
Self-Limitation, Dynamic and Flexible

Approaches for Particle Swarm Optimisation

Mohd Nadhir Ab Wahab

School of Computer, Science and Engineering

University of Salford

United Kingdom

 Submitted in Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

May 2017

i

TABLE OF CONTENT

TABLE OF CONTENT .. i

LIST OF FIGURES ... v

LIST OF TABLE .. i

ACKNOWLEDGEMENT .. iii

LIST OF ABBREVIATIONS ... iv

LIST OF PUBLICATIONS .. vi

ABSTRACT ... vii

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Background .. 1

1.2 Contributions of Work ... 2

1.3 Research Question .. 3

1.4 Research Objectives ... 4

1.5 Research Motivation .. 4

1.6 Organisation of the Thesis ... 5

CHAPTER 2 .. 7

LITERATURE REVIEW... 7

2.1 Introduction .. 7

ii

2.2 Swarm Intelligence... 7

2.3 Motion Planning: Classical Path Planning Algorithm ... 19

2.4 Path Planning using Mobile Robot .. 23

2.5 Robot Operating System (ROS) ... 24

2.6 Summary .. 25

CHAPTER 3 .. 26

METHODOLOGIES ... 26

3.1 Introduction .. 26

3.2 Morphology Particle Swarm Optimisation .. 26

3.3 Dynamic Approaches of Particle Swarm Optimisation ... 30

3.4 Parameter Settings .. 40

3.5 Summary .. 42

CHAPTER 4 .. 43

THE BENCHMARK FUNCTIONS EXPERIMENT .. 43

4.1 Introduction .. 43

4.2 Benchmark Functions .. 43

4.3 Result for Morphology Particle Swarm Optimisation ... 45

4.4 Significance Analysis for Morphology Particle Swarm Optimisation 53

4.5 Result for Dynamic Approaches of Particle Swarm Optimisation 56

4.6 Significance Analysis for Dynamic Approach of Particle Swarm Optimisation 64

iii

4.7 Summary .. 67

CHAPTER 5 .. 68

ENGINEERING DESIGN PROBLEMS ... 68

5.1 Introduction .. 68

5.2 Types of Engineering Design Problems ... 68

5.3 Result for Morphology Particle Swarm Optimisation ... 73

5.4 Significance Analysis for Morphology Particle Swarm Optimisation 78

5.5 Result for Dynamic Approaches of Particle Swarm Optimisation 79

5.6 Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation 85

5.7 Summary .. 86

CHAPTER 6 .. 87

MOBILE ROBOT NAVIGATION PROBLEM (MAZE LAYOUT) 87

6.1 Introduction .. 87

6.2 The Maze Layout ... 88

6.3 Result for Morphology Particle Swarm Optimisation ... 92

6.4 Significance Analysis for Morphology Particle Swarm Optimisation 98

6.5 Result for Dynamic Approaches of Particle Swarm Optimisation 102

6.6 Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation .. 108

6.7 Summary .. 112

CHAPTER 7 .. 114

iv

MOBILE ROBOT NAVIGATION PROBLEM (SYMMETRIC LAYOUT) 114

7.1 Introduction .. 114

7.2 The Symmetric Layout ... 115

7.3 Result for Morphology Particle Swarm Optimisation ... 117

7.4 Significance Analysis for Morphology Particle Swarm Optimisation 137

7.5 Result for Dynamic Approaches of Particle Swarm Optimisation 141

7.6 Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation .. 161

7.7 Summary .. 165

CHAPTER 8 .. 167

CONCLUSIONS AND FUTURE WORKS .. 167

8.1 Conclusion ... 167

8.2 Future Work ... 169

REFERENCES ... 172

APPENDICES ... 195

Appendix A .. 195

Appendix B .. 197

Appendix C .. 200

v

LIST OF FIGURES

Figure 2-1. PSO Basic Behaviours.. .. 9

Figure 2-2. Particle Swarm Optimisation movement towards global optima over iteration

numbers .. 11

Figure 3-1. Morphology PSO. .. 27

Figure 3-2. The Structure of Dynamic Parameterising PSO (DPPSO). 31

Figure 3-3. Dynamic Acceleration Coefficients PSO (DACPSO) Population Size Initially. .. 36

Figure 3-4. Dynamic Acceleration Coefficients PSO (DACPSO) after five iterations. 37

Figure 3-5. Dynamic Acceleration Coefficients PSO (DACPSO) the awarding and punishing

process. ... 37

Figure 3-6. Constricted Area Extended PSO (CAEPSO) Architecture. 39

Figure 4-1. Box Plot of Significant Difference in Benchmark Optimisation Problems for Mean

Error factor. .. 54

Figure 4-2. Box Plot of Significant Difference in Benchmark Optimisation Problems for

Execution Time factor. ... 55

Figure 4-3. Box Plot of Significant Difference in Benchmark Optimisation Problems for Mean

Error factor. .. 65

Figure 4-4. Box Plot of Significant Difference in Benchmark Optimisation Problems for

Execution Time factor. ... 66

Figure 5-1. Design of the Tension/Compression String Problem. ... 69

Figure 5-2. Design of Welded Beam Problem. .. 70

Figure 5-3. Pressure Vessel Design Problem. .. 72

Figure 5-4. Comparison Graph of All Algorithms against the Best Performing Algorithm. .. 77

vi

Figure 5-5. Box Plot of Significant Difference for Engineering Design Optimisation Problems

(MPSO). ... 79

Figure 5-6. Comparison Graph of All Algorithms against the Best Performing Algorithm. .. 84

Figure 5-7. Box Plot of Significant Difference for Engineering Design Optimisation Problems

(DAPSO). ... 86

Figure 6-1. The details of Maze Layout. .. 89

Figure 6-2. The view of Path Planning Experiment (Maze Layout) from Four Difference

Angles. ... 90

Figure 6-3. The Turtlebot. .. 91

Figure 6-4. The graph of the best performing algorithm against other algorithms (For All

Factors). .. 95

Figure 6-5. Trajectory traces of employed approaches (including Morphology based PSO) in

Path Planning Experiment for Maze Layout. Colour variation between trajectories is indicative

of different executions (trials) with maximum 10 trials... 96

Figure 6-6. Region Occupied for Path Planning Experiment (Maze Layout). 97

Figure 6-7. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Execution Time factor. ... 99

Figure 6-8. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Battery Consumption factor. ... 100

Figure 6-9. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Travelled Distance factor. ... 101

Figure 6-10. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Convergence Iteration factor. ... 102

vii

Figure 6-11. The graph of the best performing algorithm against other algorithms (For All

Factors). .. 105

Figure 6-12. Trajectory Traces for DAPSO in Maze Layout Path Planning. 106

Figure 6-13. Pie Chart of Region Occupied for Dynamic Approaches PSO against other

algorithms in Maze Layout. ... 107

Figure 6-14. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Execution Time factor. ... 109

Figure 6-15. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Battery Consumption factor. ... 110

Figure 6-16. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Travelled Distance factor. ... 111

Figure 6-17. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Iterations factor. .. 112

Figure 7-1. Symmetric Layout with an Irregular Shape Obstacle. .. 115

Figure 7-2. The view of Path Planning Experiment (Symmetric Layout) from Four Difference

Angles. ... 116

Figure 7-3. Trajectory traces of employed approaches (including Morphology based PSO) in

Path Planning Experiment for Symmetric Layout (Sub-Experiment 1). Colour variation

between trajectories is indicative of different executions (trials) with maximum 10 trials. .. 121

Figure 7-4. Pie Chart of Region Occupied for MPSO and CMPSO against other algorithms in

Sub-Experiment 1 (Symmetric Layout). .. 122

viii

Figure 7-5. Trajectory traces of employed approaches (including Morphology based PSO) in

Path Planning Experiment for Symmetric Layout (Sub-Experiment 2). Colour variation

between trajectories is indicative of different executions (trials) with maximum 10 trials. .. 125

Figure 7-6. Pie Chart of Region Occupied for MPSO and CMPSO against other algorithms in

Sub-Experiment 2 (Symmetric Layout). .. 126

Figure 7-7. Trajectory traces of employed approaches (including Morphology based PSO) in

Path Planning Experiment for Symmetric Layout (Sub-Experiment 3). Colour variation

between trajectories is indicative of different executions (trials) with maximum 10 trials. .. 129

Figure 7-8. Pie Chart of Region Occupied for MPSO and CMPSO against other algorithms in

Sub-Experiment 3 (Symmetric Layout). .. 130

Figure 7-9. The graph of the best performing algorithm against other algorithms (Execution

Time Factor). .. 134

Figure 7-10. The graph of the best performing algorithm against other algorithms (Battery

Consumption Factor). ... 135

Figure 7-11. The graph of the best performing algorithm against other algorithms (Travelled

Distance Factor). .. 136

Figure 7-12. The graph of the best performing algorithm against other algorithms (Iterations

Factor) .. 137

Figure 7-13. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Execution Time factor... 138

Figure 7-14. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Energy Consumption factor. ... 139

ix

Figure 7-15. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Travelled Distance factor. ... 140

Figure 7-16. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Iteration factor. .. 141

Figure 7-17. Trajectory traces of employed approaches in Path Planning Experiment for

Symmetric Layout (Sub-Experiment 1). Colour variation between trajectories is indicative of

different executions (trials) with maximum 10 trials. .. 144

Figure 7-18. Pie Chart of Region Occupied for Dynamic Approaches PSO against other

algorithms in Sub-Experiment 1 (Symmetric Layout). .. 145

Figure 7-19. Trajectory traces of employed approaches in Path Planning Experiment for

Symmetric Layout (Sub-Experiment 2). Colour variation between trajectories is indicative of

different executions (trials) with maximum 10 trials. .. 148

Figure 7-20. Pie Chart of Region Occupied for Dynamic Approaches PSO against other

algorithms in Sub-Experiment 2 (Symmetric Layout). .. 149

Figure 7-21. Trajectory traces of employed approaches in Path Planning Experiment for

Symmetric Layout (Sub-Experiment 3). Colour variation between trajectories is indicative of

different executions (trials) with maximum 10 trials. .. 153

Figure 7-22. Pie Chart of Region Occupied for Dynamic Approaches PSO against other

algorithms in Sub-Experiment 3 (Symmetric Layout). .. 154

Figure 7-23. The graph of the best performing algorithm against other algorithms (Execution

Time Factor). .. 157

Figure 7-24. The graph of the best performing algorithm against other algorithms (Battery

Consumption Factor). ... 158

x

Figure 7-25. The graph of the best performing algorithm against other algorithms (Travelled

Distance Factor). .. 159

Figure 7-26. The graph of the best performing algorithm against other algorithms (Iteration

Factor). ... 160

Figure 7-27. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Execution Time factor... 162

Figure 7-28. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Energy Consumption factor. ... 163

Figure 7-29. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Travelled Distance factor. ... 164

Figure 7-30. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Iteration factor. .. 165

i

LIST OF TABLE

Table 3-1. Parameter Setting for Each Algorithm involved. ... 40

Table 4-1. List of Benchmark Functions involved in the Experiment. 44

Table 4-2. MPSO Results for Benchmark Optimisation Problems ... 50

Table 4-3. MPSO Results for Benchmark Optimisation Problems (cont'd.) 51

Table 4-4. MPSO Results for Benchmark Optimisation Problems based on Benchmark

Category. .. 52

Table 4-5. Significant Analysis for Benchmark Optimisation Problems (MPSO). 53

Table 4-6. DAPSO Results for Benchmark Optimisation Problems 61

Table 4-7. DAPSO Results for Benchmark Optimisation Problems (cont'd.) 62

Table 4-8. DAPSO Results for Benchmark Optimisation Problems based on Benchmark

Category. .. 63

Table 4-9. Significance Analysis for Benchmark Optimisation Problems (DAPSO). 64

Table 5-1. MPSO results for Tension/Compression Design Problem. 74

Table 5-2. MPSO Results for Welded Beam Design Problem. ... 75

Table 5-3. MPSO Results for Pressure Vessel Design Problem. ... 76

Table 5-4. Significance Analysis for Engineering Design Optimisation Problems (MPSO). . 78

Table 5-5. DAPSO Results for Tension/Compression Design Problem. 79

Table 5-6. DAPSO Results for Welded Beam Design Problem. ... 80

Table 5-7. DAPSO Results for Pressure Vessel Design Problem Design Problem. 82

Table 6-1. MPSO Result for Path Planning in Maze Layout ... 93

Table 6-2. Statistical Analysis for Morphology Particle Swarm Optimisation (MPSO). 98

ii

Table 6-3. DAPSO Results for Path Planning in Maze Layout ... 104

Table 6-4. Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation

(DAPSO) .. 108

Table 7-1. The dimensions of the utilised obstacles in the environment for symmetric layout for

path planning experiment ... 117

Table 7-2. MPSO results for Path Planning in Symmetric Layout (Sub-Experiment 1) 119

Table 7-3. MPSO results for Path Planning in Symmetric Layout (Sub-Experiment 2) 124

Table 7-4. MPSO results for Path Planning in Symmetric Layout (Sub-Experiment 3) 128

Table 7-5. MPSO results for Path Planning in Symmetric Layout (Overall) 132

Table 7-6. Statistical Analysis for Morphology Particle Swarm Optimisation (MPSO). 137

Table 7-7. DAPSO Results for Path Planning in Symmetric Layout (Sub-Experiment 1) ... 143

Table 7-8. DAPSO Results for Path Planning in Symmetric Layout (Sub-Experiment 2) ... 147

Table 7-9. DAPSO Results for Path Planning in Symmetric Layout (Sub-Experiment 3) ... 151

Table 7-10. Overall Results for DAPSO in Path Planning Experiment on Symmetric Layout

 .. 155

Table 7-11. Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation

(DAPSO). ... 161

iii

ACKNOWLEDGEMENT

First of all, I would like to thank god almighty Allah S.W.T for the strengths and His

blessing in completing this thesis. I would like to express my special appreciation and thanks

to my advisor, Professor Samia Nefti-Meziani, you have been a tremendous mentor for me. I

would like to thank you for encouraging my research and for allowing me to grow as a research

scientist. Your advice on both research as well as on my career have been priceless. I would

also like to thank my co-supervisor, Dr Edmund Chadwick for his advice and guidance which

help me get through the challenge during my research.

I also want to thank you Dr Adham Atyabi for helping me in designing the experiments

and given me valuable advice on research and life. Another person that I would like to thank is

Mr Andy Baker, who help me with configuring the robot and always help me when I am in

need. I also want to thank all members of Advanced Robotics and Autonomous Centre,

University of Salford for helping me out and encouraging me to stay positive all the time.

Special thanks to my family. Words cannot express how grateful I am to all my family

members’ including my mother-in-law and father-in-law and a special dedication to my mother,

Chek Noorlia Abu Bakar and my father, Ab Wahab Mat for all of the sacrifices that you’ve

made on my behalf. Your prayer for me was what sustained me thus far. I would also like to

thank all of my friends who supported me in writing and incented me to strive towards my goal.

I would like express appreciation to my beloved wife Nor Hazwani who spent sleepless nights

with and was always giving me her full support. Not to forget, my lovely daughter who cheering

me up when I was down, Nur Kaisah.

iv

LIST OF ABBREVIATIONS

ACO ANT COLONY OPTIMISATION

AEPSO AREA EXTENDED PARTICLE SWARM OPTIMISATION

CAEPSO CONSTRICTED AREA EXTENDED PARTICLE SWARM OPTIMISATION

CMPSO CONSTRICTED MORPHOLOGY PARTICLE SWARM OPTIMISATION

CPSO CONSTRICTED PARTICLE SWARM OPTIMISATION

CSA CUCKOO SEARCH ALGORITHM

DA DIJKSTRA’S ALGORITHM

DAC DYNAMIC ACCELERATION COEFFICIENTS

DE DIFFERENTIAL EQUATION

DPPSO DYNAMIC PARAMETERISING PARTICLE SWARM OPTIMISATION

EDP ENGINEERING DESIGN OPTIMISATION PROBLEMS

FIW FIXED INERTIA WEIGHT

GA GENETIC ALGORITHM

LDIW LINEAR DECREASING INERTIA WEIGHT

MPSO MORPHOLOGY PARTICLE SWARM OPTIMISATION

PF POTENTIAL FIELD

PRM PROBABILISTIC ROAD MAP

v

PSO PARTICLE SWARM OPTIMISATION

RANDIW RANDOM INERTIA WEIGHT

RRT RAPIDLY-EXPLORE RANDOM TREE

SI SWARM INTELLIGENCE

TSP TRAVELLING SALESMAN PROBLEM

TVAC TIME-VARYING ACCELERATION COEFFICIENTS

vi

LIST OF PUBLICATIONS

Ab Wahab, MN, Nefti-Meziani, S and Atyabi, A (2015), 'A comprehensive review of swarm

optimization algorithms', PLoS ONE, 10 (5). (In Press) IF: 3.234

Ab Wahab, MN, Nefti-Meziani, S and Atyabi, A (2017), ‘Comparison between Conventional

and Evolutionary Algorithms in Mobile Robot Path Planning’, PLoS ONE. (Under Review) IF:

3.234

Ab Wahab, MN, Nefti-Meziani, S, Chadwick, E and Atyabi, A (2017), ‘Morphology Particle

Swarm Optimization’, Swarm Intelligence. (Ready to Submit) IF: 2.577

Ab Wahab, MN, Nefti-Meziani, S and Atyabi, A (2017), ‘Dynamic based Behaviour Particle

Swarm Optimization’, Expert System with Applications. (Ready to Submit) IF: 2.980

vii

ABSTRACT

Swarm Intelligence (SI) is one of the prominent techniques employed to solve

optimisation problems. It has been applied to problems pertaining to engineering, schedule,

planning, networking and design. However, this technique has two main limitations. First, the

SI technique may not be suitable for the online applications, as it does not have the same aspects

of limitations as an online platform. Second, setting the parameter for SI techniques to produce

the most promising outcome is challenging. Therefore, this research has been conducted to

overcome these two limitations. Based on the literature, Particle Swarm Optimisation (PSO)

was selected as the main SI for this research, due to its proven performances, abilities and

simplicity. Five new techniques were created based on the PSO technique in order to address

the two limitations. The first two techniques focused on the first limitation, while the other three

techniques focused on the latter. Three main experiments (benchmark problems, engineering

problems, path planning problems) were designed to assess the capabilities and performances

of these five new techniques. These new techniques were also compared against several other

well-established SI techniques such as the Genetic Algorithm (GA), Differential Equation (DE)

and Cuckoo Search Algorithm (CSA). Potential Field (PF), Probabilistic Road Map (PRM),

Rapidly-explore Random Tree (RRT) and Dijkstra’s Algorithm (DA) were also included in the

path planning problem in order to compare these new techniques’ performances against

Classical methods of path planning. Results showed all five introduced techniques managed to

outperform or at least perform as good as well-established techniques in all three experiments.

 1

CHAPTER 1

INTRODUCTION

1.1 Background

Swarm Intelligence (SI) is one of the topics that have attracted an interest from many

researchers in various fields. Bonabeau defined SI as ‘the emergent collective intelligence of

groups of simple agents’ (Bonabeau, Dorigo, & Theraulaz, 1999). SI is the cooperative

intelligence manners of independent and decentralised systems, e.g., artificial clusters of simple

agents. SI examples can be found in groups of social insects, social insects in nest-building, and

joint arrangement and clustering. Two crucial theories that are considered as essential properties

of SI are self-organisation and division of labour. Self-organisation is defined as the ability of

a system to evolve its particles or agents into a suitable shape without any peripheral help.

Bonabeau (Bonabeau et al., 1999) also stated that self-organisation depends on four essential

properties; positive feedback, negative feedback, fluctuation and multiple interactions. These

two types of feedback are useful for strengthening and balancing the swarm. Fluctuations are

useful for randomising while multiple interactions arise when the swarms share knowledge

among themselves within their searching space. The next property of SI is the partition of

labour, which is defined as the simultaneous performance of various simple and doable tasks

by agents. This partition permits the swarm to attack complex problems that require individuals

to work together (Bonabeau, Dorigo, & Theraulaz, 1999; Kennedy, 2006; Y. F. Zhu & Tang,

2010).

 2

1.2 Contributions of Work

Contributions of work towards body knowledge are important for each research

conducted. It allows the knowledge to keep growing and not static over time. Therefore, these

are the list of contribution gained from this research:

 Morphology Particle Swarm Optimisation (MPSO) and Constricted

Morphology Particle Swarm Optimisation (CMPSO) have introduced a new

option to weigh or control the influence of particle’s best position and swarm’s

best position. This approach gives a self-limitation on every particle movement

which as a result, makes the movement feasible for online application too.

 This research has also proven a little tweak or fine tuning in an existing

algorithm can enhance its overall performance. CAEPSO has verified with an

introduction of constriction factor that has massively improved its overall

performance compared to AEPSO. However, if the adjustment is not appropriate

then it can affect the overall performance as well as seen in CMPSO

performance.

 Dynamic Parameterising Particle Swarm Optimisation (DPPSO) has given a

fresh approach or angle to solve optimisation problems without worrying about

the parameter setup. It is not only appropriate for any particular optimisation

problem but it covers numerous type of optimisation problems.

 All algorithms including evolutionary algorithms are implemented in the online

applications, in this case, the feasibility of mobile robot for path planning has

 3

been proven. It is one of the approaches that can be used in the future for perhaps

other available evolutionary algorithms.

 This research also focusing on more complex path planning task which is local

path planning rather than global path planning. Global path planning requires a

complete or partial knowledge of the environment layout while local path

planning does not have that requirement which makes local path planning

applicable for any layout without any prior procedures.

1.3 Research Question

1. What is the best swarm intelligence technique available and what is the advantages and

disadvantages of these techniques [Chapter 2]?

2. What is the best classical technique in path planning for a mobile robot [Chapter 2]?

3. Is it possible to a PSO technique where each of its particles has its limitation based on

their position on global and local best [Chapter 3]?

4. How can the dynamic approaches of PSO become flexible and adaptable to solve the

different types of optimisation problems [Chapter 3]?

5. What is the performance of proposed techniques against existing evolutionary

algorithms on standard benchmark functions [Chapter 4]?

6. What is the performance of proposed techniques compare to existing evolutionary

methods on more complex optimisation problems such as engineering design

optimisation problems [Chapter 5]?

7. Can all these evolutionary algorithms including proposed methods be implemented on

a mobile robot for navigation optimisation problem [Chapter 6 and 7]?

 4

8. Can evolutionary algorithms compete against classical path planning methods in order

to optimise the navigation optimisation problems [Chapter 6 and 7]?

1.4 Research Objectives

1. To assess the influence of dynamic behaviour of particles in PSO toward the outcomes

of the solutions.

2. To investigate the well-known swarm intelligence optimisation techniques available in

the literature and study the advantages and disadvantages for each one of them.

3. To introduce the spring limit element into the PSO’s algorithm velocity equation and

assess the overall performance.

4. To introduce three new dynamic approaches of PSO algorithm and evaluate their

performance.

5. To compare the proposed algorithms with another existing algorithm on several

experiments and analyse the performance.

6. To conclude the best performing algorithm and the effect from the element introduced

towards the PSO from the analysis done.

1.5 Research Motivation

Swarm Intelligence is a type of artificial intelligence based on the collective behaviour

of decentralised and self-organised systems. The usage of the word swarm is not new and it was

inspired by the social behaviour found in nature such as ant colonies, birds flocking, and fish

schooling. Many researchers have studied these kinds of animals in order to understand how

they communicate, evolve in nature, and achieve their goals. They concluded that such animals

 5

have a decentralised control, lack of synchronisation, and simple identical members (Y. Liu &

Passino, 2000).

Swarm intelligence characteristics within a group of non-intelligent individuals with

decentralised control system can lead to the emergence of intelligent global collective behaviour

that cannot be achieved by individuals. The most popular algorithm used in swarm intelligence

is Evolutionary Algorithms (EA). There are many EAs that have been introduced since the early

60’s, from Genetic Algorithm to the latest, Cuckoo Search Algorithm, it has been used in a

variety of fields, for example in scheduling problem, data mining, networking problem, and

also robotics. The most beneficial of EA is the algorithm that can initiate each agent to work,

even those who only has a partial or limited knowledge about the environment because the

information will be gathered through the agent’s interaction with the environment.

1.6 Organisation of the Thesis

This thesis contains eight chapters and the summary of each chapter is as follows:

Chapter 1 covers the introduction and gives the general idea about the outline as well

as the aims of this research.

Chapter 2 will be examining the literature on all the algorithms involved in this research

in depth.

Chapter 3 aims to explain briefly about the new approaches introduced in this research.

Chapter 4 discusses the experiments designed in this research. It will also evaluate and

assess the performance of five new approaches introduced in the previous chapter.

 6

Chapter 5 discusses the results and analyses the performance of the Benchmark

Functions experiment.

Chapter 6 is a continuation of the previous chapter, where the result and the analysis

of the overall performance for all methods involved on the Engineering Design

Problems will be discussed.

Chapter 7 deliberates on the experiments involving online applications, which is path

planning using the mobile robot.

Chapter 8 will be recapping all the experiments that were carried out and discusses the

overall performance for each of the algorithms involved.

 7

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This section discusses several Swarm Intelligence (SI) based algorithms by underlining

the notable variations, the advantages and disadvantages, and the applications. These

algorithms are Genetic Algorithms (GA), Ant Colony Optimisation (ACO), Particle Swarm

Optimisation (PSO), Differential Evolution (DE), and Cuckoo Search Algorithm (CSA). This

section also discusses the classical path planning methods available in the literature. The

algorithms involve Dijkstra’s Algorithm (DA), Potential Field (PF), Rapidly-exploring Random

Tree (RRT), and Probabilistic Road Map (PRM).

