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Active noise control is a methodology to attenuate low frequency noise. The attenuation is
usually achieved near the sensor which is used in the controller. In order to achieve the
desired attenuation inside a desired zone without locating a sensor inside, a method
called active shielding can be used. It works by controlling the pressure at boundaries of
the desired zone. This article presents a novel method for implementing active shielding
only using pressure sensors. It is based on a new concept called implicit control, which
takes into account the locations of sensors. Some simulations validate the presented
method for free fields.

& 2017 Published by Elsevier Ltd.
1. Introduction

The active noise control is a methodology to attenuate the noise using the property of superposition. First approaches
were published by Paul Leug and Coanda [1,2]. Specifically, the noise generated by a source is attenuated by adding another
source which generates an “anti-noise” wave [3]. To produce an active attenuation, there are two schemes, feedback and
feed-forward. They are differentiated because feed-forward scheme produces the control signal as a transformation of a
reference signal of the emitted noise, while feedback scheme only uses information of acoustic pressure at the desired silent
location through sensors. [4] is a review which depicts several issues in this field for both schemes.

In order to attenuate the pressure at a sensor location inside an enclosure, several algorithms have been created. Some of
them are based on adaptive filters such as the filtered X Least Mean Squares (LMS) algorithm, Filtered U LMS algorithm, etc.
[5]. Other algorithms are based on robust control theory, e.g. [6–9]. According to these references, these algorithms obtain
an attenuation around 20 dB at the sensor location. A detailed description of these algorithms are found in [10], which is a
review that includes nonlinear algorithms. However, the attenuation of the sound is only accomplished at or near the sensor
location. Usually, the user, who is exposed to the noise, is not located at the sensor position. Inside enclosures with large
volume, the mentioned ANC systems only control the noise at locations near the sensors. In order to increase the silent zone
(locations where the noise is attenuated), multichannel control have been used [11,12].

Let's center the attention in the case that sensors cannot be located at the position of the users. Then, increasing the
silent zone without using microphones at the user locations is a problem mentioned by several authors. A solution was
proposed in [13], where an optimization problem is suggested. This mentions the possibility to optimize the sound pressure
using the sensors and actuators (also called secondary sources) as optimization variables. A similar procedure is applied in
uintana).
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[14], but it applies two consecutive optimization stages. The first stage takes into account only the sources positions, and the
second the sensor locations. This can be applied using a simulation of the room. Thus, the sources and sensors are located
optimally where the simulation results indicate.

Increasing the silent zone is possible by estimating the pressure at a desired location. It is known as virtual sensing. This
method is carried out by first measuring the sound pressure at a different location. This signal is then transformed to obtain
an approximation of the pressure at a desired location to be used as the error signal. The first algorithm was called virtual
microphone arrangement [15]. It takes into account the sound pressure measured by a sensor. Its limitation is due to the
assumption that the sound pressure generated by the noise sources is equal for the virtual and real sensor locations (desired
and measured locations respectively). A modification called remote microphone [16] applies the same concept. However, it
uses a transformation of the estimation of primary noise to avoid the assumption that the sound pressure components
generated by the primary source are equal at both locations, and this transformation is not determined if it is not causal. [17]
uses a Kalman filter as the estimator of the pressure, which also needs to establish a model of the system. Another proposal
is based on the correlation of the pressure at different locations [18], but it is limited by the distance between real and
virtual sensors. [19] introduces a nonlinear estimation to solve the problem of the non-causality relation between the
measured and estimated pressure. The solution is a modification of the remote microphone algorithm. Other algorithms
have been presented but only applied to one dimensional or not enclosed systems e.g. [20–22]. [23] deals with the problem
that attenuating the noise using high number of virtual sensors requires high computational cost. Another issue is that the
estimation is carried out using a sensor, but the real receiver is a human, which can produce a change on the estimation. To
solve it, [24] proposes an approximation of a mathematical model of the identification system by using a head and torso
simulator instead of human ears in the experiment.

Another important methodology for active control of sound field in a discrete region is active shielding. It works on the
principle of boundary control with actuators on the boundary surface using information gathered from sensors on the
boundary surface. The method developed by Jessel and Mangiante [25] and Canevet [26], known as the JMC method, uses
Huygens' principle to formulate control of sound field in a zone with secondary sources on the boundary. Pressure and
velocity detectors and monopole and dipole actuators are generally required to facilitate the sound field control [27]. Active
shielding can also be derived from a formulation of Kirchhoff-Helmholtz integral equation [28]. In this case, only pressure
sensors and monopole actuators are required, but the formulation suffers from the integral equation's inherent failure at the
characteristic frequencies of the interior region [29]. Munjal and Erikson developed another approach based on electro-
acoustic analogies, but it is limited by sensor position. It cannot be located at the same position as that of a node [30]. These
active shielding approaches seek to minimize the total sound pressure (noise) in the region. In some cases, it may be
possible to use directional measurements to separate the unwanted and wanted sound components in the region [31], but
such application is limited since in most realistic cases the wanted component cannot be completely separated out by
directional measurement alone. The method of using generalized Calderon's potentials and boundary projection operators
[32], and the discrete formulation based on difference potentials [33–36], are a general class of active shielding methods
that has the advantage of automatically preserving wanted sound in the region while attenuating unwanted sound coming
into the region. However, similar to the JMC method, these approaches have the disadvantage of requiring both pressure and
velocity sensors on the boundary surface to guarantee a universal solution. As demonstrated in [33,34], both monopole and
dipole sources were also required to successfully realize the active shielding in practice. The method developed in this paper
aims to avoid the additional cost and complexity of including velocity sensors and dipole control sources, and as a con-
sequence it will sacrifice the generality of automatically preserving wanted sound in the shielded region.

