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Abstract 

Passive loadings due to lateral soil movement induced activities are highly influencing the 

serviceability and safety of constructions. This research aims to investigate the influence of 

axial loads, sand density and the depth of moving soil on the lateral behaviour of piled raft 

under progressively moving sand. In order to achieve this goal taking into account the complex 

interaction effects of piles, cap and subsoil, a laboratory apparatus and small scale models have 

been designed and fabricated carefully to ensure a reasonable simulation of this geotechnical 

problem. It is found that the above parameters play an important role in the response of piled 

foundations. The value of soil displacement at which the measured moment reaches its ultimate 

value decreases as axial loads increase. Peak displacement of the raft has been found to be a 

function of soil density.  
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Introduction 

 

Piled foundations that are subjected to lateral loads at the pile head are known as 'active 

piles'. However, some construction activities and natural phenomena induced lateral 

'hidden loadings' on piled foundations. This kind of loading is caused by lateral 

movement of the surrounding ground and is called passive loading, and the piles 

subjected to these loadings are known as 'passive piles'. Some of lateral ground 

movements induced activities are illustrated in Figure 1. Safety and serviceability of 

structures could be highly affected by passive loadings on piles. To date, experimental 

results on passively loaded piled raft foundations, in which the cap being in contact 

with the ground surface, are limited. This geotechnical problem involves complex 

interaction of piled raft and soil, and has not been fully understood. 

 

 

Figure 1 Examples of passive piles. 

 

On the simulation of soil movements, laboratory tests were carried out by either direct 

mobilization of soil movement or simulation of field conditions. Numerous 

experimental studies were made through small scale experiments and centrifuge 

modelling to investigate the response of single piles under lateral soil movement taking 

into account a wide range of influencing factors (e.g. Poulos et al. 1995; Pan 2000; 

White et al. 2008; Gou and Qin 2010; Suleiman 2014). Practically, piles are usually 



used in groups in which the pile-soil-cap interaction plays an important role in the 

behaviour of individual piles within a group. For free-standing pile group, researchers 

have focused on the effects of some parameters such as pile spacing, number of piles, 

pile diameter and head fixity condition on the lateral response of pile group (e.g. Chen 

et al. 1997; Leung et al. 2003; Miao et al. 2008). Ghee (2009) developed a large shear 

box in order to study the behaviour of pile groups exposed to axial loads and horizontal 

soil movement in the condition of free-standing pile group. In his experiments, holes in 

the cap were made 0.5 mm larger than pile diameter to enable the pile fitting into the 

pile cap holes. This gap allows the pile to rotate slightly during the test causing the pile 

head bending moment to be lower than that of a fully fixed pile head. 

However, because the nature of free-standing pile group in which no contact pressure 

exists between the pile cap and the soil, researchers have neglected the contribution of 

pile cap in the lateral behaviour. Chen et al. (1997) stated that the reason behind using 

free-standing pile group in their experiments rather than piled raft was to avoid 

complexity in analysing the test results.  

Several researchers have investigated the behaviour of passively loaded piled raft 

theoretically, see, for example, Bransby and Springman 1996, Martin and Chen 2005 

and Zhao et al. 2008. However, experimental data for passively loaded piled raft 

foundations in which the soil-raft interaction is taking into account are sparse. In this 

context, Bransby and Springman (1997) used centrifuge model tests to study the 

response of piled raft embedded in two soil layers (clay and sand) adjacent to surcharge 

loads induced horizontal ground disturbance in clayey soil.  

The main purpose of this paper is to study the influence of axial loads, sand density and 

the depth of moving soil on the behaviour of piled raft under lateral soil movement. 

 



Experimental Details 

 

The testing box 

 

A specially built large scale shear box has been designed and fabricated carefully to 

ensure a reasonable simulation of the problem as shown in Figure 2. The shear box 

consists of a lower 500 mm height stationary box made from plywood sheets and an 

upper section comprised of laminar plywood frames of 190 mm height as movable 

parts. The timber used to fabricate laminar frames was chosen to be smooth in order to 

facilitate sliding of these frames over each other. Both stationary and moving parts had 

600 mm x 600 mm plan internal dimensions.  