2.2 Swarm Intelligence

2.2.1 Particle Swarm Optimisation

The Particle Swarm Optimisation (PSO) is an optimisation technique which is quite

popular and introduced by Kennedy and Eberhart in 1995 (Kennedy & Eberhart, 1995). It

imitates swarm behaviour in birds flocking and fish schooling as a basic instrument to lead the

particles to find the global optimal solutions. The PSO has three simple actions which are

separation, alignment, and cohesion (illustrate in Figure 2-1) as explained by Del Valle et al.,

(2008). Separation behaviour is the ability to avoid the overcrowded local flockmates.

 8

Alignment behaviour is the ability of moving in the path of the average track of local

flockmates. Cohesion behaviour is the ability of moving towards the mean position of local

flockmates (Valle, Venayagamoorthy, Mohagheghi, Hernandez, & Harley, 2008). The PSO

algorithm’s mathematical model comprises of three components which are previous particle’s

velocity component, cognitive component and social component and is written as follows

(Kennedy & Eberhart, 1995; Valle et al., 2008):

Vi, j(t) = Vi, j(t - 1) + Ci, j + Si, j Equation 1

Ci, j = c1× r1 × (PBesti,j(t - 1) – xi, j(t - 1)) Equation 2

Si,j = c2 × r2 × (GBesti, j(t - 1) – xi, j(t - 1)) Equation 3

Xi, j(t) = Xi, j(t-1) + Vi, j(t) Equation 4

where Vi, j and Xi, j are particle velocity and particle position respectively. t is the iteration

number while i is the particle index. c1 and c2 represent the speed influence which regulates the

length when flying towards the most optimal individual particle and the most optimal particles

of the whole swarm. PBesti,j is the best position achieved so far by particle i and GBesti, j is the

best position obtained by the neighbours of particle i. r1 and r2 are the random values (uniform

distribution) between 0 and 1. The exploration behaviour is activated if either or both of the

differences between the particle’s best (PBesti,j) and previous particle’s position (Xi, j(t)), and

between population’s all-time best (GBesti, j) and previous particle’s position (Xi, j(t)) are

massive, and the exploitation behaviour is activated when both of these values are small.

 9

Figure 2-1. PSO Basic Behaviours. Figure 2-1-1 shows separation behaviour where particle

avoiding other particles. Figure 2-1-2 shows alignment behaviour where particle moving

towards the head of local flockmates and maintain the speed between them. Figure 2-1-3 shows

cohesion behaviour where particle moving towards the average position of local flockmates

(Valle et al., 2008).

PSO proves to be effective optimisation algorithm by searching an entire high-

dimensional problem space. It is a vigorous stochastic optimisation technique based on the

intelligence and movement of swarms. It implements the idea of social communication for

problem solving and does not use the gradient of the problem being optimized. Hence, it does

not need the optimisation problem to be different, as is essential by classic optimisation methods

(Yan, Wu, Liu, & Huang, 2013). The optimisation of irregular problems with noise and

changing over time can be determined using PSO (Gao, Kwong, Yang, & Cao, 2013; Kiranyaz,

Ince, Yildirim, & Gabbouj, 2010; Senthil Arumugam, Ramana Murthy, Rao, & Loo, 2007).

The parameters of PSO consist of position of agent in the solution space, number of particles,

velocity and neighbourhood of agents (communication of topology). The PSO algorithm begins

 10

by initialisation which is the same with almost all other optimisation techniques. The second

step is measuring the fitness rate of each particle, then updating individual and global bests, and

later, the velocity and the position of the particles also get updated. The second to fourth steps

are repeated until the termination condition is met (Banks, Vincent, & Anyakoha, 2007, 2008;

Senthil Arumugam et al., 2007).

Figure 2-2 shows the PSO algorithm behaviour over iterations. In the first iteration, all

particles scattered within a search space to find the best solution (exploration). Each particle is

assessed. Then, if the best new solutions are found, the personal and global best particles of that

particular member of the swarm are updated. The convergence can be accomplished through

drawing all particles towards the particle with the best solution. The PSO algorithm has many

advantages. It is easy to implement, has only a few parameters to be configured, effective in

global search, insensitive to scaling of design variables, and easily parallelized for concurrent

processing (AlRashidi & El-Hawary, 2009; Imran, Hashim, & Khalid, 2013). However, PSO

has the inclination to result in a fast and premature convergence in mid optimum points; in

addition to having slow convergence in a refined search area (having weak local search ability)

(AlRashidi & El-Hawary, 2009; Imran et al., 2013). PSO is applied in networking (Olascuaga-

Cabrera, López-Mellado, & Mendez-Vazquez, 2011), power systems (Sa-ngawong &

Ngamroo, 2015), signal processing (Iqbal, Zerguine, & Al-Dhahir, 2015), control system

(Yudong Zhang, Wang, & Ji, 2015), machine learning (L. Wang et al., 2014), image processing

(Uguz, Sahin, & Sahin, 2014), data mining (Fong, Wong, & Vasilakos, 2016), robotics (Alam

& Rafique, 2015), and many more.

 11

Figure 2-2. Particle Swarm Optimisation movement towards global optima over iteration

numbers (Senthil Arumugam et al., 2007)

There are several studies have proven that they can enhance PSO in general. The number

of the population size is one of the significant factors. Greater population size can increase the

chances of quicker and precise convergence. Another method to enhance PSO is to find an

equilibrium between exploration and exploitation action. High exploration at the beginning of

iteration will give a higher chance for PSO to find a solution closer to global optima. When the

PSO move towards the end of iteration, high exploitation would give a higher chance for

particle to discover the most optimal solution within the promising area. A sub-swarm approach

is another way that can be used to enhance the PSO performance which is quite regularly used

nowadays. Assigning different objectives or tasks to each sub-swarm can also improve the

competency of PSO in the multi-objective problems (Chang & Yu, 2013). Another approach to

increasing the PSO performance is to set the donating components of the velocity equation

 12

(dynamic velocity adjustment). Such approach can direct particles in altered directions and

subsequently, faster convergence towards a global optimum can be achieved (A. Atyabi &

Powers, 2013).

The two most noteworthy modifications in PSO are the introduction of inertia weight

and constriction factors to velocity equation. Inertia weight (w) is proposed by Shi and Eberhart

three years after PSO first introduction to control the influence of the previous velocity which

also controls the exploration and the exploitation behaviours of the particle (Shi & Eberhart,

1998). If the w value is high then the step size is huge, consequentially, the occurrence in

exploration behaviour. If the w value is small then the step size is small as well hence the

exploitation behaviour take place. This new element has been recognised as the new standard

form of velocity equation for basic PSO as illustrated in Equation 8:

Vi, j(t) = wVi, j(t - 1) + Ci, j + Si, j Equation 5

The introduction of inertia weight, in general, has upgraded overall performance of PSO

concerning the speed of convergence and the value of solutions. From there, much research has

been done to find the finest configuration for inertia weight to enhance the convergence speed

and the solutions’ quality. Bratton and Kennedy (2007) recommend the implementation of an

inertia weight value higher than 1.0 and declining eventually to a value lower than 1.0 with the

aim of encouraging exploration at an early stage and exploitation within the best area found

towards the end (Bratton & Kennedy, 2007). Clerc and Kennedy (2002) later propose the

constriction factor, K to increase the opportunity of convergence and prevent particles from

exiting the search space (Clerc & Kennedy, 2002).

 13

Vi, j(t) = K[Vi, j(t - 1) + Ci, j + Si, j] Equation 6

Both of these variants have enhanced the overall performance of the PSO algorithm

significantly. Eberhart and Shi have carried a research between these two variants and come to

the conclusion that the constricted PSO perform better than the improved basic PSO (Eberhart

& Shi, 2000). PSO can also be improved through their communication. Figueirdo and Ludermir

(2012) have assessed five forms of communication topologies of global, local, von neuman,

wheel, and four clusters. They concluded that global topology shows the most promising results

compared to other topologies (Figueiredo & Ludermir, 2012). Bratton and Kennedy

investigated the consequence of the number of particles in finding the solutions. Their research

concludes that there is no exact number of population size that can be applied for all

optimisation problems (Bratton & Kennedy, 2007).

2.2.2 Other Evolutionary Algorithms

John Holland introduced the Genetic Algorithm (GA) in 1975 as a search optimisation

approach inspired from the natural selection process mechanism (Holland, 1975; M. Kumar,

Husian, Upreti, & Gupta, 2010). The algorithm simulates the idea of the ‘survival of the fittest,’

it mimics the processes in a natural system where the tough tends to adjust and live while the

fragile usually perish. The population is ranked based on their solutions’ fitness and a new

member of the GA population is produced from several options of genetic operators such as

crossover, reproduction, and mutation (Mitchell, 1995; Sivaraj & Ravichandran, 2011; Yan

Cang Li, Li Na Zhao, & Zhou, 2011). The population is referred to as chromosomes (can also

be illustrated in a set of strings). A new chromosome (a member of the population) in each

 14

generation is formed using information extracted from the fittest chromosomes of the previous

generation (Sivaraj & Ravichandran, 2011; Yan Cang Li et al., 2011).

GA has merits concerning only demanding limited parameter setting and initialising

itself from many possible solutions rather than a single solution. The main downside of GA is

the slow convergence towards the optimal values since the crossover and mutation processes

are random (Meier, Gonter, & Kruse, 2013). GA has been implemented for various applications

such as scheduling (Gupta, Kumar, & Agarwal, 2010; Y. Li & Chen, 2010; Lihong &

Shengping, 2012; G. Zhang, Gao, & Shi, 2011), robotics (Abu-Dakka, Valero, & Mata, 2012;

Zou, Ge, & Sun, 2012), machine learning (Busch et al., 2015; Kim, Jeong, McKay, Chon, &

Joo, 2012; Litao, Tiejun, Xi, & Jin, 2012), signal processing (Chernbumroong, Cang, & Yu,

2015; Donglan, 2014), manufacturing (Deep & Singh, 2015; Jahanzaib, Masood, Nadeem,

Akhtar, & Shahbaz, 2012; Kia, Khaksar-Haghani, Javadian, & Tavakkoli-Moghaddam, 2014),

business (De Medeiros, 2015; Sirbiladze & Kapanadze, 2012; Yahya, Bae, Bae, & Kim, 2012),

and many more.

Since its introduction, many researchers have conducted studies to enhance the

performance of GA. There are numerous options especially for crossover and mutation

operation to boost the value of solutions. For crossover operation, De Jong and Spears (1992)

and Üçoluk (2002) introduce N-point crossover and segmented crossover which select some

points for crossover rather than selecting only one crossover point (De Jong & Spears, 1992;

Üçoluk, 2002). The main difference between them is N-point crossover is selecting a few

breaking points randomly, while in the segmented crossover, only two breaking points are being

used. As mention before, mutation operation is one of the most vital operators in GA since it is

 15

able to push chromosomes in the direction of the improved solution. Hence, quite a lot of studies

have been done to find different approaches for mutation operation.

Storn and Price introduced the Differential Evolution (DE) algorithm in 1997, a

population-based algorithm which is similar to GA in term of employs similar operators;

crossover, mutation, and selection. In term of generating new solutions, DE depends on

mutation operation while GA depends on crossover operation as their mechanism (Storn &

Price, 1997). DE uses the mutation process as the core search instrument and utilises the

selection process as the mechanism to direct the search towards the promising areas in the

search environment. DE utilises three properties for generating a new population iteratively

which are Target Vector, Mutant Vector, and Trail Vector. The target vector is the vector which

consists the solution for the search area. The mutant vector is the mutated target vector with the

trail vector is the outcome vector after crossover process between the target vector and the

mutant vector. As mention before, the basic procedures of the DE algorithm are similar to GA

with slight difference on the order of the routines.

The first step for DE algorithm is initialisation of the population using either random

distribution or heuristic-based distribution, followed by valuation of each population’s member

to determine their fitness. Then, new vectors are generated by adding the weighted difference

of two members of the population with the third vector which known as mutation. During the

crossover process, the vectors are blended up and after that, the algorithm takes the last process

of selection (Das, Nagaratnam Suganthan, & Member, 2011; Price, Storn, & Lampinen, 2005).

However, DE has a slight shortage regarding slow convergence and being unstable (Y. Wu,

Lee, & Chien, 2011). DE is applied in countless applications such as electrical engineering

(Qing, 2009), image processing (Pei, Zhao, & Liu, 2009), machine learning (W.-A. Yang, Zhou,

 16

& Tsui, 2015), robotics (Al-Dabbagh, Kinsheel, Mekhilef, Baba, & Shamshirband, 2014), and

economy (L. Wu, Wang, Yuan, & Chen, 2011).

In general, DE overall performance can be enhanced by adding more members of the

population. Harmonising between exploration and exploitation behaviour where the scaling

factor (controls the step size) is high at the beginning and getting lower towards the end of an

iteration. The introduction of elitism can be another step to improve DE performance where

elitism can prevent the best solution from being destroyed when the new generation is

generated. There is countless modified version of DE invented since its introduction by Storn

and Price. Mezura-Montes et al. (2006) have discussed some variants of DE and make a

comparative research between them (Mezura-Montes, Velázquez-Reyes, & Coello Coello,

2006). The variants discoursed are DE/rand/1/bin, DE/rand/1/exp, DE/best/1/bin,

DE/best/1/exp, DE/current-to-best/1, DE/current-to-rand/1, DE/current-to-rand/1/bin, and

DE/rand/2/dir. The main differences between them are regarding individuals’ selection for

mutation, the numbers of solutions selected and the type of crossover (Das & Suganthan, 2011).

The Cuckoo Search Algorithm (CSA) is one of the newest metaheuristic approaches

proposed by Yang and Deb in 2009 (X. S. Yang & Deb, 2009). This algorithm is inspired by

the activities of cuckoo species, such as brood parasites, and the characteristics of Lévy flights,

such as fruit flies and some birds. CSA uses three fundamental rules or operations in its

application. Each cuckoo is only permitted to lay one egg in each iteration. The cuckoo selects

the nest randomly to lay its egg. After that, all eggs and nests are evaluated with only eggs and

nests with the high value of fitness are retained for the next generation. Then, with a fixed

number of available host nests, the egg laid by a cuckoo is discovered by a host bird using

probability pa ϵ [0, 1]. If the host nests discovered the egg laid, the host has options either to

 17

throw the egg away or abandon the nest and completely build a new nest. The last supposition

can be approximated as a fraction, pa of the total n nests that are substituted by new nests with

a new random solution. The algorithm also can be stretched to a more complex point where

each nest comprises many eggs (X. S. Yang & Deb, 2009; X.-S. Yang & Deb, 2010).

CSA is brilliant with multimodal objective functions as it only requires fewer numbers

of parameters to be fine-tuned compared to other approaches. It has an oblivious convergence

rate to the parameter pa where on some occasions fine tuning the parameters is not necessary

(X. S. Yang & Deb, 2009, 2013; X.-S. Yang & Deb, 2010). CSA is implemented to various

fields including neural network (Chaowanawatee & Heednacram, 2012), embedded systems

(A. Kumar & Chakarverty, 2011), signal processing (Araghi, Khosravi, & Creighton, 2015),

economics (Basu & Chowdhury, 2013), business (X. S. Yang, Deb, Karamanoglu, & He, 2012),

and TSP problem (Ouyang, Zhou, Luo, & Chen, 2013).

Walton et al. (2011) have introduced a variant for CSA entitled Modified Cuckoo Search

(MCS) where their key aim is to increase the convergence speed (Walton, Hassan, Morgan, &

Brown, 2011). This enhancement includes an extra step in which the top eggs do some

information input. They have tested MCS on a number of benchmark functions, and the results

show that MCS managed to outperform the standard CSA. Another important variant for CSA

is Quantum Inspired Cuckoo Search Algorithm (QICSA) proposed by Layeb in 2011 as well

(Layeb, 2011). The author combined few elements from quantum computing principles like

qubit representation, measure operation, and quantum mutation onto cuckoo search algorithm.

The core objectives are to boost the diversity and the performance of regular CSA. The results

show that there are still some weaknesses in QICSA and the author recommended to integrate

 18

a local search and parallel machines to enhance the efficiency and upsurge of the convergence

speed (Layeb, 2011).

2.2.3 Homogenous and Heterogeneous Swarm

Homogenous swarm is defined as a similar or same type of agents used in the whole

swarm, and it is a quite common approach. Heterogeneous Swarm, on the other hand, is define

as a unique or different type of agents consist in the whole swarm. Since homogeneous swarm

is similar, the same sort of behaviour is expected from all agents while in heterogeneous,

different type of behaviours between agents are anticipated.

There are many studies done using homogenous swarm. The details of these approaches

can be found from here (Martinoli & Easton, 2003). The same thing goes to heterogeneous

swarm where many scholars start to exploit this type of approach to see the differences between

these two types of a swarm. The details of the heterogeneous swarm can be found from the

same research (Martinoli & Easton, 2003).

2.2.4 Macroscopic and Microscopic Modelling

Microscopic modelling is a mechanism that focuses on individual robots in its

modelling, where members of the swarm (chromosome, particle or vector) represent the robots

in the fleet (Lerman, Martinoli, & Galstyan, 2005)(Lan & Li, 2010). Since in microscopic

modelling, the behaviour of each robot is modelled explicitly, a large number of robots is

required for this modelling mechanism, besides of requiring plenty of computational processes

 19

which might be difficult to model in the real-world. Hence, simulations are the most common

tools used to analyse and validate microscopic models for swarm robotics systems.

Macroscopic modelling is a mechanism that considers swarm robotics systems as a

whole. This mean, in this modelling mechanism, each robot represents a swarm of multiple

possible actions resulting in a reduction in swarm size and consequently the necessary

computation (Martinoli & Easton, 2003)(Lerman et al., 2005)(Lan & Li, 2010). Lerman et al.

(2005) have investigated the feasibility of macroscopic modelling in a group of reactive robots

with a focus on the dynamics of group behaviours and issues related to robots’ collaborations.

Lerman et al. (2005) also provided a review of methods used for macroscopic modelling and

analyses of the collective behaviour of the swarm robotic systems.

2.3 Motion Planning: Classical Path Planning Algorithm

The motion planning and navigation approaches can be categorised into two broad

classes of heuristic-based and classical methods. Atyabi and Powers (Adham Atyabi & Powers,

2013) consider approaches such as Cell Decomposition (CD), Potential Field (PF), Road Map,

and Subgoal Network in the classical methods category. The main disadvantages of these

methods are that they are computationally intensive and incapable of handling uncertainty. In

addition, in their basic forms they are mostly unreliable in dynamic and/or partially known

environments. The majority of the classical approaches are dependent on having extensive prior

knowledge of the environment in order to generate the accessible path from the starting location

towards the goal destination without which the optimal motion planning is not feasible.

Heuristic-based methods, on the other hand, can overcome the problems faced by classical

methods, as they are capable of handling the unknown or partially known environment. It is

 20

due to their ability to generate a set of a temporary plan within each iteration of their algorithms

in a way to bring them closer to the destination location. Meanwhile, in evolutionary-based

methods, rather than generating an overall plan from the prior knowledge (e.g. environment

map) and executing it, in each step, a sub-population of possible manoeuvers are considered,

amongst which the one that best addresses both the robot and overall mission (e.g. reaching to

a destination) is then executed. Atyabi and Powers (2013) include approaches such as Genetic

Algorithm (GA), Particle Swarm Optimisation (PSO), Neural Networks (NN), and Ant Colony

Optimisation (ACO) as heuristic-based methods for navigation (Adham Atyabi & Powers,

2013). These approaches are briefly explained in the following sections.

The classical methods utilised in this research are Potential Field (PF), Dijkstra's

Algorithm (DA), Rapidly-explore Random Tree (RRT), and Probabilistic Road Map (PRM).

These four methods are selected for being well known in the community and being widely and

successfully applied in path planning problems (Chen, Yu, Su, & Luo, 2014; Elbanhawi &

Simic, 2014; Norouzi, De Bruijn, & Miró, 2012; H. Wang, Yu, & Yuan, 2011). The

performance of these methods are proven to be quite competitive and decent in global path

planning. However, PF, RRT, and PRM have also been applied for local path planning (Chen

et al., 2014; Contreras-Cruz, Ayala-Ramirez, & Hernandez-Belmonte, 2015; Norouzi et al.,

2012). For heuristic-based methods utilised, the selection of the algorithms -GA, DE, variants

of PSOs, and CSA- is based on their popularity amongst researchers and their potential in

solving the local path planning problem (Adham Atyabi & Powers, 2010; Chiu, Cheng, &

Chang, 2012; Roberge, Tarbouchi, & Labonte, 2013; Zou et al., 2012). The details of these

methods are discussed in the following sections.

 21

2.3.1 Potential Field (PF)

In Potential Field (PF), the differences between two opposite forces (e.g., attraction and

repulsion) are utilised for manoeuvring a robot in the environment (Khatib, 1986). The robot

ranks its next manoeuvring options at each location based on how close they are to the locations

of known obstacles and the final destination (repulsion and attraction forces respectively)

(Barraquand, Langlois, & Latombe, 1992; Hwang & Ahuja, 1992; Y. Wang & Chirikjian,

2000). From the time that it was introduced by Khatib in 1986 (Khatib, 1986), Potential Field

has been widely utilised in the robotics community and several variations. Modified versions

of it have been introduced to address its shortcomings, such as being computationally intensive

and trapping in local minima (Rimon & Koditschek, 1992; Seda, 2007; Y. Wang & Chirikjian,

2000). A decentralized PF-based controller is utilised by Song and Kumar (2002) for

manoeuvring and directing teams of robots in a scenario in which robots are tasked to approach

targets as a team, trap them and lead them towards a destination location (Song & Kumar,

2002). Cheng and Zelinsky (2005) tackled the local minima trapping problem of PF by

suggesting the usage of high magnitude temporary attraction forces towards random positions

when robots are trapped among obstacles (Cheng & Zelinsky, 1995).

Sfeir et al. (2011) explored the impact of repelling force on PF, aiming to reduce

oscillations and avoiding a collision when the target is close to obstacles (Sfeir, Saad, & Saliah-

Hassane, 2011). Other proposed approaches to address the local minima problem of the PF

include injecting noise or randomness in the local minima, tracking back behaviour, and

introducing a tangential repulsive force field around obstacles (Siegwart & Nourbakhsh, 2004).

 22

2.3.2 Dijkstra’s Algorithm (DA)

Dijkstra's Algorithm (DA) is introduced by Edsger Dijkstra in 1959 (Dijkstra, 1959; H.

Wang et al., 2011; Yin & Wang, 2010) and consider as a classical algorithm that proved its

efficiency in finding the shortest path within a web of inter-connected nodes that represent

manoeuvrable spaces among obstacles. The main disadvantages of the approach are being

computationally intensive and having a poor search efficiency if the distance between the

starting point and destination point is massive (B. L. B. Liu et al., 1994; Noto & Sato, 2000).

Noto and Soto (2000) have proposed an extended version of DA to overcome the problem (Noto

& Sato, 2000). DA is often used in routing problems (Dijkstra, 1959; H. Wang et al., 2011; Yin

& Wang, 2010).

2.3.3 Rapidly-Exploring Random Tree (RRT)

The Rapidly-Exploring Random Tree (RRT) is based on stochastic search strategies

which were introduced by LaValle and Kuffner Jr. (S M LaValle, 1998; Steven M. LaValle,

2011). The RRT is applicable for single query problems. The RRT approach to path planning

is to construct a tree which revolves around random points picked in the searching environment.

The start point is the root node for the RRT, once a random point is selected, then the closest

node constructs an incremental distance from itself towards a selected random point. At the end

of an additional distance is a new node. This process is repeated until the goal point is found

and will form a path which looks like a tree and cover almost all the empty spaces in the search

environment (Elbanhawi & Simic, 2014; Jaillet & Porta, 2013; Kuffner & LaValle, 2000). In

this paper, the variation of RRT named RRT-based local path planning is used as one of the

comparison techniques. The same concept and approach of original RRT are used, the only

 23

difference is it does not construct a path before it is moving. A random point or target point is

chosen while it is moving depending on some probability (Tian et al., 2007).

2.3.4 Probabilistic Road Map (PRM)

The Probabilistic Road Map (PRM) differs from the RRT in the sense that it is

applicable for multi-query planning. The PRM constructs a path between the start point and

target point by connecting random nodes in the free spaces within the environment. The

algorithm starts with scattered random points within the environment. The random points which

lay on the obstacle are neglected, and only the random points on free spaces are considered as

nodes. All these nodes are linked to each other to determine their feasibility. Once all nodes are

connected, the links which intersect with an obstacle are considered as not feasible and are

neglected. In the next step of the algorithm, the possible paths from starting point to end point

are gathered from the existing routes and all infeasible solutions get omitted. The shortest path

between the starting point and destination is usually chosen as the final path (Elbanhawi &

Simic, 2014; Geraerts & Overmars, 2004; Kavraki et al., 1996).

2.4 Path Planning using Mobile Robot

This subsection discusses several past studies related to path planning for a mobile

robot. Chia et al. (2010) implement the Ant Colony Optimisation (ACO) algorithm to mobile

robot system to solve mobile robot path planning problem. They use simulation platform to

assess the performance of the proposed algorithm. The simulated results show that ACO can

find the possible path for mobile robot, moving from the start position (nest) to the target

location (food) with a collision-free manoeuvre (Chia, Su, Guo, & Chung, 2010). Zhang et al.

 24

(2013) propose a multi-objective path planning algorithm based on particle swarm optimisation

for robot navigation in such various danger environment that robots must evade, such as a fire

in a rescue mission, landmines and enemies in war field (Yong Zhang, Gong, & Zhang, 2013).