Recently, an active shielding was applied also based on virtual sensing for a cylindrical shell [37], which is a method
restricted to cylindrical shape and include the problems of virtual sensing. From these methods in active shielding, it is
important to remark that they have a limitation. All of them produces a solution and not a control algorithm. In order to
make the control system more robust, it is desired to obtain a feedback control [38].

This paper deals with the attenuation of noise of a zone inside a microphone array. The solution is a novel active
shielding method which reduces the hardware complexity respect to virtual sensing methods because it avoids the esti-
mation process. Furthermore, it only uses pressure sensors, instead of the particle velocity sensors. Regarding the limitation
of other active shielding systems proposed in state of the art, this article shows that it can use any controller based on an
optimization process to obtain the attenuation inside the silent zone (see the controller in Appendix B, which is the solution
obtained for algorithms similar to the FxLMS). Moreover, this result is differentiated by an analysis that includes the time
variable. It is based on the wave equation instead of Helmholtz equation.

This article is divided as follows: the next section defines the concept called implicit control. This concept is used to
propose a novel method for active shielding in Section 3. In Section 4, several simulations validate the active shielding
method. Furthermore, a comparison between virtual sensing and the proposed active shielding method is carried out in
Section 5. Finally, some conclusions are given in Section 6.
2. Implicit control

Before understanding how the proposed active shielding system works, it is necessary to define a new concept:



Fig. 1. Scheme of implicit control example for a 2D acoustic system.
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Definition 2.1. Implicit control: It is the phenomenon that obtaining a specific value of variable implies getting a desired
value for another variable.

For active noise control, it occurs when attenuating (controlling) the pressure at the sensor location, implies the at-
tenuation at other location. It is important to remark that the pressure at each location is defined as a different variable. The
aim of this new concept is to be applied as a method to ensure that attenuating the boundaries of a desired silent zone, any
location inside it is also attenuated.

In order to clearly show this concept, an example of an active noise control system in two dimensional free field is taken
into account. See the locations in the scheme in Fig. 1. The figure shows two point sources, one generates the noise and the
other is the actuator (controlled source). They are located at = [ ]s A , 0a1 1, and = [ ]s A , 0a2 2, respectively (for the axis [ ]x x,1 2 ).

The sensor is located at = [ ]S s s,l a b (Location which is the pressure to be controlled) with a distance d1 and d2 from the noise
source and actuator respectively. As additional restriction <A sa a1, and >A sa a2, . Additionally, a location ′S l is defined as the
point where the distance to both sources is equal to the distance between Sl and the sources.

The total pressure ( )p x t,t , at = [ ]x x x,1 2 and time instant t, location can be expressed as a function of the pressure

components ( )p x t,1 and ( )p x t,2 , which represent the pressure due to the noise source s2 and the actuator s1 respectively.

Then, it can be expressed as:

( ) = ( ) + ( ) ( )p x t p x t p x t, , , 1t 1 2

For the frequency analysis of this case, these two components of pressure can be expressed as functions of distance d1 or
d2 between the receiver at location Sl and the source s1 or s2 respectively, i.e.:
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where ρ0 is the air density; c is the speed of sound; Q1 and Q2 are the source strength; η is the wave number; andω is the
frequency of sound.

Furthermore, the control of the pressure at Sl is achieved if ( ) =p S t, 0t l . It means ( ) = − ( )p S t p S t, ,l l1 2 . This condition is
accomplished from (1)–(3) if:

= −
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η η( − )Q
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4
j d d

2
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Notice that Q 2, ( )p S t,l1 and ( )p S t,l2 only depend on the distances d1 and d2 due to ρ0, c and η, which are constants. Hence,
Eq. (4) is a solution for any other location ′S l such that the distance between the sources and ′S l are equal to Sl, eg.
′ = [ − ]S s s,l a b and both locations have the same value of pressure. It means that the implicit control occurs and controlling
the pressure at Sl implies to control the pressure at ′S l because the attenuation of the pressure at one location implies the
attenuation at the other location.

As a consequence of the implicit control phenomenon, a related issue appears:

Problem 1. How to find the locations to be controlled in order to obtain implicit control in a desired silent zone?

From the definition of implicit control, the issue is to find a set of locations …x x x, , ,s s N s1, 2, , such that they
achieve the implicit control at another set of locations xi r, , with i ¼ 1,…,M where M is the number of locations
where the implicit control occurs. Defining two vectors with the pressure in frequency space for these locations
as ω( ) = [ ( ( )) ( ( )) … ( ( ))]P F p x t F p x t F p x t: , , , , , ,t r t r t M r1, 2, , ; (·)F is the Fourier transform and ω¯( )≔[ ( ( ))P F p x t, ,t s1,

( ( )) … ( ( ))]F p x t F p x t, , , ,t s t N s2, , , it is evident that the implicit control can be proven for locations that achieve the following

condition:
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where ω( )G is any linear transform.
For the example in Fig. 1, the Eq. (4) ensures the restriction (5) for [ = ]x Ss l1, , [ = ′ ]x Sr l1, and ω( ) =G 1. Hence, the implicit

control is accomplished in the case of Fig. 1.
3. Active shielding based on implicit control

According to [34], active shielding is a method where an “area involves a given region of space (bounded or unbounded)
to be shielded from unwanted external noise by the active controls. The controls establish an active boundary, shielding the
region from the noise”.

