝑐
2
𝑚𝑛

)

𝑧𝑐𝑚𝑛

𝑧0𝑚𝑛

−
𝑧𝐵1𝑚𝑛

𝑧0𝑚𝑛

− 1) 

𝑄2𝑚𝑛
= (

𝑧𝐵2𝑚𝑛

z0𝑚𝑛

−
𝑧𝑐𝑚𝑛

𝑧0𝑚𝑛

𝜉𝑐
2
𝑚𝑛

+ 1

(1 − 𝜉𝑐
2
𝑚𝑛

)
+ 1) 

Now that the 𝑅 and 𝑇 terms are known, the only unknown terms remaining are the rod 

pressure terms 𝑊1𝑚𝑛
 and 𝑊2𝑚𝑛

 which will be obtained in the next section. 
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5.1.5 Rod forces 

The total reaction pressure on each plate due to the rods,  can be expressed as a comb 

function applied to the reaction force of a single rod at coordinates x=0 and y=0 multiplied by 

the phase offset of the incident wave 𝜓00 to meet the Floquet condition; with 𝑓1 and 𝑓2 

denoting respectively the forces at the top and bottom the rod, p_1,  

 𝑝1,2 = 𝜓00𝑓1,2(0,0)∑𝛿(𝑥 − 𝑚𝐿𝑥, 𝑦 − 𝑛𝐿𝑦)

𝑚,𝑛

 (5.24) 

Using the Poisson sum formula, the comb functions that apply to the rod forces 𝑓1 and 𝑓2 can 

be written as Fourier series: 

 
∑𝛿(𝑥 − 𝑚𝐿𝑥, 𝑦 − 𝑛𝐿𝑦)

𝑚,𝑛

=
1

𝐿𝑥𝐿𝑦
∑𝑒

𝑖2𝜋𝑚
𝐿𝑥

𝑥
𝑒

𝑖2𝜋𝑛
𝐿𝑦

𝑦

𝑚,𝑛

 (5.25) 

The total pressure contrubited by the rods can then be equated to its Fourier expansion to 

reveal the value of 𝑊1,2𝑚𝑛
: 

 
𝑝1,2 = 𝜓00𝑓1,2

1

𝐿𝑥𝐿𝑦
∑𝑒

𝑖2𝜋𝑚
𝐿𝑥

𝑥
𝑒

𝑖2𝜋𝑛
𝐿𝑦

𝑦

𝑚,𝑛

=
𝑓1,2

𝐿𝑥𝐿𝑦
∑𝜓𝑚𝑛

𝑚,𝑛

= ∑𝑊1,2𝑚𝑛
𝜓𝑚𝑛

𝑚,𝑛

 

(5.26) 

Thus 𝑊1,2𝑚𝑛
=

𝑓1,2

𝐿𝑥𝐿𝑦
; this means that the rod coefficients 𝑊1,2 are independent of m and n. 

Their values are obtained by determining the relationship between the forces 𝑓1 and 𝑓2 at the 

top and bottom of a single rod at location 𝑥 = 0 and 𝑦 = 0. Only longitudinal forces and 

velocities in the z direction were accounted for. A generic stiffness matrix 𝐾𝑖𝑗 was employed 
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to relate forces and velocities either side of the rod, so that values could be easily obtained 

with several methods, either by simulations, analytical models or measurements. This allows 

modelling different types of connectors.  

 
[
𝑊1

𝑊2
] =

1

𝑖𝜔𝐿𝑥𝐿𝑦
[
𝐾11 𝐾12

𝐾21 𝐾22
] × [

𝑣𝑧1
(𝑥 = 0, 𝑦 = 0)

−𝑣𝑧2
(𝑥 = 0, 𝑦 = 0)

] (5.27) 

The top and bottom velocities 𝑣1 and 𝑣2 at 𝑥 = 0 and 𝑦 = 0 (the location of the rod within 

the unit cell) in terms of 𝑅𝑚𝑛 and 𝑇𝑚𝑛, previously derived, are then substituted into this 

equation. It is possible to extend the matrix to include rotations too, by including additional 

forcing terms in the bending plate equations (5.16) and (5.17).  

The value of 𝜓𝑚𝑛 at 𝑥 = 0 and 𝑦 = 0 is equal to 1, so the term does not appear: 

 
𝑣𝑧1

(0,0,0) = ∑
1

𝑧0𝑚𝑛

(𝐼𝑚𝑛 − 𝑅𝑚𝑛)

𝑚,𝑛

 (5.28) 

 
𝑣𝑧2

(0,0, −𝑑) = ∑
1

𝑧0𝑚𝑛

𝑇𝑚𝑛

𝑚𝑛

 (5.29) 

Substituting these values for the velocities yields: 

 
[
W1

W2
] =

1

𝑖𝜔𝐿𝑥𝐿𝑦
[
𝐾11 𝐾12

𝐾21 𝐾22
] × [

−2𝛽0 + 𝑓2𝛾 + 𝑓1𝛽
−2𝛾0 + 𝑓1𝛾 − 𝑓2𝛼

] (5.30) 

The values of 𝛼, 𝛽 and 𝛾 are shown below: 

𝛼 = ∑
Q1𝑚𝑛

amnz0𝑚𝑛𝑚𝑛
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𝛽 = ∑
Q2𝑚𝑛

𝑎𝑚𝑛𝑧0𝑚𝑛𝑚𝑛

 

𝛽0 =
Q200

𝑎00𝑧000

 

𝛾 = ∑
bmn

amnz0𝑚𝑛𝑚𝑛

 

𝛾0 =
b00

a00z000

 

Solving the matrix equation gives the values of the rod coefficients 𝑊1 and 𝑊2 in terms of all 

known variables: 

 𝑊1 = 2
𝑞5𝑞1 − q3𝑞6

𝑞1𝑞2 − q3𝑞4
 (5.31) 

 
W2 = 2

q6𝑞2 + 𝑞4𝑞5

𝑞1𝑞2 − q3𝑞4
 (5.32) 

where collected terms are: 

𝑞1 = (𝑖𝜔𝐿𝑥𝐿𝑦 + 𝛼𝐾22 − 𝛾𝐾21) 

𝑞2 = (𝑖𝜔𝐿𝑥𝐿𝑦 − 𝛾𝐾12 − 𝛽𝐾11) 

𝑞3 = (𝛾𝐾11 − 𝛼𝐾12) 

𝑞4 = (𝛽𝐾21 + 𝛾𝐾22) 

𝑞5 = (−𝛽0𝐾11 − 𝛾0𝐾12) 

𝑞6 = (𝛾0𝐾22 + 𝛽0𝐾21) 
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These are then substituted into the equations for 𝑅𝑚𝑛 and 𝑇𝑚𝑛, (5.22) and (5.23), to complete 

the derivation. The process was carried out numerically, by calculating 𝑊1 and 𝑊2 separately, 

and using those values as inputs to equations (5.22) and (5.23). 

5.1.6 Profiled panels 

The orthotropic plate model is used to account for profiled panels, and all panel geometries 

(see Table 1) were approximated as an equivalent trapezoidal profile. As already outlined in 

Section 4.3.2, the impedance 𝑧𝐵 of each plate changes with the trace wavenumber, which is 

different for each mode combination m and n, and bending stiffness varies with wave 

orientation, with values of 𝐵𝑥, 𝐵𝑦 and 𝐵𝑥𝑦: 

 
𝑧𝐵𝑚𝑛

=
𝐵𝑥𝑘𝑥𝑚

4 + 𝐵𝑦𝑘𝑦𝑛

4 + 𝐵𝑥𝑦𝑘𝑥
2
𝑚

𝑘𝑦
2
𝑛

− 𝜔2𝑚′

𝑖𝜔
 (5.33) 

Different panel orientations can be accounted for by switching the 𝑥 and 𝑦 bending 

stiffnesses, so that systems such as Spec. 4 and 5 (Section 2.4) can be modelled more 

accurately, given that the panels profiles are at 90 degrees to each other. Figure 29 shows a 

comparison of two panel orientations of a TMM modelled roof system with profiled metal 

sheets and mineral wool infill. When the panels are rotated, the TL is higher above 250 Hz, 

the lower critical frequency of the panels, by up to 20dB. In this arrangement, when the 

incident wave is oriented along the stiffest dimension of one panel, at the location of its lower 

critical frequency the second panel is more compliant, and exhibits mass-law behaviour, with 

a higher transmission loss. The minimum transmission loss is, as a result, overall greater at 

and above the lower critical frequencies, so that the average over all incidence angles is 

higher. 
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Figure 29: TMM modelled transmission loss of corrugated dual leaf structure with different panel orientations 

5.1.7 Considerations on applicability and limitations 

As the thickness of the plates is increased, the thin plate assumption that velocity is the same 

either side breaks down (as the thickness approaches around 1/6 of the bending wavelength). 

As most roof panels are in the region of 1 mm thick, this is not a significant issue in this 

work.  

Another limitation is in the way the connectors are modelled. Only movements in the z 

direction are considered, and rotational stiffness of the connectors is neglected. In dual leaf 

roofs with halters, the fact that the connectors are inserted into the ridges of the top sheet 

means that moments may play a greater role. At the same time, the connector may not be 

tightly fastened in this arrangement, so that edge conditions are hard to define. Similarly, bar 

and bracket spacer kits are mounted in ways which would reduce stiffness, by screwing the 

top sheet to the bar at a distance from the bracket. 
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5.1.8 Conclusions 

In this section, a classical analytical model based on Fourier expansions (Smirnov 2015) of 

periodically connected plates was derived and extended, as an approximation to a dual leaf 

structure with point-to-point connectors of arbitrary stiffness, with orthotropic plate 

properties. This model will be used to account for the common point-to-point connectors in 

roof systems, halters and brackets. 

5.2 POINT CONNECTED PLATES WITH INTERMEDIATE BEAMS 

To simulate spacer kits with top-hat purlins in roof systems (see Section 2.3 for a 

description), periodically spaced beams were introduced in the derivation in Section 5.1 by 

adding a periodic beam force and moment to the bottom plate equation, (5.17). The effect of 

the beam is a similar approach to Maxit (2008) combined with the ribbed plate model 

described in Section 4.4. 

 

Figure 30: Point connected plates with intermediate beams 
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The modelled system is the same as the two plate system described in Section 5.1, with the 

addition of periodically spaced beams of width 𝑤 and height ℎ on the bottom plate, between 

the plate and the point-to-point connectors. A diagram is shown in Figure 30. 

5.2.1 Beam equations 

The forces 𝑓 and 𝑀 applied by the plate on a single beam at location 𝑥 = 0, contributed by 

force and moment respectively, are shown below: 

 
𝑓1 =

(𝐵δy
4 − 𝜔2𝑚′′)

𝑖𝜔
𝑣𝑧2

(0, 𝑦) (5.34) 

 
𝑀1 = (𝐺𝐽𝛿𝑦

2𝛿𝑥 + 𝛿𝑥𝜔
2𝜌𝐼0)

𝑣𝑧2
(0, 𝑦)

𝜔
 (5.35) 

where 𝐵 is the bending stiffness, 𝑚′′ is the mass per unit length,  𝐺 is the shear modulus, 𝐽 is 

the torsion constant, and 𝐼0 is the polar moment of inertia of the beam. 

The distribution of beam forces 𝑓𝑏𝑡𝑜𝑡
 is that of a single beam repeated in the x direction in 

intervals of 𝐿𝑥, as previously done for the rods (Section 5.1.5), with the appropriate phase 

offset 𝑒𝑖𝑘𝑥0𝑥 to satisfy the Floquet condition: 

 𝑓𝑏𝑡𝑜𝑡
(𝑥, 𝑦) = 𝑒𝑖𝑘𝑥0𝑥𝑓1(0, 𝑦)∑𝛿(𝑥 − 𝑚𝐿𝑥)

𝑚

 (5.36) 

The difference here is that the beams extend to infinity along y, so that no additional 

summations are introduced in the y direction. 𝑓1 is dependent on y and includes the Floquet 

periodicity in the y direction of the velocity field. The velocity 𝑣𝑧2
(0, 𝑦) is given by 
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𝑣𝑧(0, 𝑦) = ∑
𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑒
𝑖𝑘𝑦0

𝑦
𝑒

𝑖2𝜋𝑛𝑦

𝐿𝑦
𝑚,𝑛 . This value is replaced into Equation (5.36), and the fourth 

order derivative with respect to y can be replaced by 𝑘𝑦
4
𝑛

: 

 
𝑓1 =

(𝐵𝛿𝑦
4 − 𝜔2𝑚′′)

𝑖𝜔
𝑣𝑧2

(0, 𝑦)

= ∑∑
(𝐵𝑘𝑦𝑛

4 − 𝜔2𝑚′′)

𝑖𝜔

𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦 𝑒
𝑖𝑘𝑦0

𝑦

𝑛𝑚

 

(5.37) 

Substituting this value of 𝑓1 into Equation (5.36) gives the total beam forces in terms of the 

velocity Fourier coefficients 𝑇𝑚𝑛, and the term 𝜓00 appears by combining 𝑒𝑖𝑘𝑥0𝑥 and 𝑒
𝑖𝑘𝑦0

𝑦
: 

 𝑓𝑏𝑡𝑜𝑡
(𝑥, 𝑦)

= 𝑒𝑖𝑘𝑥0𝑥 ∑∑
(𝐵𝑘𝑦𝑛

4 − 𝜔2𝑚′′)

𝑖𝜔

𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦 𝑒
𝑖𝑘𝑦0

𝑦

𝑛𝑚

∑𝛿(𝑥

𝑚′

− 𝑚′𝐿𝑥)

= 𝜓00 ∑∑
(𝐵𝑘𝑦𝑛

4 − 𝜔2𝑚′′)

𝑖𝜔

𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦

𝑛𝑚

∑𝛿(𝑥 − 𝑚′𝐿𝑥)

𝑚′

 

(5.38) 

Equating this to a Fourier series with unknown coefficients 𝐹𝑚𝑛, for convenient handling of 

the system equations later, gives: 
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𝜓00 ∑ ∑
(𝐵𝑘𝑦𝑛

4 − 𝜔2𝑚′′)

𝑖𝜔

𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦

𝑛𝑚

∑𝛿(𝑥 − 𝑚′𝐿𝑥)

𝑚′

= 𝜓00 ∑∑𝐹𝑚𝑛𝑒
𝑖2𝜋𝑚𝑥

𝐿𝑥 𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦

𝑛𝑚

 

(5.39) 

A different set of integers 𝑚′ is used for the series of Delta functions, as these are an 

additional infinite sum. Dropping the phase component 𝜓00 from both sides and multiplying 

both sides by 𝑒
−

𝑖2𝜋𝑝𝑦

𝐿𝑦  and integrating between 0 and 𝐿𝑦 allows separate equations for each 

mode 𝑛, via the usual orthogonality principle: 

 

∫ ∑∑
(𝐵𝑘𝑦𝑛

4 − 𝜔2𝑚′′)

𝑖𝜔

𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦

𝑛𝑚

𝑒
−

𝑖2𝜋𝑝𝑦
𝐿𝑦 ∑𝛿(𝑥

𝑚′

𝐿𝑦

0

− 𝑚′𝐿𝑥) 𝑑𝑦

= ∫ ∑∑𝐹𝑚𝑛𝑒
𝑖2𝜋𝑚𝑥

𝐿𝑥 𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦 𝑒
−

𝑖2𝜋𝑝𝑦
𝐿𝑦

𝑛𝑚

𝐿𝑦

0

𝑑𝑦 

(5.40) 

 

𝐿𝑦 ∑
(𝐵𝑘𝑦𝑛

4 − 𝜔2𝑚′′)

𝑖𝜔

𝑇𝑚𝑛

𝑧0𝑚𝑛𝑚

∑𝛿(𝑥 − 𝑚′𝐿𝑥)

𝑚′

= 𝐿𝑦 ∑𝐹𝑚𝑛𝑒
𝑖2𝜋𝑚𝑥

𝐿𝑥

𝑚

 (5.41) 

Further multiplying both sides by 𝑒
−

𝑖2𝜋𝑞𝑥

𝐿𝑥  and integrating between 0 and 𝐿𝑥 eliminates the 

series of Delta functions (𝐿𝑦 is dropped from both sides below): 
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∫ ∑
(𝐵𝑘𝑦𝑛

4 − 𝜔2𝑚′′)

𝑖𝜔

𝑇𝑚𝑛

𝑧0𝑚𝑛𝑚

∑𝛿(𝑥 − 𝑚′𝐿𝑥)

𝑚′

𝑒
−

𝑖2𝜋𝑞𝑥
𝐿𝑥 𝑑𝑥

𝐿𝑥

0

= ∫ ∑𝐹𝑚𝑛𝑒
𝑖2𝜋𝑚𝑥

𝐿𝑥

𝑚

𝑒
−

𝑖2𝜋𝑞𝑥
𝐿𝑥

𝐿𝑥

0

𝑑𝑥 

(5.42) 

Integrating the left hand side yields the value of 𝑒
−

𝑖2𝜋𝑞𝑥

𝐿𝑥  at 𝑥 = 0, which is 1, only when 

𝑚′ = 0, and 0 for all other values of 𝑚′. On the right hand side, the orthogonality of the 

exponential functions results in solutions for each mode 𝑚: 

 

∑
(𝐵𝑘𝑦𝑛

4 − 𝜔2𝑚′′)

𝑖𝜔

𝑇𝑚𝑛

𝑧0𝑚𝑛𝑚

= 𝐹𝑚𝑛 (5.43) 

 The coefficients 𝐹𝑚𝑛 are thus only dependent on 𝑛: 

 
𝐵 (𝑘𝑦𝑛′

4 −
𝜔2𝑚′′

𝐵 )∑
𝑇𝑚𝑛

𝑧0𝑚𝑛
𝑚

𝑖𝜔𝐿𝑥
= 𝐹𝑛 

(5.44) 

The same process is applied to the moment term 𝑀; the pressure contributed by the moment 

of all beams is that of a single beam at 𝑥 = 0 multiplied by a comb function, and then 

equated to a Fourier series with coefficients 𝑀𝑚𝑛: 
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𝑀𝑏𝑡𝑜𝑡

=
1

𝜔
∑(𝐺𝐽𝑘𝑦

2
𝑛
𝑘𝑥𝑚

𝑚𝑛

+ 𝑘𝑥𝑚
𝜔2𝜌𝐼0)

𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦 𝑒
−

𝑖2𝜋𝑝𝑦
𝐿𝑦 ∑𝛿(𝑥

𝑝

− 𝑝𝐿𝑥) = ∑𝑀𝑚𝑛𝜓𝑚𝑛

𝑚𝑛

 

(5.45) 

The derivatives with respect to x and y have been replaced by 𝑘𝑥𝑚
 and 𝑘𝑦𝑛

. Both sides of the 

equation are multiplied by e
−

𝑖2𝜋𝑞𝑥

𝐿𝑥 e
−

𝑖2𝜋𝑟𝑦

𝐿𝑦  and integrated over the unit cell: 

 
∫ ∫

1

𝜔
∑(𝐺𝐽𝑘𝑦

2
𝑛
𝑘𝑥𝑚

𝑚𝑛

𝐿𝑦

0

𝐿𝑥

0

+ 𝑘𝑥𝑚
𝜔2𝜌𝐼0)

𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦 ∑𝛿(𝑥

𝑝

− 𝑝𝐿𝑥) e
−

𝑖2𝜋𝑞𝑥
𝐿𝑥 e

−
𝑖2𝜋𝑟𝑦

𝐿𝑦 𝑑𝑥𝑑𝑦

= ∫ ∫ ∑𝑀𝑚𝑛e
𝑖2𝜋𝑚𝑥

𝐿𝑥 𝑒
𝑖2𝜋𝑛𝑦

𝐿𝑦

𝑚𝑛

e
−

𝑖2𝜋𝑞𝑥
𝐿𝑥 e

−
𝑖2𝜋𝑟𝑦

𝐿𝑦

𝐿𝑦

0

𝑑𝑥𝑑𝑦
𝐿𝑥

0

 

(5.46) 

The integration gives the values of the coefficient 𝑀𝑚𝑛, which is once again constant in 𝑚: 

 ∑ (𝐺𝐽𝑘𝑦
2
𝑛
𝑘𝑥𝑚

+ 𝑘𝑥𝑚
𝜔2𝜌𝐼0)

𝑇𝑚𝑛

𝑧0𝑚𝑛
𝑚

𝜔𝐿𝑥
= 𝑀𝑛 

(5.47) 

The combination of force and moment contributions can be grouped into a single coefficient 

𝐺𝑛 for simplicity:  
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𝐺𝑛 = 𝑀𝑛 + 𝐹𝑛 = ∑

𝑇𝑚𝑛

𝑧0𝑚𝑛

𝑌𝑚𝑛

𝐿𝑥𝜔
 

𝑚

 (5.48) 

where 𝑌𝑚𝑛 = 𝐺𝐽𝑘𝑦𝑛
2 𝑘𝑥𝑚

+ 𝑘𝑥𝑚
𝜔2𝜌𝐼0 − 𝑖𝐵 (𝑘𝑦𝑛

4 −
𝜔2𝑚′′

𝐵
) 

The total reaction from the beams is now given, in terms of 𝐺𝑛: 

𝑓𝑏𝑡𝑜𝑡
+ 𝑀𝑏𝑡𝑜𝑡

= ∑𝐺𝑛

𝑚,𝑛

𝜓𝑚𝑛 

5.2.2 Forced plate equations 

The forced bending wave equation for the bottom plate, Equation (5.17), is modified to add 

the pressure introduced by periodic beam forces and moments: 

 (𝐵2∇
4 − 𝜔2𝑚2

′ )
𝑣𝑧2

𝑖𝜔

= 𝑝+ + 𝑝− − 𝑝𝑡 − pr𝑡𝑜𝑡
+ 𝑓𝑏𝑡𝑜𝑡

+ 𝑀𝑏𝑡𝑜𝑡
 

(5.49) 

As done previously, the terms in the two plate equations are replaced with Fourier series, 

including the derived beam series with coefficients 𝐺𝑛 in Section 5.2.25.2.1. Again, 

exploiting orthogonality, each mode combination is solved for individually: 

 𝑧𝐵1𝑚𝑛

𝑧𝑐𝑚𝑛

 (𝐴𝑚𝑛 − 𝐵𝑚𝑛) = 𝐼𝑚𝑛 + 𝑅𝑚𝑛 − 𝐴𝑚𝑛 − 𝐵𝑚𝑛 − 𝑊1 

 

(5.50) 

 𝑧𝐵2𝑚𝑛

𝑧𝑐𝑚𝑛

(
𝐴𝑚𝑛

𝜉𝑐
− 𝐵𝑚𝑛𝜉𝑐) =

𝐴𝑚𝑛

𝜉𝑐
+ 𝐵𝑚𝑛𝜉𝑐 − 𝑇𝑚𝑛 − 𝑊2 − 𝐺𝑛  (5.51) 
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The coefficients 𝑅𝑚𝑛 and 𝑇𝑚𝑛 are obtained by combining the above equations: 

 
Rmn =

(2Q2mn
+ amn)Imn − Q2𝑚𝑛

W1 − bmn(W2 + 𝐺𝑛)

𝑎𝑚𝑛
 

 

(5.52) 

 
Tmn =

2bmnImn − 𝑏W1 + Q1𝑚𝑛
(𝑊2 + 𝐺𝑛)

𝑎𝑚𝑛
 (5.53) 

5.2.3 Rod forces 

Now that the expressions for R and T are known, the rod pressure terms 𝑊1 and 𝑊2  are still 

to be obtained. This can be done, as per Section 5.1.5, by replacing normal velocities 𝑣𝑧 on 

the right hand side of Equation (5.27): 

 
[
𝑊1

𝑊2
]

=
1

𝑖𝜔𝐿𝑥𝐿𝑦
[
𝐾11 𝐾12

𝐾21 𝐾22
] [

(−2𝛽0 + 𝑊1𝛽 + 𝑊2𝛾 + 2𝜁20
− 𝑊1𝜁2 + 𝑊2𝜖2)

(−2𝛾0 + 𝑊1𝛾 − 𝑊2𝛼 − 2𝜁10
+ 𝑊1𝜁1 − 𝑊2𝜖1)

] 

(5.54) 

where terms were collected for simplicity: 

𝜖1 = ∑
Q1𝑚𝑛

𝑎𝑚𝑛𝑧0𝑚𝑛𝑚𝑛

𝛼𝑔𝑛

(1 − 𝛼𝑔𝑛
)
 

𝜁1 = ∑
Q1𝑚𝑛

𝑎𝑚𝑛𝑧0𝑚𝑛𝑚𝑛

(𝛾𝑔𝑛
)

(1 − 𝛼𝑔𝑛
)
 

ϵ2 = ∑
bmn

amnz0𝑚𝑛𝑚𝑛

𝛼𝑔𝑛

(1 − 𝛼𝑔𝑛
)
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ζ2 = ∑
bmn

amnz0𝑚𝑛𝑚𝑛

𝛾𝑔𝑛

(1 − 𝛼𝑔𝑛
)
 

𝛾𝑔𝑛
= ∑

bmn

amnz0𝑚𝑛

 

𝑚

𝑌𝑚𝑛 

𝛼𝑔𝑛
= ∑

Q1𝑚𝑛

𝑎𝑚𝑛𝑧0𝑚𝑛

 𝑌𝑚𝑛

𝑚

 

In this case, the values of 𝑊1 and 𝑊2 will also be dependent on the terms related to the 

beams: 

 
𝑊1 = 2

𝛾20
γ1 − 𝛾40

𝛾3 

γ1γ2 − γ3𝛾4
 (5.55) 

 
𝑊2 = 2

𝛾20
𝛾4 − 𝛾2𝛾40

𝛾1𝛾2 − γ3𝛾4
 (5.56) 

where variables collected for simplicity are: 

𝛾1 = (𝜖1𝐾22 − 𝛾𝐾21 − 𝜖2𝐾21 + 𝛼𝐾22 + 𝑖𝜔𝐿𝑥𝐿𝑦) 

𝛾2 = (𝛽𝐾11 − 𝜁2𝐾11 + 𝛾𝐾12 + 𝜁1𝐾12 − 𝑖𝜔𝐿𝑥𝐿𝑦) 

𝛾3 = (−𝜖2𝐾11 + 𝛼𝐾12 + 𝜖1𝐾12 − 𝛾𝐾11) 

𝛾4 = (𝛽𝐾21 − 𝜁2𝐾21 + 𝛾𝐾22 + 𝜁1𝐾22) 

𝛾20
= (𝛽0𝐾11 − 𝜁20

𝐾11 + 𝜁10
𝐾12 + 𝛾0𝐾12) 

𝛾40
= (𝛽0𝐾21 − 𝜁20

𝐾21 + 𝛾0𝐾22 + 𝜁10
𝐾22) 
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The solved 𝑊1 and 𝑊2 terms can now be replaced into equations (5.52) and (5.53) to obtain 

the transmission and reflection coefficients. 

5.2.4 Beam compressional stiffness 

So far the beam has been modelled with the assumption that the velocity above and below it 

is the same, i.e. that it does not undergo compression. To account for beam compression, an 

additional longitudinal stiffness was introduced in series with the rod stiffness. For static 

stiffness, the values of the K matrix are the same, obtained as two series stiffnesses:  

 
𝐾𝑖𝑗 =

𝑘1𝑘2

𝑘1 + 𝑘2
 (5.57) 

where 𝑘1 and 𝑘2 are the static compressional stiffness values of the rod and beam 

respectively. Waves travelling in the sections can also be accounted for by modelling both 

rod and beam as thin elastic rods, and obtaining the combined stiffness via transfer matrices. 

The stiffness matrix for a series of rods is given by: 

 

𝐾 =

[
 
 
 

𝑇22

𝑇21

1

𝑇21

𝑇11𝑇22

𝑇21
− 𝑇12

𝑇11

𝑇21]
 
 
 

 (5.58) 

where 𝑇𝑖𝑗 values are the elements of the combined transfer matrix. For a single rod, the 

transfer matrix is given by: 

 
𝑇 = [

cos 𝑘𝑙 𝑖𝑧 sin 𝑘𝑙
𝑖

𝑧
sin 𝑘𝑙 cos 𝑘𝑙

] (5.59) 
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where 𝑘 = 𝜔√
𝜌

𝐸
 and 𝑧 = √𝜌𝐸, with 𝜌 being the density, 𝐸 the Young’s Modulus, and 𝑙 is the 

length of the rod.  

5.2.5 Considerations on applicability and limitations 

The spaced beams are modelled in such a way that the bottom plate effectively acts as a 

ribbed panel, given that the beams are in continuous contact with the plate. The issue with 

this approach is that in roof structures with top hat purlin spacer kits, the top-hat beams are 

screwed to the liner sheets at regular or irregular intervals. If the beams are not in full contact 

along their length, their stiffening effect on the liner is reduced. In this situation, waves would 

travel along the beams and interact with the liner at the locations of the screws, which would 

act as line connections only where the bending wavelength is much greater than the spacing.  

5.2.6 Conclusions 

In this section, the sound transmission through two parallel plates connected periodically by 

rods has been derived using classical wave-based approach based on Fourier expansions, in 

order to model the behaviour of dual leaf roof structures with halters onto top-hat purlins, 

where point-to-point connectors are placed between the top sheet and a top-hat beam screwed 

to the bottom sheet. 

5.3 MODEL OUTPUTS AND COMBINATION WITH THE TMM  

In this section, the method of obtaining diffuse transmission loss from the outputs of the 

models described in this chapter is shown. As the models contain a single cavity fluid layer, 

the effective properties of multiple layers of insulation need to be derived using the TMM. 

The effective fluid approach is described with the relevant formulas, and complications 
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related to the propagation of multiple modes introduced by the periodic geometry are 

outlined. As often in roof structures high density boards are in contact with the corrugated 

metal sheets, the sandwich theory for obtaining the bending stiffness of multiple plates is 

described, and includes orthotropic stiffness.Transmission loss  

The transmitted pressure field derived in all geometrically periodic derivations is an infinite 

sum of plane waves, over modes 𝑚 and 𝑛: 

𝑝𝑡 = ∑𝑇𝑚𝑛𝑒−𝑖𝑘𝑧0𝑚𝑛
(𝑧−𝑑)𝜓𝑚𝑛(𝑥, 𝑦)

𝑚,𝑛

 

Not all modes travel into the far field, however. Some represent evanescent waves, as the 

wavenumber in the z direction 𝑘𝑧𝑚𝑛
 for some modes is imaginary. This happens when the 

trace wavenumber 𝑘𝑡 = √𝑘𝑥𝑚
2 + 𝑘𝑦𝑛

2  is greater than the wavenumber in air, 𝑘0.  

All modes interfere with each other to produce the total pressure, which does not converge in 

the far field. In order to get a measure of the total transmission loss, the energy in each mode 

is summed (and phase is discarded): 

𝜏𝑡𝑜𝑡 = ∑|𝑇𝑚𝑛|2

𝑚,𝑛

 

This approach is a fair approximation of the transmission loss in an ideal diffuse field, in 

which energy from each wave adds incoherently. All modes in which 𝑘𝑧𝑚𝑛
 is imaginary are 

evanescent, and are thus removed from the summation above, as they do not travel into the 

far field.  

As a low frequency approximation, one can consider only the zeroth mode 𝑇00. An effective 

fluid can be then easily constructed, which would then allow modelling layered point 
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connected plate systems, if required. When including higher order modes, the transmission 

loss is much lower at high frequency as more transmitted energy is included. To obtain the 

diffuse field transmission coefficient 𝜏𝑑𝑖𝑓𝑓, a double integration of the transmission 

coefficient 𝜏 over angle of incidence 𝜃 and orientation 𝜙 must be carried out, with the 

integral in Equation (4.24). The convergence of the diffuse TL is discussed in Section 5.3.4. 

Values of transmission loss are also averaged over third octave bands to compare the model 

output with available laboratory measurements of sound insulation. 

 

5.3.1 Combination with the TMM via effective properties 

To model roof systems (or dual leaf systems generally) with multiple infill materials within 

the point-connected plate framework, it becomes necessary to reduce the multilayer 

insulation to a single material with properties equivalent to the assembly. To do that, one 

needs to know the effective wavenumber 𝑘𝑐 and characteristic impedance 𝑧𝑐 of the multilayer 

system treated as a single fluid of thickness 𝑑. These properties can be obtained from the 

complex transmission and reflection coefficients (T and R), calculated with the TMM. The 

properties are obtained by reversing the equations for R and T for the transmission of sound 

through a single homogeneous fluid layer of thickness 𝑑 with semi-infinite layers of air on 

either side. The formulation found in Fokin et al. (2007) is used to avoid the issue of picking 

a branch number when inverting a cosine function.  

The refractive index 𝑛 and the impedance ratio 𝜉, and consequently the wavenumber and 

impedance, are shown here in terms of R and T: 
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𝑛 =

𝑘𝑐

𝑘0
=

−𝑖 log 𝑥 + 2𝜋𝑚

𝑑𝑘0
, 𝑚 ∈  ℤ (5.60) 

 𝜉 =
𝑧𝑐

𝑧0
=

𝑟

(1 − 2𝑅 + 𝑅2 − 𝑇2)
  (5.61) 

where 𝑟 = ±√(𝑅2 − 𝑇2 − 1)2 − 4𝑇2 and 𝑥 =
1−𝑅2+𝑇2+𝑟

2𝑇
. The root of 𝑟 is chosen so that the 

real part of the impedance ratio 𝜉 is positive. The value of log 𝑥 needs to be unwrapped 

numerically so that the correct branch numbers 𝑚 are chosen, otherwise the wavenumber 

function will not be realistic and will have numerous discontinuities. This happens because 

several different wavenumbers can result in the same transmission and reflection coefficients 

at each frequency; the branch numbers 𝑚 are chosen in order to make the index 𝑛 a 

continuous function. 

For multiple layers that include elastic solids and poroelastic materials as well as fluids, the 

values of 𝑘𝑐 and 𝑧𝑐 will have to be calculated for each angle of incidence 𝜃0, as they would 

change as the trace wavenumber changes. Figure 31 shows the effective refractive index for 

layered systems with poroelastic materials at normal incidence (up to three layers).  
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Figure 31: Refractive index obtained with the reverse method, for a single poroelastic layer (top left), two poroelastic layers 

of different properties (top right) and three layers, with an air gap between two poroelastic layers (bottom) 

In the systems with Floquet periodicity described in this Chapter, each mode of the system 

has an associated trace wavenumber 𝑘𝑡𝑚𝑛
 for the same angle of incidence, which means that 

the equivalent fluid layer in the cavity space is excited at different trace wavelengths for the 

same, single incident wave. The cavity z direction wavenumber 𝑘𝑧𝑐𝑚𝑛
is an infinite series of 

values dependent on m and n: 

 
𝑘𝑧𝑐𝑚𝑛

= √𝑘𝑐
2 − 𝑘𝑥𝑚

2 − 𝑘𝑦𝑛

2
 (5.62) 

And since the effective wavenumber 𝑘𝑐 obtained by reversing R and T is different for every 

input excitation trace wavenumber for a multilayer configuration or for a solid or poroelastic 

material, a transfer matrix calculation must be carried out for each mode combination, which 

is computationally expensive. However, at a first approximation, the effective properties for 
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the zeroth mode can be used, provided that the effective wavenumber does not vary sharply 

with angle of incidence. For layered mineral wool, even modelled using a poroelastic 

approach for common materials, the difference between the effective wavenumber obtained 

over all trace wavenumbers up to 𝑘0 was minimal, indicating that obtaining the properties for 

the zeroth modes could be sufficient. The same cannot be said, however, for solid materials, 

meaning that for increased accuracy it is necessary to run a TMM model for all mode 

combinations, which is computationally taxing, increasing the number of operations by a 

factor of 104 (allowing for m and n values between -50 and +50). 

Additionally, the trace wavenumber for the series of modes, which includes the terms 
2𝜋𝑚

𝐿𝑥
 

and 
2𝜋𝑛

𝐿𝑦
, will often become larger than the wavenumber in a given medium; in this case, the 

sign of the z direction wavenumber 𝑘𝑧, which is obtained via the square root as per Equation 

(5.62), must be chosen in order to ensure that the wave is exponentially decaying 

(evanescent), rather than exponentially increasing. Specifically this applies to the phase term 

for the cavity layers 𝜉𝑐𝑚𝑛
, which must be exponentially decaying if 𝑘𝑧𝑐𝑚𝑛

 is imaginary: 

𝜉𝑐𝑚𝑛
= 𝑒𝑖(𝑘𝑧𝑐𝑚𝑛

𝑑)
.  