Contreras-Cruz et al. (2015) propose an approach combines the Artificial Bee Colony

(ABC) algorithm as a local search operator and the Evolutionary Programming (EP) to cultivate

the possible path found by a set of local operators. They have tested the algorithm in several

scenarios in simulation platform. They also implemented the approach on Pioneer 3-AT for

online application (Contreras-Cruz et al., 2015).

2.5 Robot Operating System (ROS)

Robot Operating System (ROS) is developed at the Stanford University for the Stanford

Artificial Intelligence Robot Project (STAIR) in 2007. The first official version was launched

in 2010. ROS is an environment system to develop robot applications with a repository of open

software sources. ROS is intended to support the key functions in Robotics, which are visual

odometry, planning and control, object recognition, mapping and navigation. Willow Garage

fully maintained ROS at this moment and most of its packages and updates are coming from all

over the world via ROS communities. ROS used Ubuntu Linux as its main platform with

MacOS, Linux, and Windows still in the experimental stage. Most of ROS codes are developed

in C++ and Python languages but ROS has a multi-lingual support feature that is adaptable to

other programming languages.

The field of robotics is a vast world and serves a variety of applications in the area of science

and technology in academia and industries. There are many different types of robots in

 25

operation in such diverse environments that it is often difficult to replace a robot with a different

one. In such circumstance, there would be a lot of duplication of effort for each robot to achieve

the more basic tasks first. A single framework is not possible for all the application of robotics.

However, a single framework can be used to achieve the core and the more common tasks so

that researchers can work on the more complex and advanced projects. Such a single framework

will have a huge demand for memory and processing power, which may not be possible for

smaller robots. All the processing tasks may be transferred from mobile robotic platform to a

centralised control system, which can now control not just a single robot but also a swarm of

robots. However, this would add a requirement of a strong networking of booth peer-to-peer

and server-client types in the unified framework.

2.6 Summary

This chapter merely focuses on literature research where it discusses well-known swarm

intelligence from Genetic Algorithm to Cuckoo Search Algorithm (CSA). It also briefly

discusses the types of swarm intelligence which are homogeneous and heterogeneous. The

forms of implementation for swarm intelligence approaches are also being discoursed in this

chapter. This chapter also discusses several classical motion planning methods and case studies

involved in path planning using a mobile robot. In the following chapter, the specifics

discussion about the introduction of new approaches based on spring limitation and the dynamic

behaviour of heterogeneous swarm are going to be explored.

 26

CHAPTER 3

METHODOLOGIES

3.1 Introduction

In the previous chapter, comprehensive literature studies are done on several topics

including evolutionary algorithms, classical methods for path planning and path planning using

a mobile robot. This chapter will be focusing on the details of five proposed methods and how

they are created and inspired from. The first two approaches are based on the spring physical

limitation. The remaining three methods are based on the dynamic behaviour of heterogeneous

swarm.

3.2 Morphology Particle Swarm Optimisation

Let’s recap the discussion on PSO in the previous chapter where each particles of PSO

position in the search space is represented by a position; X. PSO evolves its solutions towards

better regions of the search space by updating the particles’ position in the search space using

a velocity, V. The best solution found by each particle is referred to as personal best (PBest)

and the best performing particle found in the whole swarm is referred to as global best (GBest).

In PSO, particles update their velocities and positions in the search space using the following

equations:

Vi, j(t) = wVi, j(t - 1) + Ci, j + Si, j Equation 7

 27

Ci, j = c1× r1 × (PBesti,j(t - 1) – xi, j(t - 1)) Equation 8

Si,j = c2× r2 × (GBesti, j(t - 1) – xi, j(t - 1)) Equation 9

In Equation 16, Vi, j(t) represents the velocity in iteration t. i and j represent the particle’s

index and the dimension in the search space respectively. c1 and c2 represent the acceleration

coefficients of cognitive (Ci, j) and social (Si, j) components respectively. r1,j and r2,j are random

values in the range of [0,1] while w is the inertia weight that controls the influence of the last

velocity in the updated version.

Figure 3-1. Morphology PSO.

The original PSO proposed is unstable, and particles have the tendency to move away

from the attractor (Langeveld, 2011; Tuppadung & Kurutach, 2011). Therefore, in late 1998,

 28

Shi and Eberhart (1998) proposed an improvement for the first PSO introduced in 1995. The

authors proposed an introduction of inertia weight, w parameter to the Equation 16.

In this research, the PSO equation is derived from the spring equation. Since the spring

equation has a limit, the equation derived will also have a limit. Once the equation has a limit,

it becomes more realistic for online application, especially in mobile robot application. The

equation below is derived based on Hooke’s law:

𝐹𝑖 = 𝑘𝐺(𝑥𝑖
𝐺 − 𝑥𝑖) − 𝑘𝑃(𝑥𝑖

𝑃 − 𝑥𝑖) Equation 10

The force of Gbest and Pbest applied towards the particle is given by Equation 19 as shown in

Figure 3-1. Force is equal to mass times acceleration. Hence, Equation 19 becomes Equation

20 where the randomness is contributed by the noise in the system.

𝑚𝑎𝑖 = −𝑘𝐺𝑟[0, 1](𝑥𝑖
𝐺 − 𝑥𝑖) − 𝑘𝑃𝑟[0, 1](𝑥𝑖

𝑃 − 𝑥𝑖) Equation 11

𝑚 (
𝑉𝑖(𝑡+∆𝑡)−𝑉𝑖(𝑡)

∆𝑡
) = −𝑘𝐺𝑟(𝑥𝑖

𝐺(𝑡) − 𝑥𝑖(𝑡)) − 𝑘𝑃𝑟(𝑥𝑖
𝑃(𝑡) − 𝑥𝑖(𝑡)) Equation 12

After that, acceleration is converted to velocity, as acceleration is equal to difference of velocity

over time.

𝑚(𝑉𝑖(𝑡 + 1) − 𝑉𝑖(𝑡)) = −𝑘𝐺𝑟(𝑥𝑖
𝐺(𝑡) − 𝑥𝑖(𝑡)) − 𝑘𝑃𝑟(𝑥𝑖

𝑃(𝑡) − 𝑥𝑖(𝑡)) Equation 13

𝑉𝑖(𝑡 + 1) − 𝑉𝑖(𝑡) = 𝑐𝐺𝑟(𝑥𝑖
𝐺(𝑡) − 𝑥𝑖(𝑡)) + 𝑐𝑃𝑟(𝑥𝑖

𝑃(𝑡) − 𝑥𝑖(𝑡)) Equation 14

Then, constant m is brought to the right hand side of the equation and becomes
𝑘

𝑚
. Since both

are a constant, they will be replaced by only one constant c, shown in Equation 23.

𝑉𝑖(𝑡 + 1) = 𝑐𝐺𝑟 (𝑥𝑖
𝐺(𝑡) − 𝑥𝑖(𝑡)) + 𝑐𝑃𝑟(𝑥𝑖

𝑃(𝑡) − 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡) Equation 15

 29

Hence, Equation 24 has a similarity with the PSO in Equation 16. Equation 25 gives the graph’s

plot function:

𝑓(𝑥) = 𝑥𝑒−𝑎𝑥 Equation 16

Then, the function from Equation 25 is added to the Equation 16 and becomes Equation 26 as

shown:

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖(𝑡) + 𝑐1𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))𝑒−𝑎𝑃(𝑃𝑏𝑒𝑠𝑡−𝑥𝑖(𝑡)) + 𝑐2𝑟(𝐺𝑏𝑒𝑠𝑡 −

𝑥𝑖(𝑡))𝑒−𝑎𝐺(𝐺𝑏𝑒𝑠𝑡−𝑥𝑖(𝑡)) Equation 17

𝑉𝑖(𝑡 + ∆𝑡) =
𝑥𝑖(𝑡+∆𝑡)−𝑥𝑖(𝑡)

∆𝑡
 Equation 18

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) Equation 19

Since CPSO performs quite exceptionally in several studies mentioned in the previous

chapter (Eberhart & Shi, 2000; Clerc & Kennedy, 2002), the constriction factor, K, is also

considered to be introduced in the Morphology PSO (MPSO) equation. Hence, the equation

becomes as follow and named as Constricted Morphology PSO (CMPSO):

𝑉𝑖(𝑡 + 1) = 𝐾(𝑉𝑖(𝑡) + 𝑐1𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))𝑒−𝑎𝑃(𝑃𝑏𝑒𝑠𝑡−𝑥𝑖(𝑡)) + 𝑐2𝑟(𝐺𝑏𝑒𝑠𝑡 −

𝑥𝑖(𝑡))𝑒−𝑎𝐺(𝐺𝑏𝑒𝑠𝑡−𝑥𝑖(𝑡))) Equation 20

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) Equation 21

 30

3.3 Dynamic Approaches of Particle Swarm Optimisation

This proposed PSO is inspired by two main approaches which are heterogeneous swarm

and sub-swarm approach (Cesmeci & Gullu, 2010; Xu, Chen, & Yu, 2006; J. Zhang, De-

Shuang, & Kun-Hong, 2007). Heterogeneous Swarm approach has proven to be a better

performer compared to homogenous swarm (A. P. Engelbrecht, 2011; Andries P Engelbrecht,

2010). The aim for this proposed PSO is to remove or reduce the parameter setting in PSO.

Only several parameter settings are required for PSO, which are inertia weight and acceleration

coefficients, but different parameter settings may be needed for different problems. The

combination of heterogeneous parameter setting swarm in sub-swarm gives each particle to

have several options to select the proper parameter at their current positon. The approach used

for this paper is where each swarm will choose its fittest sub-swarm and use the sub-swarm’s

parameter setting as its own. Therefore, each swarm will be using different parameter setting

over the iterations depending on its current fitness.

3.3.1 Dynamic Parameterisation Particle Swarm Optimisation (DPPSO)

The parameter setting options proposed are the combination of three parameter settings

for inertia weight (w) and three parameter settings for acceleration coefficients (c1 and c2). For

inertia weight, the parameter settings used are fixed inertia weight (FIW), random inertia weight

(RANDIW) and linear decreasing inertia weight (LDIW) (Rapaić & Kanović, 2009;

Ratnaweera, Halgamuge, & Watson, 2004). For acceleration coefficients, the parameter settings

used are fixed acceleration factors (FAC), random acceleration factors (RANDAC) and time

varying acceleration factors (TVAC) (Rapaić & Kanović, 2009; Ratnaweera et al., 2004).

 31

Figure 3-2. The Structure of Dynamic Parameterising PSO (DPPSO).

 This method consists of two layers where the first layer consists the particle from the

swarm and the second layer consists of nine different configuration sub-swarm as illustrated in

Figure 3-2. The idea behind this proposed method is each particle in the first layer is using the

best parameter settings based on its current position. The best parameter settings are determined

by its sub-swarm in the second tier. The sub-swarm consists of nine possible parameters

configuration where all of them will be tested against a fitness function. The sub-swarm which

has the fittest value will be selected as the configurations for the particle in the first layer. The

combination of these parameter settings produces the following nine sub-swarms for each

swarm:

 Sub-swarm 1: FIW + FAC

𝑉𝑖(𝑡 + 1) = 0.7299𝑉𝑖 + 0.5𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 2.5𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) Equation

22

The fixed value of Inertia Weight (w) and Acceleration Coefficients for Cognitive and Social

Components (c1 and c2) are used which is 0.7299 for w, 0.5 for c1 and 2.5 for c2.

 32

 Sub-swarm 2: FIW + RANDAC

𝑉𝑖(𝑡 + 1) = 0.7299𝑉𝑖 + ((2.5 − 0.5)(1 − 𝑟) + 0.5)𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + ((2.5 − 0.5) (1 −

𝑟) + 0.5)𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) Equation 23

The value for Inertia Weight, w is fixed with 0.7299 with the values of acceleration coefficients

for both components are randomised between 0.5 and 2.5.

 Sub-swarm 3: FIW + TVAC

𝑉𝑖(𝑡 + 1) = 0.7299𝑉𝑖 + (
𝑐𝑖−𝑐𝑓

𝑡𝑚𝑎𝑥
𝑡 + 𝑐𝑓)𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + (

𝑐𝑓−𝑐𝑖

𝑡𝑚𝑎𝑥
𝑡 + 𝑐𝑖)𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

Equation 24

The value for Inertia Weight (w) is fixed for this sub-swarm which is 0.7299 and the

acceleration coefficients used the Time-Varying option where for c1, the value is decreasing

from 2.5 to 0.5 over the iteration numbers while c2 value is increasing from 0.5 to 2.5 over time.

 Sub-swarm 4: RANDIW + FAC

𝑉𝑖(𝑡 + 1) = (0.5 +
𝑟

2
)𝑉𝑖 + 0.5𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 2.5𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

The value for inertia weight (w) is randomly selected between 0.5 and 1.0 with the fixed

acceleration coefficients (c1 and c2) are used which are 0.5 and 2.5 respectively.

 Sub-swarm 5: RANDIW + RANDAC

𝑉𝑖(𝑡 + 1) = (0.5 +
𝑟

2
)𝑉𝑖 + ((2.5 − 0.5)(1 − 𝑟) + 0.5)𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + ((2.5 − 0.5)(1 − 𝑟) + 0.5)𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

A random value between 0.5 and 1.0 is used for inertia weight (w) with both acceleration

coefficients (c1 and c2) also used a random value between 0.5 and 2.5 for every iteration.

 Sub-swarm 6: RANDIW + TVAC

 33

𝑉𝑖(𝑡 + 1) = (0.5 +
𝑟

2
) 𝑉𝑖 + (

𝑐𝑖 − 𝑐𝑓

𝑡𝑚𝑎𝑥
𝑡 + 𝑐𝑓) 𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + (

𝑐𝑓 − 𝑐𝑖

𝑡𝑚𝑎𝑥
𝑡 + 𝑐𝑖) 𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

The inertia weight, w is randomly picked between 0.5 and 1.0. The acceleration coefficients for

social and cognitive components are vary depending on the time where the c1 value is

decreasing from 2.5 to 0.5 while the c2 value is increasing in the opposite direction.

Sub-swarm 7: LDIW + FAC

𝑉𝑖(𝑡 + 1) = (
𝑤𝑓 − 𝑤𝑖

𝑡𝑚𝑎𝑥

𝑡 + 𝑤𝑖) 𝑉𝑖 + 0.5𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 2.5𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

The linear decreasing approach for inertia weight (w) is used for this sub-swarm where initially

the value of w is 0.9 and eventually decreasing to the final value of 0.4. Meanwhile, the value

of the acceleration coefficients remains throughout the iteration with 0.5 for c1 and 2.5 for c2.

 Sub-swarm 8: LDIW + RANDAC

𝑉𝑖(𝑡 + 1) = (
𝑤𝑓 − 𝑤𝑖

𝑡𝑚𝑎𝑥

𝑡 + 𝑤𝑖) 𝑉𝑖 + ((2.5 − 0.5)(1 − 𝑟) + 0.5)𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + ((2.5 − 0.5)
(1 − 𝑟)

1
+ 0.5)(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

This sub-swarm combines linear decreasing method for inertia weight with random values of

acceleration coefficients. The inertia weight (w) value set 0.9 at the beginning and declining

towards 0.4 in the end. The acceleration coefficients (c1 and c2) for both components are

randomly selected between 0.5 and 2.5.

 Sub-swarm 9: LDIW + TVAC

𝑉𝑖(𝑡 + 1) = ((𝑤𝑓 − 𝑤𝑖)
(𝑡𝑚𝑎𝑥 − 𝑡)

𝑡𝑚𝑎𝑥
+ 𝑤𝑖) 𝑉𝑖 + (

𝑐𝑖 − 𝑐𝑓

𝑡𝑚𝑎𝑥
𝑡 + 𝑐𝑓)𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + (

𝑐𝑓 − 𝑐𝑖

𝑡𝑚𝑎𝑥
𝑡 + 𝑐𝑖)𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

This sub-swarm is the only sub-swarm where all components are related to the iteration

numbers. The inertia weight (w) decreasing over time from 0.9 to 0.4 and the acceleration

 34

coefficient for cognitive component (c1) decreasing over time from 2.5 to 0.5. Meanwhile, the

value of the acceleration coefficient for social component (c2) is increasing from 0.5 to 2.5 over

time.

where:

𝑟 = [0,1], 𝑐𝑖 = 0.5, 𝑐𝑓 = 2.5, 𝑤𝑖 = 0.9, 𝑤𝑓 = 0.4, 𝑡 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

The selection criteria used, as mentioned before, is the fittest sub-swarm will be chosen as the

main swarm. This step is crucial to ensure that the swarm is using the right exploration and

exploitation behaviour depending on its current position.

3.3.2 Dynamic Acceleration Coefficients Particle Swarm Optimisation (DACPSO)

Acceleration Coefficient is one of the essential components in PSO equation. It controls

the influence of social and cognitive component of PSO. The balance between social and

cognitive component could determine the overall performance of PSO in the optimisation

problem and influence the outcome. If the value set for acceleration coefficients is not

appropriate for the problem, the performance of PSO might drop. However, there is no one

absolute value of acceleration coefficients that can be used on all optimisation problems. There

are two important approaches introduced in an attempt to address this problem, which is time-

varying acceleration coefficient (TVAC PSO) and random acceleration coefficients (RANDAC

PSO) (Rapaić & Kanović, 2009; Ratnaweera et al., 2004). However, these methods still cannot

address all optimisation problems. Therefore, the idea of using dynamic acceleration

coefficients approach comes into play as it aims to change the acceleration coefficients

 35

depending on the search space and then independently adapts to the optimisation problem thus

overcoming it.

 First Sub-group

𝑉𝑖(𝑡 + 1) = 𝑤𝑖𝑉𝑖 + 2.5𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 0.5𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

The influence of cognitive component is considered higher than the influence of social

component which means the mean direction of the particle is more towards the personal best

rather than global best. The value set for the cognitive component is 2.5 while the value set for

the social component is 0.5. The linear decreasing inertia weight approach is used for this

proposed method.

 Second Sub-group

𝑉𝑖(𝑡 + 1) = 𝑤𝑖𝑉𝑖 + 1.5𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 1.5𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

For the second sub-group of particles, the influence of cognitive and social components are

equal. This option will make sure every particle belongs to this sub-group is not leaning towards

any components. The value set for both components is 1.5 and the linear decreasing inertia

weight approach is also applied for this sub-group.

 Third Sub-group

𝑉𝑖(𝑡 + 1) = 𝑤𝑖𝑉𝑖 + 0.5𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 2.5𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

This sub-group is using the standard PSO approach where the social component has greater

influence compare to the cognitive component. This specification procedure aims to direct the

 36

particles toward the global best from the very beginning and make the convergence faster. The

value set for the cognitive component is 0.5 and 2.5 for the social element.

Figure 3-3. Dynamic Acceleration Coefficients PSO (DACPSO) Population Size Initially.

The details on how DACPSO work are illustrated in Figure 3-3, Figure 3-4, and Error!

Reference source not found.. In Figure 3-3, the whole population is divided into three sub-

groups with three different configuration for acceleration coefficients (c1 and c2). In the first

group, the value of acceleration coefficient for the cognitive component is greater than the value

of acceleration coefficient for social element (c1 > c2). For the second group, the cognitive and

social components are using the same value of acceleration factor (c1 = c2). While for the third

group, the value of acceleration coefficient for the cognitive component is less than the value

of acceleration coefficient for social component (c1 < c2). Initially, all these three sub-groups

have the same population size within their group for example in Figure 3-2, all sub-groups

consists of ten particles.

 37

Figure 3-4. Dynamic Acceleration Coefficients PSO (DACPSO) after five iterations.

This proposed method is also using the reward and punishment approach where after

five iterations, the group that produces the fittest solutions in these five iterations is awarded an

additional populations taken from the two losing groups. The acceleration coefficients used for

the losing groups also will be reduced by 10% in comparison to the winning group. For example

in the Figure 3-3, after five iterations, the third group is the best performing group which will

be awarded with 1 particle (10% of total population) from the first and second groups.

Figure 3-5. Dynamic Acceleration Coefficients PSO (DACPSO) the awarding and punishing

process.

 38

Figure 3-4 illustrates the condition of the population size of each group after the

awarding and punishing process applied. The winning group now consists of 20% extra

population compared to the losing groups as illustrated in Figure 3-5. However, this state is not

final as this process is repeating for every five iterations until the maximum iteration numbers

are reached or the global optimal is found.

3.3.3 Constricted Area Extended Particle Swarm Optimisation (CAEPSO)

Area Extended PSO (AEPSO) was introduced several years ago and has been used in

several optimisation problems including machine learning and navigation problems (A. Atyabi

& Phon-Amnuaisuk, 2007; A. Atyabi & Powers, 2013; Adham Atyabi, Phon-Amnuaisuk, &

Ho, 2010). This algorithm uses the similar approach as DPPSO where the sub-swarm produces

several options of fitness, which are derived from the combination of PSO components. As a

result, the fittest sub-swarm is selected to represent the swarm. The idea of modification of this

AEPSO are based on several researches which showed Constricted PSO (CPSO) can

outperform Linear Decreasing Inertia Weight PSO (Linear PSO) (Bai, 2010; Parsopoulos &

Vrahatis, 2011; Syed Abdullah, Hussin, Harun, & Abd Khalid, 2012; Trelea, 2003; H. Zhu et

al., 2013). Since AEPSO is utilising Linear PSO as its foundation, the CAEPSO is compared

against the original AEPSO. The list of sub-swarm for CAEPSO are as follow:

 Sub-swarm 1: Velocity with Weight

𝑉𝑖(𝑡 + 1) = 𝐾(𝑤𝑉𝑖(𝑡))

 Sub-swarm 2: Cognitive

 39

𝑉𝑖(𝑡 + 1) = 𝐾(𝑐1𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)))

 Sub-swarm 3: Social

Vi(t + 1) = 𝐾(c2r(Gbest − xi(t)))

 Sub-swarm 4: Velocity with Weight + Cognitive

Vi(t + 1) = 𝐾(wVi(t) + c1r(Pbest − xi(t)))

 Sub-swarm 5: Velocity with Weight + Social

𝑉𝑖(𝑡 + 1) = 𝐾(𝑤𝑉𝑖(𝑡) + 𝑐2𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)))

 Sub-swarm 6: Cognitive + Social

𝑉𝑖(𝑡 + 1) = 𝐾(𝑐1𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 𝑐2𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)))

 Sub-swarm 7: Velocity with Weight + Cognitive + Social (Basic PSO)

𝑉𝑖(𝑡 + 1) = 𝐾(𝑤𝑉𝑖(𝑡) + 𝑐1𝑟(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))+ 𝑐2𝑟(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)))

The constricted value, K used is 0.7299 with the inertia weight (w) value of 0.7299 as well. The

value of acceleration coefficients for social and cognitive components are 0.5 and 2.5

respectively. The random value used is within 0 to 1 with linear distribution is applied.

Figure 3-6. Constricted Area Extended PSO (CAEPSO) Architecture.

 40

3.4 Parameter Settings

Parameter settings are crucial for any technique especially swarm intelligence

technique. It can determine the outcome of optimal results. Table 3-1 provides a summary of

parameter settings utilised in the approaches employed within all experiments. In experiment 1

and 2, benchmark function evaluation and engineering design problem, the population size of

all EA approaches are set to 100 with maximum iteration number of 100. It should be noted

that all evolutionary approaches examined in other two experiments (maze and symmetric

layouts) are set to have a maximum iteration number of 1000 and a population size of 100. All

path planning experiments (maze and symmetric layout) are repeated ten times for each method,

and the average of the results achieved within each iteration are recorded. All parameter settings

applied to the selected algorithm are based on the previous research (Ab Wahab, Nefti-Meziani,

& Atyabi, 2015).

Table 3-1. Parameter Setting for Each Algorithm involved.

Algorithm Parameter Settings

PF Laser Scan Minimum range set to 0.8.

DA

Several unoccupied points between the starting point and end point are

defined before running the algorithm, and full layout of the environment

is presented to the algorithm.

RRT Randomness point is set to 0.5.

PRM 100 random points are created for the next moving point.

GA

Population size is set to 100 with 10% of the population considered as

best chromosomes in selection stage. Mutation rate is set 0.05% where

mutation operation is to be selected if fitness is not improved in 5

consecutive iterations.

DE Population size is set to 100 with crossover constant being set to 0.5.

 41

CSA pa is set to 0.25, and a maximum number of nests are set to 100.

Fix PSO

Inertia weight is set to 0.7 (Fix Inertia Weight). Cognitive and social

coefficients are set to 0.5 and 2.5 respectively (Fix Acceleration

Coefficients).

Rand PSO

Random values between 1.0 and 0.5 are used for inertia weight

(RANDIW). Cognitive and social coefficients are set to random values

number between 2.5 and 0.5 (RANDAC).

TVAC PSO

Linear decreasing value is used for all inertia weight (LDIW) and Time-

Varying for Acceleration Coefficients (TVAC). Inertia weight is set to

0.9 as the starting value and 0.4 as the end value. For the social

component, the acceleration coefficient is set to 2.5 as the starting value

and decreased to 0.5 with the respect of iteration. For the cognitive

component, the acceleration coefficient value is set to 0.5 initially and

increased to the value of 2.5 towards the end of the iterations.

Linear PSO

Linear decreasing approach varying from 0.9 to 0.4 is utilised for linear

decreasing inertia weight (LDIW). The cognitive and social coefficient

is set to the fixed values of 0.5 and 2.5 respectively (FAC).

CPSO
The cognitive and social coefficient is set to fixed values of 0.5 and 2.5

respectively (FAC) with constricted value, K of 0.7299.