This section describes a novel methodology to implement an active shielding system based on implicit control. It means
obtaining a controller which produces a desired silent zone using the information of the pressure at its boundaries instead
the pressure inside the silent zone with the concept shown in the previous section. Basically, the aim is to solve the Problem
1 with a set of pressure at boundaries ω¯( )P . For sake of simplicity, the analysis will be carried out in a two dimensional free
field system. The procedure consists of discretizing the wave equation through the finite difference method. It allows the
description of the pressure at one location as a function of the pressure at contiguous locations. Thus, the relation of the
pressure inside the silent zone and its boundary can be written as a space state model (This is a general form to write
equations which describes linear systems, see [38] for a more detailed description), which ensures a linear relationship
between them and the restriction (5). Considering a desired silent zone where this zone can be discretized at locations

= [ ]x x x,i j i j, , with i ¼ 1,…,I, j ¼ 1,…, J, Δ= [ + ]+x x x,i j i x j1, and Δ= [ + ]+x x x,i j i j x, 1 , the next statement can be proven:

Theorem 1. The relation between the pressure at all discrete locations inside the desired silent zone ( )z kD2 ∈IJ and the pressure
at the discrete locations at its boundaries ( )u kD2 ∈ + I J2 2 is linear and can be written as a space state model of the form:
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where A2D, Â D2 and B2D are real matrices; IJ is an identity matrix with size IJ � IJ; and IJ IJ, is a zero matrix with size ×IJ IJ . It
means, this relation achieves the restriction (5).

Proof. Let us begin describing the behavior of pressure using the damped wave equation:
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2
2 and d is the damping coefficient.

Using this continuous time equation, it is quite complex to express the pressure in the desired area based on the pressure
at other locations. Hence, Eq. (7) is discretized using the finite difference method. Specifically, the differential operator is
approximated by:
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where Δt is the sample time. In order to simplify the notation, Δ( )≕ ( )p x k p x k, ,i j t i j, , , it implies Δ=t k t . Regarding the
approximation using finite difference method, it is valid when the variation of the pressure is low with respect to its
variations in space. It implies that higher values of Δx produces high error and this approximation is not valid. Spe-
cifically, this discretization applied to the discrete model of the wave equation has been analyzed for d ¼ 0, e.g. [39]
studies when the model is unstable and [40] deals with the phenomenon called dispersion. However, for ≠d 0, it is not
analyzed. In this paper, a statistical analysis of the behavior of this limitation in active shielding method is carried out
and presented in Section 4.3.
Using these definitions and approximations, the pressure at a discrete location can be written as:
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It is important to remark that Eq. (12) produces a set of equations for different values for i and j. For example, for =i 1, 2
and j ¼ 1:
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According to [38], the relation exposed in Eq. (5) has an analogous relation in a space state model. It means, writing Eq.
(12) for any i and j inside the desired silent zone as a space state model is enough to ensure the relationship in Eq. (5).
Assuming the silent zone is a square, the next procedure shows how to obtain the desired model.
First, the pressures of discrete locations inside the desired silent zone form a vector. In order to organize this vector, a set

of pressures along a line (for a fixed value of j) produces a vector as follows:

‵ ( ) = [ ( ) ( ) … ( )] ( )z k p x k p x k p x k: , , , , , , 18j j j I j
T

1, 2, ,

The vector ‵ ( )z kj contains the pressures at the locations inside red rectangles in Fig. 2. Each value of j produces a vector and

a rectangle in the Fig. 2. These vectors ‵ ( )z kj are concatenated as:

( ) = [ ‵ ( ) ‵ ( ) ⋯ ‵ ( ) ] ( )z k z k z k z k: 19D
T T

J
T T

2 1 2

Thus, the vector ( )z kD2 is the analogous to ω( )P in discrete time space.
On the other hand, the vector of pressures at locations of the boundary of desired silent zone is formed as:

‵ ( ) = [ ( ) ( ) … ( )] ( )u k p x k p x k p x k: , , , , , , 20a I
T

1,0 2,0 ,0
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‵ ( ) = [ ( ) ( ) … ( )] ( )+ + +u k p x k p x k p x k: , , , , , , 23d I I I J
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1,1 1,2 1,

( ) = [ ‵ ( ) ‵ ( ) ‵ ( ) ‵ ( ) ] ( )u k u k u k u k u k: , , , 24D a
T

b
T

c
T

d
T T

2

Each vector of ‵ ( )u ka , ‵ ( )u kb , ‵ ( )u kc and ‵ ( )u kd take the pressures of the locations inside each green rectangle in Fig. 2. Hence,
Fig. 2. Scheme of active shielding system for two dimensional space. (For interpretation of the references to color in this figure, the reader is referred to the
web version of this article).
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( )u kD2 contains the pressure at all the discrete locations at the boundaries of the silent zone and is analogous to ω¯( )P .
According to Eq. (12), ( )z kD2 is a linear function of ( )u kD2 and its own past values. It means that the following system of linear
equations based on Eq. (6) can be written to obtain ( )z kD2 .