5.3.2 Combining plates 

As outlined in Chapter 2, in many modern cladding constructions the profiled metal panels 

may be backed by one or more layers of plasterboard, and/or acoustic matting. A schematic 

representation of this kind of system is shown in Figure 32. A method of accounting for 

multiple solid layers either side of the cavity is required to reduce multiple plates to a single 

plate, so that the point-connected plate approaches may be used to predict transmission 

through such structures. If point connections are neglected, the TMM is capable of modelling 
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sandwich structures. The approach adopted here is to obtain the bending stiffness of the 

combined plates, which is then to be used in the plate impedance terms in the derivation. 

 

Figure 32: Diagram of roof structure with high density board  

The combined bending stiffness of multiple joined sheets can be obtained by a simple 

equivalent area moment of inertia, by obtaining the neutral axis, and working out the total 

area moment of inertia. The combined stiffness per unit area 𝐵 for a number 𝑛 of plates in 

contact, of thicknesses ℎ𝑛, as shown in Figure 33 for two plates, is: 

 𝐵 = ∑𝐸nIn
′

𝑛

 (5.63) 

where 𝐸𝑛 is Young’s modulus of each plate, 𝐼𝑛
′   the area moments of inertia of each plate with 

respect to the global neutral axis, 𝑦. The area moment of inertia 𝐼′ is found by applying the 

parallel axis theorem: 

 𝐼′ = 𝐼 + 𝐴𝑦𝑛
2 (5.64) 

where A is the surface area of the plate, 𝐼 is the area moment of inertia of the plate relative to 

its own neutral axis (𝐼 =
ℎ3

12
 for a flat plate of thickness ℎ), and 𝑦𝑛 is the distance between the 
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neutral axis of the plate and the neutral axis of the combined system. The neutral axis of the 

system 𝑦 is given by imposing the following condition: 

 ∑𝐸𝑛𝑦𝑛

𝑛

= 0 (5.65) 

The distances 𝑦𝑛 are now given in terms of 𝑦: 

𝑦 = 𝑦𝑛
′ + 𝑦𝑛 

Here 𝑦𝑛
′  is the location of the neutral axis of each plate with respect to the coordinate 𝑧 = 0 of 

the global system, which is known based on the plate geometry. For two flat plates, three 

equations are produced to solve for 𝑦, 𝑦1 and 𝑦2: 

𝑦 =
ℎ1

2
+ 𝑦1 

𝑦 = ℎ1 +
ℎ2

2
+ 𝑦2 

𝐸1𝑦1 + 𝐸2𝑦2 = 0 

The neutral axis of this system is: 

 
𝑦 =

𝐸1y1
′ + 𝐸2𝑦2

′

(𝐸1 + 𝐸2)
 (5.66) 
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Figure 33: Two plates in contact, showing global neutral axis 

 

The combined bending stiffness of two orthotropic plates is given here in terms of the area 

moment and Young’s modulus of each plate: 

 
𝐵𝑥 =

𝐸1

1 − 𝜈1
2 (𝐼𝑥1

+ 𝛼1ℎ1(𝑦 − y1
′ )2)

+
𝐸2

1 − 𝜈2
2 (𝐼𝑥2

+ 𝛼2ℎ2(𝑦 − 𝑦2
′)2) 

(5.67) 

 
𝐵𝑦 =

𝐸1

1 − 𝜈1
2 (𝐼𝑦1

+ 𝛼1ℎ1(𝑦 − 𝑦1
′)2)

+
𝐸2

1 − 𝜈2
2 (𝐼𝑦2

+ 𝛼2ℎ2(𝑦 − y2
′ )2) 

(5.68) 

where 𝛼 is the ratio of surface area per unit width to plate thickness, which is equal to 1 for a 

flat plate, whereas for a trapezoidal profile plate it is:   

 
𝛼 =

𝑐 + 𝑣 + 2√(𝑝 − 𝑐 − 𝑣)2 + 𝑑2

𝑝
 (5.69) 

where 𝑝, 𝑐, 𝑣, and 𝑑 are, respectively, the pitch, crown valley and depth of a corrugated plate.  

There are several limitations to this approach. Firstly, shear deformations are not included. 

Thin plate theory also limits the thickness of the combined system to a fraction of the bending 

wavelength. For most existing roof systems this is acceptable, as the thickest panels tend to 

be plasterboard sheets which tend to be 15 mm or less, connected to steel sheets of around 1 

mm thickness. The main issue in this case is in the characterisation of the panels as fully 
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bonded, which is unlikely to be the case. The more realistic option is that panels are fully 

connected only at the locations of screws, so that a fully bonded representation would only be 

valid at low frequencies, where the wavelength is much larger than the spacing between 

screws or other connection points.  

5.3.3 Programming 

A program was developed in Python, using the numpy library for calculations and the PyQt4 

library for the GUI. The program allows the user to choose layers in the system, specifying 

materials, thicknesses and profile dimensions, as well as details of point-to-point connections, 

and outputs transmission loss in third octave bands. 

A flow diagram of the complete program is shown in Figure 35. 

 

Figure 34: Sound reduction index modelling tool main window 
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Figure 35: Flow diagram of calculation program 

If point-to-point connections are disabled, the transmission loss through the layers is 

calculated using the TMM only, with corrections for sample size and laboratory diffusivity. 

When point connections are enabled, the user must select on which layers the connections 

start and end, as well as the properties and spacing of the connectors (which are modelled as 

thin elastic rods); the inner cavity layers are modelled using the TMM, from which the 

equivalent fluid properties are obtained for each angle of incidence. Then, layers above and 

below the connectors are combined into two equivalent plates (if there is more than one plate 

either side), using sandwich theory (Section 5.3.2). Finally, the transmission loss is calculated 

with the analytical model in Section 5.1. 

5.3.4 Convergence and truncation  

Initially, the integration to obtain the diffuse field transmission coefficient, Equation (4.24), 

was carried out with a simple trapezoidal integration over both 𝜃 and 𝜙 at regularly spaced 

intervals, in a rectangular grid. If the angular resolution is too low, however, large 

fluctuations in transmission loss appear at high frequency, in particular above the critical 
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frequency of individual plates, where it is likely that the minima occur between chosen points 

and so are missed.  

The Monte Carlo method was used to address this issue and enable convergence to be easily 

achieved.Pairs of  values of 𝜃 and 𝜙 were picked randomly in the interval between 0 and 𝜋/

2, with a Halton distribution, to ensure uniform sampling and avoid clustering. The 

transmission coefficient was obtained for each pair, 𝜏𝜃,𝜙 . The total transmission loss at each 

frequency 𝑓 was then obtained by averaging over all pairs and multiplying by the integration 

area, 
𝜋2

4
: 

 
𝜏𝑑𝑖𝑓𝑓(𝑓) ≈

𝜋2

4

∑ sin 𝜃 cos𝜙 𝜏𝜃,𝜙(𝑓)𝜃,𝜙

𝑁 ∫ ∫ sin 𝜃 cos 𝜃
𝜋
2
0

2𝜋

0
𝑑𝜃𝑑𝜙

=
𝜋

4

∑ sin 𝜃 cos𝜙 𝜏𝜃,𝜙(𝑓)𝜃,𝜙

𝑁
 

(5.70) 

 

where 𝑁 is the number of 𝜃, 𝜙 pairs. It is more useful, however, to carry out the averaging 

cumulatively with each iteration 𝑛: 

 

𝜏𝑛 =
(
𝜋
4 sin 𝜃 cos 𝜃 𝜏𝜃,𝜙 + 𝑛𝜏𝑛−1)

𝑛 + 1
 (5.71) 

This approach is more convenient than regularly spaced values and trapezoidal integration: 

pairs can be added one at a time until convergence is achieved, and variance can be estimated 

with each additional pair. 
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The frequency values 𝑓 were picked from an array of 120 logarithmically spaced values 

between 44.7 Hz and 5623 Hz, so that each octave band contained approximately the same 

number of frequency points. 

 

Figure 36: Sum across frequencies of difference between consecutive 𝜏 values with increasing number of 𝜃, 𝜙 pairs 

Convergence was defined as the point at which the error, the square root of the estimated 

variance calculated with each successive pair 𝑛, is within 0.1dB at each frequency. Figure 37 

shows the required number of pairs N for convergence of the TL of a dual leaf corrugated 

roof structure with 145 mm cavity filled with mineral wool (modelled with poroelastic 

properties). An upper limit of 10000 pairs was chosen to reduce calculation time; this limit is 

reached typically above 300 Hz for a dual leaf structure with mineral wool infill, while the 

final estimated error values are still within 3dB at the highest frequencies, as can be seen in 

Figure 38, which shows the error margins in red for the calculated transmission loss.  Figure 

36 shows the total relative change in the diffuse transmission loss value (across all frequency 

bins) in dB as more theta-phi pairs are added. 
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Figure 37: Number of 𝜃,𝜙 pairs required for convergence for each frequency bin (√𝑉𝑎𝑟(𝜏)<0.1dB) 
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Figure 38: Transmission loss of dual leaf corrugated roof structure with connections spaced at 1m and 0.4 m, showing error 

margins in red 

Refinements of the method would be to implement adaptive variance reduction to give 

greater weight to pick optimal distributions of 𝜃 and 𝜙. 

Further, the transmission loss in periodic models is dependent on the number of m and n 

modes included in the summations; it was therefore necessary to choose a practical truncation 

number based on convergence data. Figure 39 shows the relative change in transmission loss 

of a dual leaf corrugated roof system with point connections as the truncation number 𝑁 is 

increased from 15 to 60 (𝑚 = −𝑁 to 𝑚 = +𝑁, likewise for 𝑛), summed across all frequency 

bins between 44.7 Hz and 5623 Hz. A truncation number of N=50 was considered sufficient 

to capture the behaviour of a typical structure. 
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Figure 39: Change in TL summed over 120 frequency bins with increasing m and n truncation number N for dual leaf wall 

with mineral wool infill and point connections 

5.4 CONCLUSIONS 

In this chapter, two analytical models of parallel plates connected by periodically spaced 

point-to-point connectors were presented. The first derivation has two plates connected by 

simple rods of arbitrary compressional stiffness. The second derivation includes internal 

beams onto which the rods are mounted, in order to simulate spacer kits with halters onto top-

hat purlins. 

This method is what is primarily used to calculate the transmission loss of dual leaf roof 

constructions. 

The process to combine the analytical models with the Transfer Matrix Method was 

described, and basic details of the software created for the purpose of modelling roof and 

partition systems were given. In order to account for multiple layers of infill between the two 
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plates, using equivalent fluid properties for the layer between the two leaves, and the 

strengths and limitations of this approach are discussed.   

Convergence data was also shown for the Monte Carlo integration approach used in this work 

to evaluate the diffuse transmission loss.  
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The following chapters are presentations of results, validation and parametric studies based 

on the developed models.  

Chapter 6 contains comparisons between the periodic ribbed plate model and FEM 

simulations carried out in Comsol, for the purpose of validation. The analytical model is 

compared to the equivalent orthotropic plate model in the same chapter, including diffuse 

field TL comparisons. 

Chapter 7 deals with dual leaf systems; TMM models of simpler dual leaf structures are 

compared to laboratory measurements, then the periodic point-connected plate models are 

validated against FEM simulations, and finally laboratory measurements of various 

categories of corrugated roof structures are compared to the combined TMM and point-

connection model. 
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6 RESULTS: PROFILED PLATES 

This chapter is a presentation and discussion of comparisons between analytical models, 

numerical simulations and laboratory measurements of single profiled metal panels. This 

stage is necessary to understand the practical limitations of the equivalent orthotropic plate 

model described in Section 4.3.2. The strengths of this approach are its simplicity, 

computational efficiency and, most importantly, its direct compatibility with the TMM.  

FEM analysis of periodic profiled plates, both ribbed and trapezoidal, was carried out in 

Comsol, by modelling a single unit cell and applying Floquet periodicity conditions at the 

boundaries. The FEM models were compared to equivalent orthotropic plates, and used to 

validate the periodically ribbed plate model developed in Section 4.4. The ribbed plate model 

is then used to compare the performance of the orthotropic plate in predicting diffuse 

transmission loss. 

A number of diffuse field laboratory measurements of single profiled sheets were drawn from 

the available literature and measurements carried out at the University of Salford. Attention is 

also given to standing seam structures – cladding sheets with high depth and narrow crowns – 

which are compared with the ribbed plate and equivalent orthotropic plate models to evaluate 

their ability to capture its observed features. 

6.1 RIBBED PANELS 

Ribbed panels were used as an equivalent of a corrugated plate, as they are simpler to model 

and present similar features, having a similar geometry to standing seam profiles. The 

periodic model involves terms with infinite summations in determining the transmission loss; 

it is therefore not trivial to extract useful design parameters. The following comparisons have 
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shone a light on the limits of the equivalent orthotropic representation and illustrate some of 

the features introduced by the profile. 

6.1.1 Ribbed panels as equivalent orthotropic plates 

In this section, the analytical ribbed plate model is compared to an equivalent orthotropic 

plate model of four ribbed panels with different dimensions, shown in Table 5. The 

transmission loss of these panels was predicted using the periodic model described in 

Section 4.4, an equivalent orthotropic model based on calculating the area moment of inertia 

of the plate cross section, as per Section 4.3.2, and with FEM in Comsol (only for panel A 

and B). This, and further FEM simulations in are carried out over a frequency range between 

50 and 2000 Hz. The meshes were tetrahedral, and the maximum mesh element size chosen 

was one fifth of the wavelength in air at the highest frequency, 0.0343 m. 

The material properties chosen are those of aluminium, thought the loss factor was set to 0.1, 

reducing resonant dips, making the response smoother. 
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Figure 40: Ribbed plate geometry in Comsol 

Dimensions 

in mm 

Panel A Panel B Panel C Panel D 

 

Pitch (p) 100 300 100 300 

Plate 

thickness (h) 

5 5 1 1 

Rib width (b) 10 10 2 2 

Rib depth (d) 20 20 40 40 

Table 5: Dimensions of modelled ribbed panels A and B  

6.1.1.1 Panel A and FEM validation 

Panel A is 5 mm thick, and has large, closely spaced ribs at 100mm. This is considerably 

thicker than the plates found in any cladding construction, however, it has been included for 
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the purposes of numerical validation. This panel has been modelled in Comsol, and 

comparisons between the full analytical model and FEM, shown in Figure 42, are favourable, 

especially at low frequency. The evanescent modes of the analytical model have been 

included in this comparison, as the transmitted power in the FEM model was obtained on the 

surface of the plate. Convergence of the FEM model was achieved with 5 elements per 

wavelength at 2 kHz, with Figure showing the relative difference between 5 and 8 elements 

per wavelength lower than 0.1dB throughout the frequency range of interest, as shown in 

Figure 41. 

 

Figure 41: Relative difference in FEM modelled TL of panel A between 5 and 8 elements per wavelength at 2 kHz. 

The analytical model excludes matching of in-plane and rotational velocity at the interface 

between the plate and its ribs, which explains the deviations from the FEM simulation. The 

equivalent orthotropic plate performs well when the wave orientation is 𝜙 = 0, i.e. travelling 

in the direction perpendicular to the ribs, however it performs badly when the wave travels 

along the ribs, the stiffest direction, where it greatly underestimates the critical frequency dip 
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which, in reality, is approximately four times greater, suggesting the effective bending 

stiffness of a real ribbed plate is lower. 

 

Figure 42: Transmission loss of panel A for incident angle 𝜃 =
𝜋

4
 and two wave orientations, 𝜙 = 0∘ (top) and 𝜙 = 90∘ 

(bottom), showing FEM, analytical and equivalent orthotropic results 
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Figure 43: TL of panel A calculated with ribbed plate analytical model (top) compared to an equivalent orthotropic plate 

(bottom), showing all angles of incidence, with a wave oriented in the stiffest dimension 

Figure 43 shows the TL variation with angle of incidence and frequency for a single wave 

orientation (𝜙 =
𝜋

2
). The equivalent orthotropic plate and the ribbed plate both have similar 

features; the dark red areas represent high transmission, and the critical frequency can be seen 

forming an arc from grazing incidence, at 450 Hz for the ribbed plate, and below 200 Hz for 

the equivalent orthotropic plate. This means that the bending stiffness obtained with the 

equivalent orthotropic model appears to be much greater than the full analytical model 

predicts. The equivalent orthotropic model includes the added mass per unit area of the ribs, 

which is significant for this geometry, so that at low frequency, below 100 Hz, the curves are 

close. As can be seen in Figure 44, which shows the diffuse field transmission loss of both 

models, the results begin to diverge at 100 Hz, where the lower orthotropic plate critical 
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frequency dip is located. The main difference is caused by the underestimation of the lower 

critical frequency by the orthotropic plate. Both diffuse TL curves show a further dip at 3150 

Hz, which is the critical frequency associated with incident wave along the most compliant 

direction, 𝜙 = 0∘. 

 

Figure 44: Comparison of diffuse field transmission loss of panel A for analytical ribbed plate model and equivalent 

orthotropic plate 

6.1.1.2 Panel B 

Panel B has a larger profile period 𝐿𝑥 of 300 mm compared to panel A. In this case, the 

bending wavelength approaches the profile period at a lower frequency; a greater number of 

profile-related resonances are expected.  

Figure 45 shows the TL at incidence 𝜃 =
𝜋

4
 for two wave orientations, 𝜙 = 0 and 𝜙 = 90∘. 

Along the least stiff dimension, where the bending stiffness does not differ much from a flat 

plate, the orthotropic model deviates little from the periodic model, with the latter showing 
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additional profile-related resonances. These were made more pronounced by reducing the 

loss factor of the material from 10−1 to a more realistic 10−4 for aluminium. Along the 

stiffer dimension, the orthotropic plate model does not adequately capture the physical 

behaviour. Figure 46, with the TL of both representations for all angles of incidence along the 

stiffest dimension, shows how the profile-related resonances for the analytical ribbed plate 

model vary sharply with angle of incidence and have their lowest frequency for a normal 

incidence excitation. Along with these, a critical frequency starting at 2.5 kHz, at grazing 

incidence, can be seen, and is close to that for a flat panel of the same material and thickness; 

in the orthotropic model TL, a much lower critical frequency of 100 Hz can be seen, and is 

the only identifiable feature in the plot. When obtaining the diffuse field transmission loss, 

both models identify the higher critical frequency at 2.5 kHz, however the orthotropic plate 

model underestimates transmission loss at the low end due to the additional critical 

frequency. 