MPSO

The same parameter settings used in Linear PSO with Inertia Weight

(IW) decreasing from 0.9 to 0.4 over iterations with fixed values for

acceleration coefficients. The morphology coefficients for social, ag

and cognitive, ap are set to 0.005.

CMPSO
The parameter settings for this algorithm are exactly as MPSO with an

introduction of constricted constant, K with the value of 0.7299.

AEPSO

Linear PSO configuration is taken as the reference for AEPSO

parameter settings where the inertia weight (IW) varies from 0.9 to 0.4

and fixed accelerations for cognitive and social with 0.5 and 2.5

respectively.

CAEPSO
Constricted PSO configuration is considered for this algorithm with

constricted value, K of 0.7299, identical to the one used in CPSO.

 42

DACPSO

The linear decreasing approach is used for inertia weight with three

groups of sub-swarm with different acceleration coefficients. The first

sub-swarm used the value of 2.5 for cognitive and 0.5 for social. The

second sub-swarm used equal coefficient value, which is 1.5. The last

sub-swarm used the value of 0.5 and 2.5 for cognitive and social

component respectively.

DPPSO

The behaviour of this particular method is covered in the previous

chapter. As a recap, this method combines four commonly used

parameter settings in PSO, which are Fix PSO, Rand PSO, TVAC

PSO and Linear PSO.

3.5 Summary

This chapter has explained in details all five proposed methods and also parameters

setup that will be used in the experiments designed. These five methods introduced are believed

to be able to help overcome two major problems in swarm intelligence discussed earlier, which

are suitability to implement on the online application and the challenge in fine tuning or finding

appropriate parameter settings for swarm intelligence. These two problems can give a

researcher a difficult time especially in configuring the parameter setup. In order to assess the

performance of these proposed methods, four different experiments have been designed. The

following chapter discussed the performance of selected existed evolutionary algorithms

against the proposed methods on thirteen benchmark functions.

 43

CHAPTER 4

THE BENCHMARK FUNCTIONS EXPERIMENT

4.1 Introduction

There are many optimisation algorithms claiming superiority over other techniques.

Therefore, to decide the most reliable algorithms, benchmark functions can be utilised as a

gauge to prove their efficiency. Several benchmark functions with different characteristics have

been utilised to measure the ability of the discussed optimisation algorithms; their achieved

performances are presented in this section. The first experiment is the comparison between

seven algorithms discussed with more severe conditions to determine the best basic

evolutionary algorithm.

4.2 Benchmark Functions

In this experiment, the performance of optimisation techniques selected are assessed on

a variety of benchmark functions using MATLAB2011 on a CORE i7 CPU with 2GB RAM

and was run a hundred times. Table 4-1 presents the list of benchmark functions utilised to

assess the performance of the alleged evolutionary methods. The table contains the name of the

benchmark function, the characteristic of the function, the dimension, the range, and its

equation. The features of the function determine its complexity.

 44

Table 4-1. List of Benchmark Functions involved in the Experiment.

Each benchmark function has a combination of unimodal or multimodal with separable or non-

separable to make its properties. The combination of these characteristics defines the difficulty

of the benchmark functions. A function with two or more local optima is considered as

multimodal, and it is defined separable if it can be rewritten as an addition of a function just

Function Formula Value Dim Range Properties

Beale
  2 2 2 3 2

1 1 2 1 1 2 1 1 2(1.5) (2.25) (2.625)f x x x x x x x x x x        

0 2

[-4.5,

4.5]

Unimodal,

Inseparable

Bohachevsky1      2 2

1 2 1 22 0.3 3 0.4 4 0.7f x x x cos x cos x     
 0 2

[-100,

100]

Multimodal,

Separable

Bohachevsky2
     2 2

1 2 1 22 0.3 3 4 0.3f x x x cos x cos x    

0 2

[-100,

100]

Multimodal,

Inseparable

Bohachevsky3
   2 2

1 2 212 0.3 3 04 .3f x x x cos x x    

0 2

[-100,

100]

Multimodal,

Inseparable

Booth   2 2

1 2 1 2(2 7) (2 5)f x x x x x      0 2 [-10, 10]
Multimodal,

Separable

Branin
  2 2 2

2 12 1 1

5.1 5
6

1
() 10(1)cos 10

4 8
f x x x x x

  
     

0.3979 2

[-5, 10] x

[0, 15]

Multimodal,

Separable

Easom

     

    
1 2

2 2

1 2exp

f x cos x cos x

x x 

 

   
 0 30 [-30, 30]

Unimodal,

Inseparable

GoldStein-

Price

  2 2 2

1 2 1 1 2 1 2 21 (1) (19 14 3 14 6 3f x x x x x x x x x          

2 2 2

1 2 1 1 2 1 2 230 (2 3) (18 32 12 48 36 27x x x x x x x x         

3 2 [-10, 10]
Multimodal,

Inseparable

Hump 𝑓(𝑥) = 4 − 2.1
𝑥1

4

3
)𝑥1

2 + 𝑥1𝑥2+) − 4

+ 4𝑥2
2)𝑥2

2

0 2
[-3, 3] x

[-2, 2]

Multimodal,

Inseparable

Matyas   2 2

1 2 1 20.26() 0.48f x x x x x   0 2 [-10, 10]
Unimodal,

Inseparable

Rastrigin    2

1

10cos 2 10
n

i i

i

f x x x


   0 30
[-5.12,

5.12]

Multimodal,

Separable

Sphere   2

1

n

i

i

f x x


 0 30
[-100,

100]

Unimodal,

Separable

Sumsquare   2

1

n

i

i

f x ix


 0 30
[-5.12,

5.12]

Unimodal,

Separable

 45

from one variable. The theory of epistasis or interrelation between variables of the function is

linked to separable properties. The theory of epistasis is a model of genetics where the result of

one genetic factor can be governed by the presence of one or more altered genetic factor. The

problem can become more complex if the function is multimodal. The value of global optimum

is the desired information during the search process. Hence, the regions around local minima

must be circumvented. The local optima which spread randomly in the search area are

considered as the most difficult problem. As the main aim of optimisation process is to achieve

the global optima, therefore the regions around local optima should be circumvented to prevent

the swarm get stuck in local optima value and considering the local optima value as the global

optima value. Another significant property which determines the complexity of the optimisation

problem is the dimension of the search area.

4.3 Result for Morphology Particle Swarm Optimisation

This benchmark function experiment consists of thirteen functions with different types

of properties. The results recorded the average result of the runs (Mean), standard deviation

(SD) and time taken (in seconds) to complete each hundred iterations. All results are reported

in Table 4-2 and Table 4-3. If the mean value is less than 1.000e-12, then the result is reported

as 0.000e+00. The first benchmark function was Beale function with unimodal and inseparable

properties and a theoretical minimisation value of zero. None of any algorithms managed to

find this optimal value. However, Constricted PSO (CPSO) had become the best performing

algorithm with an average result of 5.290e-03 which was the closest to optimal value compared

to others. The second best performing algorithm Beale function was Time-Varying

Acceleration Coefficients PSO (TVAC PSO) with 6.726e-03 average outcome. In the

 46

Bohachevsky1 function, none of the algorithms achieved the best minimisation performance

once again but this time Cuckoo Search Algorithm (CSA) had become the best algorithm with

4.224e-07 and Morphology PSO (MPSO) had become the second best with 5.110e-04. The

third best was Fixed PSO (Fix PSO) where it managed to achieve 7.411e-04. The results in

Bohachevsky2 function indicated that Differential Evolution (DE), Genetic Algorithm (GA)

and MPSO have accomplished the optimal value of 0.0 and trailed by Constricted Morphology

PSO (CMPSO) with 6.809e-07. DE, GA, MPSO and CMPSO achieved better minimisation

performance compared to the other approaches when applied to the Bohachevsky3 functions

(with zero being the optimal value once again). CSA became the next best performer with

4.773e-07 on average.

Random PSO (Rand PSO) and TVAC PSO managed to achieve optimal value and

became the best performing method on the Booth function followed by MPSO with the mean

value of 1.076e-11. Linear PSO (Linear PSO) managed to outperform other approaches by

achieving 3.979e-01 mean value which was the closest to the theoretical optimum value of

0.398 on the Branin function. In Easom function, Rand PSO, Linear PSO and CPSO including

proposed algorithms (MPSO and CMPSO) were considered as the best performing methods

with all of them achieved the mean value of -1.000e+00. DE almost achieved the optimal value

with an average result of -9.831e-01. More than half algorithms managed to achieve the

theoretical optimal value which was 3.000e+00 with the Goldstein-Price function except for

four algorithms (DE, GA, CSA and Fix PSO). MPSO managed to outperform other approaches

by achieving 3.952e-08 mean value which was the closest to the theoretical optimum value of

zero on the Hump function. The four final functions were Matyas, Rastrigin, Sphere and

Sumsquare function. Rand PSO and TVAC PSO managed to be the best performing approaches

 47

(achieved optimum value which was zero) in three functions except for Rastrigin function

where MPSO managed to outperform them with an average of 2.894e-02. MPSO also managed

to achieve optimum in Sumsquare function.

The results indicated the superiority of MPSO over other methods where it

outperformed other techniques in seven out of thirteen benchmark functions. This performance

was followed closely by Rand PSO by becoming the best performing method in six of the

benchmark functions and being the second best performing approach on a few benchmark

functions. The third best performing method was TVAC PSO where it outclassed other

algorithms in five functions. Linear PSO, CPSO and CMPSO shared the same number of best

performing algorithm of three. The least performing algorithm was Fix PSO where it failed to

outperform others or achieved the optimal value in any benchmark functions. It is noteworthy

that, concerning the average time spent to finish the optimisation problem, the proposed PSO

(MPSO and CMPSO) performed considerably faster (e.g., approximately between 2 to 60 times

faster) than the other algorithms.

The results presented in Table 4-6 and Table 4-7 can also be investigated based on the

characteristics of the fitness functions utilised in the research (summarised in Table 4-4).

Considering the characteristics of i) Unimodal (U), ii) Multimodal (M), iii) Separable (S), iv)

Inseparable (I), Unimodal and Separable (US), v) Unimodal and Inseparable (UI), vi)

Multimodal and Separable (MS), vii), and viii) Multimodal and Inseparable (MI). Unimodal

benchmark function consists of five functions (Beale, Easom, Matyas, Sphere and Sumsquare)

where Rand PSO managed to find global optima value and became the best performing

algorithm in four functions. The Second best performing algorithm in this category was TVAC

PSO with three best performance out of five. Other functions than those five functions were

 48

considered in Multimodal category functions (Bohachevsky1, Bohachevsky2, Bohachevsky3,

Booth, Branin, Goldstein-Price, Hump and Rastrigin). In this category, MPSO was the superior

approach with five times as the best performing algorithm. Other algorithms (except CSA, Fix

PSO, and CPSO) were tied as the second best performing algorithms with two best performers

in total. Separable functions were Bohachevsky1, Booth, Branin, Rastrigin, Sphere and

Sumsquare. Surprisingly, half of the algorithms failed to become performing approaches even

once. Those algorithms were DE, GA, Fix PSO, CPSO and CMPSO. The best performing

algorithms for this category were Rand PSO and TVAC PSO with three times as the best

performing algorithms. MPSO closely followed it with two times. Beale, Bohachevsky2,

Bohachevsky3, Easom, Goldstein-Price, Hump, and Matyas functions fell under inseparable

category. MPSO managed to outperform other algorithms five times and became overall best

performing algorithm in this category. The second best algorithm was shared by Rand PSO,

CPSO and MPSO with three times as the best performing method. CSA and Fix PSO, however,

struggled to become the best performing approach in any benchmark function.

The following categories were the combination of two types of properties. The first

type was Unimodal and Separable, which consisted of Sphere and Sumsquare functions. Only

Rand PSO and TVAC managed to become the best performing algorithm in both functions

while MPSO managed to become the best performing algorithm once in Sumsquare function.

However, other function failed to achieve the optimal value at all. The second category was

Unimodal and Inseparable, and the best performing approach was shared between Rand PSO

and CPSO where they managed to beat other algorithm two out of three times. The Second best

performing algorithm was shared among TVAC PSO, Linear PSO, MPSO and CMPSO where

they achieved optimal value once. The next combination was Multimodal and Separable where

 49

four functions (Bohachevsky1, Booth, Branin and Rastrigin) fell under this category. None of

the algorithms managed to come out top with five algorithms only once succeeded to become

the best performing method. Those five algorithms were CSA, Rand PSO, TVAC PSO, Linear

PSO and MPSO. Multimodal and Inseparable combination was the final category considered

with four functions fell under this category as well. The functions were Bohachevsky2,

Bohachevsky3, Goldstein-Price and Hump function. MPSO showed its superiority in this

category where it outperformed others in four occasions. The second best approach with two

best performances was DE, GA, and CMPSO. Only CSA and Fix PSO failed to get the best

performance in any function under this category.

Considering the results presented and the discussion, MPSO seems to be the best overall

performing approach, outperforming other methods in seven out of thirteen functions followed

by Rand PSO with the best performance in six out of thirteen. The third best is TVAC PSO

with five out of thirteen best performance. Linear PSO, CPSO, and CMPSO reached the best

performance in three out of thirteen functions. With an attention on the breakdown results, it is

obvious that MPSO has been the best performing method in four out of eight categories.

Nonetheless, in terms of execution time to finish the benchmark tests, Fix PSO, MPSO, and

CMPSO are the best with an average of fewer than 0.1 seconds for all functions. Although Rand

PSO and TVAC are the best second and third overall performance in term of mean value, it is

the least fast algorithm.

 50

Table 4-2. MPSO Results for Benchmark Optimisation Problems

Benchmark

Function
DE GA CSA Fix PSO Rand PSO

TVAC

PSO

Linear

PSO
CPSO MPSO CMPSO

Beale

Optimum(0)

1.844e-02 1.438e-01 9.680e-01 7.419e-03 3.697e-02 6.726e-03 2.898e-02 5.290e-03 6.961e-02 8.207e-03

1.055e-01 1.920e-01 5.312e-01 5.352e-02 2.002e-01 5.329e-02 1.039e-01 4.881e-01 4.123e-01 6.231e-02

3.5707s 2.4946s 0.2230s 0.0840s 9.8281s 0.0768s 0.0782s 0.1683s 0.0727s 0.0665s

Bohachecsky1

Optimum (0)

9.365e-02 5.932e-02 4.224e-07 7.411e-04 7.900e-03 9.161e-04 1.194e-03 4.133e-03 5.110e-04 8.326e-04

4.194e-03 5.961e-03 5.192e-07 4.594e-03 5.686e-04 5.034e-03 6.099e-03 3.287e-01 6.974e-03 7.189e-03

3.9298s 3.9723s 0.2273s 0.0977s 0.1011s 0.0749s 0.0790s 0.1658s 0.0819s 0.0797s

Bohachecsky2

Optimum (0)

0.000e+00 0.000e+00 9.931e-07 7.140e-04 2.097e-03 6.289e-04 5.679e-04 2.647e-03 0.000e+00 6.809e-07

0.000e+00 0.000e+00 1.450e-06 3.174e-03 1.236e-02 2.827e-03 2.844e-03 1.491e-01 0.000e+00 6.314e-06

3.7869s 2.3782s 0.2313s 0.1019s 0.1081s 0.0796s 0.0780s 0.1672s 0.0753s 0.0741s

Bohachecsky3

Optimum (0)

0.000e+00 0.000e+00 4.773e-07 1.861e-03 3.246e-03 1.911e-03 2.061e-03 1.086e-02 0.000e+00 0.000e+00

0.000e+00 0.000e+00 7.198e-07 1.326e-02 2.551e-02 1.333e-02 1.391e-02 1.016e+00 0.000e+00 0.000e+00

3.8314s 2.3734s 0.2222s 0.1125s 0.1075s 0.0819s 0.0827s 0.1699s 0.0814s 0.0713s

Booth

Optimum(0)

4.619e-04 1.762e-02 4.625e-02 1.651e-01 0.000e+00 0.000e+00 2.189e-09 2.426e-10 1.076e-11 9.958e-08

4.188e-02 1.241e+00 4.188e-01 6.782e-01 0.000e+00 0.000e+00 2.332e-09 2.227e-09 1.321e-10 5.165e-07

0.1083s 0.1069s 0.0782s 0.0800s 3.8136s 2.3698s 0.2203s 0.1701s 0.0735s 0.0735s

Branin

Optimum

(0.398)

5.041e-01 5.265e-01 4.986e-01 8.368e-01 4.210e-01 4.534e-01 3.979e-01 4.143e-01 4.135e-01 4.633e-01

9.006e-01 1.286e+00 8.999e-01 1.724e+00 2.308e-01 3.586e-02 1.046e-09 9.819e+00 7.156e-01 5.321e-01

0.1109s 0.1114s 0.0772s 0.0814s 3.6172s 2.6820s 0.3192s 0.1719s 0.0817s 0.0727s

Easom

Optimum (0)

-9.831e-01 -9.786e-01 -9.830e-01 -7.989e-05 -1.000e+00 -9.534e-01 -1.000e+00 -1.000e+00 -1.000e+00 -1.000e+00

1.204e-01 1.356e-01 1.204e-01 6.379e-06 0.000e+00 1.525e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.1119s 0.1131s 0.0794s 0.0808s 3.5815s 2.3623s 0.2262s 0.1702s 0.0783s 0.0674s

 51

Table 4-3. MPSO Results for Benchmark Optimisation Problems (cont'd.)

Benchmark

Function
DE GA CSA Fix PSO Rand PSO

TVAC

PSO

Linear

PSO
CPSO MPSO CMPSO

Goldstein-

Price

Optimum(3)

3.019e+00 3.212e+00 3.019e+00 3.032e+00 3.000e+00 3.000e+00 3.000e+00 3.000e+00 3.000e+00 3.000e+00

1.105e-01 1.594e+00 1.103e-01 1.700e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.1153s 0.1000s 0.0920s 0.0939s 3.5528s 2.4216s 0.2214s 0.1861s 0.0704s 0.0883s

Hump

Optimum(0)

2.254e-03 4.771e-04 2.698e-03 2.312e-03 4.651e-08 5.033e-01 5.125e-08 7.742e-04 3.952e-08 1.569e-07

1.338e-02 3.023e-03 1.485e-02 1.546e-02 7.744e-17 3.994e-01 5.137e-09 8.169e-02 3.465e-07 3.164e-06

0.12137s 0.1253s 0.0896s 0.0880s 3.5223s 2.4592s 0.2382s 0.1782s 0.0827s 0.0766s

Matyas

Optimum(0)

3.168e-05 6.203e-05 2.868e-05 3.600e-05 0.000e+00 0.000e+00 9.220e-10 2.610e-06 3.168e-05 3.253e-05

2.523e-04 5.600e-04 2.515e-04 2.715e-04 0.000e+00 0.000e+00 1.488e-09 5.287e-02 5.312e-04 7.321e-04

0.1167s 0.1092s 0.0816s 0.0827s 3.7907s 2.3762s 0.2251s 0.1672s 0.0861s 0.0711s

Rastrigin

Optimum(0)

5.382e-02 3.794e-02 4.219e-02 5.345e-02 -1.985e+01 -1.786e+01 -1.169e+01 8.940e-02 2.894e-02 1.061e+00

2.881e-01 2.163e-01 2.726e-01 2.810e-01 4.093e-01 3.652e+00 1.238e-04 3.865e+00 6.311e-01 3.135e+00

0.1164s 0.0978s 0.0833s 0.081433s 3.7988s 2.8458s 0.2186s 0.1722s 0.0714s 0.0707s

Sphere

Optimum(0)

1.836e-04 1.792e-04 1.773e-04 4.154e-04 0.000e+00 0.000e+00 1.073e-10 6.431e-05 1.814e-04 9.569e-05

1.312e-03 1.295e-03 1.306e-03 2.129e-03 0.000e+00 0.000e+00 1.718e-10 5.241e-02 2.311e-03 3.134e-04

0.0867s 0.0791s 0.0757s 0.0796s 3.8280s 2.4001s 0.2011s 0.1680s 0.0619s 0.0758s

Sumsquare

Optimum (0)

6.257e-05 4.199e-04 5.903e-05 1.054e-04 0.000e+00 0.000e+00 2.107e-10 9.382e-05 0.000e+00 7.672e-05

4.003e-04 3.366e-03 3.936e-04 5.466e-04 0.000e+00 0.000e+00 2.946e-10 5.221e-02 0.000e+00 7.232e-04

0.0661s 0.0613s 0.0665s 0.0630s 3.8473s 2.3893s 0.2066s 0.1524s 0.0523s 0.0537s

Best

Performing

Algorithm

2 2 1 0 6 5 3 3 7 3

 52

Table 4-4. MPSO Results for Benchmark Optimisation Problems based on Benchmark Category.

Category

Number

of

functions

DE GA CSA
Fix

PSO

Rand

PSO

TVAC

PSO

Linear

PSO
CPSO MPSO CMPSO

Unimodal (U) 5 0 0 0 0 4 3 1 2 2 1

Multimodal (M) 8 2 2 1 0 2 2 2 1 5 2

Separable (S) 6 0 0 1 0 3 3 1 0 2 0

Inseparable (I) 7 2 2 0 0 3 2 2 3 5 3

Unimodal Separable (US) 2 0 0 0 0 2 2 0 0 1 0

Unimodal Inseparable (UI) 3 0 0 0 0 2 1 1 2 1 1

Multimodal Separable (MS) 4 0 0 1 0 1 1 1 0 1 0

Multimodal Inseparable (MI) 4 2 2 0 0 1 1 1 1 4 2

Being best performing method 13 2 2 1 0 6 5 3 3 7 3

 53

4.4 Significance Analysis for Morphology Particle Swarm Optimisation

Table 4-5. Significant Analysis for Benchmark Optimisation Problems (MPSO).

Category
Benchmark

Functions

Evolutionary

Methods

Benchmark Functions &

Evolutionary Methods

Fitness Value p = 0 p = 0 p = 0

Time p = 0 p = 0 p = 0

With the purpose of measuring the significance of the performance achieved and to offer

a fair valuation of these achievements, statistical significance analysis is applied to the results

using N-Way ANOVA and Kruskal-Wallis tests. Lilliefors test is used before determining the

parametric nature of the results. The statistical significance is assessed on both benchmark

functions and evolutionary approaches. For Benchmark Functions Experiments, only two

factors are considered and analysed for the statistical difference.

The first category of analysing for significance is the fitness or the outcome of the

function. The statistical analysis of the results (Table 4-5) indicates the existence of statistical

significance between the performance achieved from various benchmark functions (p = 0 <

0.5), different evolutionary methods (p = 0 < 0.5) and the interactions of the benchmark

functions and evolutionary methods (p = 0 < 0.05).

Among the benchmark functions, Beale, Bohachevsky1, Bohachevsky2,

Bohachevsky3, Easom and Rastrigin show a significantly different from each other and all other

benchmark functions. Booth, Branin, Goldstein-Price, Hump, Matyas, Sphere and SumSquare

indicate a lack of statistical significance amongst each other, but they are significantly different

from Beale, Bohachescky1, Easom, and Rastrigin functions.

 54

Figure 4-1. Box Plot of Significant Difference in Benchmark Optimisation Problems for Mean

Error factor.

Between the evolutionary methods (Figure 4-1), Rand PSO, CPSO, and MPSO are

showing no significant differences with each other while they are significantly different from

CSA and Fix PSO. TVAC PSO is showing statistical significance against Fix PSO but not

against the other algorithms involved.

The second category considered is Execution Time (s). The statistical analysis of the

results indicates significant difference between the computation time of benchmark functions

(p = 0 < 0.05), evolutionary methods (p = 0 < 0.05) and the interactions of the evolutionary

methods and the benchmark functions (p = 0 < 0.05).

 55

The results indicate that among benchmark functions, no significant difference is being

observed between the results in Beale, Bohachescky2, Bohachescky3, Booth, Goldstein-Price,

Hump, Matyas, Sphere and SumSquare. However, Beale is significantly different from

Bohachescky1, Branin and Rastrigin functions. Bohachescky1 is significantly distinct from all

other benchmark functions. Bohachescky2, Bohachescky3, Booth, Matyas, Sphere and

SumSquare are only significantly different from Bohachescky1 and Rastrigin functions. Branin

and Easom are significantly different from Bohachescky1, Beale, Goldstein-Price and Hump

functions. Goldstein-Price and Hump are only showing significant differences from

Bohachescky 1, Branin, Easom and Rastrigin functions.

Figure 4-2. Box Plot of Significant Difference in Benchmark Optimisation Problems for

Execution Time factor.

Between the evolutionary methods (Figure 4-2), most of the variations of PSO (e.g., Fix

PSO, Linear PSO, CPSO, MPSO, and CMPSO) are lacking significant differences from each

 56

other while they all show such significance when they are compared with Rand PSO and TVAC

PSO. Rand PSO and TVAC PSO indicate lack significant differences from each other.

4.5 Result for Dynamic Approaches of Particle Swarm Optimisation

The similar benchmark functions are used for assessment of Dynamic Approaches of

Particle Swarm Optimisation as well which consists of thirteen functions with different types

of properties. The results recorded are the average result of the runs (Mean), standard deviation

(SD) and time taken (in seconds) to complete each hundred iterations. All results achieved are

reported in Table 4-6 and Table 4-7. The same approach for results reported is used, if the mean

value is less than 1.000e-12, then the result is reported as 0.000e+00. Constricted Area Extended

PSO (CAEPSO) and Dynamic Parameterising PSO (DPPSO) were the only algorithms

managed to achieve global optima value (0.000e+00) for Beale function. The second best

performing algorithm was Area Extended PSO (AEPSO) with an average output of 2.555e-10.