( + ) = ( ) + ( ) + ^ ( − ) ( )z k A z k B u k A z k1 1 25D D D D D D D2 2 2 2 2 2 2

Where the matrices A2D, B2D and Â D2 are the relations between the vectors which are obtained from (12) and they are
explained below:

� Â D2 : Eq. (12) expresses that γ c2, is the coefficient which relates the values of the pressure ( − )p x k, 1i j, with ( + )p x k, 1i j, . In
Eq. (25), these pressures are located in the vectors ( + )z k 1D2 and ( − )z k 1D2 respectively at the same position. As a
consequence, the diagonal locations of the matrix Â D2 are equal to γ c2, and zero at any other locations. Mathematically it is
written as γ^ = A D c IJ2 2, .

� A2D: lets begin analyzing the relation between ‵ ( + )z k 1j and ‵ ( )z kj . In order to simplify the notation, a matrix Ab2 is defined
as the relation between these two vectors and it is a sub-block-matrix in A2D. Its values depend on the pressures

( + )p x k, 1i j, and ( )p x k,i j, , which are at the position i inside the vectors ‵ ( + )z k 1j and ‵ ( )z kj . The relationship between these

pressures is the multiplication of the constant γ b2, which is the value for the locations i i, of the matrix Ab2. Furthermore,

the pressures ( )−p x k,i j1, and ( )+p x k,i j1, are also located in ‵ ( )z kj at positions −i 1 and +i 1, except if − ≤i 1 0 or + >i I1

(this exception is for locations that are not inside the vector because they are out of the desired silent zone). Their relation
with ( + )p x k, 1i j, is given by the constant γ a2, and it is the value for all locations −i i, 1 and +i i, 1 in the matrix Ab2. Hence,

the matrix Ab2 is:
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Another relationship that needs to be taken into account is between ‵ ( + )z k 1j and ‵ ( )+z kj 1 . The pressure at position i in the

vector ‵ ( + )z k 1j is ( )p x k,i j, which is related to ( )+p x k,i j, 1 at the position i in ‵ ( )+z kj 1 . Then, the matrix that relates these two

vectors is γ c I2, . The same matrix relates the vectors ‵ ( + )z k 1j and ‵ ( )−z kj 1 . For these two cases, it is important to remark that
they do not apply for − ≤j 1 0 and + >j J1 (it only applies for the discrete locations inside the desired silent zone).
Using this result and Ab2, the matrix A2D can be constructed, due to the relationships between the vectors, as:
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� B2D : as it was mentioned before, the relation between the silent zone and the boundary locations has not been analyzed

yet. This is because it corresponds to the matrix B2D. The vectors ‵ ( + )z k 11 and ‵ ( )u ka contain the pressures ( + )p x k, 1i,1 and

( )p x k,i,0 respectively. Thus, the relation between these vectors is given by the matrix γ a L2, . Notice that this matrix also

relates the vectors ‵ ( + )z k 1I and ‵ ( )u kd and it becomes a sub-block-matrix inside B2D at two locations.

On the other hand, ( + )p x k, 1j1, for j ¼ 1–J. The first term in the vector ‵ ( )z kj , is related by the constant γ a2, to ( )p x k,j0, , the

pressures in ‵ ( )u kb . Thus, the matrix that relates ‵ ( )z kj with ( )p x k,j0, is:

γ

= ⋮

( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

b :
0

0
0 28

D

a

2 ,1
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The constant γ a2, also relates the pressure ( + )p x k, 1I j, for j ¼ 1 to J. It means, the last location in vector ‵ ( )z kj is related to

( )+p x k,I j1, , which is located in the vector ‵ ( )u kc . Following the same analysis to obtain b D2 ,1, it is obtained the matrix which

relates ‵ ( )z kj with ( )+p x k,I j1, .

γ

= ⋮

( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

b :

0
0

0
29

D

a

2 ,2

2,

The matrices γ a L2, , b D2 ,1 and γ a2, are used to obtain B2D as follows according to the locations of the vectors ‵ ( + )z k 1j , ‵ ( )u ka ,
‵ ( )u kb , ‵ ( )u kc and ‵ ( )u kd in the vectors ( + )z k 1D2 and ( )u kD2 :

γ

γ

=

⋯ ⋯ ⋯ ⋯

⋯ ⋮ ⋯ ⋮ ⋮
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

⋮ ⋮ ⋮
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⎢
⎢
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b 30
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2, 2 ,1 ,2 ,1 2 ,2 ,1 ,1 ,

, ,1 2 ,1 ,1 2 ,2 ,1

2 ,1 ,1 2 ,2 ,1 ,

, ,1 ,1 2 ,1 ,1 ,1 2 ,2 2,

Notice that the model (25) is now completed, and it can be rewritten as the space state model in Eq. (7). Thus, it is shown
that the pressures in ( )z kD2 and ( )u kD2 can be related as input and output of a linear system which does not have additional
inputs. It means the condition in Eq. (5) and Theorem 1 are achieved. Also, it shows that the pressures in ( )z kD2 are variables
where the implicit control occurs when the pressures in ( )u kD2 are controlled. □

This also proves that controlling the noise at the boundaries of a desired square silent zone is a sufficient condition to
control the noise inside this square. Furthermore, using a controller for the pressure at boundaries is an active shielding
method because it does not need additional information, such as the pressure inside the desired silent zone. Additionally,
the same procedure can be followed to obtain the result in a three dimensional system as shown in Appendix A.