 

Figure 45: Transmission loss of panel B for incident angle 𝜃 =
𝜋

4
 and two wave orientations, 𝜙 = 0∘ (top) and 𝜙 = 90∘ 
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(bottom), showing analytical and equivalent orthotropic results 

 

Figure 46: TL of panel B calculated with ribbed plate analytical model (top) compared to an equivalent orthotropic plate 

(bottom), showing all angles of incidence, with a wave oriented in the stiffest dimension 

 

Figure 47: Comparison of diffuse transmission loss of panel B for analytical ribbed plate model and equivalent orthotropic 

plate 
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6.1.1.3 Panel C 

Panel C is 1 mm thick, which is in the typical thickness range of commercially available 

trapezoidal profile metal roofs, and a pitch p of 100mm. Profile related resonances and anti-

resonances are both more pronounced, and lower in frequency than panel A and B, as are the 

result of the great decrease in effective bending stiffness compared to the thicker plates. 

There is smaller difference in the diffuse field transmission loss between analytical and 

orthotropic, though, again, the latter ignores the detail of profile resonances, and can be 

clearly seen to strongly differ when looking at individual angles, especially in the stiffer 

dimension (bottom plot in Figure 48). 

   

Figure 48: Transmission loss of panel C for incident angle 𝜃 =
𝜋

4
 and two wave orientations, 𝜙 = 0∘ (top) and 𝜙 = 90∘ 

(bottom), showing analytical and equivalent orthotropic results 
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Figure 49: TL of panel C calculated with ribbed plate analytical model (top) compared to an equivalent orthotropic plate 

(bottom), showing all angles of incidence, with a wave oriented in the stiffest dimension 

 

Figure 50: Diffuse transmission loss of panel C, analytical ribbed plate model versus equivalent orthotropic plate  
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6.1.1.4 Panel D 

Panel D is 1 mm thick, and has a relatively large pitch of 300mm. The profile-related 

resonances start at a much lower frequency, resulting in higher density of such resonances in 

the frequency range of interest. In the diffuse field, Figure 53, resonances are largely 

averaged out and no longer visible, and the differences between orthotropic and analytical 

model solutions can almost entirely be explained by the added mass of the ribs. The 

resonances are strongly dependent on stiffness, meaning the Young’s modulus of the material 

itself is just as important as profile characteristics in determining the diffuse field 

transmission loss.  

 

Figure 51: Transmission loss of panel D for incident angle 𝜃 =
𝜋

4
 and two wave orientations, 𝜙 = 0∘ (top) and 𝜙 = 90∘ 

(bottom), showing analytical and equivalent orthotropic results 
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Figure 52: TL of panel D calculated with ribbed plate analytical model (top) compared to an equivalent orthotropic plate 

(bottom), showing all angles of incidence, with a wave oriented in the stiffest dimension 

 

Figure 53: Diffuse field transmission loss of panel D for analytical ribbed plate model and equivalent orthotropic plate, full 

resolution (top) and averaged in third octave frequency bands (bottom) 
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6.1.2 Profile resonances 

The behaviour of periodically ribbed plates is complex, and analytical solutions in the form 

presented in this work, containing infinite summations, make it difficult to extract useful 

relationships between inputs and outputs. In this section, the outputs of the periodic ribbed 

plate model are used to illustrate some of its features. 

Figure 54 shows the transmission loss through a 1 mm thick periodically ribbed plate, with 

geometric period of 400mm, for incident waves in two orientations, along and across the ribs; 

in this figure, the y axis is the value of trace wavenumber 𝑘𝑡, and includes values greater than 

the natural wavenumber in air 𝑘0, at which there would be no propagation into the far field. 

When the incident wave travels across the ribs (𝜙 = 0∘), where the stiffness is lowest, strong 

resonances occur in harmonic multiples of the bending wavenumber of the plate. These 

resonances occur at normal incidence, and increase in frequency as the trace wavenumber 

increases. In the vibration of a flat plate the opposite occurs: above coincidence frequency the 

natural wavenumber on the plate is always lower than the natural wavenumber in air, so that 

there is always a combination that results in high transmission. If, in this case, the trace 

wavenumber on the plate is zero (i.e. normal incidence), no bending motion occurs, as there 

is no variation in normal velocity along the plate.  
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Figure 54: Transmission loss through periodically ribbed plate, with period of 400mm. Top graph shows incident wave 

across ribs, bottom graph incident wave along ribs 

The wavenumbers 𝑘𝐵𝑛
 at which the profile-related resonances occur for each of the 

harmonics can be found by the following equation, derived empirically: 

 

𝑘𝐵𝑛
= √𝜔 − 𝜔𝑛 √

𝑚′

𝐵

4

 (6.1) 

The resonant frequencies 𝜔𝑛 were found to correspond approximately to the odd harmonics 

of the vibrations of a free-free beam of the length of the rib period. The resonant frequencies 

of a free-free beam can be obtained in the solutions to the following equation: 

cosh(𝑘𝐿) cos(𝑘𝐿) − 1 = 0  



132 

 

where 𝐿 is the length of the beam, and 𝑘 is its natural wavenumber. The values of 𝑘𝐿 are an 

infinite series and can be found numerically. This was carried out in Matlab using the 

function fzero. Table 6 shows the values of 𝑘𝐿 for the first ten modes. 

Mode 

number 
𝒌𝑳 

1 4.73 

2 7.85 

3 11.00 

4 14.14 

5 17.28 

6 20.42 

7 23.56 

8 26.70 

9 29.85 

10 32.99 
 

Table 6: Values of 𝑘𝐿 for the first ten modes of a free-free beam obtained numerically 

The resonant frequencies 𝜔𝑛 can then be obtained by substituting 𝑘 with the known natural 

bending wavenumber of the plate: 

 

𝑘𝑛𝐿𝑥 = √𝜔 √
𝑚′

𝐵

4

𝐿𝑥 = 𝛼𝑚 (6.2) 

 

𝜔𝑛 = (
𝛼𝑛

𝐿𝑥
)
2

√
𝐵

𝑚′
 (6.3) 

where 𝛼𝑛 = 𝑘𝑛𝐿. 

Figure 59 shows the transmission loss of the plate for a normal incidence plane wave. The 

mode frequencies are slightly underestimated.  
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Figure 55: Normal incidence transmission loss of ribbed plate showing mode frequencies 

Figure 56 shows the transmission loss as per Figure 54 with overlaid wavenumber harmonics 

𝑘𝐵𝑛
 (odd numbered only). The wavenumber in air 𝑘0 is also shown, as any transmitted wave 

above that value is evanescent and does not propagate in the far field. 

  



134 

 

 

Figure 56: Transmission loss of analytical ribbed plate model for a range of trace wavenumbers, plotted with the 

wavenumber in air 𝑘0, the bending wavenumber of the plate 𝑘𝐵 and the wavenumber multiples 𝑘𝐵𝑛
 

In the same figure, resonances can also be seen that are frequency independent, 

corresponding to fixed wavenumber values at regular intervals of  
𝜋𝑚

𝐿𝑥
, and can be seen as 

straight lines running horizontally, occurring when the excitation matches the period. 

6.1.3 Ribbed plates compared to standing seam corrugations 

A standing seam plate, simplified to a top-hat corrugated plate, and a beam stiffened plate of 

the 20 mm depth and 1 mm thickness, were modelled using FEM in Comsol, with a two-

dimensional geometry. Both types of panel were modelled with aluminium and also with 

steel properties. Figure 57 and Figure 58 are plots of pressure in air and displacement of the 

aluminium plates for a plane wave incident at angle 𝜃 =
𝜋

4
 and frequency of 1200 Hz; the 

displacement amount of the plates is amplified. These plots are used to illustrate how some 

in-plane motion occurs at the ridges of the corrugated plate as opposed to the beam stiffened 
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case. Figure 59 and Figure 60 show the transmission loss of, respectively, the aluminium and 

steel plates produced in FEM. Both figures show similar results, though the steel has an 

overall higher transmission loss due to its greater mass. The two curves in each figure are in 

good agreement, and present similar features. The resonances appear at slightly different 

frequencies, with the lowest being for the beam stiffened plate. The differences are thought to 

be due to the reduced stiffness of the top hat construction in comparison to the solid beam. 

These results indicate the possibility of using an equivalent beam stiffness approach which 

could account for profile-related resonances of corrugated sheets without resorting to a more 

complex model. 

 

  

Figure 57: Comsol model of top hat corrugated 

aluminium plate with incident wave at 𝜃 =
𝜋

4
 and 

𝑓 = 1.2 kHz, showing in-plane motion 

Figure 58: Comsol model of beam stiffened aluminium plate 

with incident wave at 𝜃 =
𝜋

4
 and 𝑓 = 1.2 kHz, showing 

bending of plate and beam 
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Figure 59: Transmission loss of beam stiffened aluminium panel and top-hat corrugated panel of 1 mm thickness and 20 

mm depth for incident angle 𝜃 =
𝜋

4
  

 

Figure 60: Transmission loss of beam stiffened steel panel and top-hat corrugated panel of 1 mm thickness and 20 mm depth 

for incident angle 𝜃 =
𝜋

4
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6.1.4 Periodically ribbed plate as a TMM layer 

The effective fluid properties of the ribbed plate can be obtained and used within a TMM 

framework to model multilayer structures with ribbed plates.  

The transmitted pressure obtained with the periodic ribbed plate model is in the form of an 

infinite sum of travelling waves of different amplitudes and wavenumbers: 

𝑝𝑡(𝑥, 𝑦, 𝜔) = ∑𝑇𝑚𝑛(𝜔)𝜓𝑚n(𝑥, 𝑦) 

The total energy can be obtained by summing the energy from each component 

independently, as the square of the amplitude 𝑇𝑚𝑛. However, in the case where there are 

multiple layers besides the ribbed plate, the direction and phase of each wave needs to be 

taken into account. In this case, then, to introduce the ribbed plate into a TM framework 

requires an infinite number of separate transfer matrices, one for each mode. For each mode, 

then, equivalent fluid properties 𝑘 and 𝜌 can be obtained from the values of 𝑅𝑚𝑛 and 𝑇𝑚𝑛, 

and its properties can then be used in the usual four by four fluid transfer matrix: 

 

𝑇𝑓 =

[
 
 
 cos 𝑘𝑧𝑑 𝑗

𝜔𝜌

𝑘𝑧
sin 𝑘𝑧𝑑

𝑗
𝑘𝑧

𝜔𝜌
sin 𝑘𝑧𝑑 cos 𝑘𝑧𝑑 ]

 
 
 

 (6.4) 

The total transmitted energy is then going to be the sum of the transmitted energy in each 

mode. This results in complications when modelling multi-layered systems with multiple 

periodic plates, as each plate would have its own corresponding infinite series. This is the 

issue with coupling together any number of resonant systems. In a system of two plates 

separated by a cavity, for each input wavenumber vector of the incident wave there would be 

a corresponding series of wavenumbers resulting from the geometric periodicity of the first 
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plate, and each of these would in turn result in an infinite series of wavenumbers from the 

second plate. A simpler method, which would be valid only at low frequency, would be to 

construct an equivalent fluid from the zeroth order mode only (from 𝑇00 and 𝑅00), so that 

only waves with a single trace wavenumber (equal to the incident trace wavenumbers 𝑘𝑥0
 

and 𝑘𝑦0
) are considered. Moreover, the cost of introducing periodic point connections 

between two periodic plates, while not impossible to do, would increase in much the same 

way. The issue is completely sidestepped by using the orthotropic plate formulation, at the 

expense of accuracy. 

6.2 TRAPEZOIDAL PROFILE PANELS: DIFFERENCES BETWEEN FEM 

MODEL AND ORTHOTROPIC PLATE FORMULATION 

To understand the limitations of the equivalent orthotropic model, compared to the behaviour 

of corrugated panels, several trapezoidal profile sheets were modelled in Comsol. The 

combinations of modelled panels are shown in Table 7, and cover a range of profile depths, 

pitches and thicknesses. Additionally, measurement results for some of the profiled panels of 

similar thickness (0.7mm) already discussed in the previous section were used to illustrate the 

effects of profile characteristics on the TL. 

Ref. Material 

properties 

Thickn. Pitch  Crown Valley Depth 

Panel 

1 
𝜌 =  2700

kg

m3
, 

𝐸
=  7
× 1010𝑃𝑎, 
𝜈 =  0.3, 
𝜂 =  0.1, 

4mm 100mm 10mm 80mm 10mm 20mm 

30mm 40mm 

Panel 

2 

2mm 150mm 10mm 120mm 10mm 

20mm 

40mm  

60mm 

Panel 

3 

2mm 200mm 

300mm 

400mm 

10mm 140mm 

240mm 

340mm 

20mm 

 

Table 7: List of modelled corrugated panels with dimensions and material properties 
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The equivalent orthotropic plate model generally predicts that the equivalent bending 

stiffness increases with profile depth, as the area moment of inertia of the structure increases. 

Lower depth structuresapproach the sound transmission of flat panels, as the lower critical 

frequency associated with the stiffest dimension increases in frequency. This holds true for a 

real corrugated panel, as FEM calculations show that the lower critical frequency shifts 

upward with decreased profile depth (precisely what is expected as the area moment of the 

profile as a whole changes); for this effect see Figure 61, which shows a plot of FEM 

modelled transmission loss of a 2 mm thick trapezoidal profile panel of depth between 10 and 

60mm, ‘Panel 2’: in this graph the lower dip in transmission loss shifts to the right as depth is 

reduced. On the other hand, the FEM calculations also show that modes related to the profile 

periodicity, caused by reflections from the discontinuities of the profile itself, can still 

provide regions of high transmission in the frequency range of interest even for low depth 

panels, as can be seen in Figure 62, which compares the transmission loss of a corrugated 

plate for a normal incidence wave over a range of profile depths from 10 mm to 60mm. 

 

Figure 61: Transmission loss through a single trapezoidal corrugated sheet of varying depth, incidence 𝜃 =
𝜋

4
 and wave 

direction along corrugations (stiffest dimension) 
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Figure 62: Transmission loss through a single 2 mm thick corrugated sheet of varying depth, normal incidence wave 

Figure 63 and Figure 64 show the comparisons between transmission loss of a trapezoidal 

profile plate predicted with orthotropic plate theory (‘analytical’) and obtained numerically in 

Comsol (‘FEM’) for, respectively, Panel 1 and Panel 2, including depth variations and wave 

orientation. For the 4 mm thick plate, the lower critical frequency is visible when the wave 

orientation is 𝜙 = 0, i.e. along the corrugations, and is underestimated in frequency by 

around 20% in the orthotropic plate model, suggesting again that, as for the ribbed plate case, 

the bending stiffness is slightly overestimated. The peak transmitted energy is modelled 

correctly, as the dip in TL is in the same order. When the wave travels in the orientation 

𝜙 =
𝜋

2
, i.e. across the corrugations, the behaviour is similar to a flat plate and at low 

frequency matches the orthotropic plate model, except for additional resonances and anti-

resonances at higher frequencies. For the 2 mm plate, with a 50% greater pitch, the lower 

critical frequency in the FEM case for 𝜙 = 0 is not as strong and appears to be near 

inexistent for lower depth panels, indicating that the orthotropic plate theory is not valid in 

this case: it predicts a large dip as it does for the thicker plate. In the orientation 𝜙 =
𝜋

2
, a 

similar result to the 4 mm plate can be seen. This indicates that while the orthotropic plate 
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formulation is overall preferable to a flat plate model, thin sheets with larger periods require a 

more complex model.  

 

 

Figure 63: Transmission loss through a single 4 mm thick corrugated sheet (100 mm pitch) – Panel 1 – of varying depth and 

wave direction (along and across corrugations); comparison with equivalent orthotropic (‘analytical’) model 
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Figure 64: Transmission loss through a single 2 mm thick corrugated sheet (150 mm pitch) – Panel 2 – of varying depth and 

wave direction (along and across corrugations); comparison with equivalent orthotropic (‘analytical’) model 

6.3 CORRUGATED METAL SHEETS: COMPARISONS WITH 

MEASURED DATA 

This section is a presentation of comparisons between measured transmission loss and 

predictions using the output from the TMM, with a single solid layer with orthotropic 

Young’s Modulus based on the profile area moment of inertia. The TMM output includes the 

Villot finite size correction (Section 4.1.11) and a Gaussian angle of incidence window with 

factor 𝛽 = 1. Laboratory measurements of sound transmission loss of individual corrugated 
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sheets were drawn from available literature and previous measurements carried out at the 

University of Salford laboratories – with panel depths ranging from 30 mm to 70 mm. Panel 

profiles with drawings and approximated trapezoidal dimensions (pitch, crown, valley and 

depth) are shown in Table 9. In modelling these panels, the effect of smaller stiffening ribs 

was neglected. 
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Reference and description 

 

Pitch (mm) Crown (mm) Valley (mm) Depth (mm) 

CF750 

0.6 mm steel 

(Lam 1995) 

250 20 202 47 

KZ400 

0.9 mm aluminium 

(Lam 1995) 

400 24 373 65 

SS1200 

0.7 mm steel 

(Lam 1995) 

400 41 322 70 

SS600 

0.7 mm steel 

(Lam 1995) 

600 51 480 70 

NG1998 

0.5 mm steel  

(Ng & Zheng 1998) 

 

190 30 130 30 

KL200  

0.7 mm corrugated steel sheet  

 (INSUL database) 

203 30 160 41 

 

Table 8: Types of corrugated panels, showing approximate trapezoidal dimensions 

 

Figure 65: Measured diffuse sound transmission loss of 0.7mm gauge corrugated steel sheets of varying depth (47mm 

deep sheet is 0.6 mm gauge) compared to a TMM prediction for a 0.7mm thick flat steel panel (‘Flat’) 
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The measured transmission loss of all the 0.7 mm thick steel corrugated panels in Figure 65 

shows no distinct lower critical frequency shift with depth. The low frequency response of 

panels of different depth is largely similar, whereas orthotropic plate theory predicts a clearly 

shifting critical frequency, which would make the TL below the critical frequency higher, 

something that does not happen in practice, as evidenced in Figure 65. Lower depth panels 

(41 mm and 47 mm) show dips at mid frequency which are higher than expected based on 

their bending stiffness. 