The next function was Bohachevsky1 with an optimal value of zero. In this function, three

algorithms (AEPSO, CAEPSO, and DPPSO) managed to achieve the optimal value. The second

best performing algorithm was CSA with an average final output of 4.224e-07. Bohachevsky2

had the same optimum value as the previous function which was zero and this time the same

three algorithms (AEPSO, CAEPSO, and DPPSO) managed to find the optimum value once

again together with DE and GA. The second best algorithm was CSA once again with an

average of 9.931e-07.

DE, GA, AEPSO, CAEPSO, and DPPSO successfully found the optimal value for

Bohachevsky3 and became the best performing algorithm. Fix PSO became the second best

performing algorithm with an overall mean value of 1.861e-03. Another function that had zero

 57

optimum value was Booth where Rand PSO, TVAC PSO, AEPSO, CAEPSO, Dynamic

Acceleration Coefficients PSO (DACPSO), and DPPSO managed to achieve it. CPSO almost

achieved the global optima value as well but slightly short with 2.426e-10. AEPSO, CAEPSO,

DACPSO and DPPSO shared the same average output which was 3.980e-01 and was the

optimal value for Branin function. Linear PSO almost achieved the optimal value too with an

mean outcome of 3.979e-01. Seven algorithms successfully found the optimal value for Easom

function which was -1. Those seven methods were Rand PSO, Linear PSO, CPSO, AEPSO,

CAEPSO, DACPSO, and DPPSO. DE recorded average output of -9.831e-01 and made it as

the second best performing algorithm. With an optimum value of 3, Goldstein-Price function

had the most successful algorithm to achieve those value. Eight out of twelve algorithms

achieved it except DE, GA, CSA and Fix PSO. DE and CSA did come close to optimal value

with an average of 3.019e-00. None of the algorithms managed to find the optimal value for

Hump function. However, DPPSO managed to outperform other algorithms with 3.610e-09 and

CAEPSO came second with 6.463e-09. Rand POS, TVAC PSO, AEPSO, CAEPSO, and

DPPSO were the best performing algorithm for Matyas Function with an average output of

optimal value of zero. The second best performing algorithm was Linear PSO with a mean

output of 9.220e-10.

Only two algorithms (CAEPSO and DPPSO) managed to achieve optimum value and

became the best performing algorithm for Rastrigin function. The second best was GA with an

average output of 3.794e-02. For Sphere and Sumsquare functions, both functions had an

optimal value of zero. The same algorithms managed to achieve the optimal value for both

functions. The algorithms were Rand PSO, TVAC PSO, AEPSO, CAEPSO, DACPSO, and

DPPSO. Hence, based on the observation and discussion, DPPSO becomes the overall best

 58

performing algorithm where it outperforms other methods in thirteen occasions. CAEPSO is

just slightly short with twelve out of thirteen best performing algorithm and becomes the second

best. The third best algorithm belongs to AEPSO with outstanding performance on ten

occasions. The fourth place is shared by Rand PSO and DACPSO where both of them show

excellent performances in seven out of thirteen benchmark functions. In terms of time, Fix PSO

and CSA dominate in almost all functions utilised where they outperform others quite well.

However, they are short regarding the main objective which is minimising or maximising the

benchmark function across hundred runs. Therefore, it is proven that fast convergence does not

guarantee the best outcomes.

From an observation on Table 4-6 and Table 4-7, the following discussion and analysis

are based on the properties or characteristic of the function (summarised in Table 4-8). The

same considering characteristics used which are i) Unimodal (U), ii) Multimodal (M), iii)

Separable (S), iv) Inseparable (I), Unimodal and Separable (US), v) Unimodal and Inseparable

(UI), vi) Multimodal and Separable (MS), vii), and viii) Multimodal and Inseparable (MI).

Beale, Easom, Matyas, Sphere, and Sumsquare function fall under Unimodal category where

CAEPSO and DPPSO share the top spot as the best algorithm by outperforming other methods

in five benchmark functions. Rand PSO and AEPSO come second with outstanding

performances in four benchmark functions. Meanwhile, the third best spot is shared between

TVAC, PSO, and DACPSO with decent performances in three benchmark functions. The Next

category is Multimodal where the rest of unknown functions in Unimodal are under this

category. The top performance for this category is DPPSO with eight best performances and

followed by CAEPSO and AEPSO with seven and six outstanding performances respectively.

Bohachevsky1, Booth, Branin, Rastrigin, Sphere, and Sumsquare are considered in Separable

 59

category. DE, GA, CSA, Fix PSO, Linear PSO and CPSO fail to achieve best performing

algorithm even once under this category. The best performing algorithm under this category is

DPPSO and CAEPSO with six out of six functions. AEPSO comes as second best once again

with five out of six functions. The Third best performing algorithm is DACPSO with four out

of six benchmark functions. DPPSO manages to become the best performing algorithm with

seven outstanding performances under the Inseparable category that consists seven functions in

it. The next four categories are a combination of two properties of Unimodal and Multimodal

with Separable and Inseparable. The first combination is between Unimodal and Separable

where two functions (Sphere and Sumsquare) are involved, and six algorithms manage to

achieve the optimal value of those functions. Those six algorithms are Rand PSO, TVAC PSO,

AEPSO, CAEPSO, DACPSO, and DPPSO.

The second combination is Unimodal and Inseparable which consists of three functions

(Beale, Easom and Matyas). CAEPSO and DPPSO manage to outperform others in all three

functions. The second best performing algorithm belongs to Rand PSO and AEPSO with

outstanding performances in two out of three functions. The third best performing spot is shared

between TVAC PSO, Linear PSO, CPSO and DACPSO with top performance in one function.

Bohacehvsky1, Booth, Branin and Rastrigin are four functions considered under Multimodal

and Separable category. CAEPSO and DPPSO come out on top once again with outstanding

performances in all functions considered. AEPSO and DACPSO come out second with

excellent performances in three out of four occasions. The third best performance under this

category is Rand PSO with two decent performances.

The final category considered is Multimodal and Inseparable and four functions

(Bohachevsky2, Bohachevsky3, Goldstein-Price and Hump) are listed under this group.

 60

DPPSO is the best performing algorithm where it manages to outperform others in all functions.

The second best performing algorithm is joint by AEPSO and CAEPSO with three best

performance out of four. DE and GA share the third spot with two top performances.

Considering the results presented and analysed, DPPSO is considered as the best overall

performing approach, outperforming other approaches in all thirteen functions followed closely

by CAEPSO with the outstanding performance in twelve out of thirteen. The third best is

AEPSO with ten out of thirteen best performance. Rand PSO and DACPSO have reached the

best performance in seven out of thirteen functions, and that makes them as the fourth best

algorithm. By concentrating on the breakdown results, it is obvious that DPPSO has been the

most outstanding performing method in eight out of eight categories and CAEPSO is left as

second but with only a slight shortage.

 61

Table 4-6. DAPSO Results for Benchmark Optimisation Problems.

Benchmark

Function
DE GA CSA Fix PSO Rand PSO

TVAC

PSO

Linear

PSO
CPSO AEPSO CAEPSO DACPSO DPPSO

Beale

Optimum(0)

1.844e-02

1.055e-01

3.5707s

1.438e-01

1.921e-01

2.4946s

9.681e-01

5.306e-01

0.2230s

7.420e-03

5.353e-02

0.0840s

3.697e-02

2.002e-01

9.8281s

6.726e-03

5.330e-02

0.0768s

2.898e-02

1.039e-01

0.0782s

5.290e-03

4.882e-01

0.1683s

2.555e-10

2.555e-09

0.5346s

0.000e+00

0.000e+00

0.4621s

5.6132e-03

5.6130e-02

0.0984s

0.000e+00

0.000e+00

0.5132s

Bohachecsky1

Optimum (0)

9.365e-02

4.194e-03

3.9298s

5.932e-02

5.961e-03

3.9723s

4.224e-07

5.192e-07

0.2273s

7.411e-04

4.594e-03

0.0977s

7.900e-03

5.686e-04

0.1011s

9.161e-04

5.034e-03

0.0749s

1.194e-03

6.099e-03

0.0790s

4.133e-03

3.287e-01

0.1658s

0.000e+00

0.000e+00

0.5463s

0.000e+00

0.000e+00

0.4975s

9.3407e-02

1.8784e-01

0.9012s

0.000e+00

0.000e+00

0.5013s

Bohachecsky2

Optimum (0)

0.000e+00

0.000e+00

3.7869s

0.000e+00

0.000e+00

2.3782s

9.931e-07

1.450e-06

0.2313s

7.140e-04

3.174e-03

0.1019s

2.097e-03

1.236e-02

0.1081s

6.289e-04

2.827e-03

0.0796s

5.679e-04

2.844e-03

0.0780s

2.647e-03

1.491e-01

0.1672s

0.000e+00

0.000e+00

0.5823s

0.000e+00

0.000e+00

0.4963s

1.9648e-02

6.2792e-02

0.09832s

0.000e+00

0.000e+00

0.5277s

Bohachecsky3

Optimum (0)

0.000e+00

0.000e+00

3.8314s

0.000e+00

0.000e+00

2.3734s

4.773e-07

7.198e-07

0.2222s

1.861e-03

1.326e-02

0.1125s

3.246e-03

2.551e-02

0.1075s

1.911e-03

1.333e-02

0.0819s

2.061e-03

1.391e-02

0.0827s

1.086e-02

1.016e-00

0.1699s

0.000e+00

0.000e+00

0.5941s

0.000e+00

0.000e+00

0.4712s

1.1313e-02

4.9561e-02

0.1321s

0.000e+00

0.000e+00

0.4912s

Booth

Optimum(0)

4.619e-04

4.188e-02

0.1083s

1.762e-02

1.241e-00

0.1069s

4.625e-02

4.188e-01

0.0782s

1.651e-01

6.782e-01

0.0800s

0.000e+00

0.000e+00

3.8136s

0.000e+00

0.000e+00

2.3698s

2.189e-09

2.332e-09

0.2203s

2.426e-10

2.227e-09

0.1701s

0.000e+00

0.000e+00

0.7012s

0.000e+00

0.000e+00

0.6178s

0.000e+00

0.000e+00

0.1078s

0.000e+00

0.000e+00

0.6012s

Branin

Optimum

(0.398)

5.041e-01

9.006e-01

0.1109s

5.265e-01

1.286e-00

0.1114s

4.986e-01

8.999e-01

0.0772s

8.368e-01

1.724e-00

0.0814s

4.210e-01

2.308e-01

3.6172s

4.534e-01

3.586e-02

2.6820s

3.979e-01

1.046e-09

0.3192s

4.143e-01

9.819e-00

0.1719s

3.980e-01

9.8623e-04

0.7221s

3.980e-01

4.6543e-04

0.6245s

3.980e-01

2.3892e-08

0.1489s

3.980e-01

1.7075e-02

0.6132s

Easom

Optimum(-1)

-9.831e-01

1.204e-01

0.1119s

-9.786e-01

1.356e-01

0.1131s

-9.830e-01

1.204e-01

0.0794s

-7.989e-05

6.379e-06

0.0808s

-1.000e+00

0.000e-00

3.5815s

-9.534e-01

1.525e-02

2.3623s

-1.000e+00

0.000e+00

0.2262s

-1.000e+00

0.000e+00

0.1702s

-1.000e+00

0.000e+00

0.7333s

-1.000e+00

0.000e+00

0.6423s

-1.000e+00

0.000e+00

0.1678s

-1.000e+00

0.000e+00

0.6519s

 62

Table 4-7. DAPSO Results for Benchmark Optimisation Problems (cont'd.).

Benchmark

Function
DE GA CSA Fix PSO Rand PSO

TVAC

PSO

Linear

PSO
CPSO AEPSO CAEPSO DACPSO DPPSO

Goldstein-

Price

Optimum(3)

3.019e-00

1.105e-01

0.1153s

3.212e-00

1.594e-00

0.1000s

3.019e-00

1.103e-01

0.0920s

3.032e-00

1.700e-01

0.0939s

3.000e-00

1.326e-15

3.5528s

3.000e-00

0.000e-00

2.4216s

3.000e-00

2.782e-06

0.2214s

3.000e-00

0.000e-00

0.1861s

3.000e-00

0.000e-00

0.4841s

3.000e-00

0.000e-00

0.4111s

3.000e-00

0.000e-00

0.1482s

3.000e-00

0.000e-00

0.4651s

Hump

Optimum(0)

2.254e-03

1.338e-02

0.12137s

4.771e-04

3.023e-03

0.1253s

2.698e-03

1.485e-02

0.0896s

2.312e-03

1.546e-02

0.0880s

4.651e-08

7.744e-17

3.5223s

5.033e-01

3.994e-01

2.4592s

5.125e-08

5.137e-09

0.2382s

7.742e-04

8.169e-02

0.1782s

1.8552e-04

1.8548e-03

0.4765s

6.463e-09

1.1245e-08

0.4019s

4.6510e-08

1.6726e-07

0.1465s

3.610e-09

3.2998e-10

0.4056s

Matyas

Optimum(0)

3.168e-05

2.523e-04

0.1167s

6.203e-05

5.600e-04

0.1092s

2.868e-05

2.515e-04

0.0816s

3.600e-05

2.715e-04

0.0827s

0.000e+00

0.000e+00

3.7907s

0.000e+00

0.000e+00

2.3762s

9.220e-10

1.488e-09

0.2251s

2.610e-06

5.287e-02

0.1672s

0.000e+00

0.000e+00

0.4439s

0.000e+00

0.000e+00

0.3872s

8.0045e-05

3.4675e-04

0.1237s

0.000e+00

0.000e+00

0.3526s

Rastrigin

Optimum(0)

5.382e-02

2.881e-01

0.1164s

3.794e-02

2.163e-01

0.0978s

4.219e-02

2.726e-01

0.0833s

5.345e-02

2.810e-01

0.081433s

-1.985e+01

4.093e-01

3.7988s

-1.786e+01

3.652e-00

2.8458s

-1.169e+01

1.238e-04

0.2186s

8.940e-02

3.865e-00

0.1722s

7.1710e-02

4.1249e-01

0.4664s

0.000e+00

0.000e+00

0.3773s

1.154e+00

4.1760e-01

0.1256s

0.000e+00

0.000e+00

0.3651s

Sphere

Optimum(0)

1.836e-04

1.312e-03

0.0867s

1.792e-04

1.295e-03

0.0791s

1.773e-04

1.306e-03

0.0757s

4.154e-04

2.129e-03

0.0796s

0.000e+00

0.000e+00

3.8280s

0.000e+00

0.000e+00

2.4001s

1.073e-10

1.718e-10

0.2011s

6.431e-05

5.241e-02

0.1680s

0.000e+00

0.000e+00

0.4510s

0.000e+00

0.000e+00

0.3615s

0.000e+00

0.000e+00

0.1456s

0.000e+00

0.000e+00

0.3213s

Sumsquare

Optimum (0)

6.257e-05

4.0029e-04

0.0661s

4.199e-04

3.366e-03

0.0613s

5.903e-05

3.936e-04

0.0665s

1.054e-04

5.466e-04

0.0630s

0.000e+00

0.000e+00

3.8473s

0.000e+00

0.000e+00

2.3893s

2.107e-10

2.946e-10

0.2066s

9.382e-05

5.221e-02

0.1524s

0.000e+00

0.000e+00

0.4101s

0.000e+00

0.000e+00

0.3336s

0.000e+00

0.000e+00

0.1659s

0.000e+00

0.000e+00

0.3013s

Best Performing

Algorithm
1 1 0 0 7 5 2 2 10 12 7 13

 63

Table 4-8. DAPSO Results for Benchmark Optimisation Problems based on Benchmark Category.

Category

Number

of

functions

DE GA CSA
Fix

PSO

Rand

PSO

TVAC

PSO

Linear

PSO
CPSO AEPSO CAEPSO DACPSO DPPSO

Unimodal (U) 5 0 0 0 0 4 3 1 2 4 5 4 5

Multimodal (M) 8 2 2 1 0 2 2 2 1 6 7 3 8

Separable (S) 6 0 0 1 0 3 3 1 0 5 6 4 6

Inseparable (I) 7 2 2 0 0 3 2 2 3 5 6 3 7

Unimodal Separable (US) 2 0 0 0 0 2 2 0 0 2 2 2 2

Unimodal Inseparable (UI) 3 0 0 0 0 2 1 1 2 2 3 2 3

Multimodal Separable (MS) 4 0 0 1 0 1 1 1 0 3 4 2 4

Multimodal Inseparable (MI) 4 2 2 0 0 1 1 1 1 3 3 1 4

Being best performing

method
13 2 2 1 0 6 5 3 3 10 12 7 13

 64

4.6 Significance Analysis for Dynamic Approach of Particle Swarm Optimisation

Table 4-9. Significance Analysis for Benchmark Optimisation Problems (DAPSO).

Category
Benchmark

Functions

Evolutionary

Methods

Benchmark Functions &

Evolutionary Methods

Fitness Value p = 0 p = 0 p = 0

Time p = 0 p = 0 p = 0

In order to calculate the significance of the performance achieved and to offer a fair

valuation of these achievements, the same statistical significance analysis from the previous

section is applied to the results by using N-Way ANOVA and Kruskal-Wallis tests with

Lilliefors test that is used earlier to decide the parametric characteristic of the results. The

statistical significance is assessed on both benchmark functions and evolutionary methods. For

Benchmark Functions Experiments, the same two factors are considered and analysed for

statistical differences.

The fitness or the outcome of the function is considered as the first category analysed

for significance. The statistical analysis of the results (refer Table 4-9) points out the existence

of statistical significance between the performance achieved from various benchmark functions

(p = 0 < 0.5) and various evolutionary methods (p = 0 < 0.5) including the interactions of the

benchmark functions and evolutionary methods (p = 0 < 0.05).

Between the benchmark functions, Beale, Bohachevsky1, Bohachevsky2, Branin,

Hump, and Rastrigin have indicated significant differences from all other benchmark functions

but not amongst themselves. Bohachevsky3, Booth, Easom, Goldstein-Price, Matyas, Sphere,

and SumSquare functions have indicated lack of statistical significance amongst each other, but

 65

they are significantly different form Beale, Bohachevsky1, Bohachevsky2, Branin, Hump, and

Rastrigin functions.

Figure 4-3. Box Plot of Significant Difference in Benchmark Optimisation Problems for Mean

Error factor.

Between the evolutionary methods (Figure 4-3), only Rand PSO, AEPSO, CAEPSO,

and DPPSO have indicated significant differences against CSA and Fix PSO but a lack of

significant difference against each other. Meanwhile, the other algorithms are shown a lack of

significant different between themselves.

The Execution Time (s) is considered as the second category. The statistical analysis of

the results points out significant differences between the computation time of benchmark

functions (p=0<0.05), evolutionary methods (p=0<0.05) and the interactions of the

evolutionary methods and the benchmark functions (p=0<0.05).

 66

The results indicate that among benchmark functions, there is a significant difference

observed between the Beale, Bohachescky3, Booth, Branin, Matyas, Rastrigin, Sphere and

SumSquare. Easom, Goldstein-Price and Hump have shown lack of significant differences

amongst each other. However, these three functions have shown significant differences against

Bohachescky1 and Bohachescky2. Bohachescky1 and Bohachescky2 are significantly different

from all other benchmark functions.

Figure 4-4. Box Plot of Significant Difference in Benchmark Optimisation Problems for

Execution Time factor.

For the evolutionary algorithms category (Figure 4-4), the proposed PSOs (AEPSO,

CAEPSO, DACPSO and DPPSO) lack significant difference from each other including against

CSA, Fix PSO, Linear PSO and CPSO while they all show such significance when they are

compared with Rand PSO and TVAC PSO. Meanwhile, Rand PSO and TVAC PSO have shown

lack significant differences from each other.

 67

4.7 Summary

This section discusses about the performance of proposed algorithms against existing

evolutionary approaches in thirteen benchmark functions. Based on the results and discussion

from this benchmark functions experiments, the proposed algorithms have shown a promising

performance against other evolutionary approaches including the variant of PSOs. CAEPSO

and DPPSO are the most outstanding performing algorithms with excellent performances across

all benchmark functions implemented. DACPSO also shows the decent performance against

existing evolutionary algorithm. It matches Rand PSO as the best performing algorithm in seven

benchmark functions. MPSO shows a promising performance too as it is selected as the best

performing algorithm under the comparison for morphology PSO against other evolutionary

methods. CMPSO shows a glimpse of excellent performance in several benchmark functions

but slightly short compared to MPSO. The next section will be focusing on more complex

optimisation problems with several constraints. The following optimisation problems consist

of three well-known engineering design problems.

 68

CHAPTER 5

ENGINEERING DESIGN PROBLEMS

5.1 Introduction

Engineering Design Problems is one of the common practise used to evaluate the

performances of any swarm intelligence techniques. The complexity and precision are needed

to find the optimal value of the output with several limitations that need to be considered. In

Chapter 4, three well-known engineering design problems involved in this chapter have been

discussed in details. Each engineering design problems results and discussion for Morphology

PSO and Dynamic Approaches of PSO are presented including the significance analysis studies

on them.

5.2 Types of Engineering Design Problems

For Engineering Design Problem Experiments, three well-known and common design

problems among researchers are selected. These are the Spring Design Optimisation Problem,

the Welded Beam Design Problem and the Pressure Vessel Design Problem. The details for

each Engineering Design Problem are discussed in the following subsection. The code has been

implemented on the same platform as the previous experiment which is MATLAB2011 on a

CORE i7 CPU with 2GB RAM and has been run a hundred times as well.

 69

5.2.1 Tension/Compression Design Optimisation Problem

Tensional or compressional springs are commonly used in engineering. A general spring

design problem consists of three design variables (refer Figure 5-1); the wire diameter w, the

mean coil diameter d, and the length (or number of coils) L. The objective for this design

problem is to minimise the weight of the spring with several constraints such as maximum shear

stress, minimum deflection, and geometrical limits.

Figure 5-1. Design of the Tension/Compression String Problem.

The detailed description can be referred to earlier studies (Cagnina, Esquivel, & Coello Coello,

2008). This problem can be written compactly as:

Minimise 𝑓(𝑥) = (𝐿 + 2)𝑤2𝑑 Equation 25

subject to

𝑔1(𝑥) = 1 −
𝑑3𝐿

71785𝑤4 ≤ 0, Equation 26

 70

𝑔2(𝑥) = 1 −
140.45𝑤

𝑑2𝐿
≤ 0, Equation 27

𝑔3(𝑥) =
2(𝑤+𝑑)

3
− 1 ≤ 0, Equation 28

𝑔4(𝑥) =
𝑑(4𝑑−𝑤)

𝑤4(12566𝑑−𝑤)
+

1

5108𝑤2
− 1 ≤ 0, Equation 29

with the following limits

0.05 ≤ 𝑤 ≤ 2.0, 0.25 ≤ 𝑑 ≤ 1.3, 2.0 ≤ 𝐿 ≤ 15.0

5.2.2 Welded Beam Design Optimisation Problem

Figure 5-2. Design of Welded Beam Problem.

Another regular assessment problem for constrained design optimisation is the welded

beam design as illustrated in Figure 5-2 (Cagnina et al., 2008). This design problem consists of

four design variables: length L and the width w of the welded area, thickness h and the depth h

 71

of the main beam. The aim of this problem is to minimise the overall fabrication cost with the

constraints of bending stress σ, buckling load P, shear stress τ, and maximum end deflection δ.

The problem can be written as minimise:

𝑓(𝑥) = 1.10471𝑤2𝐿 + 0.04811𝑑ℎ(14.0 + 𝐿), Equation 30

subject to

𝑔1(𝑥) = 𝑤 − ℎ ≤ 0, Equation 31

𝑔2(𝑥) = 𝛿(𝑥) − 0.25 ≤ 0, Equation 32

𝑔3(𝑥) = 𝜏(𝑥) − 13600 ≤ 0, Equation 33

𝑔4(𝑥) = 𝜎(𝑥) − 30000 ≤ 0, Equation 34

𝑔5(𝑥) = 0.10471𝑤2 + 0.04811ℎ𝑑(14 + 𝐿) − 5.0 ≤ 0, Equation 35

𝑔6(𝑥) = 0.125 − 𝑤 ≤ 0, Equation 36

𝑔7(𝑥) = 6000 − 𝑃(𝑥) ≤ 0, Equation 37

where

𝜎(𝑥) =
504000

ℎ𝑑2 , Equation 38

𝑄 = 6000(14 +
𝐿

2
) Equation 39

𝐷 =
1

2
√𝐿2 + (𝑤 + 𝑑)2, Equation 40

𝐽 = √2𝑤𝐿 [
𝐿2

6
+

(𝑤+𝑑)2

2
], Equation 41

𝛿 =
65856

30000ℎ𝑑3
, Equation 42

𝛽 =
𝑄𝐷

𝐽
, Equation 43

𝛼 =
6000

√2𝑤𝐿
, Equation 44

𝜏(𝑥) = √𝛼2 +
𝛼𝛽𝐿

𝐷
+ 𝛽2, Equation 45

𝑃 = 0.61423 × 106 𝑑ℎ3

6
(1 −

√30
48⁄

𝑑

28
) Equation 46

 72

The boundaries or limits are 0.1 ≤ L, h ≤ 2.0, d ≤ 10, and 0.1 ≤ w.

5.2.3 Pressure Vessel Design Optimisation Problem

Figure 5-3. Pressure Vessel Design Problem.

Figure 5-3 illustrated a cylindrical pressure vessel capped at both ends by hemispherical

heads. This compressed air storage tank has a working pressure of 3000 psi with a maximum

volume of 750 ft3. It is designed based on the ASME boiler and pressure vessel code. The

objective is to minimise total cost, including a combination of single welding cost, material and

forming cost (Choi & Chang, 2013). The variables involved are the thickness (Ts), the length of

the cylindrical section of the vessel (L), the thickness of the head (Th), and the inner radius (R).