Also, it is important to remark that Eq. (5) has a limitation when ω( )G has poles. Nevertheless, the Eq. (5) here does not
have this limitation. This is because the Eq. (12) shows that the pressure at one location only depends on pressure of
adjacent locations. For the desired silent zone, all of them are in vectors ( )z kD2 and ( )u kD2 and system in Eq. (6) becomes zero

if it is stable and ( )u kD2 is a vector of zeros for all k. The values of matrices A2D and Â D2 affects stability. However, the
conditions of stability are assumed because it is expected that, for any constant pressure at boundaries, the pressure inside
does not increase to infinity. The proposed theory does have a disadvantage in comparison with active shielding based on
Calderon's projection method [32] and discrete difference potentials method [33] when the boundary discrete locations
coincide with pressure node locations. Those boundary projection methods use both pressure and velocity sensors, while
the controllers in the proposed theory is based on pressure sensors alone, making it not possible to apply this method when

the sensors are at pressure nodes. Specifically for the controller proposed in Appendix B, the inverse of matrix ω ω( ( ) ( ))−H HH 1

cannot be calculated, ω( )H becomes a not full rank matrix. A deeper analysis of such cases will be considered for future work.
4. Validation

Towards validating analytically the proposed Theorem 1, several simulations will be carried out. The idea is taking
benefit of the relation between the implicit control and the active shielding method. Therefore, using an active noise
control system focused on the pressure at the boundaries, the desired silent zone is evaluated. This evaluation consists
of examining the value of the attenuation, with respect to an emitted sinusoid noise signal. If it is higher than 10 dB,
then it is considered satisfactory attenuation. If the whole desired silent zone achieves satisfactory attenuation, then it
means that the implicit control is also achieved and the theory exposed in Section 3 is valid.It is important to remark
that attenuation higher than 10 dB is not assumed to be 100% attenuation, but this is a common limit for a desired
attenuation used by other authors, e.g. [41].

These simulations are based on the control method proposed in Appendix B. It implies the control signal is the optimum
value to minimize the pressure at boundary locations.

4.1. Two dimensional system

In the two dimensional system, shown in Fig. 3, 408 noise sources have been taken into account in free field. They formed
a circle with radius equal to 14 m. In the figure, this circle is shown in red. In the center of it, 12 actuators form a square with
each side 12 m long and three actuators on each side. Each actuator is shown by a blue asterisk. A set of sensors forms



Fig. 3. Scheme of acoustic active shielding 2D system and its generated silent zone. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article).

Fig. 4. Percent of the desired silent zone achieved with respect to the frequency in a two dimensional system.
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another square with each of its sides 3 m long. Each location of this set is shown by a black small circle and their pressures
form the vector ( )u kD2 . There are 12 locations and represent the sensors of the control system. For this case, the control
system is focused on minimized the square of pressure in the zone inside these 12 sensor locations. It is necessary to remark
that for this case = =I J 3 and Δx is 0.75 m.



Fig. 5. Error signals simulated at center of silent zone for two dimensional system.
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The attenuation is hard to be visualized for a total area, instead of that, the silent zone obtained is shown in green color.
In Fig. 3, it is evident that the theory works well at low frequencies, at 100 Hz, 125 Hz and 160 Hz. For more detailed
information, Fig. 4 shows the achieved percentage of the desired silent zones according to the frequency. It is evident, if the
frequency is increased, the achieved silent zone decreases. At frequencies lower than 125 Hz, 100% of the silent zone is
achieved. For higher frequencies, lower values of this percentage are obtained until less than 10% at 500 Hz. It implies that
the attenuation decreases inside the silent zone when the frequency is increased. This decrease is not uniform and has
troughs. These results show that implicit control is achieved for low frequencies, where it is expected to work according to
the finite difference discretization. This is a limitation of the theoretical approach in previous section. The value of Δx, which
is less than the wave length at 125 Hz (1.72 m), means that the theory is assured if Δx is lower than 1/3 of the wave length
for this scheme. Thus, as the implicit control is achieved, this agrees with the Theorem 1.

In order to better explain local behavior inside the silent zone, the pressure at center of desired silent zone is simulated,
see Fig. 5. There, it is shown the sinusoid signals noise for 125 Hz, 250 Hz and 500 Hz, when the control system is on and off.
The pressures represented by continuous lines are without control and dotted line is with the influence of the controller. For
all frequencies the noise is attenuated, but this attenuation varies with respect to the frequency. At low frequencies, the
attenuation is higher, which agrees with the general behavior of the attenuation inside the whole silent zone.

4.2. Three dimensional system

After the simulations obtained using the two dimensional systems, the three dimensional system is also simulated (see
the theory in the Appendix A). Analogous to the simulations in two dimensions, the three dimensional system replaces the
circle of noise sources by a shell of a sphere with 14 m of radius and 114 sources, as it is shown in Fig. 6 in the part a. The
squares are replaced by the shell of cubes of 54 locations each one. The biggest cubic shell in the figure (formed by dots in
black color) locates the actuators. Each side of this cube is a square of 3 � 3 actuators, the size of each side of the squares is
12 m. The other cubic shell (formed by dots in blue color) contains the locations where the control is achieved. It is similar to
the other cube, the only difference is the size of each side that is 3 m. The pressures of these locations are contained in ( )u kD3 .
For this case, also Δx is 0.75 m and = = =I J L 3.