Generally, the slope per octave and the predicted curves in Figure 66 to Figure 71, which 

show TL modelled using orthotropic properties against diffuse field measurements, are 

reasonably close to the result, and an improvement from the predictions for a flat plate of the 

same thickness. Where the predictions differ from the measurement, is that they tend to 

overestimate at high frequency, where profile modes dominate transmission; the predicted TL 

at low frequency varies for different profiles, as the lower critical frequency changes. In 

practice this does not happen, the low frequency TL is relatively close for all panels. The 

smaller profile periods in Figure 68, Figure 70 and Figure 71 show a greater amount of dips, 

while the larger pitches (400mm+) have a smoother transmission loss which is related to the 

higher mode density, as has been previously shown with the ribbed plate analytical model. 

Figure 66 and Figure 67 show how, for larger periods, there is a steady increase in TL up to 

around 2 kHz, where it begins to drop. 
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Figure 66: Measured vs predicted transmission loss of KZ400 400 mm pitch 

 

Figure 67: Measured vs predicted transmission loss of SS600 600 mm pitch 
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Figure 68: Measured vs predicted transmission loss of CF750 250 mm pitch 

 

Figure 69: Measured vs predicted transmission loss of SS1200 400 mm pitch 
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Figure 70: Measured vs predicted transmission loss of KL200 203 mm pitch (INSUL database) 

 

Figure 71: Measured vs predicted transmission loss of NG1997 190 mm (Ng & Zheng 1998) 
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6.4 CONCLUSIONS 

In this chapter, single profiled sheets have been examined from different angles. By 

comparing the orthotropic plate representation with the periodic ribbed plate model, the 

differences highlighted how the orthotropic plate generally overestimates the stiffness of real 

panels, and most accurately captures overall behaviour when the profile period is smaller than 

the bending wavelength of the plate. However, for larger profile periods, while the 

orthotropic plate fails to replicate the observed features of a ribbed plate, the diffuse field TL 

is still close, as the profile-related modes are closer together and are smoothed out when 

integrating over multiple angles of incidence. Lower critical frequency behaviour in the 

ribbed plate for wide spacing is less pronounced, as the profile-related modes begin at lower 

frequencies. In all cases there is little difference in TL between the orthotropic plate and 

ribbed plate at very low frequency (as the bending wavelength approaches the profile width). 

Similar observations were made when comparing the orthotropic plate representation to FEM 

models of trapezoidal plates; the bending stiffness is slightly overestimated when obtaining 

the area moment of inertia of the corrugated section, and the simulated trapezoidal panels 

exhibit a fainter critical frequency dip as the profile period increases and the thickness 

decreases. 

Comparisons with laboratory measurements of corrugated steel plates of thickness of 0.6 and 

0.7 mm show that, for real panels, the low frequency response is relatively stable even when 

varying the profile depth, and high frequency behaviour is dominated by profile related 

resonances which are not captured by an equivalent orthotropic plate model, which 

consequently tends to overestimate TL. 
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7 RESULTS: DUAL LEAF STRUCTURES 

This chapter is a presentation and discussion of the bulk of validation and applications of the 

point connected plates and TMM models to the prediction of transmission loss and associated 

parameters of full roof and partition structures. The sections are presented as much as 

possible in order of complexity, from single sheets, to dual leaf structures with flat panels and 

little framework, to roof systems with point-to-point connections, multiple layers of infill and 

more complex framework. In some figures containing laboratory measurement results, the y 

axis values have been removed; in these cases, the figure caption will give the y axis gridline 

step size for reference. 

7.1 SINGLE AND DUAL LEAF STRUCTURES WITHOUT STRUCTURAL 

CONNECTIONS 

Laboratory measurements of sound insulation are dependent on several parameters at once, 

obscuring the details of transmission at specific angles of incidence and for the individual 

components measured. This will be the case unless the measurements are extremely simple 

and heavily constrained to a handful of parameters, as in the case of a normal incidence 

impedance tube measurement. In this section, systems of increasing complexity are modelled 

with comparisons to diffuse field laboratory measurements.  

7.1.1 Structures with flat panels 

Large multi-layer structures with flat panels are useful tests of the TMM because they 

correspond most closely to its formulation. In this section, some glazing and plasterboard 

partitions will be considered, and comparisons made between available measured data and 

the TMM model, including two corrections for laboratory diffusivity discussed in 
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Section 4.1.11: the Gaussian incidence windowing, from Kang et al. (2000), and the spatial 

windowing, from Villot et al. (2001). 

7.1.1.1 Single and double glazing 

Glazing partitions are an ideal ‘simple’ case, in that glass sheets are commonly uniform, flat 

and double glazing partitions have no cavity infill. Framework is often minimal and confined 

to the outer edges of the structure.  

Laboratory measurement results for single and double glazing partitions have been drawn 

from the literature.  

The first single glazing partition examined is comprised of a sheet of 4 mm tempered glass. 

The laboratory measured TL is compared to the TMM model of a single sheet, using nominal 

properties of glass; these results are shown in Figure 72. The measured TL shows features 

expected of a single solid sheet: a mass region at low-mid frequency, with a steady 6dB per 

octave increase, and a critical frequency dip at high frequency which is dependent on the 

bending stiffness of the panel. The modelled TL shows the same features. The TMM model 

with a Gaussian incidence window (with factor 𝛽 = 1) is closest to the measured result, 

while a combination of the Gaussian window and spatial window overestimates TL over most 

of the frequency range. At low frequency, irregularities in the TL are due to panel resonances 

related to its lateral dimensions, as well as the resonant behaviour of the laboratory rooms, 

neither of which were taken into account over the course of this work.   

A similar comparison is shown in Figure 73, for a 10 mm single glazing panel of laminated 

glass. Laminated glass is comprised of two sheets of glass separated by a thin viscous 

damping layer, and are generally used for increased acoustic performance. The critical 

frequency dip is lower than for the 4 mm tempered panel due to the increased thickness, but 
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also lower than predicted with the nominal properties of glass (𝜌 = 2500, 𝐸 = 7 × 1010Pa, 

𝜈 = 0.3, 𝜇 = 10−4), modelling a single 10 mm sheet, suggesting the laminated glass also has 

greater bending stiffness. The critical frequency dip is not as sharp, as the viscous layer in the 

laminated glass increases its internal damping, which can be accounted for in the model by 

increasing the loss factor 𝜂, as shown in one of the curves in the figure. The change in loss 

factor does not affect the predicted TL below the critical frequency, which is expected given 

that the TMM models non-resonant behaviour only. Modal analysis would account for the 

effect of changes in internal damping on vibration below the critical frequency. 

 

Figure 72: 4 mm single glazing, comparison of measured TL with elastic solid layer model, with corrections for incident 

field and spatial windowing 
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Figure 73: 10 mm laminated single glazing, comparison of measured TL with elastic solid layer model, with corrections for 

incident field and spatial windowing, and adjusted loss factor 𝜂 

Diffuse TL of double glazing with two sheets of 6mm tempered glass separated by a 12 mm 

cavity are shown in Figure 74. The measured TL shows two features of dual leaf structures: 

the mass-air-mass resonance at low frequency (200 Hz) and the critical frequency associated 

with each panel (2000 Hz). The diffuse TL obtained with the TMM without adjustments 

greatly underestimates TL throughout the range. A combination of both the Villot spatial 

window and the Gaussian incidence window achieve the closest match with results at mid 

frequency, between the mass-air-mass resonance and the critical frequency dip, although 

there is some overestimation at the low end. As for the single glazing cases, low frequency 

results (up to around 200 Hz) tend to be dominated by features of the laboratory rooms and 

panel resonances which are not accounted for. 
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Figure 74: 6-12-6mm double glazing, comparison of measured TL with TMM results, with and without corrections for 

incident field and spatial windowing 

 

7.1.1.2 Plasterboard partitions 

Laboratory measurements of TL of plasterboard partitions were drawn from Stani et al. 

(2004) and compared with the TMM predictions. In both measurements discussed here, the 

structure is a dual leaf plasterboard partition with 12.5mm sheets on either side of a 115mm 

cavity, with aluminium framework, consisting of two 50mm wide C-shaped studs at 630mm 

spacing. The sectional diagram of the structure can be seen in Figure 75. 
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Figure 75: Cross section from Stani et al.: plasterboard partition with 12.5mm sheets and empty 115mm cavity, with 

double 50mm aluminium C-shaped studs separated by 15mm . 

Figure 76 shows the transmission loss of the plasterboard partition with no cavity infill, while 

in Figure 77 mineral wool is introduced, with a flow resistivity of 5.4kPa∙s∙m-2. The 

measured curves in Figures Figure 76 and Figure 77 are typical, showing features present in 

most similar constructions.  In both cases, a dip at low frequency, around 80 Hz, can be 

observed, which corresponds to the mass-air-mass resonance. A further dip at 2500-3150 Hz 

corresponds to the critical frequency of the plasterboard sheets, and is particularly 

pronounced as both sheets are the same material and geometry. The critical frequency drop 

amount is dependent on the internal damping of the sheets. The results modelled using the 

TMM alone predict both features. In the case of the empty cavity, Villot’s correction for 

radiation efficiency (spatial window) improves the prediction significantly compared to the 

incidence window only (𝛽 = 1), increasing predicted TL by up to 10dB between the mass-

air-mass resonance and the critical frequency. When 100mm of low density mineral wool is 

introduced in the cavity, the TL is significantly higher, as shown in Figure 77, and the slope 

between the mass-air-mass resonance and the critical frequency dip is much greater, and is 

influenced by the absorptive properties of the mineral wool. The mass-air-mass resonance 

frequency is also lower due to the increased damping introduced by the infill. In this case, the 

TMM modelled results vary little whether the spatial window is used or not. Its effect is to 
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increase the TL by 5dB below the mass-spring-mass resonance (as radiation efficiency of a 

finite panel is lower at low frequency), and by only 2-5 dB in the rest of the curve.  

 

Figure 76: Plasterboard partition with 12.5mm sheets and empty 100mm cavity: laboratory measured versus modelled with 

incidence window and spatial window (Data from Stani et al.) 

 

 

Figure 77: Plasterboard partition with 12.5mm sheets and 100mm cavity filled with mineral wool with air flow resistivity of 

5.4 kPa∙s∙m
-2

    : laboratory measured versus modelled with incidence window and spatial window (Data from Stani et al.) 



157 

 

7.1.2 Interfacing layers: bonded versus unbonded solids and poroelastic 

materials 

The behaviour of structures involving solids and high density infill materials which allow 

significant transmission through the solid portion is heavily dependent on the mounting 

conditions of each panel, which presents a challenge in modelling. The TMM predicts a large 

difference in transmission loss when air gaps are introduced between solid or poroelastic 

layers in a sandwich configuration. Separating layers by small air gaps has the effect of 

forcing shear stress to zero at the boundaries of the fluid, effectively decoupling solids which 

would otherwise be fully bonded, if modelled as consecutive layers in the transfer matrix 

framework. Figure 79 illustrates this effect, showing the large difference between coupling 

and decoupling poroelastic layers by 1mm air gaps in a sandwich panel; a similar example is 

found in Allard and Atalla (2009). It is harder to observe such effects in practice 
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Figure 78: Sandwich plate consisting of mineral wool placed between two steel plates. Predicted transmission loss with 

and without 1mm air gaps between the plates and the mineral wool. 

In many of the dual leaf roof systems described in Chapter 2, corrugated sheets are screwed 

to high density boards and mats. In this case, one modelling approach has been to obtain the 

bending stiffness of the combined panels moving as one, using sandwich theory, so that they 

are effectively bonded. However, in practice, solid panels are joined together with screws, at 

regular or irregular spacing, so that panels move separately except at the fixing locations. 

This configuration is rather more difficult to model. Two solid plates fully bonded together 

are much stiffer than each individual panel, and produce a critical frequency dip in TL which 

is lower in frequency than it is for either of the plates individually. This is shown in Figure 

79, with two plates, a 6mm glass layer and a 4mm glass layer modelled using the TMM; 

when they are bonded, the critical frequency dip is 1.25 kHz, while it is 2.5 kHz for the 

unbonded case. It is often the case that dual plasterboard partitions with double plasterboard 

panels (screwed together) either side of the cavity have a single strong critical frequency dip 
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(when all panels are the same thickness) at the same frequency as for a single panel, 

indicating that the effective bending stiffness of each panel does not change significantly 

even when screwed together. 

 

Figure 79: 6mm and 4mm glass panels modelled using the TMM, as single panels, and together, both bonded and unbonded  

7.1.3 Factory-made composites 

Composites are structures with two thin corrugated metal sheets, and a cavity between them 

filled with expanding foam, the core. Figure 80is a cross-section of a factory-made 

composite. In this type of system, the steel sheets are effectively bonded to the core material. 
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Figure 80: Factory made composite diagram. Corrugated composite panel, two steel sheets with polyisocyanurate (PIR) 

core 

Figure 81 shows the transmission loss of the composite shown in Figure 80, with a core depth 

of 100mm, along with TMM predictions based on two different values of core modulus, with 

the appropriate adjustments for diffusivity and radiation discussed in previous sections. The 

nominal core static stiffness value gives poor prediction of the mass-spring-mass resonance; 

this is reflected by Pritz (1998), who showed that the dynamic moduli are generally higher 

than the static values and increase with frequency. Other important transmission mechanisms 

are also neglected. These are most likely related to the influence of the profile and require a 

detailed investigation beyond the scope of this work.  
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Figure 81: Diffuse TL of corrugated composite panel with polyisocyanurate (PIR) core and 100mm depth: comparison of 

measurements to TMM model with varying Young’s modulus E of the core (E=5e6 nominal static value, E=2e7 empirical 

estimate) (y axis gridlines are in 10dB increments) 

Measured TL was also available for a composite with a smaller 40mm core depth. In this 

case, the TMM predicted transmission loss overestimated the measured results by around 

5dB from mid to high frequency, and underestimated in the low frequency region. These 

results can be seen in Figure 82. As the thickness of the core decreases, the profile depths 

become larger with respect to the overall depth. The impedance mismatch between the valley 

and crown areas of the profile becomes larger and profile modes would thus play a greater 

role. This suggests that effects associated with the profile are stronger and influence 

transmission loss to a greater degree, resulting in overestimation in the model.   
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Figure 82: Diffuse TL of corrugated composite panel with polyisocyanurate (PIR) core and 40mm depth; comparison of 

measurement to TMM model (Young’s Modulus E estimated). (y axis gridlines are in 5dB increments) 

Composite panels can be represented as mass-spring-mass systems, where the two sheets are 

the masses and the core material provides the stiffness. The mass-spring-mass resonance then 

follows the usual equation: 

𝑓𝑚 =
1

2𝜋
 √

𝐾𝑏

𝑑

𝑚′1 + 𝑚′2
𝑚′1𝑚′2

 

Where 𝐾𝑏 is the bulk modulus of the core, and 𝑚1
′  and 𝑚2 are the masses per unit area of the 

metal sheets, and 𝑑 is the thickness of the core. 

The behaviour of a real composite is no doubt more complex, however the mass-spring-mass 

resonance is the most clearly visible feature in many measurement results, and a reasonable 

approximation of TL can be obtained with a simplified approach that only accounts for this. 

A three-layered transfer matrix approach, where all layers are modelled as elastic solids with 

a flat profile, captures the overall behaviour seen in measured results. However, the 
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mechanical properties of the core material, which are essential in determining the resonant 

frequency, are hard to obtain reliably. The static modulus of the core varies considerably with 

overall core depth (as evidenced by measurements provided by the manufacturers), and its 

dynamic properties have not been established. Based on reverse engineering from diffuse 

field measured data, the bulk modulus of the core appears effectively one order of magnitude 

higher than any static values for the material, nominal or measured. 

7.1.4 Conclusions 

In this section, single and dual leaf structures were modelled without considering framework 

or structural connections, using the TMM with two correction methods to approximate 

laboratory conditions: the incidence window and the spatial window (Villot et al. 2001; H. 

Kang et al. 2000). A combination of both corrections together has been found to improve 

prediction accuracy for dual leaf structures without absorbent infill. The use of a double 

correction has a smaller impact in the case of systems with high absorption, where often 

either the spatial window or the incidence window alone are better than both combined.  

The TL of corrugated composite panels with high stiffness foam cores can be modelled with 

the TMM, using the equivalent orthotropic plate model for the outer metal sheets. This 

approach can predict the global mass-spring-mass behaviour but overestimates transmission 

loss for thinner composites, where the corrugation depth is a greater percentage of overall 

depth. 

7.2 POINT CONNECTED PLATES: VALIDATION AND SURVEYS 

This section will move on to discussing structures with structural point-to-point connections 

and spacer kits. First, the analytical model of plates connected by rods, described in 
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Section 5.1, is validated by comparison with FEM model of two plates connected periodically 

by thin rods. The influence of point connection spacing and stiffness on the transmission loss 

of dual leaf structures is then observed by way of a parametric survey using model outputs. 

The compressional stiffness of halter and bracket connectors is obtained with FEM models of 

typical geometries. The stiffness values are then used as inputs to the periodic point-

connected plate model. Finally, spacer kits with halters onto top hat purlins (top hat section 

beams between the halters and the bottom plate) are examined with FEM, by obtaining the 

changes in stiffness compared to halters, and the point-connected plate model to shed some 

light on their influence within full structures.  

7.2.1 FEM validation 

 

Figure 83: Dual leaf system with connecting rods, unit cell geometry produced in COMSOL 

A system of two parallel infinite plates interconnected by spatially periodic thin rods and 

separated by an air cavity was modelled analytically, as described in Section 5.1, and with a 

frequency domain FEM carried out in COMSOL. Within COMSOL, a single unit cell was 
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modelled and Floquet periodicity was introduced at the boundaries to model the periodic 

system. The incident wave was modelled as a ‘background pressure field’, with a given 

wavenumber to determine the wave direction. The unit cell size (and consequently the 

spacing of rods) was 100mm by 100mm in the x and y directions. Figure 83 shows the system 

geometry of a single unit cell produced with COMSOL. The top and bottom plates were both 

5mm thick with the commonly used properties of aluminium (𝜌 = 2700 kgm
-3

, 𝐸 = 7 ×

1010 Pa, 𝜈 = 0.3), with an adjusted loss factor of 0.1 to produce smoother results around 

resonances. The rods had a density of 2700 kgm
-3

 and four values of Young’s Modulus 

between 10
6
 and 10

9
.  