In order to ensure a straightforward lateral movement of the moving frames, the 

reaction frame was designed to add some weight of its parts to the upper surface of the 

top laminar frame. This procedure helps to prevent any probable vertical tilting of the 

frames while driving. Moreover, inclination of the sliding frames is also prevented in 

the lateral direction by adding two timber sheets along the sides of the box. Sand 

particles were prevented to cram between laminar frames by covering the internal 

surfaces of the box with a latex sheet. 

 



 

a. Plan view 

 

b. Elevation view 

1. Pile group model 2. Loading frame 3. Loading block 4. Load cell 5. Screw jack 6. Sliding frames 7. Testing box 

8. Vertical support 9. Reaction frame 10. Sliding unit. 

Figure 2 Experimental apparatus showing testing box and loading frame. 

 

 

Reaction frame and loading system  

 

The reaction frame was fabricated to meet the requirements of the tests taking into 

account most of the possible shortcomings which might occur during the tests. The 



testing box was rested on the ground by means of three timber beams of (90mm x 

90mm). Two closed channels of (100 mm x 90 mm) were placed horizontally attached 

to the outer timber beams and fastened to them by two end plates. Two vertical steel 

columns having a cross section of (100 mm x 100 mm) were welded to the horizontal 

channels at their ends.  

The lateral loading system consists of a screw jack mounted on a horizontal timber 

beam of (215 mm x 65 mm) cross section supported by the two vertical steel columns. 

The screw jack pushes a timber frame consists of an upper sheet, three side timber 

blocks and two loading blocks. The timber frame transfers the lateral jacking load to 

the loading blocks which are in a direct contact with the laminar frames causing lateral 

movement to these frames and to the soil inside the box. In order to induce lateral 

sliding to the parts of the timber loading frame as one unit, the frame was mounted from 

its upper timber sheet to a special sliding unit. The basic configuration of the sliding 

unit consists of bearing pillow block, an aluminium plate, and dual shafts. The bearing 

blocks was bolted to two horizontal closed channel steel beams of (100 mm x 50 mm). 

Each one of these beams was bolted to the vertical steel column at its end and rested on 

the upper sliding frame at the other end. The sliding unit and the lateral frame are 

illustrated in Figure 3. 

 

The two loading blocks have the same dimensions at each single test. Various sliding 

depth and shape of soil can be achieved by replacing the loading blocks with another 

having the desired depth and profile. 

 



 

Figure 3 Loading frame and sliding unit. 

 

Model pile group and instrumentation  

 

The model piles used in this study were made of aluminium tubes having a length of 

300 mm, an outer diameter of 19.0 mm and a wall thickness of 1.0 mm. Three times as 

wide as pile diameter was chosen for pile spacing (3d). To provide a frictional 

protection to the strain gauges during driving and testing processes, piles were covered 

with a special adhesive tape. Thus, the final outer diameter of piles was approximately 

(20) mm. All pile surfaces were secured with the adhesive tape including the un-

instrumented piles so that all model piles shared the same surface properties. 

Aluminium plate was used to fabricate pile cap with dimensions of 100 mm x 100 mm 

and a thickness of 9 mm. Four holes were drilled through the cap thickness represent a 

(2x2) pile configuration. The head of each pile was completely fixed against movement 

and rotation to the pile cap through a screw of (10 mm) in diameter and (50 mm) in 

length. Details of piles and pile cap are presented in Figure 4.  