The 3D results are very similar to the two dimensional system as they are shown in Fig. 6b. This figure shows a front view
of the scheme with the generated silent zone. The frequencies of 100 Hz, 125 Hz and 160 Hz produce the target attenuation,
but it cannot be achieved at higher frequencies. A more detailed analysis of the achieved silent zone is shown in Fig. 7. It
confirms the high percent of the attenuation for the mentioned frequencies. However, at 160 Hz, 100% of the silent zone is
not achieved. This silent zone is achieved at the frequencies lower than 125 Hz. In order to obtain the desired silent zone, it
implies that Δx must be lower than 1/3 of the wave length.

The local behavior inside the silent zone is also evaluated at center of desired silent zone, see Fig. 8. There, the pressure
sinusoid signals are shown for 125 Hz, 250 Hz and 500 Hz, when the control system is on and off. Again (as the two
dimensional system), the pressures represented by continuous lines are without control and dotted line is with the influ-
ence of the controller. The pressure at center of desired silent zone has similar behavior to the whole silent zone, shown in
Fig. 6. This means higher attenuation at low frequencies and lower at high frequencies. This result completely agrees with
the two dimensional system and fits with the behavior shown in Fig. 7.

The results using a three dimensional system totally agree with the results for two dimensional system. They also lead in
the direction of the theoretical approach of the Theorem 1, which is proven for three dimensional system in Appendix A.



Fig. 6. Scheme of acoustic active shielding 3D system with the generated silent zone. a) Location of sensor, actuators and noise sources. b) Silent zone
generated by frequency. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).

Fig. 7. Percent of the desired silent zone achieved with respect to the frequency in a three dimensional system.

R. Quintana et al. / Journal of Sound and Vibration 408 (2017) 1–1910
4.3. The distance between control locations

According to previous simulations, one of the questions to be solved is: which value for Δx is valid to achieve the desired
silent zone? Using similar simulations to those shown previously for two and three dimensional systems, different values of
Δx are tested. Using a boundary formed by the sensors with the same length from previous simulations, the values of I, J and
L are changed. This produces the variation for Δx. Also, this variation is evaluated for different frequencies and the parameter
to compare the different cases is the percentage of area achieved of the desired silent zone.

For simulations with two dimensional and three dimensional systems, the Figs. 9 and 10 show the percentage of the
desired silent zone which achieves the attenuation higher than 10 dB with respect to the relation between the distance Δx

and the wave length λ. For all the frequencies and from both systems, the result produces the same performance. For low
values of Δ λ/x , the silent zone is not achieved because the controller produces undetermined mathematical operations. This
controller needs to calculate the pseudo-inverse matrix of secondary paths, which is not possible when they are very similar.
Hence, the sensors must be separated enough with respect to the wave length or the control signal cannot be calculated, for
more information see Appendix B (This interval is not shown in Figs. 4 and 7 because it occurs at very lower frequency to be
shown). As result, the attenuation is not obtained at the boundaries. Therefore, the implicit control is not achieved. This first
interval is due to the controller, not to the proposed theory. In spite of it, this interval is taken into account to ensure
completeness in the analysis. Then, according Figs. 9 and 10, there is an interval of values of Δ λ/x where the control system



Fig. 8. Error signals simulated at center of silent zone for three dimensional system.

Fig. 9. Effectiveness of implicit control varying Δx and frequency for the 2D system.
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obtains the complete silent zone. The second interval is explained due to the theory exposed in Theorem 1. Other values of
Δ λ/x produces an interval which shows that the attenuation is not achieved. This is when the implicit control is not achieved.
The third interval is due to the limitation when the finite difference step is not sufficiently fine to discretize the wave
equation. Moreover, it is important to remark on the variation of these intervals when the frequency also varies. For higher
frequencies, the desired silent zone is obtained even for higher values of Δ λ/x .

For a more detailed analysis, Figs. 11 and 12 plot the maximum and minimum values of Δ λ/x where the 90% of the desired
silent zone is achieved. In Fig. 11, these maximum and minimum values of Δ λ/x are shown with respect to the frequency for
the two dimensional system, while Fig. 12 shows the same information, but obtained using the three dimensional system.
These figures also show the estimated models used to relate the parameters Δ λ/x and the percentage of the achieved silent
zone. For the estimated models, the next equations are proposed:

ζ α ω α= ( ( )) + ( )ln 31M M M,1 ,0

ζ α ω α= ( ( ) ) + ( )ln 32m m m,1
2

,0

Where ζM and ζm are the maximum and minimum values of Δ λ/x where the achieved silent is expected to be higher than
90% of the desired silent zone, αM,0, αM,1, αm,0 and αm,1 are coefficients obtained through an optimization process which
minimizes the mean square error between the data obtained and their corresponding model. The values obtained for these
coefficients are shown in the Table 1.

The most important result of this section is that there exists a relation between the frequency of the sound, Δx and the



Fig. 10. Effectiveness of implicit control varying Δx and frequency for the 3D system.