Figure 84 shows the transmission loss obtained with the periodic analytical model and the 

FEM simulation for angle of incidence 𝜃 =
𝜋

4
, over the range of rod moduli. The results show 

good agreement throughout the range considered, between 50 Hz and 2 kHz, and for the 

different rod stiffness values. The analytical model predicts most features, including how the 

lower mass-spring-mass resonance increases from 80 Hz to 315 Hz as the modulus of the rod 

increases, and how higher frequency resonances shift with stiffness. The FEM model includes 

all degrees of freedom for the rods, so some discrepancies are expected; in particular, the TL 

differences are greater for lower values of rod Young’s Modulus. This could be improved by 

introducing additional degrees of freedom in the point-connected plate model. 
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Figure 84: Comparison of analytical and FEM calculated transmission loss through the infinite periodic double plate 

structure with point connections at 100mm by 100mm for an incident plane wave at 𝜃 =
𝜋

4
, with rod Young’s modulus 

varying from 106 to 109 

7.2.2 Halters and brackets: comparison of compressional stiffness 

Two common types of connectors used in spacer kits in roof systems have been examined: 

halters and brackets (see Section 2.3). Their compressional stiffness was obtained with FEM 

modelling carried out with COMSOL, so that the values could be used within the analytical 

model for point connected plates by replacing the stiffness matrix 𝐾𝑖𝑗. 
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Figure 85: Comsol geometry of halter (left) and bracket (right) 

The halter geometry was based on a common design (Metal Cladding and Roof 

Manufacturers Association 2013) . The halter is made of aluminium (𝜌 = 2700 kg/m3, 

𝐸 = 7 × 1010Pa, 𝜈 = 0.3), with 5mm thick base and bottom half, tapering to 3mm in the top 

half, and an overall height of 105mm. In an application, four screws, two either side of the 

base, would be used to secure the halter to the liner sheet, or top hat purlin, while the top 

would be inserted into a standing seam profiled panel (for the standing seam profile see Table 

1).  

A common bracket design was chosen. It is 1.6mm thick and made of steel (𝜌 =

7800 kg/m3, 𝐸 = 1.8 × 1011Pa, 𝜈 = 0.3). In practice, it would be joined to the liner with 

two screws through the base, and the top inserted into the bar, screwed to the top sheet.  

The boundary conditions of the connectors are not easy to characterise. The halter would only 

be in partial contact with the top sheet, as it is inserted into the top sheet ridges, with some 

rotation allowed. The bracket is inserted into a stud which in turn is screwed to the top sheet, 

so that there is some distance between the top of the halter and the connection point on the 

top plate. Accounting only for axial stiffness is a crude approximation of their real behaviour.  
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Figure 86: Prescribed displacement areas on bracket (left) and halter (right) 

To obtain the stiffness matrix 𝑘𝑖𝑗 for z displacements and forces, a z direction displacement 

value was prescribed at the base of each connector, over the area that would be in contact 

with the rest of the structure (see Figure 86), while enforcing zero displacement on the top, 

and vice versa. The reaction forces at the top and bottom, 𝐹𝑧1
 and 𝐹𝑧2

, are then obtained. The 

stiffness matrix 𝑘𝑖𝑗 is given by the ratio of the z direction reaction forces and displacements 

𝑤𝑧1
 and 𝑤𝑧2

: 

 𝐹𝑧1

𝐹𝑧2

= [
𝑘11 𝑘12

𝑘21 𝑘22
] × [

𝑤𝑧1
𝑤𝑧2

] (7.1) 

The amplitudes of 𝑤𝑧1
 and 𝑤𝑧2

 were set to 0mm and 0.1mm respectively (and vice versa), so 

that all values of the 𝑘 matrix could be obtained. 

Figure 87 shows the stiffness of the two connectors derived in Comsol, with a free rotation 

condition either side of the connector. The bracket has a geometry such that a force on the 

base induces a higher degree of rotation in the element, due to its asymmetry. The first 

resonance of the bracket is at around 200 Hz, below which the stiffness flattens out. The 

stiffness of the halter is greater by about one order of magnitude, and is approximately 

constant throughout the frequency range. Figure 88 shows the stiffness matrices of the 
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connectors when rotation is constrained. The bracket and halter in this case have a similar 

stiffness up to 1.5 kHz, where the bracket has its lowest resonance. 

 

Figure 87: Comparison of FEM calculated stiffness matrix values 𝑘𝑖𝑗  between 1.6mm steel bracket (dashed line) and 3-5mm 

aluminium halter (solid line); free rotation 
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Figure 88: Comparison of FEM calculated stiffness matrix values 𝑘𝑖𝑗  between 1.6mm steel bracket (dashed line) and 3-5mm 

aluminium halter (solid line); constrained rotation 

The dynamic stiffness of structural connectors can also be obtained by measurement. 

However, there are several practical issues which limit the validity of results to low 

frequencies, especially when dealing with high stiffness elements. With stiffness generally 

increasing with frequency, the differences between velocities at the top and bottom of the 

connector used to determine it are increasingly small and approach internal equipment noise 

and background noise. While stiffness values may be extrapolated to high frequency from 

more reliable low frequency results, these can only be a rough estimate and would neglect 

internal resonances.  

7.2.3 Halter and bracket connectors in roof systems 

In this section, the halter and bracket stiffness obtained in the previous section are introduced 

in the point-connected model, as described in Section 5.1, to observe their impact on diffuse 

TL. 
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Figure 89: Modelled dual leaf corrugated roof structure with bracket and halter connectors (stiffness derived from FEM), 

compared to the same structure with no connectors; showing bracket with constrained and free rotation   

Figure 89 shows the transmission loss of a modelled dual leaf structure with 0.7mm thick 

corrugated steel panels and a 100mm deep cavity filled with mineral wool. The system is 

modelled using the pure TMM without point connections, and with point connections at 

400mm by 1000mm spacing, using the stiffness matrices of brackets and halters, obtained in 

Comsol as detailed in the previous section. TL is highest for the case without connections, 

though there is little difference between all models up to 500 Hz, the transition frequency 

from above which the presence of connectors causes a considerable reduction, with a 

difference of up to 20dB at 5 kHz. TL is on the whole similar between the connectors, though 

it is greater for the bracket in free rotation above 800 Hz, with a difference of up to 10dB 

compared with the halter. When the bracket stiffness is obtained without constraining 

rotation, the TL is greater than for the constrained bracket above the 2500 Hz band. The 

internal resonances of the bracket lead to regions of lower TL between 500 and 800 Hz, and 

at 2 kHz.  
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7.2.4 Effect of connector stiffness and spacing on dual leaf structures 

While it is not trivial to extract direct relationships between diffuse field transmission loss 

and parameters in the analytical point-connected plate model, parametric surveys nonetheless 

allow some trends to be identified. In this section, broad relationships between spacing, 

stiffness and transmission loss are shown using modelled results. 

The effect of connector spacing was examined by modelling a dual leaf system with 

aluminium connectors with 150mm
2
 cross sectional area, modelled as static springs with 

stiffness matrix 𝐾𝑖𝑗 =
𝐴𝐸

𝐿
. The structures consists of 1mm steel sheets separated by a 100mm 

cavity, filled with a low density porous absorber, modelled with the Delany-Bazley approach, 

using a flow resistivity of 6.2 kPa∙s∙m-2. The results are shown in Figure 90. The closest 

spacing configuration, 100mm by 100mm, shows an overall low TL (though a higher TL up 

to 125 Hz compared to all other configurations). It also has a prominent dip at 315 Hz, which 

is a (shifted) mass-spring-mass resonance. As the spacing between the rods increases, the TL 

increases and the mass-spring-mass resonance is lowered, approaching the TL of the structure 

in the absence of connectors, also shown in the figure. The spacings of connectors in real roof 

systems typically exceed 300mm in both dimensions, meaning that their influence will be 

predominantly limited to high frequency, with a small impact on the mass-spring-mass 

resonance. An accurate determination of connector stiffness will be particularly important in 

predicting TL above 200-300 Hz. 
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Figure 90: Transmission loss of modelled dual leaf structure with point connections of varying x/y spacing shown in mm 

The influence of changes in stiffness is also important in determining what can be expected in 

roof structures with different spacer kits. 

Figure 91 shows the transmission loss through a dual leaf structure with two sheets of 0.9mm 

thick steel and porous infill in a 100mm deep cavity, with connectors at 400mm by 1000mm 

spacing, and shows the effect on TL as the axial stiffness of the connectors – constant in 

frequency – is changed. Higher stiffness significantly decreases transmission loss at high 

frequency, and is also associated with a shift in the low frequency mass-spring-mass 

resonance, similarly to changing spacing, as the stiffness of the air or mineral wool in the 

cavity becomes negligible compared to that of the rods. This effect is described by Cremer 

(Cremer et al. 2005), while examining the case of floating floors, where the stiffness between 

two plates can be represented as parallel lumped springs, weighted by their respective surface 

area. As the stiffness of the connectors decreases, the TL tends to the values for a structure 

modelled with the TMM only, without connectors. While this holds generally, connectors 

will exhibit resonances as the wavelengths approach the dimensions of the connector, 
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providing additional regions of high transmission throughout the spectrum. The range of TL 

values produced by varying stiffness at high frequency suggests that an accurate 

determination of the connector properties is a crucial component in modelling.  

 

Figure 91: Diffuse field transmission loss of dual leaf roof structure with connectors of varying stiffness 

7.2.5 Effect of top hat purlins 

Many high performance roof structures have structural connections which run from the top 

metal sheet to a “top hat” beam, or purlin, as illustrated in Figure 92 (the top metal sheet is 

not shown). This type of structure has been modelled analytically as a point connected plate 

system with the addition of periodically spaced beams on the bottom plate, as described in 

Section 5.2. This approach assumes that the beam is in full contact with the bottom plate, 

acting as a constraint; however, in reality, the beam would be fixed with screws at specific 

points, so that this approach would likely be more applicable at low frequency. Including the 
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compressional stiffness of the beam was necessary to account for significant effects of 

varying the beam cross section and properties, which are especially important when it comes 

to top hat purlins, given their greater compliance than halters, as will be shown. 

 

Figure 92: Halter connectors onto top hat beam, or purlin. MCRMA (2013) 

 

Figure 93: Geometry of point connected plates with connections onto rectangular section (left) and “top hat” section (right) 

beams, produced in Comsol 

The system was modelled with FEM in Comsol, with both a rectangular section beam and a 

top hat section beam of 20 mm by 10 mm; the unit cell geometry is shown in Figure 93. Both 

plates in this FEM simulation are flat, 5mm thick and have the properties of aluminium 

(𝜌 = 2700 kg m3⁄ , 𝐸 = 7 × 1010 Pa, 𝜈 = 0.3), with a loss factor of 0.1. 5mm by 5mm 

square section aluminium rods connect the top plate to the beam.  



176 

 

 

Figure 94: TL of point connected plates with intermediate rectangular section beams modelled in Comsol and analytically, 

varying the Young’s modulus of the beam. The compressional stiffness of the beam was modelled as a stiffness value in 

series with that of the rod. 

Figure 94 shows a comparison of FEM models of the system with a rectangular section beam 

of varying Young’s modulus and the analytical model developed in Section, for a wave 

incident at 𝜃 =
𝜋

4
, oriented in the direction of the beam. For low values of beam Young’s 

modulus, the analytical model fails to account for some resonant behaviour above 1 kHz. 

There are also differences in the predicted mass-spring-mass frequencies, which are 

underestimated by the model except for the lowest and highest beam Young’s Modulus cases. 

As the purlins in real systems are not fully connected to the bottom plate, as previously 

mentioned, their effect cannot be easily quantified, but it is more likely that in the realistic 

case, being low in stiffness and not fully bonded to the bottom sheets, their stiffening effect 

on the panel can be neglected. 

Figure 95 shows the comparison of TL between the point-connected plate system with a top 

hat and rectangular section aluminium beam for an incident wave at 𝜃 =
𝜋

4
, oriented in the 
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direction of the beam. What can be seen in this comparison is that the system with the “top 

hat” beam has a significantly lower mass-spring-mass resonance, from 650 Hz to 200 Hz. 

This is not a result of the change in bending stiffness of the beam, as it is not predicted by the 

analytical model when accounting only for the beam’s bending stiffness, neglecting its 

compressional stiffness.  

 

Figure 95: TL of point connected plates with intermediate beams modelled in Comsol; result of changing beam section from 

rectangular to top hat  

In light of these results, determining the difference in compressional stiffness between a 

typical halter connector and a halter mounted on a top-hat beam section would help to make 

sense of comparisons with laboratory measurements of full structures in diffuse conditions, 

having observed dramatic differences. 

A realistic halter on a top-hat purlin section was also modelled in Comsol, with the same 

method outlined in Section 7.2.2, by isolating the component and measuring its stiffness. 

Displacements are constrained at the top of the halter, and on the legs of the top hat purlin, 

where it would be joined to the liner sheet. Figure 96 shows the modelled geometry in 

Comsol. The halter is the same as in Section 7.2.2, and the top hat beam is 1.25mm thickness 
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steel of the same width as the base of the halter, 60mm. Figure 97 shows a comparison of 

axial stiffness between the halter alone (solid line) and the halter firmly mounted on a top-hat 

purlin (dashed line). The addition of the top-hat section reduces the stiffness an order of 

magnitude. The value of 𝑘 is approximately constant in frequency up to the first resonance at 

1 kHz. 

 

Figure 96: 100mm aluminium halter mounted on 1.25mm steel top-hat purlin, Comsol geometry 
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Figure 97: Axial stiffness matrix 𝑘𝑖𝑗  for a halter (solid line) and a halter + top-hat purlin (dashed line) 

The stiffness matrix of the halter and top-hat beam section obtained with FEM was used to 

calculate the diffuse field transmission loss of the same roof structure as Section 7.2.3, and is 

shown in Figure 98. Compared to the modelled structure with halters alone, the diffuse 

transmission loss is 5-10dB greater above 800 Hz. 
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Figure 98: Modelled dual leaf corrugated roof structure with halter and halters on top-hat beam section (stiffness derived 

from FEM), compared to the same structure with no connectors   

7.2.6 Conclusions 

The point connection model was validated against FEM simulations of two flat plates 

connected by periodically spaced thin rods; the model accurately captured the TL features of 

the simulated structure, including the effect of varying connector stiffness. 

Two common types of roof connectors, halters and brackets, were compared via FEM 

simulations, and their FEM-derived stiffness was used within the point connections model to 

observe their effects on overall TL of a dual leaf structure.  

The effect of top hat purlins was also examined. A typical aluminium halter mounted onto a 

steel top hat beam was modelled with FEM; the stiffness is overall reduced by the top hat 

section compared to a halter by itself. The effect of the top hat purlin on the TL of a dual leaf 

system was also determined in FEM, showing that where the beam is more compliant than 
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the point-to-point connector, the compressional stiffness is an important factor in 

transmission and can influence the overall mass-spring-mass frequency and increase 

transmission loss overall. In a modelled roof structure, the transmission loss at high 

frequency for a typical top-hat purlin was greater by 5-10dB compared to a halter. 

7.3 CORRUGATED ROOF STRUCTURES: COMPARISONS WITH 

LABORATORY MEASUREMENTS 

Having investigated the performance of the model in comparison with that of FEM models in 

the previous section, as well as the influence of framework and connector details, we now go 

on to compare predicted results with those of laboratory tests. 

The comparisons will start from the simplest available structures, to more complex ones with 

several layers: 

1. Rooflights: structures with no infill and rigid connectors 

2. Twin skin roofs with a single layer of low density infill and rigid connectors 

3. Twin skin roofs with multiple layers of infill and connectors 

4. Twin skin roofs with additional internal high density boards screwed to the inner 

metal sheets 

7.3.1 Rooflights  

Rooflights, described in Section 2.4, are a good example of a simple corrugated roof 

structure. They are most commonly dual leaf structures with corrugated polycarbonate sheets 

and no cavity infill. Figure 99 shows a typical rooflight, including steel fixings either side of 

the crown of the outer sheet. The lack of cavity infill, as they are designed to allow light to 
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shine through, means that the uncertainties relating to the properties of mineral fibres and 

other types of infill are absent.  

 

Figure 99: Rooflight diagram showing steel fixings 

 

 

Figure 100: Comparison of TMM modelled rooflight TL with measured diffuse field transmission loss (y axis gridlines are in 

10dB steps) 
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Figure 100 shows the measured TL of a rooflight system together with the TMM modelled 

TL. There is a strong mass-spring-mass resonance at low frequency, followed by a steady 

increase in TL. At high frequency, from 1 kHz onwards, there are resonances when the z 

component of the waves in the cavity 𝑘𝑧𝑐
 are half of the cavity depth (and integer multiples), 

𝑘𝑧𝑐
= 𝑛

2

𝑑
, where d is the cavity depth and 𝑛 is a positive integer. This effect is more 

noticeable in the modelled curve, where the damping in the cavity is zero. 

Introducing even rigid point connections into this system has a relatively small effect as the 

transmission path through the air in the cavity is strong. Figure 101 shows the predicted 

transmission loss of the same rooflight for each angle of incidence 𝜃 on the y axis, and 

frequency on the x axis, with and without rigid point connections at 500mm x and y spacing. 

On the top graph of the figure, which shows the case without point connections, a dip can be 

seen at very low frequency, the mass-air-mass resonance, which is a line of low transmission 

loss values running from normal incidence to grazing incidence without much change in 

frequency, at around 200 Hz. Two strong critical frequencies associated with the GRP sheets 

can be seen running from grazing incidence (𝜃 =
𝜋

2
) and describing arcs pointing in the 

positive frequency direction; these are the lower critical frequencies that occur along the 

stiffest dimension of the corrugated profiles. The resonances of the waves in the cavity can be 

seen from just over 1000 Hz at normal incidence (and not at grazing incidence, as the 

wavelength in the z direction is infinite) and at regular intervals. These features can still be 

seen, albeit with some difficulty, in the bottom graph, which shows the transmission loss 

including point connections between the GRP sheets, where additional resonances due to the 

connectors can be seen.  

The mass-air-mass resonance is slightly higher in the point-connected model – this is clearer 

from Figure 102 which compares the diffuse field transmission loss of the two cases, where 
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the dip shifts from 150 Hz to 200 Hz. The critical frequencies occur in the same locations. 

The many resonances associated with the connections have an impact at high frequency, as 

the transmission loss begins to deviate from 500 Hz onwards.  