In order to measure the bending moment distribution throughout the pile length, one 

pile at each row was instrumented from one side with seven strain gauges attached to 



its outer surface at a vertical interval of 42 mm. Due to the change in section at pile-cap 

connection point and difficulty involving attachment of strain gauge directly at the pile 

head, the first strain gauge was positioned 6 mm under the pile cap. Each strain gauge 

has a code name starting with (SG) followed by pile name (F or B) and then a number 

which refers to its position (1 to 7). The letters (F or B) are used to describe the pile in 

terms of its location to the source of lateral loading. Hence, (F) refers to the front pile 

which is nearest to the source of lateral loading and influenced by the soil displacements 

before pile (B) or the back pile. All strain gauges used had a resistance of 120 ohm and 

a gauge factor of 2.155. Quarter-bridge connection method was adopted to connect 

strain gauges with the data logger. Two LVDTs were used to measure the displacements 

of the sliding frames and the pile cap respectively. The first LVDT was placed in a 

direct contact to the top laminar frame, while that used for pile cap was extended by a 

wire mounted to a steel rod located at the centre of the cap. An inclinometer senor was 

used to measure the inclination of pile cap. This tilting device is suitable to measure 

small inclinations in a range of (+/- 10o). The sensor was simply placed on the top of 

pile cap and fixed by means of double-sided adhesive tape.  

 

Figure 4 Details of model piles and cap, dimensions in mm. 



 

Driving of pile group 

In order to drive the pile group into the previously prepared sand layer, a vertical jacking 

system was used. The vertical jack was initially secured to the centre of the pile cap and 

installed until the jack reaches its maximum length. The inclination of the raft was 

checked carefully using a spirit level. Then, the jack arm was moved up to a certain 

height and a piece of hollow square steel tube with external dimensions similar to the 

cap dimensions was placed on the cap and installation process commenced again. 

During the driving process, the horizontality of the pile cap was checked and adjusted. 

The driving process continued until the cap reaches its final position. 

Sand properties and preparation 

 Sand properties including classification, relative density and strength parameters tests 

were carried out according to British Standards BS-1377. The particle size distribution 

and sand parameters are illustrated in Figure 5 and Table 1 respectively. Pouring and 

tamping were used to achieve a reasonably predetermined constant density of the sand 

in the testing box. In this method, the box was divided into spaces of 50 mm height. 

These spaces were then filled with a pre-determined sand weight to achieve the required 

density. Subsequently, a scoop was used to pour the sand into the testing box. To 

achieve a loose density of sand, the scoop was lowered into the box to a height that is 

close to the perversely poured sand layer. When the height of fall increased, the sand 

becomes denser. After furnishing the sand layer, a manual compactor was also used to 

maintain the required height of each layer. 



 

Figure 5 Particle size distribution of the sand. 

Table 1 Properties of the sand used in the tests. 

Properity Value 

Effective size D10 mm 0.15 

D30 mm 0.21 

Mean grain size D50 mm 0.29 

D60 mm 0.31 

Particle size range mm 0.063 – 1.18 

Coefficient of uniformity Cu 2.06 

Coefficient of curvature Cc 0.95 

Soil classification SP 

Max. dry unit weight kN/m3 16.6 

Min. dry unit weight kN/m3 14.0 

Max. void ratio  0.9 

Min void ratio 0.6 

Angle of internal friction at γ = 16.0 kN/m3   39o 

 

Results 

Analysis of test results 

In order to obtain the pile response in terms of shear force, soil reaction, deflection and 

rotation along the pile length, two methods were checked i.e. the finite difference 

method and polynomial curve fitting method. In the finite difference method, shear 



force and soil reaction profiles can be obtained by differentiating the bending moment 

profile along the pile depth to the 1st and 2nd order respectively. On the other hand, 

single and double integration of the bending moment distribution give the rotation and 

deflection along the pile depth respectively. The bending strains which measured by 

strain gauges were directly converted to bending moment values using factors obtained 

by calibration test. A set of bending moment distributions was then plotted against pile 

depth for every 5 mm of lateral box movement.   