The thicknesses of the variables are discrete values, which are integer multiples of 0.0625 inch.

The mathematical modelling for this optimisation problem can be summarised as follows:

 73

Minimize:

𝑓(𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿) = 0.6224𝑇𝑠𝑅𝐿 + 1.7781𝑇ℎ𝑅2 + 3.1661𝑇𝑠
2𝐿 + 19.84𝑇ℎ

2𝐾 Equation 47

Subject to:

𝑔1 = −𝑇𝑠 + 0.0193𝑅 ≤ 0 Equation 48

𝑔2 = −𝑇ℎ + 0.0095𝑅 ≤ 0 Equation 49

𝑔3 = −𝜋𝑅2𝐿 −
4

3
𝜋𝑅3 + 1296000 ≤ 0 Equation 50

𝑔4 = 𝐿 − 240 ≤ 0 Equation 51

where 1 × 0.0625 ≤ TS, Th ≤ 99 × 0.0625, and 10 ≤ R, L ≤ 200.

5.3 Result for Morphology Particle Swarm Optimisation

Eight existing evolutionary algorithms in literature are implemented on three

Engineering Design Problems Optimisation and compared against MPSO and CMPSO. The

average results of hundred executions for Tension/Compression Design Problem, Welded

Beam Design Problem, and Pressure Vessel Design Problem are presented in Table 5-1, Table

5-2, and Table 5-3 respectively. For Tension/Compression Design Problem, this problem

consists of three variables named x1, x2, and x3 which represent the main coil diameter, the

wire diameter, and the number of coils respectively. The best performing algorithm is MPSO

with the lowest average outcome of 0.01266 with design variables of 0.05175, 0.35818, and

11.20376. Another four algorithms are just slightly short of being the best performing algorithm

 74

with an average outcome of 0.01267. CMPSO obtains the best output for x1 (the main coil

diameter) with an average of 0.05115. Meanwhile, the best outcome for x2 (the wire diameter)

and x3 (the number of coils) are obtained by GA and TVAC PSO respectively with 0.32158

and 8.68448. Although GA has one of the best outcomes for design variables, but it also has

the highest average outcome of x3 with 13.97994. Hence, its final average outcome is the

highest with 0.01310 compared to other methods.

Table 5-1. MPSO results for Tension/Compression Design Problem.

Tension/Compression Design Problem

Algorithm
Design Variables

f(x)

x1 x2 x3

DE 0.05341 0.39922 9.18541 0.01271

GA 0.05046 0.32158 13.97994 0.01310

CSA 0.05216 0.36816 10.64844 0.01267

Fix PSO 0.05164 0.35536 11.39793 0.01274

Rand PSO 0.05173 0.35764 11.24454 0.01267

TVAC PSO 0.05395 0.41137 8.68448 0.01279

Linear PSO 0.05340 0.39918 9.18540 0.01273

CPSO 0.05169 0.35669 11.29048 0.01267

MPSO 0.05175 0.35818 11.20376 0.01266

CMPSO 0.05115 0.34987 12.07643 0.01267

For Welded Beam Design Optimisation Problem, the design variables represent the

thickness of the weld, h (x1), length of the welded joint, l (x2), width of the beam, t (x3), and

thickness of the beam, b (x4) with a main objective to minimise the overall cost of fabrication,

(f(x)). The results indicate the superiority of MPSO with the lowest outcome value of 1.73119

 75

and design variables of 0.20150, 3.56200, 9.04140, and 0.20570. CMPSO becomes the second

best performing algorithm with 1.73121 and the same as design variables outcome for MPSO;

except in x4 where it produced an average of 0.20571. The third best performing algorithm is

CPSO with a mean result of 2.38112, and average outputs for x1, x2, x3, and x4 are 0.2445,

6.21867, 8.29154, and 0.2442 respectively. Fix PSO is the least performing algorithm with an

output of 2.44116 on average. MPSO and CMPSO share the lowest outcome for x1 and x2 with

a mean outcome of 0.20150 and 3.56200 respectively. Linear PSO obtains the lowest output

for third design variable x3 with an average of 8.17897. MPSO once again managed to find the

lowest value for design variable x4 compared to other algorithms with a mean value of 0.20570.

Table 5-2. MPSO Results for Welded Beam Design Problem.

Welded Beam Design Problem

Algorithm
Design Variables

f(x)
x1 x2 x3 x4

DE 0.24551 6.19600 8.27301 0.24555 2.38591

GA 0.24552 6.19602 8.27445 0.24553 2.38597

CSA 0.24444 6.21775 8.29164 0.24445 2.38107

Fix PSO 0.24894 6.17357 8.18018 0.25355 2.44116

Rand PSO 0.24897 6.17306 8.17896 0.25337 2.43314

TVAC PSO 0.24448 6.23805 8.28865 0.24465 2.38547

Linear PSO 0.24895 6.17304 8.17891 0.25332 2.43318

CPSO 0.24445 6.21867 8.29154 0.24442 2.38112

MPSO 0.20150 3.56200 9.04140 0.20570 1.73119

CMPSO 0.20150 3.56200 9.04140 0.20571 1.73121

Pressure Vessel Design Problem main objective is to find the minimum total cost in

fabricating the pressure vessel with four design variables involved. These variables are the

 76

thickness, Ts, the thickness of the head, Th, the inner radius, R, and the length of the cylindrical

section of the vessel, L represents by x1, x2, x3, and x4 in the results recorded in Table 5-3.

Table 5-3. MPSO Results for Pressure Vessel Design Problem.

Pressure Vessel Design Problem

Algorithm
Design Variables

f(x)
x1 x2 x3 x4

DE 0.81250 0.43750 42.09127 176.74650 6061.07770

GA 1.12500 0.62500 58.29100 43.69000 7198.04280

CSA 0.81250 0.43750 40.32390 200.00000 6288.74450

Fix PSO 1.12500 0.62500 58.29000 43.69300 7197.70000

Rand PSO 1.12500 0.62500 47.70000 117.70100 8129.10360

TVAC PSO 1.12500 0.62500 58.27890 43.75490 7198.43300

Linear PSO 0.93750 0.50000 48.32900 112.67900 6410.38110

CPSO 0.81250 0.43750 42.09809 176.64052 6059.74560

MPSO 0.81250 0.43750 42.09835 176.63775 6059.72580

CMPSO 0.81250 0.43750 42.09740 176.65405 6059.94600

 From the observation in Table 5-3, MPSO managed to outperform other algorithms in

term of achieving the main objective with an average output of 6059.72580. The second best

performing algorithm is CPSO with a mean of 0.01980 short from MPSO in the final output.

CMPSO comes in third as best performing algorithm with a mean output of 6059.94600;

0.22020 short from the best performing algorithm. There are five algorithms share the lowest

value for x1 with an average of 0.81250. They also share the lowest value for x2 with an average

outcome of 0.43750. DE manages to find the lowest x3 value with an average outcome of

42.09127. GA, Fix PSO, and TVAC PSO are amongst the least performing algorithm group

although they managed to find lowest value for design variable x4 with an average outcome of

 77

43.69000, 43.69300, and 43.75490 respectively. The worst performing algorithm is Rand PSO

with a mean final result of 8129.10360.

Figure 5-4. Comparison Graph of All Algorithms against the Best Performing Algorithm.

 Figure 5-4 illustrates the performance of each method against the best result achieved

by the best performing method. MPSO managed to become the best performing algorithm in

all three chosen Engineering Design Optimisation Problems (EDP). The second most consistent

method is CMPSO where the different against MPSO is less than two percent across all EDP

involved. GA recorded the largest different against MPSO in spring design problem with more

than half different.

0

10

20

30

40

50

60

DE GA CSA Fix PSO Rand PSO TVAC PSO Linear PSO CPSO MPSO CMPSO

D
if

fe
re

n
t

A
ga

in
st

 T
h

e
 B

e
st

 P
e

rf
o

rm
in

g
A

lg
o

ri
th

m
 (

%
)

Algorithm

SPRING WELDED BEAM PRESSURE VESSEL

 78

5.4 Significance Analysis for Morphology Particle Swarm Optimisation

The same statistical significance analysis from the previous experiment is applied to the

result obtained in this experiment. The statistical tools use is N-Way ANOVA and Kruskal-

Wallis with Lilliefors test is applied before defining the parametric nature of the results. The

statistical significance is evaluated on benchmark functions and evolutionary approaches. For

this Engineering Design Problems, all results from Table 5-1, Table 5-2, and Table 5-3 are

considered and analysed for statistical difference and the results are shown in Table 5-4.

Table 5-4. Significance Analysis for Engineering Design Optimisation Problems (MPSO).

Category
Benchmark

Functions

Evolutionary

Methods

Benchmark Functions &

Evolutionary Methods

Fitness Value p = 0 p = 0 p = 0

The statistical analysis of the results shows the existence of statistical significance

between the performance achieved from the design optimisation problems (p = 0 < 0.5), the

evolutionary algorithms (p = 0 < 0.5), and the interactions of the design optimisation problems

and evolutionary algorithms (p = 0 < 0.05). Welded beam design problem and pressure vessel

design problem indicate a lack of significance different between them but show the statistical

significance different against tension/compression design problem.

For evolutionary approaches, MPSO and CMPSO show no indication of statistical

significance between them including DE, CSA, Linear PSO, and CPSO. However, they

demonstrate the occurrence of statistical significance against GA, Fix PSO, Rand PSO, and

TVAC PSO as shown in Figure 5-5.

 79

Figure 5-5. Box Plot of Significant Difference for Engineering Design Optimisation Problems

(MPSO).

5.5 Result for Dynamic Approaches of Particle Swarm Optimisation

All selected algorithms together with three dynamic approaches PSOs are executed

hundred times, and the average results for tension/compression design problem are recorded in

Table 5-5. The design variables x1, x2, and x3 denote the main coil diameter, the wire diameter,

and the number of coils respectively.

Table 5-5. DAPSO Results for Tension/Compression Design Problem.

Tension/Compression Design Problem

Algorithm
Design Variables

f(x)

x1 x2 x3

DE 0.05341 0.39922 9.18541 0.01271

GA 0.05046 0.32158 13.97994 0.01310

CSA 0.05216 0.36816 10.64844 0.01267

Fix PSO 0.05164 0.35536 11.39793 0.01274

 80

Rand PSO 0.05173 0.35764 11.24454 0.01267

TVAC PSO 0.05395 0.41137 8.68448 0.01279

Linear PSO 0.05340 0.39918 9.18540 0.01273

CPSO 0.05169 0.35669 11.29048 0.01267

AEPSO 0.05175 0.35818 11.20376 0.01266

CAEPSO 0.05168 0.35672 11.28883 0.01265

DACPSO 0.05164 0.35536 11.39792 0.01269

DPPSO 0.05132 0.35253 11.43886 0.01265

DPPSO managed outperforms other algorithms with the lowest average value for x1 of

0.05132. GA be able to beat other methods with the mean output of 0.32158 for x2. Linear PSO

recorded 9.18540 average outcomes for x3 and became the best performing algorithm in this

category. However, CAEPSO and DPPSO shared the top spot as the best overall performing

approach for this design problem as they recorded the same average final output of 0.01265.

Although they share the same outcome but their design variables value are entirely different.

CAEPSO recorded 0.05168, 0.35672, and 11.28883 for x1, x2, and x3 while DPPSO recorded

0.05132, 0.35253, and 11.43886 for x1, x2, and x3. AEPSO become the second best performing

algorithm with only 0.00001 different from CAEPSO and DPPSO with the design variables of

0.05175 (x1), 0.35818 (x2), and 11.20376 (x3).

Table 5-6. DAPSO Results for Welded Beam Design Problem.

Welded Beam Design Problem

Algorithm
Design Variables

f(x)
x1 x2 x3 x4

DE 0.24551 6.19600 8.27301 0.24555 2.38591

GA 0.24552 6.19602 8.27445 0.24553 2.38597

 81

CSA 0.24444 6.21775 8.29164 0.24445 2.38107

Fix PSO 0.24894 6.17357 8.18018 0.25355 2.44116

Rand PSO 0.24897 6.17306 8.17896 0.25337 2.43314

TVAC PSO 0.24448 6.23805 8.28865 0.24465 2.38547

Linear PSO 0.24895 6.17304 8.17891 0.25332 2.43318

CPSO 0.24445 6.21867 8.29154 0.24442 2.38112

AEPSO 0.19974 3.61206 9.03750 0.20608 1.73730

CAEPSO 0.20573 3.46988 9.03671 0.20577 1.72485

DACPSO 0.20880 3.42050 8.99750 0.21000 1.74831

DPPSO 0.20570 3.47113 9.03668 0.20573 1.72492

Four design variables involved in Welded Beam Design Optimisation Problem to

minimise the total outcome of the function. Those design variables are the thickness of the weld

(h), the length of the welded joint (l), the width of the beam (t), and thickness of the beam (b)

represent by x1, x2, x3, and x4 respectively. Twelve algorithms have been executed hundred

times to achieve the possible minimal value and compared against each other together with

three newly introduced dynamic approaches PSO. The results are shown in Table 5-6. From the

observation, CAEPSO manages to achieve the most minimal output compared to other

algorithms with an average output of 1.72485 and design variables of 0.20573 (x1), 3.46988

(x2), 9.03671 (x3), 0.20577 (x4). DPPSO is the second best performing method with average

come of 1.72492 and design variables of 0.20570 (x1), 3.47113 (x2), 9.03668 (x3), 0.20573

(x4). Although CAEPSO is the best performing algorithm for this engineering design problem

but concerning design variables, CAEPSO did not manage to find the lowest value for any of

its design variables. The lowest value for design variables for x1, x2, x3, and x4 are 0.19974,

 82

3.42050, 8.17891, and 0.20573 accomplished by AEPSO, DACPSO, Linear PSO, and DPPSO

respectively.

Table 5-7 illustrates the mean results obtained from running a hundred executions using

twelve differences evolutionary algorithms on the pressure vessel design problem. This

optimisation problem main objective is to find the minimum cost of designing the pressure

vessel with four design variables of the thickness (Ts), the thickness of the head (Th), the inner

radius (R), and the length of the cylindrical section of the vessel (L) which represents by x1, x2,

x3, and x4. For pressure vessel design problem, DPPSO recorded an average outcome of

6059.71129 and became the best performing algorithm with average design variables of

0.81250 for x1, 0.43750 for x2, 42.09845 for x3, and 176.63655 for x4. CAEPSO recorded

6059.71432 on average for final output to become the second best performing algorithm. The

average for CAEPSO’s design variables are almost similar to DPPSO with the different is only

on x4 with the different of 0.00005. The third best performing algorithm is AEPSO with an

average output of 6057.71433 and design variables of 0.81250 (x1), 0.43750 (x2), 42.09845

(x3) and 176.63661 (x4). DE, CSA, CPSO, AEPSO, CAEPSO, DACPSO, and DPPSO recorded

the same average results for x1 and x2 which are 0.81250 and 0.43750 respectively. CSA

manages to outperform others with an average of 40.32390 for x3. GA recorded 43.6900 on

average for x4 which is the lowest result recorded compared to the other algorithms.

Table 5-7. DAPSO Results for Pressure Vessel Design Problem Design Problem.

Pressure Vessel Design Problem

Algorithm
Design Variables

f(x)
x1 x2 x3 x4

DE 0.81250 0.43750 42.09127 176.74650 6061.07770

GA 1.12500 0.62500 58.29100 43.69000 7198.04280

 83

CSA 0.81250 0.43750 40.32390 200.00000 6288.74450

Fix PSO 1.12500 0.62500 58.29000 43.69300 7197.70000

Rand PSO 1.12500 0.62500 47.70000 117.70100 8129.10360

TVACPSO 1.12500 0.62500 58.27890 43.75490 7198.43300

Linear PSO 0.93750 0.50000 48.32900 112.67900 6410.38110

CPSO 0.81250 0.43750 42.09809 176.64052 6059.74560

AEPSO 0.81250 0.43750 42.09845 176.63661 6059.71433

CAEPSO 0.81250 0.43750 42.09845 176.63660 6059.71432

DACPSO 0.81250 0.43750 42.09809 176.64052 6059.74560

DPPSO 0.81250 0.43750 42.09845 176.63655 6059.71129

 Across all three engineering design optimisation problems, CAEPSO manages to

become the best performing algorithm in four occasions, two in overall output and two in design

variables. Meanwhile, DPPSO manages to become the best performing algorithm in six

occasions (two in overall output and four in design variables). DACPSO accomplishes three

best performing method but all in design variables.

 84

Figure 5-6. Comparison Graph of All Algorithms against the Best Performing Algorithm.

Based on observation in Figure 5-6 (comparison between algorithms against the best

performing algorithm), the best method for all EDP considered is DPPSO. CAEPSO recorded

almost similar results to DPPSO with the different between them is all less than one percent.

AEPSO at the second place with less than two percent. However, GA recorded the worst result

in spring design problem with the different against DPPSO more than hundred percent. For

welded beam design optimisation problem, all algorithms are shown almost twenty percent

different against DPPSO except for AEPSO, CAEPSO, and DACPSO.

0

20

40

60

80

100

120

DE GA CSA Fix PSO Rand
PSO

TVAC
PSO

Linear
PSO

CPSO AEPSO CAEPSO DACPSO DPPSOD
if

fe
re

n
t

A
ga

in
st

 T
h

e
B

es
t

P
e

rf
o

rm
in

g
A

lg
o

ri
th

m
 (

%
)

Algorithm

SPRING WELDED BEAM PRESSURE VESSEL

 85

5.6 Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation

The same statistical significance analysis from the previous experiment is applied to the

results obtained in this experiments. The statistical tools use is N-Way ANOVA and Kruskal-

Wallis with Lilliefors test is applied before to define the parametric nature of the results. The

statistical significance is evaluated on benchmark functions and evolutionary approaches. For

this Engineering Design Problems, all results from Table 5-5, Table 5-6, and Table 5-7 are

considered for analysis of statistical differences.

Table 5-8. Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation

(DAPSO).

Category
Benchmark

Functions

Evolutionary

Methods

Benchmark Functions &

Evolutionary Methods

Fitness Value p = 0 p = 0 p = 0

From the statistical analysis of the results, the outcomes show the occurrence of

statistical significance between the performance achieved from three engineering design

problems (p = 0 < 0.5), a number of evolutionary approaches (p = 0 < 0.5), and the interactions

of those three engineering design problems against evolutionary approaches (p = 0 < 0.05). The

result indicates the existence of significance different between tension/compression design

problem against welded beam and pressure vessel design problems.

 CAEPSO and DPPSO show clear statistical significance against GA, Fix PSO, Rand

PSO, and TVAC PSO but a lack of significance difference against DE, CSA, Linear PSO,

CPSO, AEPSO, and DACPSO. DACPSO indicates the statistical significance against Fix PSO

and Rand PSO as illustrated in Figure 5-7.

 86

Figure 5-7. Box Plot of Significant Difference for Engineering Design Optimisation Problems

(DAPSO).

5.7 Summary

This chapter discusses the results obtained for each considered evolutionary algorithms

in three different types of engineering design optimisation problems. From the observation,

discussion, and analysis, all proposed PSOs are considered as promising especially for MPSO,

CAEPSO, and DPPSO where they managed to outperform other evolutionary algorithms quite

comfortably. Dynamic approaches PSO are outstanding in welded beam design problem where

their final outcomes are obviously different from the other algorithms except AEPSO. The next

chapter will discuss the results of online application which is the main experiment of this

research. The details of the results, discussion, and analysis for mobile robot navigation can be

found in the following chapter.

 87

CHAPTER 6

MOBILE ROBOT NAVIGATION PROBLEM

(MAZE LAYOUT)

6.1 Introduction

The algorithms considered for this experiment are Fix PSO (Fix PSO), Linear

Decreasing Inertia Weight PSO (Linear PSO), Constricted PSO (CPSO), Area Extended PSO

(AEPSO), Constricted Area Extended PSO (CAEPSO), Dynamic Acceleration Coefficients

PSO (DACPSO), and Dynamic Parameterisation PSO (DPPSO). The traditional methods for

path planning are also included in this experiment which is Dijkstra’s Algorithm (DA), Potential

Field (PF), Rapidly-Exploring Random Tree (RRT) and Probabilistic Road Map (PRM). The

Robot Operating System (ROS) is used as the platform to program the source code for all

methods and embedded into a mobile robot which is discussed in chapter 2.

Seven factors are considered to assess the performance of the selected algorithms in

these experiments. The first factor considered is Time which the total time is taken for the robot

to travel from the starting location to the goal location. The next factor considered is the Number

of Collisions where the number of collisions occurred during the runs counted. Arrived at

Destination where the ability of the algorithm to successfully drive the robot to the goal location

depending on odometry are tested. Travelled Distance is one of the crucial factor considered

where the total distance that the robot travelled from the starting location to the goal location is

evaluated. Another important factor is Battery Consumption, where the total of the percentage

 88

of battery consumed on average by the robot to complete the task assigned. The data of battery

consumption is solely measured from the mobile robot’s battery and nothing to do with the

battery consumed on computational while executing the algorithms. Displacement Problem is

also measured as one of the factors where if the robot’s final position is out of the acceptable

range of the target points, then it is considered as a displacement problem. The tolerance range

is one and a half size of the mobile robot used which is 90cm radius from the centre of exact

coordinate location.

6.2 The Maze Layout

For this mobile robot indoor path planning experiment, a single robot (Turtlebot) is

tasked to navigate through the obstacles from a fixed starting point towards a fixed destination

location through a maze layout. From the various classical motion planning approaches

discussed, Potential Field (PF), Dijkstra’s Algorithm (DA), Rapidly-exploring Random Tree

(RRT) and Probabilistic Road Map (PRM) are considered, with the understanding that detailed

information of the environment is provided only for DA while all other methods rely solely on

their online sensory perception. Each node in the DA represents a centroid location between

two nearby obstacles and the distance between these nodes are considered as weights. Amongst

the evolutionary-based motion planning approaches, GA, DE, CSA and variation of PSO are

utilised. The first one is a maze layout and the second one is a symmetric layout. Both layouts

are complex with obstacles rich and hard to manoeuvre around. Both layouts were run and

repeated ten times for each algorithm.

The layout is appropriately named as a maze layout because of the placement of the

obstacles that resulted in the robot being constantly surrounded by them whilst it is moving

 89

towards the goal position. Figure 6-1 illustrates the layout of the testing environment in this

experiment. The starting location (marked as S), target location (marked as D) and obstacles

are represented in blue, red and black colours respectively. The obstacles are rectangular in

shape and they all have the same dimensions (except for two obstacles that are marked as B).

Figure 6-1. The Maze Layout.

The dimensions of the obstacles marked as A in the above figure are 79cm × 60cm and

the other two obstacles, marked as B, are 92cm × 60cm. The gaps between the obstacles are

consistent throughout the layout and are set to be less than twice of the size of the robot (55cm).

The gaps between the obstacles and the walls are set to 63cm on left and 84cm on the right. The

 90

dimensions of the maze layout are set to 8m × 5m. Figure 6-2 offers four snapshots from

different angles of the maze layout from which the density of the obstacles is evidenced.

Figure 6-2. The view of Path Planning Experiment (Maze Layout) from Four Difference Angles.

The Turtlebot robot platform (as shown in Figure 6-3) with a width of 30 cm is utilised

in combination with the Robotic Operating System (ROS) to carry out all of the path planning

experiments involved in this research. Two touch sensors and six infrared sensors are utilised

as the main sensing equipment. In order to protect the robot from having a high-speed collision

that can cause a significant amount of error in the odometry sensor data, the robot is instructed

 91

to immediately reduce its velocity once the infrareds detect any objects within its range. Hence,

any collision that occurs is considered as a controlled collision and the robot is programmed to

execute an immediate stop and reverse mode to prevent a distortion of the odometry sensor

data. The procedure to address the required recovery steps from the obstacle collision includes

i) choosing a temporary destination depending on obstacle position, ii) turning towards a

temporary destination, iii) moving towards the temporary target location for 2s, iv) returning

the control to the motion planner algorithm.

Figure 6-3. The Turtlebot.

 92

6.3 Result for Morphology Particle Swarm Optimisation

This subsection discussed the results, performance and significance analysis for

Morphology PSO in both two layouts involved in path planning for mobile robot experiment.

The first results are based on Maze Layout with only one starting point and one target point.

Meanwhile, the second results from Symmetric Layout consist of three sub-experiments with a

combination of two starting points and two target points.

The average results of MPSO and CMPSO against other evolutionary algorithms and

motion planning algorithms achieved from ten executions in mobile robot navigation

experiment for maze layout are reported Table 6-1. The results are discussed based on the

factors considered above. From the observations, all algorithms managed to find a route

between the starting and the destination points. All these algorithms also managed to avoid any

collision with the obstacles within the maze environment. Within the ten runs executed, all

algorithms successfully arrived at the destination without any displacement problem. These due

to the same mechanism of obstacle avoidance and odometry calculation used for all algorithms.