 

Figure 101: Predicted transmission loss of rooflight system with (bottom) and without (top) point connections at 500mm x 

and y spacing; wave travelling along corrugations 
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Figure 102: Diffuse field predicted transmission loss of rooflight with and without point connections at 500mm x and y 

spacing (y axis gridlines are in 10dB steps) 

7.3.2 Roof structures with soft fibrous infill  

In this section, roof structures with the addition of low density mineral wool infill are 

compared to the TMM and point-connected models, adding in complexity from the previous 

section; the results examined include roofs with both halter and bracket connectors. 

7.3.2.1 Roof with halter connections: L3057 

The TMM and point-connected plate model were used to predict the performance of a basic 

corrugated roof construction, ‘L3057’, with low density fibrous infill and stiff halter 

connectors, a diagram of which is shown in Figure 103. The data has been obtained from the 

laboratory measurement database of the MCRMA (2013). This system consists of two outer 

profiled metal sheets (aluminium top and steel bottom) with a low density fibrous infill (15 

kg/m
3
) in the cavity, and periodic aluminium halter connections.  
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Figure 103: Diagram of simple dual leaf roof structure (L3057) with halter connectors (item 3); MCRMA (2013) 

These halter connections are stiff, and as shown in the diagram, the top portion is placed 

inside the ribs of the top sheet. The system was modelled with and without point connections 

with stiffness modelled in Comsol, and using the properties of mineral wool infill measured 

according to the method in Section 4.2.6; the results are shown in Figure 104. The point 

connection model falls in line with measured values when compared to the pure TMM case 

without connections, with good agreement especially at low to mid frequency. A dip can be 

seen at around 1 kHz in the measured result, which appears to be present to a lesser extent in 

the predicted values with point connections. As the spacing between the connectors is 

relatively large (400mm by 1400mm), resonances introduced by these begin at low frequency 

and are closely spaced, as has been seen with rooflights in the previous section. The 

structure-borne energy transmission through the connections dominates at high frequency, as 

well as slightly increasing the transmission loss at lower frequency, where the pure TMM 

case greatly overestimates transmission loss, by up to 40dB. Compared to the case of 

rooflights, where there is no cavity infill, the introduction of point connectors has a dramatic 

impact on transmission loss at high frequency, as the transmission through the absorbent 

material in the cavity is much lower than the contribution through the connectors. 
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Figure 104: Transmission loss of typical commercial corrugated roof system with soft fibrous infill and halters at 1400mm 

by 400mm spacing; measured (dashed) versus periodic point-connected model (solid) (y axis gridlines are in 10dB steps) 

7.3.2.2 Structures with bracket connectors 

In this section, basic roof systems with bracket connectors are examined with comparisons to 

laboratory measurements. 

The data was obtained from the test database of MCRMA (2013). All structures in this 

section follow the design shown in Figure 105, with trapezoidal profile steel panels of 0.4mm 

and 0.7mm thickness, mineral wool infill and bracket connectors. The properties of the 

structures are found in Table 9. 
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Figure 105: Corrugated metal roof with bracket connectors (cavity infill not shown); MCRMA (2013) 

Structure 

reference 

Features 

R02 
Mineral wool density: 11 kg/m3  

Top sheet thickness: 0.7 mm  

Top sheet depth: 32 mm  

Liner thickness: 0.7 mm  

Liner depth: 32 mm  

Cavity depth: 220 mm 

R04 Mineral wool density: 26 kg/m3 

Top sheet thickness: 0.7 mm  

Top sheet depth: 32 mm  

Liner thickness: 0.7 mm  

Liner depth: 32 mm  

Cavity depth: 220 mm 

R07 Mineral wool density: 11 kg/m3 

Top sheet thickness: 0.7 mm  

Top sheet depth: 32 mm  

Liner thickness: 0.7 mm  

Liner depth: 32 mm  

Cavity depth: 140 mm 

R08 Mineral wool density: 11 kg/m3  

Top sheet thickness: 0.4 mm  

Top sheet depth: 17 mm  

Liner thickness: 0.7 mm  

Liner depth: 32 mm  

Cavity depth: 140 mm  
 

Table 9: Features of corrugated roof structures with low density mineral wool 
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As bar and bracket spacer kits are less stiff than halters, the transmission loss of structures 

with brackets is expected to be slightly higher than halters at high frequency, all other 

parameters being equal. 

The first structure examined, referenced R02, has 0.7mm thick steel inner and outer sheets, of 

the same 32mm deep trapezoidal profile, and mineral wool infill of density 11-12 kg/m3 in a 

220mm cavity. The mineral wool was modelled as a single fluid layer using the Delany-

Bazley approach based on the properties of glass wool derived using the best fit method in 

Section 4.2.6. The Delany-Bazley approach is suited for this type of low density infill, as 

transmission of solid waves through the material frame can be neglected.  Figure 106 shows 

the measured diffuse transmission loss compared to a pure TMM model (the system without 

connectors) and the point-connected model, using FEM derived bracket stiffness. Both 

models are in good agreement up to 100 Hz. The point connected case deviates from the 

TMM model above 100 Hz. The measurement result is closest to the TMM case from 500 Hz 

onwards, though there is a 10-15 dB discrepancy around the critical frequency of the profiled 

metal sheets, with the model showing a pronounced dip at 630 Hz. The measured result 

shows no visible lower critical frequency dip at 315 Hz, though the slope of the TL curve 

decreases above 100 Hz, suggesting a change in behaviour related to the corrugations. As was 

discussed in Section 4.3.2, corrugated and ribbed sheets only present a strong critical 

frequency dip when the pitch dimension is near the bending wavelength of the panel, with the 

effect diminishing with increased pitch and reduced thickness. 
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Figure 106: Diffuse transmission loss of corrugated metal roof R02 with bracket connectors against TMM model with and 

without rigid point connections (y axis gridlines are in 10dB steps) 

Structure R04 has a higher density infill, and the same cavity depth of 220mm. The higher 

density infill was modelled with poroelastic properties, though the point connected model 

neglects mechanical coupling between the metal sheets and the infill. Results for this 

structure are shown in Figure 107. The comparisons are very similar to the previous case, 

with the same discrepancy between 100 Hz and 400 Hz, and better overall agreement from 

the pure TMM.  
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Figure 107: Diffuse transmission loss of corrugated metal roof R04 with bracket connectors against TMM model with and 

without FEM-derived bracket connector stiffness (y axis gridlines are in 10dB steps) 

The structure referenced R07 has two 0.7 mm corrugated steel sheets with the same 

trapezoidal profile of 32 mm depth, and low density infill (11 to 12 kg/m
3
) and a smaller 

cavity of 140 mm. The results are shown in Figure 108. The TMM model of this structure 

predicts an initially rapid increase in transmission loss with frequency (immediately above 

the mass-air-mass resonance at 63 Hz) and subsequently a dip at the first lower critical 

frequency (400 Hz), which is noticeable as it is the same for both metal panels. From there 

on, the slope of the curve is determined by the connection stiffness; the connections tend to 

dominate transmission in this region, though their impact on transmission loss is smaller 

since the mineral wool absorption is relatively low. Once again, transmission loss is 

underestimated when modelling the structure with connectors, which indicates that the 

connector stiffness is lower in the real structure.  
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Figure 108: Diffuse transmission loss of corrugated metal roof R07 against TMM model with and without point connections 

(y axis gridlines are in 10dB steps) 

Structure R08 has both different thicknesses and different profiles, with a 0.4 mm top sheet of 

17 mm depth and a 0.7 mm liner of 32 mm depth, with a 140mm cavity. The results are 

shown in Figure 109. The modelled TL with the pure TMM is the highest overall, and 

overestimates the measured values by up to 40 dB at high frequency. The reason for this is 

that the mismatch in panel profiles and thicknesses results in two distinct lower critical 

frequencies in the model. As the critical frequencies do not overlap, their combined effect is 

spread over the frequency range, and transmission loss is higher. In reality, as has been 

shown in Section 6.3, the diffuse transmission loss of corrugated panels of different depth 

tends to be similar, and it does not present strong critical frequency dips except for small 

profile periods and high thickness. The introduction of point connectors in this case has a 

greater impact on overall transmission loss, reducing the high frequency response to the range 

observed in the measured values above 250 Hz.  
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Figure 109: Corrugated metal roof (R08) with 140mm cavity and bracket connectors against TMM model with and without 

point connections (y axis gridlines are in 20dB steps) 

7.3.3 Roof structure with high density infill and top-hat purlins 

So far, structures with single layers of low density infill have been examined. Roof structures 

with multiple layers of high density infill further complicate modelling, as the influence of 

frame-borne waves in the porous infill may be significant, depending on the mounting 

conditions. In this section, a roof structure is considered which has multiple layers of high 

density mineral wool, and halter connectors onto top hat purlins. 
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Figure 110: Roof structure L-2297 with halters and two layers of high density infill (180kg/m2), MCRMA (2013)  

The following results were chosen from data provided by the MCRMA (2013). Figure 110 is 

the diagram of the roof structure, L-2297, with halters onto top-hat purlins screwed to the 

liner sheet and two slabs of high density mineral wool (180 kg/m
2
), where each slab consists 

of two layers of different densities bonded together; the top sheet is 0.9 mm thick aluminium, 

the bottom sheet is 1.25 mm thick steel decking, with a large pitch of 800 mm, and a 200 mm 

deep profile. The combined layers of mineral wool were nominally the same thickness as the 

cavity. The mineral wool properties were obtained via normal incidence measurements of 

surface impedance of small samples (100 mm diameter) in an impedance tube, by reverse 

engineering the values from a poroelastic model, as described in Section 4.2.6. As each layer 

of mineral wool is dual density, each sample was separated into high and low density parts 

which were measured separately and modelled as distinct layers in the final TMM model, so 

that the cavity consisted of four adjacent poroelastic layers. By obtaining the effective fluid 

properties of these layers, they are effectively decoupled from the plates in the periodic point-
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connection model. In the pure TMM, the metal sheets can be similarly decoupled, as has been 

previously outlined, by adding thin air layers between the metal sheets and the infill. 

This structure is particularly complicated to model, and three approaches were taken: 

1. With compliant point connections (the mineral wool is not in mechanical contact 

with both sheets, as the analytical model only accounts for longitudinal waves in the 

cavity space) based on FEM derived stiffness of halter onto top-hat beam (connector 

geometry in Section 2.3) 

2. Pure TMM, without point connections, with mineral wool separated from the outer 

metal sheets by 1mm air layers (‘unbonded’) 

3. Pure TMM, without point connections, with mineral wool fully in contact with both 

sheets (‘bonded’) 

Figure 111 shows the laboratory measured diffuse TL compared to the TMM and point-

connection models in the above arrangements. The closest modelled result to the 

measurement is the ‘fully bonded’ case (item 3 above).  All other modelled scenarios 

overestimate TL by 10dB between 100 Hz and 500 Hz, suggesting that contact between 

mineral wool and the metal sheets contributes significantly to the transmitted energy. The 

shape of the modelled ‘bonded’ TL shows resonances due to the high density mineral wool 

layers, with a dip at 315 Hz, which can also be observed in the measured result. The dip is a 

mass-spring-mass resonance formed by the stiffness of the infill between the two metal 

sheets. 
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Figure 111: Comparison of measured and modelled TL of roof structure L2297 (y axis gridlines are in 10dB steps) 

Without point connections, the ‘unbonded’ case also greatly overestimates transmission loss, 

especially above 500 Hz (up to 60dB), as it does not account for either the mechanical 

coupling between the solid portion of the mineral wool and the metal sheets, or the path 

through the structural connections. The bonded case predicts the observed dip at 315 Hz and 

the overall lower transmission loss observed in the measurement, while still overestimating 

the transmission loss above the 1250 Hz band, suggesting that connectors and other paths 

contribute greater energy in this region.  

7.3.4 Roof structures with high density boards, multiple panels 

In this section, roof structures that include multiple panels beyond the metal top sheet and 

liner are examined.  
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7.3.4.1 Structure with halters, top-hat purlins and high density board: combined plate 

approach 

Figure 112 shows the diagram of a roof structure, ‘BG’, with two metal sheets and a cement 

particle board (CBP) between two rubber mats screwed to the bottom sheet, with lightly 

compressed mineral wool infill and halter connections from the top sheet to a top-hat purlin, 

which is screwed to the CPB. The transmission loss has been modelled in four ways: 

1. As a structure with halter and top-hat connections running from the top sheet to the 

bottom sheet, where the intermediate layers (including the CPB) are modelled as a 

single equivalent fluid  

2. As a structure with halter and top-hat connections running from the top sheet to the 

CPB, where the CPB and the bottom steel sheet have been combined using sandwich 

theory (Section 5.3.2) into a single equivalent plate. 

3. As 2, but with empirically adjusted stiffness  

4. As a structure without point connections, using a pure TMM. 

These models are compared to the measured diffuse TL in Figure 113. 
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Figure 112: Diagram of roof structure ‘BG’ with halter connections, mineral wool infill, and high density cementitious 

board, MCRMA (2013) 

The measured TL is, as with most of the results in this section, relatively smooth, with no 

particularly strong, identifiable features beyond the mass-spring-mass frequency. All models 

are within 5dB of the measurement at low frequency except the case where point connections 

run from the top sheet directly to the bottom sheet, which underestimates TL by up to 10dB. 

Figure 114 shows the low frequency comparisons up to 315 Hz; it can be seen that the halter 

and top-hat connection case predicts a dip at 160 Hz that is mirrored in the measurement; this 

dip is due to the increase in mass-spring-mass resonance caused by the connectors, however 

it is not clear whether this is the reason for the dip in the real structure without also 

accounting for other factors. At high frequency, the model results differ dramatically between 

each other and the measurement. The case without point connections has the highest TL (up 

to 120 dB at 5 kHz), and begins to deviate from the measurement at 125 Hz, with a constant 

increase per octave. The case with stiff point connections deviates from the measurement at 

250 Hz and thereafter underestimates the measured values by over 20 dB. By decreasing the 
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stiffness of connectors in the model, the TL increases to the range found in the measurement; 

however, the modelled TL shows features not present in the structure, which are due to the 

combined plate approach, which produces a low critical frequency due to the increased 

bending stiffness of the bonded plates – in practice, the CPB and metal sheets are screwed at 

discrete locations, allowing the panels to bend more freely, resulting in a higher critical 

frequency. 

 

Figure 113: Measured and modelled diffuse transmission loss of ‘BG’  roof structure with high density board (y axis 

gridlines are in 20dB steps) 
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Figure 114: Measured and modelled diffuse transmission loss of ‘BG’  roof structure with high density board; low frequency 

results (y axis gridlines are in 5dB steps) 

7.3.4.2 Structure with top-hat purlins and intermediate high density board 

 

Figure 115: Roof structure diagram; 1: 0.9mm profiled aluminium sheet 2: halter connectors 3&5: 180 kg/m2 mineral wool 

4: 15mm plasterboard 6: top hat beam 7: vapour control film 8: profiled steel decking, MCRMA (2013) 

Figure 115 shows the sectional drawings of a roof structure, referenced L-2510, with metal 

profile outer sheets with halter connections onto an internal 15mm layer of plasterboard, 

which rests between two layers of high density mineral wool. The halter connectors are 

screwed to a top hat purlin, which is fixed to the bottom steel decking. Modelling this 

structure with all layers mechanically decoupled by air layers, and without point connections 
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(a pure TMM model) predicts the TL loss well at low frequency, up to 200 Hz, where it 

begins to significantly overestimate it as structure-borne paths are ignored. This can be seen 

in Figure 116. The same figure shows the TL of the TMM model without air gaps, which 

allows continuity of shear stress between the mineral wool, plasterboard and metal sheets; 

this approach underestimates the TL at mid frequency, where there is a broad resonance 

dependent on the stiffness of the mineral wool, and overestimates TL at low frequency, as the 

mass-spring-mass resonance is shifted upwards. This is an indication that the materials in the 

cavity layers are free to move at the boundaries. 

Point connections were introduced and comparisons are shown in Figure 117 between the 

measurement, the TMM model with unbonded layers, and the model including top hat and 

halter connections and point connections with empirically lowered stiffness. The top hat 

connection case underestimates TL at high frequency. As with the previous system, ‘BG’, the 

stiffness of the spacer kit appears to be underestimated, such that reducing the value of 

connector stiffness gets the TL in line with laboratory measured values.  
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Figure 116: Comparison between TMM modelled and measured transmission loss of roof structure L2510, showing both 

fully bonded and decoupled TM models (y axis gridlines are in 10dB steps) 

 

Figure 117: Comparison between TMM modelled and measured diffuse transmission loss of roof structure L2510, showing 

the effect of adjusted rod compressional stiffness values (y axis gridlines are in 20dB steps) 

7.3.5 Roof structures with damping sheets (“acoustic matting”) 

In designing high insulation products, to increase the overall transmission loss, high density 

sheets of rubber or other high damping materials (acoustic matting) are commonly added to a 

structure. Results were available for the structure shown Figure 105 (Section 7.3.2.2) with an 
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added layer of 10 kg/m
2
 acoustic matting, placed over the bottom corrugated metal sheet.  

Figure 118 shows the laboratory measured diffuse sound transmission loss for the structure 

with and without the additional layer. The overall TL is increased by approximately 5dB in 

each band with the addition of the matting. The added mass of the membrane is significant, as 

the inner and outer metal sheets are only 0.7mm thick steel, with a mass per unit area of 5.5 

kg/m
2
. The effect has been mirrored in a TMM model of a dual leaf roof structure, as can be 

seen in Figure 119, however it is overestimated by approximately 5dB. Similarly, the effect 

of the membrane is overestimated when modelling the TL with the periodic point connection 

model, as shown in Figure 120 compared to measured results; in this case, the connector 

stiffness was estimated from the measured data. The problem may be due to the use of static 

material properties of the membrane, and the complex boundary conditions of the measured 

system, where the membrane is neither fully bonded to nor completely separated from the 

metal sheet. This can be corrected empirically by reducing the effective mass of the 

membrane, however it is not clear whether such a correction would apply across roof 

systems.  
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Figure 118: Measured diffuse field transmission loss of roof structure with and without a 10 kg/m2 damping membrane. 