Shear force (si) can be obtained by differentiating the bending moment (mi) as follows 

(Reese et al. 1984): 

                

 𝑠𝑖 =  
1

2

𝑚𝑖−1−𝑚𝑖+1

∆𝑧
         …. (1)                                  

Soil reaction (soil-pile interaction force per unit length) can be obtained (Levachev et 

al. 2002) using Equation 2. 

𝑟𝑖 =  
1

7
 
2𝑚𝑖−2−𝑚𝑖−1−2𝑚𝑖−𝑚𝑖+1+2𝑚𝑖+2

∆𝑧2
        … (2) 

Where mi = bending moment at point i, Δz = subintervals for dividing the pile length. 

According to Equations (1) and (2) and in order to find the shear force values at pile 

head and the soil reaction at the top two locations of strain gauges, two more values of 

bending moments should be known (Reese and Impe 2001). For this purpose, two 

imaginary points located just over the pile head were assumed. To find the bending 

moment at those imaginary points, it was assumed that the bending moment changes 

linearly up to the imaginary position of the pile cap with respect to bending moment 

measured along the segment between the top two (actual) strain gauges.  



A number of observations can be used to supports this assumption. For example, it was 

noted that bending moment profile for the back pile along the upper part of the pile is, 

to some extent, linear. Owing to the fact that shear force is the first derivative of the 

bending moment, this linear change leads to conclude that the shear force profile should 

be constant along this pile section. To obtain this constant values of shear at pile head 

using shear force formula (Equation 1), bending moment should be extended in a linear 

variation above the pile cap (in the imaginary zone). 

On the other hand, an attempt was carried out to check the accuracy of the polynomial 

curve fitting approach to derive the pile response in terms of shear force and soil 

reaction. This method involved fitting the bending moment profile to a best fit 

polynomial curve and then obtain the first and second derivatives of the bending 

moment equation to obtain the shear force and soil reaction respectively. The degree of 

polynomial order in which the moment curve should be fitting with is debatable. The 

attempt was conducted by comparing the response profiles calculated by deriving 5th 

and 6th order polynomials with those deduced by finite difference method. However, 

shear force and soil reaction profiles showed unrealistic increase in magnitudes at pile 

tip and at the point of rigid body rotation for both front and back pile rows. On the other 

hand, pile response using 5th and 6th order polynomials in the upper portion of both front 

and back piles is relatively agreed well with that obtained by finite difference analysis. 

The convergence of shear force and soil reaction values at pile head can be utilised as 

an additional proof to the assumption of linear variation of bending moments for those 

imaginary points located above the pile cap. Owing to this inconsistency in soil reaction 

values deduced by polynomial curve fitting method, the finite difference method is used 

in the current study. 

 



Effect of axial load 

The pile cap was tested under three loading levels, i.e. (0 N, 100 N and 200 N) to 

examine how the change of axial loads affects the lateral response of piled raft under 

rectangular sand displacements. Each test has been repeated at least twice to achieve its 

repeatability. The maximum variation in test results observed was only 3 % in load cell 

readings, 10 % in LVDTs and tilting recordings, and 13 % and 8 % in strain gauge 

measurements in the front and back piles respectively. The depth of moving layer was 

kept at 135 mm. Piles with 300 mm length, 20 mm diameter were used in the 

experiments. The sand used was dense type (16.0 kN/m3). The first test with no axial 

load (Test PR0) was named the standard test in which its results will be part of 

comparison study with other testing parameters. The two other tests with Q = 100 N 

and Q = 200 N were denoted as PR1 and PR2 respectively. 

Figure 6 illustrates the bending moment variation with lateral box displacement.  For 

the standard test, front pile showed negative moments up to 6 mm (0.3d, where d is the 

pile diameter) of box displacement. This could be due to the restraint that the pile cap 

provided to the piles. As soil movement continues, the pile developed positive moments 

along its entire depth. However, beyond 18 mm of soil displacement onwards, the rate 

of measured moments started to decrease at all strain gauge locations, and some of them 

(SGF1, SGF2, SGF6 and SGF7) have reached their maximum moments. It is noted that 

bending moment curves for the back pile row have shown gradual increase. Thereafter, 

strain gauges which recorded positive moment reached peak value at 7.0 mm (0.35d) 

of box displacement, while those gauges which showed negative values recorded their 

constant moment at about 17.0 mm (0.85d) of soil movement.  