Fig. 11. Maximum and minimum values of Δ λ/x where the active shielding method achieves 90% of the silent zone for a two dimensional system.
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achieved silent zone. Additionally, this relation agrees with the case where the approximations (8)–(11) are expected to be
valid. The Figs. 11 and 12 confirm this statement. Furthermore, this section obtains an Eq. (31) which describes the max-
imum relation Δ λ/x to obtain the 90% of the desired zone while the controller attenuates the discrete boundaries.
5. Comparison between virtual sensing and active shielding

In this paper, the active shielding is proposed as an alternative solution for virtual sensing. Thus, a simulation between
these two methodologies is carried out in this section. Here, it presents simulations for different frequencies using same
locations for sensors and actuators for active shielding and virtual sensing. This comparison is carried out to show ad-
vantages of active shielding through an example. However, this is not conclusive, is just to show an example as a first step
for future works.

For this simulation, it uses a similar scheme to the one proposed in Section 4.1. The results can be visualized in Figs. 13
and 14. 408 noise sources form a circle with 6 m of radius. The array of 12 actuators is the boundary of a square, which each
side is a three meters line. The sensors are located forming the boundaries of another square with two meters side length. In



Fig. 12. Maximum and minimum values of Δ λ/x where the active shielding method achieves 90% of the silent zone for a three dimensional system.

Table 1
Coefficient values of the mathematical models.

Coefficient 2D data 3D data

αM,0 0.0235 0.0224

αM,1 0.4727 0.2778

αm,0 −0.1220 −0.2288
αm,1 0.0642 0.0947
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order to apply the virtual sensing method, the desired silent zone is full of a square of 5 � 5 virtual sensors (25 virtual
sensors are located). The control signal for active shielding is the method in Appendix B. While, for virtual sensing, it is
obtained using the optimum value to decrease noise energy according to [41].

The generated silent zone for the frequencies 63, 100, 160 and 250 Hz are visualized in Figs. 13 and 14 for active shielding
and virtual sensing respectively. Both methodologies obtain a desired silent zone when the frequency is very low (63 and
100 Hz). At the frequencies of 160 and 250 Hz, attenuating the whole silent zone is not achieved. Previous section explains
the reason why attenuation of active shielding is limited, but it is interesting that the virtual sensing method also does not
obtain a significant difference in the achieved silent zone. It can be remarked that although the virtual sensing is the
optimum at sensor locations based on an estimation, there is a similitude in the silent zone generated between the optimum
at the virtual sensors locations and the optimum using active shielding at silent zone boundary.

Regarding the computational cost, it is one of the most important issues to decide which technique is convenient ac-
cording to hardware limitation. Generalizing, the computational cost of an active shielding system is the computational cost
of the controller specified for the number of sensors. It means, depends on the control algorithm, the size of the boundaries
and Δx, which must achieve the restriction in Eq. (31). On the other hand, virtual sensing implies more operations by sensor
location due to the transformation to the measured signals to obtain the estimated pressure at virtual sensor locations. The
number of operation varies for each virtual sensing algorithm according to the transformation, e.g. it has different value for a
Kalman filter [17] than a filter as the method in [16]. Using this analysis, it is evident that the active shielding methods are
convenient when the sensor locations at boundary of silent zone are less than the needed by virtual sensors to cover the
same area inside. Specifically, in the example shown in this section, active shielding method uses a multichannel controller
with 12 sensors and 12 actuators. On the other hand, virtual sensing uses a multichannel control algorithm with 25 sensors
and 12 actuators. Moreover, it requires the computational cost for the estimation of the error signal at this locations. Then, it
is shown that the computational cost is satisfactorily reduced. A more detailed cases will be the subject of future work.
6. Conclusions

This paper showed a method for active shielding using the definition of implicit control. In Section 2, the implicit control
concept was defined and explained through an example. This section ended up proposing a linear relation to ensure that the
implicit control occurs. Then, the wave equation was discretized to obtain a discrete model. It yields a space state model
which relates the pressure at the boundaries of a desired silent zone with the pressure inside it. Based on this, an active



Fig. 13. Silent zone generated by an active shielding system.
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shielding method was proposed. Later, the simulations presented the silent zone achieved for the proposed active shielding
method. This result allows to conclude that if the finite difference approximation is valid, controlling the pressure at the
boundaries of the desired silent zone implies controlling the pressure inside it. It means, it is an implicit control case.
Moreover, it was concluded that applying an active control system to this case is an active shielding system, because it is
only needed to control the pressure at the boundaries. It does not need more information to obtain the desired silent zone.
From the simulated data, it can be inferred the same conclusion validating the theoretical approach for two and three
dimensional systems. The simulations also showed that it happens for frequencies lower than 1/3 of the wave length in the
proposed scheme. However, an even more detailed analysis shows that changing the frequency also produces a variation
between the maximum value for Δx to achieve the implicit control. When the frequency is higher, the relation Δ λ/x can be
increased without loosing the attenuation effect inside the silent zone. Besides, the maximum acceptable relation between
Δ λ/x to achieve 90% of the desired silent zone with respect to the frequency was modeled by Eq. (31), which is the last
contribution of this article.