 93

Table 6-1. MPSO Result for Path Planning in Maze Layout

Algorithm

Arrived at

Destination

(Times)

Number

of

Collisions

(Times)

Displacement

Problem

(Times)

Execution

Time

(Seconds)

Battery

Consumption

(%)

Travelled

Distance

(Meter)

Convergence

Iterations

Best

Performing

Algorithm

(Out of 6/7)

PF 10 0 0 287.5688 2.7671 12.8936 - 3

DA 10 0 0 255.6497 1.5505 11.8966 - 6

RRT 10 0 0 466.7081 2.8598 13.7719 - 3

PRM 10 0 0 574.9445 4.6810 14.4165 - 3

DE 10 0 0 257.4400 1.5874 12.1954 542.0 3

GA 10 0 0 323.4239 1.9770 12.7922 565.3 3

CSA 10 0 0 306.6856 1.8880 12.1075 550.7 3

Fix PSO 10 0 0 273.2990 4.5097 12.2378 551.0 3

Rand PSO 10 0 0 296.9488 1.7990 12.2994 548.1 3

TVAC PSO 10 0 0 299.8347 1.8064 12.1073 531.9 3

Linear PSO 10 0 0 307.3298 1.8398 12.3441 544.1 3

CPSO 10 0 0 262.6602 1.7313 12.1088 544.5 3

MPSO 10 0 0 261.5600 1.5838 12.0148 508.9 4

CMPSO 10 0 0 263.2141 1.5683 12.1733 517.6 3

 94

Concerning execution time factor, DA managed to become the best performing

algorithm with 255.6497 seconds on average to complete the navigation task. This performance

is closely followed by MPSO and CPSO with 261.5600 seconds and 262.6602 seconds as

second and third best performing algorithm respectively. In the battery consumption category,

DA managed to use only 1.5505% power consumption on average and become the best

performing algorithm. However, CMPSO is slightly short from being the best performing

algorithm with an average of 1.5683% battery consumption.

MPSO and DE are the third and fourth best performing algorithm with an average of

1.5838% and 1.5874% battery consumption. DA recorded an average of 11.8966 meters in total

travelled distance category to outperform others. MPSO come as second best performing

algorithm with an average travelled distance of 12.0148 meters. This result is closely followed

by CPSO and CMPSO with an average travelled distance of 12.0148 and 12.1733 meter to

become the third and fourth best performing algorithm. Convergence Iteration category is only

applied to evolutionary based algorithms.

In this category, MPSO managed to outperform other EA-based methods with an

average of 508.9 iterations in ten runs. CMPSO and TVAC PSO are the second and third

performing methods with 517.6 and 531.9 average iterations per execution respectively.

Regarding being the best performing algorithm, DA is the most outstanding algorithm with

being the best performing algorithm in each category considered except convergence iterations

category which dominated by MPSO.

 95

Figure 6-4. The graph of the best performing algorithm against other algorithms (For All

Factors).

 Figure 6-4 shown the performance of all algorithms against the best performing

algorithm in four factors considered (Execution Time, Battery Consumption, Travelled

Distance and Numbers of Iterations). DA is the best performing algorithm for all factors (with

omission for iteration factor) but considering its superiority in term of map information, it is

safe to state that MPSO is the closest local path planning performing as decent as DA for all

factors. DE is also showing quite close performance in 2 out of 3 factors considered against DA

with CPSO is more consistent throughout all three factors.

Figure 6-5 illustrated the trajectory traces for all utilised algorithms in mobile robot

navigation problems for maze layout. Each sub-figure in Figure 6-5 represents ten paths

travelled by the Turtlebot robot using a specific motion planning and navigation technique.

These ten routes in each sub-figure are illustrated using different colour codes. From the

observation on the figure, DA stands out as the most consistent algorithm. MPSO, CMPSO,

 96

DE, GA, CSA, and all variants of PSO trajectory traces are almost similar between one another

where they have shown high precisions with only one or two executions not following the same

trajectory (only towards the end of the journeys). The trajectory traces of PF, RRT, and PRM

indicate a lack of consistency and low precision since almost none of the travelled paths are

similar. It is due to the EA-based algorithm using almost the same mechanism which is dealing

with obstacles and feasible paths or routes depending on their current position.

Figure 6-5. Trajectory traces of employed approaches (including Morphology based PSO) in

Path Planning Experiment for Maze Layout. Colour variation between trajectories is indicative

of different executions (trials) with maximum 10 trials.

In order to better understand the reasoning behind the performance differences between

various approaches utilised in the research, a unique representation of the robot's motion is used.

 97

In this representation, the experiment layout is divided into nine equal-sized rectangles; each

called a region.

The average number of times (across ten executions) that the robot is located in each

region is recorded. The results are presented in the form of pie charts in Figure 6-6. In this

experiment, regions 2 and 9 contains starting and end points respectively. It is noteworthy that

DA, as the best performing approach, only considered regions 2, 3, 6 and 9 in its trajectories

with regions 6 and 3 having the highest and the least contributions in robot’s chosen trajectory

respectively. Given that regions 4, 5, and 6 are the regions containing three parallel rows of

obstacles, these areas are likely to be the most difficult to manoeuver. This issue is reflected in

the pie charts illustrated in Figure 6-6 in which the highest percentage is dedicated to region 6.

This is with exception of RRT algorithm in which region 3 received the highest percentage of

occupation. MPSO and CMPSO behaviour are almost similar to DA in term of the region

occupied with only slight different of percentage amongst four regions occupied.

Figure 6-6. Region Occupied for Path Planning Experiment (Maze Layout).

 98

It is also noticeable that in the case of PRM algorithm the occupation percentage

observed in region 6 of other methods is shared between regions 5 and 6. Unlike other

approaches, PRM also included region 8 in its trajectories. The inclusion of these additional

regions (5 and 8) are likely to be the reason behind the poor performance achieved by PRM

algorithm in this experiment. RRT, unlike PRM, did not include any additional regions in its

trajectory towards the destination, however, from the results in the pie chart, it is noticeable that

this approach spent an unusual amount of time for manoeuvring within region 3.

It is obvious by allocating 39% to region 3 by RRT in comparison with DE and GA in

which the robot occupied this region in only 12% of its trajectory toward the destination. The

second best performing algorithm (MPSO) reported a smaller percentage (15%) for occupying

region 2 compared with DA (20%). Furthermore, in comparison to DA, MPSO also reported a

smaller percentage in regions 9 (destination region) while it occupied most of its time in region

6 with 49%. Similar performance is observed by PF which reported 56% average occupation

of region 6 while outmanoeuvring DA and MPSO in region 2 with 11% average occupation.

The differences observed between MPSO and DA in their manoeuvrability in region 6 can be

due to DA’s advantage in terms of having full knowledge of the environment layout.

6.4 Significance Analysis for Morphology Particle Swarm Optimisation

Table 6-2. Statistical Analysis for Morphology Particle Swarm Optimisation (MPSO).

Category Experiments Approaches Experiments & Approaches

Time (s) - p = 6.44912e-29 -

Battery

Consumption

(%)

- p = 1.70000e-02 -

 99

Travelled

Distance (m)
- p = 4.87912e-22 -

Convergence

iteration
- p = 1.70000e-02 -

Similar to experiments in chapter 5 and 6, statistical analysis of the results is considered

to further assess the findings in this motion planning experiment for maze and symmetric

layouts and the results are shown in Table 6-2. The analysis is performed based on four

categories of battery consumption, execution time, travelled distance and convergence iteration.

Following observations are made for the path planning experiment using maze layout:

Figure 6-7. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Execution Time factor.

 100

 Execution time (s): The results of statistical significant analysis indicated such

significant in approaches (p = 4.87912e-22 < 0.05). Based on the observation from

Figure 6-7, RRT and PRM are found to be a statistically significant difference from all

other approaches and each other. However, there is no statistically significant difference

observed between PF, DA, DE, GA, CSA, Fix PSO, Rand PSO, TVAC PSO, Linear

PSO, CPSO, MPSO, and CMPSO.

Figure 6-8. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Battery Consumption factor.

 Battery Consumption (%): Statistical significant analysis of the results indicated

existent of such significant among the approaches utilized (p = 6.4491e-29 < 0.05).

From the methods comparison, statistical significant analysis indicated a lack of

 101

significant difference between each other except for Fix PSO which shown significant

difference against DA, DE, CPSO, MPSO, and CMPSO as illustrated in Figure 6-8.

Figure 6-9. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Travelled Distance factor.

 The length of the travelled path (m): Statistical significant analysis of the results

indicated existent of such significant among the approaches utilized (p = 4.87912e-22

< 0.05). Within this category, only PRM once indicated significant difference from

others while the rest indicated a lack of statistical significant amongst themselves.

 102

Figure 6-10. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Convergence Iteration factor.

 Convergence iteration: The statistical analysis of the results indicate a lack of significant

in approaches (p = 0.17 > 0.05). As seen in Figure 6-10, there is no significant different

between approaches.

6.5 Result for Dynamic Approaches of Particle Swarm Optimisation

This subsection discussed the results, performance and significance analysis for

Constricted Area Extended PSO (CAEPSO), Dynamic Acceleration Coefficients PSO

(DACPSO) and Dynamic Parameterising PSO (DPPSO) in the maze and symmetric layouts for

mobile robot navigation experiments. The results are divided into another two sub-section based

on their layout.

 103

The same method is used where average results achieved from ten executions of motion

planning algorithms are reported in Table 6-3. The results are discussed based on the same

factors discussed in previous sub-section which were number of obstacle collisions, number of

runs with successful arrival to the destination point, number of runs with displacement problem,

average execution time, average battery consumption, average travel distance, and average

convergence iteration (excluding classical path planning methods). From the observations in

Table 6-3, all algorithms managed to find a route between the starting and the destination points

without any displacement problem. These are due to the same platform and obstacle behaviours

applied to all algorithms involved. The different however can be observed within four

remaining considered factors (execution time, battery consumption, total travelled distance, and

iteration numbers.

For execution time category, DA managed to outperform other algorithms with an

average time taken to complete the motion planning of 87.5493 seconds. DPPSO and CAEPSO

become second and third best performing algorithm with average execution time of 120.3214

seconds and 123.4300 seconds respectively. CPSO closely follows it with 126.6746 seconds

and PF with 126.7588 seconds. Next considering factor is battery consumption, where DA once

again outperformed others with an average energy consumption of only 0.3524%. The second

best performing method is DPPSO with an average of 0.4432% and narrowly followed by

CPSO with an average of 0.4637%. CAEPSO and DACPSO reported an average battery

consumption of 0.6385% and 0.5719% respectively.

 104

Table 6-3. DAPSO Results for Path Planning in Maze Layout

Factor
Arrived at

Destination

Number

of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance

(m)

Convergence

Iterations

Best

Performing

Algorithm

PF 10 0 0 287.5688 2.7671 12.8936 - 3

DA 10 0 0 255.6497 1.5505 11.8966 - 5

RRT 10 0 0 466.7081 2.8598 13.7719 - 3

PRM 10 0 0 574.9445 4.6810 14.4165 - 3

DE 10 0 0 257.4400 1.5874 12.1954 542.0 3

GA 10 0 0 323.4239 1.9770 12.7922 565.3 3

CSA 10 0 0 306.6856 1.8880 12.1075 550.7 3

Fix PSO 10 0 0 273.2990 4.5097 12.2378 551.0 3

Rand PSO 10 0 0 296.9488 1.7990 12.2994 548.1 3

TVAC PSO 10 0 0 299.8347 1.8064 12.1073 531.9 3

Linear PSO 10 0 0 307.3298 1.8398 12.3441 544.1 3

CPSO 10 0 0 262.6602 1.7313 12.1088 544.5 3

AEPSO 10 0 0 258.1006 1.8813 12.1370 554.1 3

CAEPSO 10 0 0 256.6345 1.7046 12.1051 540.0 4

DACPSO 10 0 0 270.4412 1.8294 12.2550 545.1 3

DPPSO 10 0 0 255.1144 1.6978 12.0125 541.2 4

 105

In the travelled distance category, DA was outperformed by DPPSO and CAEPSO with

a mean results of 7.3982 meters and 7.4333 meters respectively while DA only managed to

record 7.4706 meters on average. TVAC PSO surprisingly outdone other algorithms for

iteration numbers category with an average of 422.7 iterations. Rand PSO just slightly short

from TVAC PSO with an average result of 422.9 iterations, followed by Fix PSO with 432.8

iterations.

Figure 6-11. The graph of the best performing algorithm against other algorithms (For All

Factors).

 Figure 6-11 shown the performance of each algorithm chosen against the best

performing algorithm (DA) in 4 factors (execution time, battery consumption, travelled distance

and numbers of iterations). As DA has full information about the map, it is considered as the

best results can be obtained by the other algorithms. From the observation on the graph, DPPSO

 106

is the most consistent algorithm throughout all 3 factors considered against the DA. CAEPSO

and CPSO shown a quite similar result but CPSO seems more consistent across three categories

measured.

Figure 6-12. Trajectory Traces for DAPSO in Maze Layout Path Planning.

Figure 6-2 illustrated the trajectory traces for all utilised algorithms including Dynamic

Approaches PSO in maze layout. Each sub-figure in Figure 6-2 represent ten paths travelled by

the turtlebot robot using a specific motion planning and navigation technique. These ten routes

in each sub-figure are illustrated using different colour coding. From the observation on the

figure, DA, CPSO, AEPSO, CAEPSO, and DPPSO stands out as the most consistent algorithm.

The trajectory traces of PF, RRT, PRM, and TVAC PSO indicate the least consistency

compared to the other methods. AEPSO, CAEPSO, and DPPSO shown almost a similar

trajectory traces which mean they used almost the same paths. Other algorithms that have

 107

similar paths as AEPSO, CAEPSO, and DPPSO are Fix PSO, Rand PSO, and CPSO. DE and

GA also have similar path with one to two paths shown their wandering behaviour.

Figure 6-13. Pie Chart of Region Occupied for Dynamic Approaches PSO against other

algorithms in Maze Layout.

In order to have better understanding about the performance differences among various

approaches utilized in the research, a unique representation of the robot’s motion is presented.

In this presentation, the experiment layout is divided into nine equal-sized rectangles, each

rectangle known as a region and the average number of times (across ten executions) that the

robot is positioned in each region is noted. The results are illustrated in the form of pie charts

as seen Figure 6-13. It should be noted that given that there are fundamental differences between

the performances of some of the approaches considered in the research and in order to be able

to compare the findings presented in pie charts form, the results are rescaled to the range of 1

to 100. For this layout, the starting point is within region 2 and the destination point is within

region 9.

 108

Considering regions 4, 5, and 6 are the regions consisting three parallel rows of

obstacles, these areas are likely to be the hardest to maneuverer. This issue reflected itself in

pie charts illustrated in Figure 6-13 in where all methods consist the highest percentage in

region 6 (with the exception of RRT). The best performing approach, DA, only used regions 2,

3, 6, and 9 in its trajectories with regions 6 and 3 having the highest and the least contributions

in robot’s chosen trajectories respectively. All algorithms is considering the same regions as

DA except for PRM where it shown a sign of struggled to minimise the number of regions

occupied. This could be a reason for PRM to not perform well although eventually PRM did

manage to find the destination point. CAEPSO did consider a small fraction of region 8 (3%

occupation) in its trajectories due to destination point location in region 9 but quite close to

region 8. CAEPSO, DACPSO, and DPPSO have recorded close percentage occupation to DA.

For region 1, CAEPSO and DPPSO used 19% of their time in region 1 while DACPSO

occupied region 1 with 1% shorter time compared to those two. For region 3, DACPSO and

DPPSO shared the same occupation percentage (14%), and CAEPSO was occupying the region

for 11%. CAEPSO and DACPSO spent the same amount of time navigating region 6 with 49%

while DPPSO used 5% lesser time in region 6.

6.6 Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation

Table 6-4. Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation

(DAPSO)

Category Experiments Approaches Experiments & Approaches

Time (s) - p = 5.13884e-34 -

Battery

Consumption

(%)

- p = 1.23000e-02 -

 109

Travelled

Distance (m)
- p = 6.27720e-24 -

Convergence

iteration
- p = 7.23100e-01 -

Similar to statistical analysis done for Morphology PSO for mobile robot navigation

experiments in previous sub-section, the analysis is performed based on four categories of

battery consumption, execution time, travelled distance, and convergence iteration (Table 6-4).

The following results are seen:

Figure 6-14. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Execution Time factor.

 Execution time (s): The statistical analysis shown significant difference between

approaches applied (p = 5.13884e-34 < 0.05). The significant difference is observed

 110

(based on Figure 6-14) between all algorithms against RRT and PRM with the exception

of GA. GA is only shown significant difference against PRM.

Figure 6-15. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Battery Consumption factor.

 Battery Consumption (%): The outcome of statistical analysis recorded significant

difference between approaches (p = 1.23000e-02 < 0.05). Only PF, RRT, and PRM

showed lack significant difference against the worst performing algorithm for this

category, Fix PSO. The rest of algorithms shown significant different against Fix PSO

and not between them.

 111

Figure 6-16. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Travelled Distance factor.

 Total travelled distance (m): Although, the results of the statistical significant analysis

indicated such significant amongst methods (p = 6.2772e-24 < 0.05) but only PRM

showed significant difference between other methods. Meanwhile, other methods

indicated a lack of significant difference amongst themselves.

 112

Figure 6-17. Box Plot of Significant Difference in Mobile Robot Navigation Problem (Maze

Layout) for Iterations factor.

 Convergence iteration: The results of statistical analysis shown a lack of significant

difference between algorithms (p = 0.7231 > 0.05). None of the algorithms shown any

significant difference between themselves.

6.7 Summary

This chapter has discussed the results achieved from two set of layouts for mobile robot

navigation experiment. Two types of proposed PSO (Morphology based PSO and Dynamic

Behaviours based PSO) were tested against twelve algorithms and thirteen algorithms

respectively (including four classical path planning methods). From the observation, discussion,

and analysis, all newly introduced PSOs are considered as encouraging especially for MPSO,

CAEPSO, and DPPSO where they managed to outperform other evolutionary algorithms (with

the exception of DA, due to its advantages) almost easily. These three algorithms are

 113

outstanding especially sub-experiment 1 for symmetric layout where they managed to

outperform DA for total travelled distance category although they did not have any bits of

knowledge about the layout. From the findings as well, these algorithms shown a lack of

significant different against the best performing algorithm for all categories considered which

shown their competitiveness even though they did not have any information about the layouts.

 114

CHAPTER 7

MOBILE ROBOT NAVIGATION PROBLEM

(SYMMETRIC LAYOUT)

7.1 Introduction

This experiment is using the exact parameter setup and platform as in the previous

chapter. The algorithms considered for this assessment are Fix PSO (Fix PSO), Linear

Decreasing Inertia Weight PSO (Linear PSO), Constricted PSO (CPSO), Area Extended PSO

(AEPSO), Constricted Area Extended PSO (CAEPSO), Dynamic Acceleration Coefficients

PSO (DACPSO), and Dynamic Parameterisation PSO (DPPSO). For this experiment, Robot

Operating System (ROS) is used as the platform to program the source code for all methods

and embedded into a mobile robot. The details of ROS is discussed in the following sub-section.

Seven factors are considered to assess the performance of the selected algorithms in

these experiments. The first factor considered is Time which the total time is taken for the robot

to travel from the starting location to the goal location. The next factor considered is the Number

of Collisions where the number of collisions occurred during the runs counted. Arrived at

Destination where the ability of the algorithm to successfully drive the robot to the goal location

depending on odometry are tested. Travelled Distance is one of the crucial factor considered

where the total distance that the robot travelled from the starting location to the goal position is

evaluated. Another important factor is Battery Consumption, where the total of percentage of

battery consumed on average by the robot in order to complete the task assigned. Displacement

 115

Problem is also measured as one of the factors where if the robot’s final position is out of the

tolerance range of the goal location, then it is considered as a displacement problem. The

tolerance range is one and a half size of the mobile robot used which is 90cm radius from the

centre of exact coordinate location.

7.2 The Symmetric Layout

Figure 7-1. Symmetric Layout with an Irregular Shape Obstacle.

Figure 7-1 illustrates the layout of the third experiment. The layout is designed to be

symmetric on both sides with irregular obstacles being placed in the middle. The environment

is 5 meters wide by 6 meters long. This layout comprises of a combination of 4 sets of barriers

 116

(differing in their dimensions) and one irregular-shaped obstacle. The dimensions (length (l) ×

width (w)) of the barriers utilised in this layout can be found in Table 7-1. Two starting points

(marked as S1 and S2) and two destination points (marked as D1 and D2) are considered in this

experiment. The results in three sub-experiments are different from each other as their starting

and destination locations are altered.

Figure 7-2. The view of Path Planning Experiment (Symmetric Layout) from Four Difference

Angles.

These sub-experiments include the following routes i) S1 to D1, ii) S2 to D1 and iii)

S2 to D2. The sub-experiment that features the route between S2 to D1 is ignored due to the

 117

existing symmetry in this layout. Figure 7-2 offers four snapshots from different angles of this

symmetric layout.

Table 7-1. The dimensions of the utilised obstacles in the environment for symmetric layout for path planning

experiment

Obstacle ID Dimension

A 71.5cm × 62.0cm

B 34.0cm × 80.0cm

C 21.5cm × 93.0cm

D 68.5cm × 20.0cm

IR 552.5cm (parameter)

7.3 Result for Morphology Particle Swarm Optimisation

All performance from mobile robot navigation problems for symmetric layout is

reported within four folds of three sub-experiments and overall achievements in Table 7-2,

Table 7-3, Table 7-4, and Table 7-5. The results are discussed based on same categories from

the previous layout which are i) number of obstacle collisions, ii) number of runs with

successful arrival to the destination point, iii) number of runs with displacement problem, iv)

average convergence iteration (for EA-based methods), v) average travel distance, vi) average

battery consumption and vii) average execution time (s).

From the observations in sub-experiment 1 (Table 7-2), all algorithm shared the best

performance in the first, second, and third factors considered (arrived at the destination, the

number of collisions, and displacement problem) because all the algorithms used the same

approach for obstacle avoidance and the same platform. For the time execution category, DA

 118

needed the least amount of time to complete the task on average with the result of 87.5493

seconds. MPSO and CPSO came in second and third with the output of 124.8705 seconds and

126.6746 seconds on average respectively to complete the task.

In battery consumption category, DA once again managed to outperform other

algorithms with a mean result of 0.3524% power consumption. CPSO is the second best

performing algorithm with a mean result of 0.4637% energy consumption and followed by PF

with an average outcome of 0.4970% power consumption.

 119

Table 7-2. MPSO results for Path Planning in Symmetric Layout (Sub-Experiment 1)

Sub-Experiment 1

Algorithm
Arrived at

Destination

Number of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance (m)

Convergence

Iterations

PF 10 0 0 126.7588 0.4970 7.5604 -

DA 10 0 0 87.5493 0.3524 7.4706 -

RRT 10 0 0 385.1796 2.5631 9.2181 -

PRM 10 0 0 243.1524 0.9421 9.2613 -

DE 10 0 0 129.8887 0.7864 7.4456 470.6

GA 10 0 0 143.1296 0.8531 7.5950 519.6

CSA 10 0 0 178.1093 0.6565 7.5327 472.0

Fix PSO 10 0 0 150.0594 0.8939 7.7145 432.8

Rand PSO 10 0 0 145.7491 0.8605 7.6536 422.9

TVAC PSO 10 0 0 208.9403 1.2389 8.4111 422.7

Linear PSO 10 0 0 144.3843 0.8568 7.6117 449.1

CPSO 10 0 0 126.6746 0.4637 7.4822 476.5

MPSO 10 0 0 124.8705 0.5082 7.3993 422.3

CMPSO 10 0 0 127.9800 0.5604 7.4793 466.0

 120

Surprisingly, MPSO managed to outperform DA in total travelled distance category

with an average of 0.0713 meters short from DA’s outcome. DE also managed to outclass DA

in this category and become the second best performing algorithm with a mean result of 7.4456

meters. It is due to the risk is taken by MPSO and DE where they travelled nearer to the edges

of the obstacles which reduced the total travelled cost as a result compares to DA. MPSO also

outperformed others in the average convergence iteration category with 422.3 iterations. TVAC

PSO closely follows this performance with 422.7 iterations and Rand PSO with 422.9 iterations.

Figure 7-3 illustrates the trajectory traces for employed approaches in Sub-Experiment

1 from experiment III. Each sub-figure in Figure 7-3 represent ten paths travelled by the

turtlebot robot using a particular motion planning and navigation technique. These ten routes in

each sub-figure are illustrated using different colour coding.

From the observation, almost all methods show fairly consistent performance with two

different patterns of trajectory traces. PF and DA share the same trend (several turns) while the

rest show the different type of path with almost no sharp turn at all but only one arch turn. This

arc turn is near to the irregular obstacles placed in the middle of the layout. It is noteworthy that

MPSO forms a trajectory traces like almost a straight line. It can be a reason why the overall

travelled distance is the lowest compared to the other algorithms. RRT and PRM show less

consistency and low precision in their trajectory traces as obviously seen in several diversions

from the shortest path across ten executions. DA is expected to show the high consistency and

precision in its trajectory traces since it has full knowledge about the layout. However, MPSO

and DE also managed to perform surprisingly well as DA although they do not have the same

prior knowledge as DA.

 121

Figure 7-3. Trajectory traces of employed approaches (including Morphology based PSO) in

Path Planning Experiment for Symmetric Layout (Sub-Experiment 1). Colour variation

between trajectories is indicative of different executions (trials) with maximum ten trials.

In general, all algorithms seem to be using the same route or path to complete this task.

It is caused by the irregular shape obstacle being placed in the middle of the environment which

is likely to affect the algorithms chosen a path in a consistent way across all executions. Similar

to the previous experiment, the layout of this experiment is divided into nine equal-sized

rectangles named as regions. In sub-experiment 1, the starting and end points are located in

regions 1 and 9 respectively with the irregular shape obstacle being placed in region 5 with

partial coverage of region 8.

 122

Figure 7-4. Pie Chart of Region Occupied for MPSO and CMPSO against other algorithms in

Sub-Experiment 1 (Symmetric Layout).