From those three test results, it is noticed that the value of box displacement at which 

the measured moment reaches its peak value decreases as axial loads increase. 



  

a. Test PR0, Pile-F                                            b. Test PR0, Pile-B 

 

  

c. Test PR1, Pile-F                                                    d. Test PR1, Pile-B 

 

  

 

e. Test PR2, Pile-F                                             f. Test PR2, Pile-B 

Figure 6 Measured moments at each strain gauge during tests (PR0, PR1 and PR2). 

 

Figure 7 shows bending moment variation along the pile lengths at two sand 

displacement intervals i.e. ΔB = 5 mm 20 mm (where ΔB is box displacement). 

According to this Figure, the following observations can be drawn: 



 The comparison reveals that bending moments measured at the head of the front 

pile were influenced significantly by the presence of axial load. A noticeable 

tendency to develop negative pile head moments as axial load increased was 

observed. This behaviour can be attributed to the additional restraint that axial 

load on the cap is providing. Tests with Q = 100 N and 200 N showed that 

bending moments at ΔB = 5 mm were higher than those recorded at ΔB = 20 mm. 

On the other hand, a significant positive pile head moment was developed in the 

standard test.  

 The three test results for the back piles showed that the negative pile head 

moment was increased with increasing the level of axial load at ΔB = 5 mm. 

However, at ΔB = 20 mm the trend of the results was much close to that recorded 

in the standard test. 

 At ΔB = 5 mm, the position of zero bending moment was shifted downward to 

the sliding surface as axial load increased.   

 Despite the negative moment measured at the moving part of Pile F, bending 

moment distributions at each row show similar profiles in all cases (Q = 0, 100, 

200 N).  

 The positions of maximum positive and negative moments for both F and B 

piles did not change with the change in axial loads. Pile F shows maximum 

moment at depth 216 mm (0.72L), whereas pile B exhibits maximum negative 

and positive moments at its head and 216 mm respectively. 

 It can also be observed that back piles developed higher moments than the front 

pile regardless of the magnitude of axial load applied.  



  

a. Front pile (at ΔB = 5 mm)                   b. Front pile (at ΔB = 20 mm) 

 

  

c. Back pile (at ΔB = 5 mm)                      d. Back pile (at ΔB = 20 mm) 

 

Figure 7 Moment profiles at different levels of axial load at ΔB = 5 mm and 20 mm. 

 

Figure 8 shows that adding axial load reduces cap deformation effectively. Two 

distinct zones were observed: linear increase of cap deformation with increasing 

box displacement and then it became constant at larger displacement values. The 

magnitude of horizontal sand displacement at which the cap started to achieve its 

constant deformation is clearly related to the level of axial load. The length of linear 
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portion of the curve is inversely proportional with the intensity of axial load applied 

to the pile cap. 

 

Figure 8 Cap displacement versus box displacement for different values of Q. 

 

Effect of sand density  

Two different densities results have been compared to investigate the influence of sand 

density on the lateral behaviour of passively loaded piled raft. In addition to the standard 

test which has been conducted with sand density of 16.0 kN/m3, another test was carried 

out with a density of (14.4 kN/m3) which represents the loose state. The comparison 

was presented in terms of moment and soil reaction at ΔB = 20 mm. 