Mass per unit area without membrane: 14 kg/m2; with membrane: 23.8 kg/m2 (y axis gridlines are in 10dB steps) 

 

Figure 119: TMM modelled structure with and without a 5mm rubber membrane. (y axis gridlines are in 20dB steps) 
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Figure 120: Modelled structure with periodic point connections with and without a 5mm rubber membrane (stiffness of point 

connections estimated from measurements) comparison with measurement results (y axis gridlines are in 10dB steps) 

7.3.6 Conclusions for full systems 

In this section, the analytical model for point connected dual leaf structures combined with 

the equivalent fluid properties for the infill layers, obtained via TMM, was tested against 

available laboratory measurements of sound insulation of corrugated roof structures, drawn 

from the literature and from data provided by roof manufacturers. Each system provides its 

own set of challenges.  

Simple structures like rooflights, with empty cavities, are reasonably well modelled; point 

connections in these structures have a relatively small impact on transmission loss, as the 

energy transmitted through this path is not much greater than the energy transmitted through 

the air in the cavity. Conversely, the transmission loss through roof structures with fibrous 

infill depends strongly on the structural connections beyond a transition frequency, where it 

becomes greater than the energy through the mineral wool (as most is absorbed). The TM 
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method predicts very high values (unachievable in practice) of TL at high frequencies in the 

absence of connectors. The critical frequency dip is also more pronounced in the TMM 

modelled TL, produced by the orthotropic plate formulation. In the real case, there is a 

difference in slope between low and mid frequency, but no pronounced dip. This leads to a 

10dB discrepancy around the critical frequency compared to measurement results, and an 

overall lower TL in cases where both metal sheets are the same.   

Models of more complex roof structures, containing additional high density boards like 

plasterboard or cement boards, have been attempted but present a greater challenge in 

determining the exact boundary conditions between each layer. These structures can be 

modelled as if all consecutive layers were bonded to each other with no gaps, or small air 

gaps can be artificially introduced between any layers to force the shear stress at the 

boundaries to zero; good agreement is usually found at low to mid frequency for most 

combinations. For all structures examined, an accurate estimation of connection stiffness is 

deemed of high importance to improve high frequency accuracy.  

7.4 CONCLUSIONS FOR LABORATORY MEASUREMENT 

COMPARISONS 

This chapter has covered the bulk of verification and validation of the modelling approaches 

produced over the course of this work, as well as highlighting salient features and differences 

between some common roof and partition systems.  The process of validation has been 

approached in successive stages, isolating individual components before arriving at 

comparisons of full roof structures.  

Single profiled sheets were modelled via FEM in Comsol, an analytical model of a ribbed 

plate, and the equivalent flat orthotropic plate formulation based on obtaining the area 
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moment of inertia of the plate geometry. The orthotropic plate model is suitable for a limited 

range of geometries and fails to account for profile-related resonances. It predicts a clear 

lower critical frequency when waves are oriented in the stiffest dimension of the plate, 

however this feature is much less prominent in simulated thin trapezoidal profile plates. 

Single and double glazed partitions as well as plasterboard partitions were modelled with the 

TMM and compared with available laboratory measured data. Correction factors were 

applied for laboratory diffusivity and a combination of Gaussian incidence windowing and 

spatial windowing techniques were found to improve prediction accuracy. Overall, salient 

features of the TL curves of these structures were captured by the model. Corrugated roof 

structures with expanding foam core (composites) were also modelled with the TMM with 

some success. The core stiffness was the most important factor in determining the overall 

response. For composites with a greater profile depth in comparison to the overall depth, the 

TMM overestimates transmission loss, as it does not account for profile-related resonances. 

The effects of point connectors in dual leaf systems were examined; the analytical model for 

periodic point connected plates compared favourably with FEM simulations in Comsol, for a 

range of connector stiffness values.  Then the stiffness of two common connectors used in 

roof structures, halters and brackets, were compared in Comsol, and the values thus obtained 

were transferred to the analytical model to observe their impact on the TL of a dual leaf 

structure. Brackets are considerably more compliant than halters of the same thickness, and 

overall increase TL of a modelled dual leaf structure.  

The effect of changing stiffness and spacing of connectors was explored, and low stiffness 

and greater spacing were both associated with lower mass-air-mass resonant frequency, as 

well as higher overall TL above a transition frequency where the structural paths dominate. 
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Top hat purlins, i.e. beams that are screwed to the bottom sheet of roof systems, on which 

halters or brackets are fixed, were modelled as beams and included in a revised analytical 

model for point connected dual leaf structures. The purlins have a low compressional 

stiffness and, based on modelled scenarios, decrease the amount of energy transmitted 

between the two sheets in dual leaf roof systems, while likely having a small stiffening effect 

on the bottom sheet. 

Finally, available laboratory measurements of TL of full roof systems were compared with 

the outputs of the analytical model combined with the TMM for the cavity layers. The TMM 

alone generally overestimates TL at high frequency as it does not account for structural paths. 

For systems with high density infill and/or other solid layers in the space between the two 

outer sheets, whether or not the materials are in full contact with each other (modelled as 

successive layers as opposed to introducing small air gaps between them) makes a large 

difference to results. Generally, when high density infill is bonded to the outer metal sheets 

the TL increases at low frequency and decreases at high frequency, as the mass-air-mass 

resonance shifts upward. Including point connections in the model was sufficient to predict 

the TL of roofs with halter connections (and no purlins), and soft fibrous infill within 5dB 

throughout the range. Structures with bracket connectors required adjusting the effective 

stiffness of connectors in the model. Similarly, roof systems with top hat purlins had a higher 

TL in practice than in the model with stiff connectors. For examined structures, the 

introduction of rubber (or similar material) damping sheets increases transmission loss by an 

amount roughly constant in frequency, in line with the increase in mass. This result, while 

overestimated by around 5dB, is mirrored in TMM modelled TL.  
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8 CONCLUSIONS 

The aim of this work was to replicate laboratory measurements of sound insulation of dual 

leaf structures, and in particular of common corrugated roof structures with point-to-point 

structural connections, according to specifications from the Metal Cladding and Roof 

Manufacturers Association (2013).  

The following elements of dual leaf corrugated roof structures were considered: 

 Profiled metal panels, with trapezoidal or ribbed geometry 

 Mineral wool and glass wool infill 

 Multiple, layered materials 

 High density boards 

 Rubber/damping mats 

 Point-to-point connectors – T-shaped halters and L-shaped brackets – in spacer kits 

which can include intermediate beams 

A unified modelling approach was attempted, to account for as many elements as practicable, 

including some characteristics of the measurement environment. This was attempted by 

combining several modelling techniques. The Transfer Matrix Method was used to model 

layered materials; two analytical models of plates periodically connected by thin rods were 

used to determine the behaviour of common structural connections; FEM simulations were 

used to obtain the stiffness of real connectors; corrugated sheets were modelled as equivalent 

orthotropic plates; an analytical model of a periodically ribbed plate was developed; the 

TMM was used to derive the effective properties of layered infill materials which could be 

used within the double plate models.  
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The acoustic performance of building elements is commonly tested in an acoustic 

transmission suite, so that a comparison had to, as far as practicable, emulate the 

measurement conditions outlined in BS EN ISO 10140. The pure TMM and the periodic 

analytical models assume that the systems is laterally infinite, so that it was necessary to 

account for the effect of finite size and laboratory diffusivity. While it was not possible to 

account for panel resonances in the lateral dimensions, which strongly affect low frequency 

behaviour, an adjustment was introduced to account for the radiation efficiency of the finite 

radiating surface; the imperfect diffusivity of the incident sound field was simulated by 

applying a Gaussian distribution to the incident energy, strongly limiting grazing incidence 

waves. 

The corrugated metal sheets found in roof constructions were modelled as equivalent 

orthotropic plates, by calculating the bending stiffness of the panel with its profile. 

Theoretically, the equivalent orthotropic plate formulation can predict the behaviour of a 

ribbed or corrugated plate, provided that the bending wavelength is much larger than the 

geometric period of the profile. Comparisons of transmission loss determined with FEM 

simulations of trapezoidal plates have shown that, even for small profile periods, the 

equivalent orthotropic formulas tend to overestimate the bending stiffness of the profiled 

panels, leading to consistently lower critical frequencies.  

An analytical model was also developed to account for the behaviour of periodically ribbed 

plates, which can be implemented as layers in the TMM as effective fluids – though this was 

not carried out in the course of the work. The model was also validated against FEM 

simulations. Profile-related resonances appear in the transmission loss of the periodic plate, 

which depend on the rib spacing and bending stiffness of the plate. For low profile periods, 

the equivalent orthotropic formulation compares favourably to the periodic ribbed plate 

model, in terms of identifying the key aspects of behaviour (two critical frequency dips), 
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except, similarly to trapezoidal plates, it overestimates bending stiffness resulting in poor low 

frequency accuracy. For higher profile periods, the analytical model has shown that the 

profile-related resonances begin at lower frequency, and are closely spaced, with high mode 

density in the frequency range of interest (100-5000 Hz). This situation leads to a good match 

between the orthotropic plate and the periodic ribbed plate model when comparing diffuse 

transmission loss, despite the lack of a clearly identifiable lower critical frequency in the 

periodic model. 

Comparisons between the equivalent orthotropic plate formulation and laboratory 

measurements of diffuse transmission loss of trapezoidal and standing seam panels have 

shown that the orthotropic plate model, while improving on a simple flat plate, tends to 

overestimate diffuse transmission loss at high frequency, and misses prominent dips 

throughout the frequency range. Diffuse transmission loss predictions are however still within 

5-10dB of measurements at low frequency. Trapezoidal panels with the smallest profile 

period produce greater discrepancies, most likely due to the incorrect estimation of the lower 

critical frequency and failure to account for profile-related modes which are more widely 

spaced in frequency. 

To account for dual leaf structures, two variations of an analytical model of parallel plates 

connected periodically by thin elastic rods, and separated by a fluid cavity, were derived, 

with and without intermediate beams intended to simulate top hat purlins. The connectors 

were characterised using two by two axial stiffness matrices, the values of which could be 

obtained with any number of techniques. These models were initially validated against FEM 

simulations carried out in Comsol. The effect of connector spacing and axial stiffness on the 

transmission loss through these periodic double plate models, with absorptive cavity material, 

was examined through parametric surveys. Increased connector stiffness was associated with 

lower transmission loss at mid to high frequency, and an upwards shift in the lowest mass-



212 

 

spring-mass resonance of the system. Similarly, reduced spacing between the connectors also 

increased the mass-spring-mass resonant frequency, and reduced transmission loss at mid-

high frequency.  

Two types of connectors common in roof systems were examined: halters and brackets. Their 

axial stiffness was determined via FEM in Comsol. Aluminium halters, being thicker and 

with greater symmetry, are overall stiffer than steel brackets of the same height, despite being 

a lower modulus material. Using the stiffness values of these connectors in the periodic 

double plate model has shown that the bracket connectors tend to produce a higher 

transmission loss at high frequency, though internal resonances also lead to regions of lower 

transmission loss.  

The diffuse transmission loss of full roof and partition systems was compared to the outputs 

of the TMM and the double plate models. The TMM, with the aforementioned corrections for 

diffusivity and sample size, captures the behaviour of double glazing and simple plasterboard 

partitions well throughout the frequency range of interest. The TMM is also suited to 

predicting the transmission loss of rooflights, where the presence of structural connectors has 

only a small impact, due to the high amount of energy transmitted through the air in the 

cavity. When it comes to corrugated roof structures with mineral wool infill and structural 

connections, the low frequency TMM prediction is often good, however it consistently 

overestimates transmission loss above 200-300 Hz, as the mineral wool will absorb most 

energy in the cavity space, making the structural path dominant. When the two metal sheets 

in a roof system share the same profile and thickness, the TMM predicts a strong lower 

critical frequency dip in diffuse transmission loss, which is not observed in measurements. 

When the two profiled panels are of different thicknesses and depth, the TMM model predicts 

a much greater transmission loss, as the two lower critical frequencies occur in different 
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locations. In practice this is not the case, given that low to mid-frequency behaviour of single 

panels does not change significantly with depth. 

The periodic double plate model with point connections can better account for the overall 

behaviour of these structures, however it requires an accurate determination of the stiffness of 

the connectors, which is crucial to evaluating high frequency performance. In most cases, the 

transmission loss is underestimated at high frequency when modelling the connectors as thin 

elastic rods, suggesting that the structural frameworks of roof structures are generally more 

compliant.  

Roof structures with multiple layers of infill have been modelled and compared with 

laboratory measurements, providing an avenue for the validation of the combined TMM and 

periodic double plate model. Features of the measured transmission loss curve of a roof 

structure with four layers of high density mineral wool were found in the modelled case with 

both the TMM and the combination of TMM and periodic double plate model. The TMM 

alone was able to predict the effect of mechanical coupling between the outer sheets and the 

infill. The point connected model overestimated TL, as the mechanical coupling is neglected.  

Structures with high density boards in the cavity space, screwed to one of the corrugated 

metal sheets, were modelled by obtaining the combined stiffness of the connected high 

density boards and metal sheets, resulting in good low frequency agreement. At high 

frequency, the issue of determining connector stiffness remained, and good agreement was 

obtained only with empirical adjustments to the connector stiffness matrix.  

Roof structures with acoustic membranes were also modelled. In practice, the addition of 

membranes of typical thickness increases the diffuse TL by 5dB over the whole frequency 

range for a common corrugated roof structure, however the TMM predicts double that 

increase, as does the periodic double plate model. 
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APPENDIX A: RAIN NOISE 

Rain noise excitation within the TMM can be modelled by modifying the amplitude of the 

incident plane wave, and obtaining the radiated power from the output velocity; the method 

has been previously implemented by Guigou-Carter & Villot (2003).  

The force applied by a rain drop onto a flat surface, 𝑃𝑖, acting on a single point located at 

coordinates 𝑥 = 0 and 𝑦 = 0, can be approximated using a Dirac delta: 

 𝑃𝑖(𝑥, 𝑦, 𝜔) = 𝐹(𝜔)𝛿(𝑥, 𝑦) (9.1) 

Where 𝐹 is the time-frequency Fourier transform of the impact force for a single drop. 

The spatial Fourier transform of the impact force is simply the amplitude of the force: 

 𝑃𝑖(𝑘𝑥, 𝑘𝑦, 𝜔) = 𝐹(𝜔) (9.2) 

The incident field comprises plane waves of equal amplitude, of all wavenumbers 𝑘𝑥 and 𝑘𝑦.  

The force 𝐹(𝜔) depends on the size and shape of the drop, and on its velocity at the time of 

the impact. For a paraboloidal drop, the force function is given by the following equation  

(Griffin & Ballagh 2013): 

 
𝐹(𝜔) = −𝜌𝑤𝜋𝑟2𝑣0

2 [
3𝑣0

8𝑟𝜔2
(1 − cos

8𝑟𝜔

3𝑣0
)

−
𝑖

𝜔
(1 −

3𝑣0

8𝑟𝜔
sin

8𝑟𝜔

3𝑣0
)] 

(9.3) 
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Where 𝜌𝑤 is the drop density, 𝑟 is the drop radius, and 𝑣0 is the fall velocity. The function in 

the time domain is shown in Figure 121, and in the frequency domain in Figure 122. The 

incident power onto the surface, in 1/3 octave bands, is shown in Figure 123. 

 

Figure 121: Paraboloidal rain drop force in the time domain 
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Figure 122: Rain drop force 𝐹(𝜔) in the frequency domain 

 

Figure 123: Incident sound power of simulated standard rainfall 
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The incident sound power of rain fall is proportional to the number of rain drops per unit area 

per unit time 𝑛: 

𝑃𝑖 = 𝑛 × |𝐹|2 

Figure 123 shows the incident power from simulated heavy rainfall, with terminal velocity of 

7 m/s, drop size of 5mm and rainfall rate of 40mm/h, as per the requirements in BS EN ISO 

140-18. 

The radiated power from a laterally infinite surface on the xy plane is obtained by integrating 

the spatial Fourier transform of the normal velocity field 𝑣𝑧 at the output over all 

wavenumbers up to the natural wavenumber in air, 𝑘0 (Cremer et al. 2005): 

 
Π𝑟𝑎𝑑 =

𝑘𝜌𝑐

8𝜋2 ∫∫
𝜔2|𝑤(𝑘𝑥,𝑘𝑦)|

2

√𝑘2−𝑘𝑥
2−𝑘𝑦

2
𝑑𝑘𝑥𝑑𝑘𝑦  (9.4) 

The equation can be written in terms of the trace wavenumber 𝑘𝑟, where 𝑑𝑘𝑥𝑑𝑘𝑦 =

𝑘𝑟𝑑𝑘𝑟𝑑𝜙 and 𝑘𝑥 = 𝑘𝑟 sin𝜙 and 𝑘𝑦 = 𝑘𝑟 cos𝜙: 

 
Π𝑟𝑎𝑑(𝜔) =

𝜌𝑐

8𝜋2
∫ ∫

𝑘𝑘𝑟|𝑣𝑧(𝑘𝑟 , 𝜙)|2

√𝑘2 − 𝑘𝑟
2

𝑘

0

2𝜋

0

𝑑𝑘𝑟𝑑𝜙 (9.5) 

Given that the velocity shares the same periodicity of the excitation for any given 

combination of x and y wavenumbers, 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦), the spatial Fourier transform of velocity is 

easily obtained, and is related to the derivative of the transmitted pressure in the z direction 

via Euler's equation, with the complex transmitted amplitude 𝑇 obtained with the TMM: 
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𝑣(𝑘𝑥, 𝑘𝑦) = −

𝑘𝑧

𝜔𝜌0
𝑇(𝑘𝑥, 𝑘𝑦) (9.6) 

The radiated sound power can also be adjusted to account for the finite size of the structure, 

as in Section 4.1.11.  

The TMM predicted sound intensity of 4/16/4mm double glazing against laboratory 

measurements reproduced from Guigou-Carter & Villot (2003), in Figure 124, shows good 

agreement above 250 Hz, identifying peaks around mass-spring-mass resonance and at the 

critical frequency of the glass panels (2500-3150 Hz), however sound intensity is 

underestimated at low frequency, which can be attributed to the difference in radiation 

efficiency between the infinite TMM case and the finite structure. 

 

Figure 124: TMM modelled sound intensity of 4/16/4mm double glazing, compared to measurement (Guigou-Carter & Villot 

2003) 
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APPENDIX B: PLATES INTERCONNECTED BY RODS 

The following pages contain an internally circulated document produced by Dmitry Smirnov, 

which details the derivation of a periodically point-connected double plate system. 
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