This paper has shown basic concepts for the application of active shielding through implicit control. However, a deeper
analysis allows a better understanding of this phenomenon and gives future applications. First, the statistical analysis in
Section 4.3 produces Eq. (31), which will help the design an active shielding method. However, it does not show the the-
oretical reason why the distance affects the performance of the active shielding system in such a way. This relationship will
be studied using an analytical analysis in future work. Second, when the sensors are located at pressure nodes there will be a
problem for the controllers and may therefore limits the method's application. This will be analyzed in future work. Also,
this article shows an approach for a free field environment, but it is not shown when surfaces interfere. The issue of this
paper has an alternative solution using virtual sensing, in future works will be detailed the cases where it is convenient to
use one or the other. For future works, implicit control will be evaluated under the non-free field conditions. Another
problem is that the attenuation at the boundaries is not always obtained, usually because the actuators are less than the
sensors. Thus, it is needed to obtain a method to decrease the number of actuators and sensors to control the boundary



Fig. 14. Silent zone generated by a virtual sensing system.
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locations. Besides, a massive multichannel control has problems converging. Consequently, it is recommended to focus
future research on distributed and decentralized control.
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Appendix A. Three dimensional system

Analogous to the analysis shown in the Section 3, the three dimensional system obtains an active shielding method using

implicit control. This case changes the wave equation, it uses ∇ (·) = + +∂ ·
∂

∂ ·
∂

∂ ·
∂

:D x x x3

2
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2

2

2
2
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3
2 instead ∇ (·)D2 . Notice that the third axis
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Subsequently, discretizing Eq. (A.1) using finite difference method yields:
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Then, the vector that contains the whole discrete locations inside a cubic silent zone ( )z kD3 is:

¯ ( ) = ( ) ( ) ⋯ ( ) ( )⎡⎣ ⎤⎦Z k p x k p x k p x k: , , , A.6j l j l j l I j l
T

, 1, , 2, , , ,

̇ ( ) = ¯ ( ) ¯ ( ) ⋯ ¯ ( ) ( )⎡⎣ ⎤⎦Z k Z k Z k Z k: A.7l l l J l
T

1, 2, ,

( ) = ̇ ( ) ̇ ( ) ⋯ ̇ ( ) ( )⎡⎣ ⎤⎦z k Z k Z k Z k: A.8D L
T

3 1 2

Also, the vector which contains the pressures at the boundary of this cube is:
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The next equation relates the vectors ( )z kD3 and ( )u kD3
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And the tridiagonal matrix ¯ = [ ]A am n, defines its components as:
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Besides, the relation between ( + )z k 1D3 and ( )u kD3 is given by:
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Thereby, a space state model can be written to express the behavior of pressure at the discrete locations in the silent
zone. It is shown that the condition (5) is achieved also for a three dimensional system. Thus, if the desired silent zone is a
parallelepiped, it can be obtained by controlling the noise at discrete location in the boundaries of this parallelepiped while
it can be discretized as it was shown in this section. Consequently, the restrictions are given only by the finite difference
method, which basically relates the frequency with Δx.
Appendix B. Control signal used in the simulation

In this article it is important to obtain the control signal at its maximum attenuation. The process to obtain the minimum
attenuation at the sensor location is described below, similar as it is shown by [41]. It begins by describing the relation
between the secondary source and error sensors signals, mathematically it is written as follows:

∑ω ω ω ν ω( ) = ( ) + ( ) ( ) = …
( )

ι ι

Λ

ι λ λ
=

E D H i N, 1, , ,
B.1j 1

,

where ω( )=ιE { }( )F p x x t, ,i j for two dimensional systems or ω( )=El

{ }( )F p x x x t, , ,i j l for three dimensional systems; ι expresses a different combination of i j, or i j l, , at boundary locations
and its maximum value is the number of discrete locations at boundary of silent zone; ω( )ιD is the noise due to the primary
source at sensor ι location; ω( )ι λH , is the secondary path from the secondary source λ to the sensor ι; ν ω( )λ is the sound
emitted by the secondary source λ; and Λ is the number of secondary sources. Eq. (B.1) can be written in matrix form as:

ω ω ω ν ω( ) = ( ) + ( ) ( ) ( )E D H . B.2

With ω ω ω ω( ) = [ ( ) ( ) … ( )]ΛE E E E, , , T
1 2 , ω ω ω ω( ) = [ ( ) ( ) … ( )]ΛD D D D, , , T

1 2 , and ν ω ν ω ν ω ν ω( ) = [ ( ) ( ) … ( )]Λ, , , T
1 2 and defining the

matrix:

ω

ω ω ω

ω ω ω

ω ω ω

( ) =

( ) ( ) ⋯ ( )
( ) ( ) ( )

⋮ ⋮ ⋱ ⋮
( ) ( ) ⋯ ( ) ( )

Λ

Λ

Λ Λ Λ Λ

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

H

H H H
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H H H B.3

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

Notice that it is assumed the number of sensors equal to Λ, it implies H to be a square matrix, which will be useful below.
The control signal is obtained with the aim to minimize the energy of the sensors signals. It means:

ν ω ω ω ω ω ω ω*( ) = ( ) ( ) = − ( ( ) ( )) ( ) ( )
( )ν ω( )

−  E E H H H Dargmin ,
B.4

1

Simplifying this result with the properties of square matrices, the control signal becomes:

ν ω ω ω*( ) = − ( ) ( ) ( )−H D , B.51
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