Figure 9 shows that reducing the soil strength resulting in a distinct reduction in induced 

bending moment at both rows of piles. Although the moment curve of the front row in 

loose sand shows some differences compared to that measured in dense sand with 

regard to the position of maximum bending moment, pile head moment was recorded 

values of nearly threefold of those in loose sand. Back pile row exhibits less difference 

in the measured pile head moment in which it increased about 50 % when soil density 

increased from 14.4 kN/m3 to 16.0 kN/m3. The reason behind the limited effect of the 
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back pile compared to the front pile may be attributed to the fact that the governing 

factor influencing the response of back pile is the pile-cap interaction rather than the 

soil state. It is also shown that both curves are identical including the position of 

maximum and minimum bending moments. 

Soil-pile interaction force per unit length measured on piles F and B indicates that its 

magnitude is highly dependent on the strength of soil layer. Piles embedded in dense 

sand were under higher soil reaction compared to those embedded in loose sand. The 

position of maximum passive and active soil reactions, in general, were recorded to be 

within the middle third of the moving and stable layers respectively. It is also noticed 

that no passive soil reaction was detected on the upper portion of the back pile tested in 

loose sand, unlike that observed in dense sand. This observation suggests that the 

shadowing effect of the front pile increases as soil density decreases.  

 

 

 

 

 

 



  

a. Bending moment of Pile F.                       b. Bending moment of pile B. 

  

c. Soil reaction of Pile F.                       d. Soil reaction of pile B. 

Figure 9 Front and back pile response at two values of sand density at ΔB = 20 mm. 

 

Cap displacement versus box displacement (up to 25 mm) relationship is presented in 

Figure 10. It is clear that the cap displacement is linearly increased with increasing sand 

displacement in the box for piled raft in loose sand, in which no peak displacement has 

been detected throughout the test. On the other hand, piled raft tested in dense sand 
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tends to develop ultimate cap displacement at ΔB = 20 mm or (1d), after which the cap 

shows constant displacement with increasing soil movement. 

 

Figure 10 Cap displacement versus box displacement. 

 

Effect of moving / embedded depth ratio  

To investigate the influence of the depth of moving layer (Lm) on the behaviour of piled 

raft under lateral soil movement, a test with Lm = 100 mm was conducted, so that its 

results is compared with the results obtained from the standard test which was carried 

out with Lm = 135 mm. Hence, the corresponding Lm/L ratios are 0.33 and 0.45 

respectively.  In the laboratory setup, the depth of moving sand can simply be changed 

by changing the level of soil surface in the box with no need to change the loading 

block. The comparison was presented in terms of moment, shear force, soil reaction 

and cap displacement measured at ΔB = 20 mm. 

Bending moment variation with lateral box movement recorded by two selected strain 

gauges (SGF6 and SGB6) located on the same level (216 mm under the pile cap) on 

Piles F and B respectively is illustrated in Figure 11. It can be seen that peak moment 

at Lm = 100 mm occurred at about 4.0 mm of box displacement (0.2d). On the other 
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hand, the peak moment was developed at about 18.0 mm and 9.0 mm of box movement 

in the front and back pile respectively when Lm increased to 135 mm. That is to say 

maximum bending moment at Lm = 100 mm tends to develop at smaller values of sand 

displacements compared to that developed when Lm = 135 mm for both piles. 

  

a. Pile F                                                            b. Pile B 

Figure 11 Bending moment variation with box displacement. 

 

Based on measured data at ΔB = 20 mm portrayed in Figure 12, it can be seen that 

bending moment increased as the depth of moving soil increased. The maximum 

bending values in the front pile occurred at a depth ranging from 174 mm and 216 mm 

below the pile cap for both tests. Therefore, it is evident that changing the depth of 

moving soil does not affect the position of maximum moment in the front pile. On the 

other hand, Figure 12 (b) depicts that maximum moment developed at the back pile 

showed different locations with changing Lm values. However, both curves shared the 

same tendency to locate the position of zero moment close to the corresponding sliding 

surface location. The increase in induced maximum moments measured at those 
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positions in piles F and B resulting from increasing Lm from 100 mm to 135 mm were 

about 280 % and 180 % respectively. 

Maximum shear force in the front pile occurred at a depth closed to the pile tip (258 

mm under the soil surface), while it was in the vicinity of the sliding surface in the back 

pile row for both tests. 

Figure 12 (e and f) reveals that the shape of soil reaction profile is independent of the 

depth of moving layer, but the values are highly related to that depth. A noticeable 

increase in soil reaction was observed as Lm increased from 100 mm to 135 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

a. Bending moment of Pile F                  b. Bending moment of Pile B. 

  

c. Shear force of Pile F                  d. Shear force of Pile B. 

  

e. Soil reaction of Pile F.                       f. Soil reaction of pile B. 

Figure 12 Front and back pile response at Lm = 100 mm and 135 mm at ΔB = 20 mm. 
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The relationship of the soil-pile contact force per unit length versus relative soil-pile 

displacement at depth 216 mm under the soil surface for both front and back piles is 

shown in Figure 13. Test results revealed that load-displacement curves are nonlinear. 

For test with Lm = 100 mm, the ultimate soil force was recorded at ΔB = 5 mm (0.25d) 

for both piles. By increasing the moving depth to 135 mm, the magnitudes of ultimate 

soil force and the corresponding relative displacements were increased. Soil-pile 

interaction force per unit length showed maximum values of 0.28 N/mm and 0.38 

N/mm for the front and back piles respectively, and both values were recorded at ΔB = 

19 mm (0.95d). Furthermore, it is noted that the shape of load-displacement curve was 

changed from strain-softening to strain-hardening type as depth of moving layer 

increased. 

  

a. Pile F                                                                b. Pile B. 

Figure 13 Soil-pile interaction force versus relative displacement at depth 216 mm under soil 

surface. 
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axial loads (0N, 100N, 200N), two soil densities (14.4 kN/m3 and 16.0 kN/m3) and two 

moving/embedded depth ratios (Lm/L = 0.33 and 0.45) 

In addition to the lateral displacement of the pile cap, the response was presented in 

terms of bending moment, shear force, and soil reaction measured along pile depth.  

Based on the experimental results, the following conclusions can be drawn: 

1. Test results generally indicate that the behaviour of front pile row has 

significantly affected by the axial loads. A noticeable shifting of pile head 

moment from positive to negative values was observed as axial load increased. 

On the other hand, the difference in bending moments is less pronounced for 

higher values of axial load in the back pile row. 

2. From the first three test results, it is noticed that the value of soil displacement, 

at which the measured moment reaches its ultimate value, decreases as axial 

loads increase. 

3. The magnitude of lateral soil movement, at which the pile cap achieved its 

constant deformation, is clearly related to the level of axial load. 

4. Soil density plays an important role in the behavioural mode of passive piles. 

Soil reaction measured along pile length indicates that its magnitude is a 

function of soil strength. Piles embedded in dense sand were under higher soil 

reaction compared to those in loose sand. 

5. It is noted that the shape of p-y curve changes from strain-softening to strain-

hardening type as depth of moving layer increases. 
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Figure captions 

 

Figure 1 Examples of passive piles. 

Figure 2 Experimental apparatus showing testing box and loading frame. 

Figure 3 Loading frame and sliding unit. 

Figure 4 Details of model piles and cap. 

Figure 5 Particle size distribution of the sand. 

Figure 6 Measured moments at each strain gauge during tests (PR0, PR1 and PR2). 

Figure 7 Moment profiles at different levels of axial load at ΔB = 5 mm and 20 mm. 

Figure 8 Cap displacement versus box displacement for different values of Q. 

Figure 9 Front and back pile response at two values of sand density at ΔB = 20 mm. 

Figure 10 Cap displacement versus box displacement. 

Figure 11 Bending moment variation with box displacement. 

Figure 12 Front and back pile response at Lm = 100 mm and 135 mm at ΔB = 20 mm. 

Figure 13 Soil-pile interaction force versus relative displacement at depth 216 mm 

under soil surface. 

 

 

 