The average number of the robot location in each region is reported in the format of pie

chart in Figure 7-4 (across ten executions). From the observation on the pie chart, DA spent (on

average) 36% of its time within region 1, 26% within region 2, 23% within region 5, 4% within

region 6 and 11% within region 9. Meanwhile, PF spent 30% of its time within region 1, 16%

within region 2, a small percent within region 4 (2%), 41% within region 5, 4% within region

6, and 7% within region 9. Linear PSO used most of its time in region 9 compares to the other

algorithms with 39%. This might be due to the robot’s inability to find the exact location of the

final destination resulting in several passages of the same route between already visited points

in this region. MPSO considered as the overall best performing algorithm in term of total

travelled distance, considered region 5 as well in its path which occupied by irregular shape

obstacles. As stated before, the consideration of region 5 (closer to obstacles) made the path

shorter for MPSO hence outperform DA’s outcomes for travelled distance category.

 123

In this sub-experiment 2 (Table 7-3), DA outperformed all other motion planning

methods in all categories except for iteration numbers which only competed amongst EA-based

methods. Similar to previous experiments, no collision or displacement problems are observed

in any of the executions of the approaches utilised. In the average execution time category, DA

performance of 77.0312 seconds is followed by PF and MPSO with 106.6591 and 115.0737

seconds respectively. DA outperforms other algorithms in average battery consumption factor

with 0.3115% followed by CPSO with 0.3131% and MPSO with 0. 3636% average battery

consumption. DA is the only method managed to record an average travelled distance below 6

meters with the mean result of 5.9697 meters. MPSO is slightly higher with the mean of 6.1354

meters travelled distance. CPSO become the third best performing algorithm for total travelled

distance category with 0.0599 meters more than MPSO and 0.2256 meters more than DA on

average. Unexpectedly, Rand PSO required the least average iteration numbers to complete this

task with the result of 401.5 iterations. Linear PSO becomes the second best with the result of

411.5 iterations and followed by CPSO with 470.0 iterations.

 124

Table 7-3. MPSO results for Path Planning in Symmetric Layout (Sub-Experiment 2)

Sub-Experiment 2

Algorithm
Arrived at

Destination

Number of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance (m)

Convergence

Iterations

PF 10 0 0 106.6591 0.4154 6.2051 -

DA 10 0 0 77.0312 0.3115 5.9697 -

RRT 10 0 0 334.8004 1.2537 6.9449 -

PRM 10 0 0 334.5404 1.2537 6.9433 -

DE 10 0 0 118.0599 2.0363 6.5982 488.8

GA 10 0 0 154.5190 0.5786 6.9026 543.2

CSA 10 0 0 210.0471 0.7826 7.0973 652.2

Fix PSO 10 0 0 124.4046 3.8131 6.4567 497.8

Rand PSO 10 0 0 126.8047 0.4970 6.5045 401.5

TVAC PSO 10 0 0 130.4547 0.5119 6.5692 496.8

Linear PSO 10 0 0 123.4652 0.4748 6.5190 411.5

CPSO 10 0 0 115.9784 0.3131 6.1953 470.0

MPSO 10 0 0 115.0737 0.3636 6.1354 480.8

CMPSO 10 0 0 116.9857 0.3999 6.2150 474.9

 125

The trajectory traces of the methods utilised in this experiment are illustrated in Figure

7-5. The results indicate that DA undertook the same path in all ten runs within this sub-

experiment while GA, CSA, and RRT show some inconsistency in their travelled paths. PF,

DE, and MPSO trajectory traces are almost close to DA trajectory traces. Between the EA-

based approaches, DE choose paths which are closer to the ones chosen by DA with CSA

demonstrating the most divergent from such path compared to the others. RRT used a different

route once which visibly seen in the figure. Although, MPSO trajectory traces are not identical

between one to another but the consistency in shape can be seen with majority of the routes

taken are closer to the obstacles. Rand PSO, TVAC PSO, and Linear PSO showed the same

behaviour in term of selecting the path with evidence can be seen from almost same trajectory

traces.

Figure 7-5. Trajectory traces of employed approaches (including Morphology based PSO) in

Path Planning Experiment for Symmetric Layout (Sub-Experiment 2). Colour variation

between trajectories is indicative of different executions (trials) with maximum 10 trials.

 126

Result presented in Figure 7-6 indicate that all methods are consistent in their chosen

trajectory by only visiting regions 1, 4, and 7 with an exception to CMPSO which visiting region

5 as well. The target destination is within region 7 while the starting point is within region 1.

Looking at pie chart results in Figure 7-6, PF, DA, CPSO, and MPSO reported almost identical

distribution across the three regions. The noticeable difference between the performances of

these four algorithms is that DA has 3 to 5% higher average occupation of destination region

while having around 1 to 4% less average occupation of region 1 compared to CPSO, MPSO,

and PF. RRT and PRM demonstrated same pie chart performance with 40%, 39% and 21%

average time spent in regions 1, 4 and 7 respectively. This similarity is also reflected in their

trajectory traces presented in Figure 7-5 and similarities observed on various factors and

categories reported in Table 7-3.

Figure 7-6. Pie Chart of Region Occupied for MPSO and CMPSO against other algorithms in

Sub-Experiment 2 (Symmetric Layout).

 127

GA and DE also reported a similar average percentage of coverage distribution across

the three regions. There are also two noticeable reading in this figure where CMPSO is the only

algorithm occupied region 5 (8% occupation on average), and only CSA occupied region 7

longer than any other algorithms with 36% on average. This issue for CSA better explains the

poor performance of CSA reported in Table 7-3 in which in almost all categories it is identified

as the worst performing approach.

Similar to previous sub-experiments, in this sub experiment, all algorithms managed to

drive the robot to its destination safely without any obstacle collision and displacement

problems as shown in Table 7-4. DA clocked up 90.6391 seconds in average for execution time

category followed by MPSO (171.4892s) and CPSO (169.8085s). DA outperform other

algorithms in battery consumption category with only 0.3709% average battery consumption

compared with the second and third best achieved performances of 0.6565% (MPSO) and

0.7031% (CPSO). DA travelled the shortest path on average with 7.1247 meters followed by

MPSO and CPSO with 7.9212 and 7.9538 meters respectively. CMPSO surprisingly

outperforms other algorithms and become the best performing algorithm for iteration numbers

category with average of 440.1 iterations. Rand PSO and MPSO become as second best and

third best with an average iteration numbers of 444.2 and 445.4 respectively. The least

performing algorithm is RRT for execution time and battery consumption with 374.3786

seconds and 1.3910% on average respectively. Meanwhile, for travelled distance category, GA

recorded the highest travelled distance of 9.6089 meters on average, and for iteration numbers

category, Linear PSO recorded 517.9 iteration numbers on average.

 128

Table 7-4. MPSO results for Path Planning in Symmetric Layout (Sub-Experiment 3)

Sub-Experiment 3

Algorithm
Arrived at

Destination

Number of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance (m)

Convergence

Iterations

PF 10 0 0 184.3313 0.7270 8.4680 -

DA 10 0 0 90.6391 0.3709 7.1247 -

RRT 10 0 0 374.3786 1.3910 8.6183 -

PRM 10 0 0 209.6193 0.7937 8.0842 -

DE 10 0 0 192.5292 1.4948 8.7962 462.0

GA 10 0 0 252.7201 0.9830 9.6089 468.9

CSA 10 0 0 335.1722 1.3168 9.4214 723.5

Fix PSO 10 0 0 286.9791 1.1053 8.5221 502.9

Rand PSO 10 0 0 190.9152 0.7419 8.3127 444.2

TVAC PSO 10 0 0 215.9695 0.8309 8.9183 466.3

Linear PSO 10 0 0 299.9560 1.1573 8.7546 517.9

CPSO 10 0 0 179.8085 0.7031 7.9538 453.9

MPSO 10 0 0 171.4892 0.6565 7.9212 445.4

CMPSO 10 0 0 186.0757 0.8753 8.0144 440.1

 129

Figure 7-7. Trajectory traces of employed approaches (including Morphology based PSO) in

Path Planning Experiment for Symmetric Layout (Sub-Experiment 3). Colour variation

between trajectories is indicative of different executions (trials) with maximum ten trials.

The trajectory traces of the methods utilised in this experiment are illustrated in Figure

7-7Figure 7-7. Similar to the previous experiments; DA is consistent with its chosen path. CPSO

also demonstrated consistency in its chosen path although it is not identical to DA. MPSO used

a route which required turtlebot to go around the obstacles like path selected by CPSO twice. It

is because of MPSO slight advantage over CPSO and made the total travelled distance shorter

as evidence in Table 7-4. CSA and RRT showed a wandering behaviour near the goal point

indicating their inability to identify the better path towards the goal. PRM showed the most

similar trajectory to DA with only two executions following a slightly longer path. This is the

reason why the total travelled distance of PRM is quite outstanding compared to its previous

 130

results in travelled distance category. RRT and GA trajectory traces indicate inconsistent

behaviours concerning the chosen manoeuvring strategies when they faced the irregular shape

obstacle. CSA has shown quite a consistency at the early stage of manoeuvring, however, start

to show inconsistency towards the later stage of manoeuvring which resulting in the weak

outcome in the end.

Figure 7-8. Pie Chart of Region Occupied for MPSO and CMPSO against other algorithms in

Sub-Experiment 3 (Symmetric Layout).

For this sub-experiment 3, the starting point is within region 1 and the end point is within

region 9. The results indicate that half of the algorithms inhabited region 6 as part of their path

towards the destination while the other half of the algorithms did not consider this area at all.

Considering DA as the best performing approach, it is noteworthy that region 6 is ignored while

the highest average occupation percentage for region 8 is observed. DA occupied region 1 by

33% on average where only RRT, Rand PSO, and Linear PSO have reported higher or on par

of average occupation percentage for this area. PRM and RRT demonstrated different region

 131

coverages, where RRT occupied region 1 longer compared to PRM while PRM occupied region

5 longer than all other techniques. Unlike DA, RRT and PRM who excluded region 6 in their

trajectories, CPSO recorded the second largest average occupation percentage for this area. The

distribution of percentages between various parts in CPSO pie chart indicates that the robot

controlled by CPSO performed exceptionally well in all regions but 6. It is likely due to the

robot experiencing Cul-De-Sac problem by being surrounded by several obstacles and not being

able to find a clear way out resulting in achieving poor performances in this region. It is

noticeable that the average travelled distance differences between DA-CPSO and PRM-CPSO

is in order of 0.5 and 0.03 meters respectively (see Table 7-4). This matter indicates that

although CPSO performed poorly in region 6 but its exceptionally well performance in other

regions (especially region 5 that contained the irregularly shaped obstacle) resulted in the

algorithm becoming the third best performing method in this sub-experiment.

Although, MPSO did use path within region 6 twice, but since it just went through the

region in short time hence, the percentage of region occupation is too small and neglected.

MPSO is the only algorithm occupied region 9 longer than any other algorithms with 46%.

However, this matter did not affect the final result of travelled distance achieved by MPSO.

MPSO just used a friction of region 8 whilst completing this manoeuvring task. CMPSO

occupied region 6 almost similar to MPSO’s occupation on region 9 with 47% total occupation.

CMPSO also required approximately even time to manoeuvre region 1 and region 2 with

occupation percentage of 22% and 19% respectively.

 132

Table 7-5. MPSO results for Path Planning in Symmetric Layout (Overall)

Overall

Algorithm
Arrived at

Destination

Number of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance

(m)

Convergence

Iterations

Best

Performing

Algorithm

PF 10 0 0 139.2497 0.5465 7.4111 - 9

DA 10 0 0 85.0732 0.3449 6.8550 - 17

RRT 10 0 0 364.7862 1.7359 8.2604 - 9

PRM 10 0 0 262.4374 0.9965 8.0963 - 9

DE 10 0 0 146.8259 1.4392 7.6133 473.8 9

GA 10 0 0 183.4562 0.8049 8.0355 510.6 9

CSA 10 0 0 241.1095 0.9186 8.0171 615.9 9

Fix PSO 10 0 0 187.1477 1.9374 7.5644 477.8 9

Rand PSO 10 0 0 154.4897 0.6998 7.4903 422.9 10

TVAC PSO 10 0 0 185.1215 0.8606 7.9662 461.9 9

Linear PSO 10 0 0 189.2685 0.8296 7.6284 459.5 9

CPSO 10 0 0 140.8205 0.4933 7.2104 466.8 9

MPSO 10 0 0 137.7818 0.5094 7.1520 449.5 11

CMPSO 10 0 0 143.0431 0.6119 7.2262 460.3 9

 133

By considering the performances of all motion planning techniques across the three sub-

experiments in this symmetric layout, DA has emerged as the best performing approach. DA

show consistent top performance across all categories considered with only outperformed once

by MPSO in the average travelled distance for sub-experiment 1. MPSO and CPSO are the

second and third best performing algorithms in this experiment due to their consistently high

performance in most categories across all three sub-experiments in this layout. PF shows quite

promising results across all categories considered. Although, PF used local path planning

approach, but since its concept of using highest force to determine the path chosen, it moves

more directly towards goal and faster compared to RRT and PRM in local path planning.

Regarding comparison between classical and heuristic-based algorithms, it seems like

heuristic-based methods performed decently especially in motion planning experiment for maze

layout where all heuristic-based approaches managed to outperform all traditional algorithms

(except DA) in all categories considered. However, in motion planning experiment for

symmetric layout, PF managed to outperform all EA-based algorithms (except CPSO, MPSO,

and CMPSO) in most of the categories considered. It is also worth mentioning that RRT and

PRM performed quite poorly in terms of execution time and travelled distance. Although, these

methods are actually among the best path planning algorithm, but they are only performing well

if it is implements under global path planning condition where they have full or part knowledge

about the environment layout.

Compared to another classical method, PF managed to outperform RRT and PRM in all

categories. The reason is because of PF algorithm is more direct and did not have any influence

on random factor compared to those two. Although DA managed to outperform other methods

in all relevant categories, it is noteworthy that DA has an advantage compared to others. Unlike

 134

the other methods that have zero knowledge about the environment layout forcing them to

perform local motion planning base on their online sensory readings, DA had access to the

complete environmental plan and uses global path planning. Therefore, the results achieved by

DA is considered as the perfect optimal performance. From the overall performance, it can be

concluded that MPSO is the best performing approach given that it became the second best to

DA in almost every category considered in the research.

Figure 7-9. The graph of the best performing algorithm against other algorithms (Execution

Time Factor).

 Figure 7-9 illustrates the best performing algorithm as the benchmark for the other

algorithms for execution time category. There are consistent performances shown across 3 paths

chosen by PF, DE, Rand PSO, CPSO, MPSO, and CMPSO. However, in average, MPSO and

PF are quite close to DA as the different between them against DA is less than five percent. The

worst performance is seen in the first path where RRT recorded more than twenty-five percent

difference against the DA.

 135

Figure 7-10. The graph of the best performing algorithm against other algorithms (Battery

Consumption Factor).

The graph of the percentage difference between the best performing algorithm and the

other algorithms for battery consumption category is illustrated in Figure 7-10. The most

noticeable difference can be seen in RRT’s performance in the first path and Fix PSO’s

performance in the second path with more than thirty percent and thirty-five different against

DA’s result respectively. The consistency can be seen in PF, CPSO, MPSO, and CMPSO as all

of them shown similar performance amongst them for all paths. CPSO also recorded almost par

result with the DA in the second experiment.

 136

Figure 7-11. The graph of the best performing algorithm against other algorithms (Travelled

Distance Factor).

 MPSO has shown better performance than DA in the first path in term of travelled

distance factor as illustrated in Figure 7-11. DE also managed to outperform DA in the first

path, but the different is less than one percent. The worst performing algorithm is PRM which

is nearly thirty percent different against MPSO. The algorithms which recorded the consistence

performance beside DA are CPSO, MPSO, and CMPSO. Based on the average result, it shows

only PF, CPSO, MPSO and CMPSO recorded less than five percent against DA. On the other

hand, only RRT, PRM and TVAC PSO registered more than 10 percent difference against DA.

 137

Figure 7-12. The graph of the best performing algorithm against other algorithms (Iterations

Factor)

 PF, DA, RRT and PRM are not considered in this category as they are not evolutionary

algorithms. Rand PSO is the best performing algorithm for this category as shown in Figure

7-12. MSPO is the only algorithm which recorded less than ten percent different against Rand

PSO for all three paths considered for this experiment. CSA recorded two biggest difference

against RAND PSO in the second and third sub-experiments while GA recorded the most

significant difference in the first sub-experiment against RAND PSO.

7.4 Significance Analysis for Morphology Particle Swarm Optimisation

Table 7-6. Significance Analysis for Morphology Particle Swarm Optimisation (MPSO).

Category Experiments Approaches Experiments & Approaches

Time (s) p = 2.90108e-27 p = 5.13176e-89 p = 2.10670e-27

Battery

Consumption

(%)

p = 7.22500e-01 p = 4.00000e-04 p = 4.16000e-02

 138

Travelled

Distance (m)
p = 2.79102e-58 p = 9.89340e-17 p = 2.98832e-28

Convergence

iteration
p = 4.48000e-02 p = 0 p = 0

The same statistical significant analysis of performance are carried for these

experiments involved. The significant of findings on the basis of categories and factors

considered earlier are discussed below:

Figure 7-13. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Execution Time factor.

 Execution time (s): There is significant difference exists between approaches utilised in

this category (p=5.13176e-89<0.05). DA shown statistical difference against all

algorithms. However, considering the advantage the DA has, it means MPSO is the best

 139

performing algorithm. MPSO shown significant difference between seven other

methods which is RRT, PRM, GA, CSA, Fix PSO, Rand PSO, and TVAC PSO.

Figure 7-14. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Energy Consumption factor.

 Energy consumption (%): The results of the statistical significant analysis indicated

such significant in approaches (p=0.0004<0.05). Within the algorithms applied, DA

showed significant difference against RRT and Fix PSO with PF and MPSO showed

significant difference against Fix PSO. Meanwhile, other algorithms are shown a lack

of statistical difference amongst themselves.

 140

Figure 7-15. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Travelled Distance factor.

 The length of the travelled path (m): From the observation, the results shown the

existence of a significant difference between approaches (p = 9.8934e-17 < 0.05). The

result indicated a significant difference between DA against other methods employed.

PF, DE, CPSO, MPSO, and CMPSO showed no significant difference between them

but PF and MPSO show significant difference against the other algorithms. DE and

CMPSO showed the existence of significant different between them against RRT, PRM,

CSA, Fix PSO and Linear PSO.

 141

Figure 7-16. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Iteration factor.

 Convergence iteration: The statistical analysis of the results point out significant

different between approaches (p=0.0000<0.05). GA, CSA and TVAC PSO shown

significance different against other approaches including amongst themselves.

7.5 Result for Dynamic Approaches of Particle Swarm Optimisation

All performance from mobile robot navigation problems are reported in Table 7-7 (sub-

experiment 1), Table 7-8 (sub-experiment 2), and Table 7-9 (sub-experiment 3). The results are

discussed based on the same categories; i) number of obstacle collisions, ii) number of runs

with a successful arrival to the destination point, iii) number of runs with a displacement

problem, iv) the average of convergence iteration (for EA-based methods), v) the average of

 142

travelled distance, vi) the average of battery consumption and vii) the average of execution time

(s).

From the observations in sub-experiment1, the first factor considered is the number of

collisions. The result is similar to the findings in the previous layout where all algorithms

utilised managed to avoid collision while moving from the starting point towards the

destination. All approaches also managed to arrive at the destination and without any

displacement problem. DA outperformed other methods concerning the average execution time

where it clocked only 87.5493 seconds to complete the navigation task. DPPSO and CAEPSO

followed DA’s performance in this category with 120.3214 seconds and 123.4300 seconds

respectively. DA become the best performing algorithm in battery consumption factor with only

using 0.3524% energy on average. DPPSO follows this performance with 0.4432% and CPSO

with 0.4637% average power consumptions.

For travelled distance category, DE, CAEPSO, and DPPSO managed to outperform DA

with an average travelled distance of 7.4456 meters, 7.4333 meters, and 7.3982 meters

respectively. DA only come as fourth best performing algorithm with 7.4706 meters. It is

perhaps because unlike DA, that places its nodes in the middle point of two nearby obstacles (a

safe distance from either obstacle), those three methods are taking a risk by allowing the

turtlebot manoeuvring closer to the edges of the obstacles which made the final travelled

distance shorter.

TVAC PSO outperformed others in the average convergence iteration category with

422.7 iterations. Rand PSO closely follows this performance with 422.9 iterations and Fix PSO

with 432.8 iterations.

 143

Table 7-7. DAPSO Results for Path Planning in Symmetric Layout (Sub-Experiment 1)

Sub-Experiment 1

Algorithm
Arrived at

Destination

Number of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance (m)

Convergence

Iterations

PF 10 0 0 126.7588 0.4970 7.5604 -

DA 10 0 0 87.5493 0.3524 7.4706 -

RRT 10 0 0 385.1796 2.5631 9.2181 -

PRM 10 0 0 243.1524 0.9421 9.2613 -

DE 10 0 0 129.8887 0.7864 7.4456 470.6

GA 10 0 0 143.1296 0.8531 7.5950 519.6

CSA 10 0 0 178.1093 0.6565 7.5327 472.0

Fix PSO 10 0 0 150.0594 0.8939 7.7145 432.8

Rand PSO 10 0 0 145.7491 0.8605 7.6536 422.9

TVAC PSO 10 0 0 208.9403 1.2389 8.4111 422.7

Linear PSO 10 0 0 144.3843 0.8568 7.6117 449.1

CPSO 10 0 0 126.6746 0.4637 7.4822 476.5

AEPSO 10 0 0 133.2502 0.7231 7.5663 506.5

CAEPSO 10 0 0 123.4300 0.6385 7.4333 506.3

DACPSO 10 0 0 140.3164 0.5719 7.7772 504.3

DPPSO 10 0 0 120.3214 0.4432 7.3982 478.0

 144

Figure 7-17. Trajectory traces of employed approaches in Path Planning Experiment for

Symmetric Layout (Sub-Experiment 1). Colour variation between trajectories is indicative of

different executions (trials) with maximum ten trials.

Figure 7-17 illustrates the trajectory traces for employed approaches in Sub-Experiment

1 from the symmetric layout. Each sub-figure in Figure 7-17 represent ten routes travelled by

the turtlebot robot equipped with a precise motion planning and navigation techniques. All ten

paths in each sub-figure are described using different colour coding. From the observation, PF,

DA, CPSO, AEPSO, CAEPSO, and DPPSO show the most consistent performance with almost

identical paths in ten attempts. RRT, DE, TVAC PSO, and Fix PSO show less consistency and

low precision in their trajectory traces as seen in the tracks across ten runs. DA is expected to

show coherence and high precision in its trajectory traces since it is required full knowledge of

the layout to navigate. However, CAEPSO and DPPSO are surprisingly outclassed DA in term

 145

of total travelled distance although they do not have the same prior knowledge as DA. It shows

that CAEPSO and DPPSO probably using the path closer to the obstacles which made the total

travelled distance shorter. All algorithms seem to like using the same route or path to complete

this mission. It could be the result of the irregular shape obstacle being placed in the middle of

the environment which is unlikely to affect the algorithms chosen a path in a consistent way

across all executions.

Figure 7-18. Pie Chart of Region Occupied for Dynamic Approaches PSO against other

algorithms in Sub-Experiment 1 (Symmetric Layout).

Similar to previous navigation experiments, the layout of sub-experiment 1 for

symmetric layout is divided into nine equal-sized rectangles named as regions. In sub-

experiment 1, the starting and end points are located in areas 1 and 9 respectively with the

irregular shape obstacle being placed in region 5 with partial coverage of region 8. The average

 146

number of times (across ten runs) that the robot is located in each region is reported in the

format of the pie chart in Figure 7-18.

DA, as the best performing method, spent (on average) 36% of its time within region 1,

26% within region 2, 23% within region 5, 4% within region 6 and 11% within region 9. GA,

CPSO, and CAEPSO reported similar occupied areas as DA while the other algorithm

considered region 4 as well. However, except PRM, others just occupied region 4 7% or less of

their times. CAEPSO and DPPSO reported similar areas as DA with a significant difference in

region 9 where CAEPSO and DPPSO manoeuvre slightly better with less 5-7% than DA. This

small marginal differences between DA, CAEPSO, and DPPSO as observed in the pie charts

are also supported by findings reported in Table 7-7 in which the average travelled distance

differences between DA and CAEPSO is 0.373 meter and between DA and DPPSO is 0.724

meter. DACPSO reported similar region occupation as DPPSO as well but in term of

percentages are slightly different. The major different are the possession in region 1, region 2,

and region 6 where DPPSO out-manoeuvre DACPSO in region 2 and region 6 while DACPSO

manoeuvre slightly efficient than DPPSO in region 1 with only 25%.

In sub-experiment 2 (Table 7-8), DA managed to outperform all other motion planning

methods in all considered factor except for iteration numbers which only measured amongst

EA-based methods. Similar to previous experiments, no collision or displacement problems are

observed in any of the executions of the algorithms utilised. In the execution time factor, DA

clocked 77.0312 to become the best performing and followed by DPPSO and CAEPSO as

second and third best performing algorithm with 103.4310 and 104.1725 seconds respectively.

 147

Table 7-8. DAPSO Results for Path Planning in Symmetric Layout (Sub-Experiment 2)

Sub-Experiment 2

Algorithm
Arrived at

Destination

Number of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance (m)

Convergence

Iterations

PF 10 0 0 106.6591 0.4154 6.2051 -

DA 10 0 0 77.0312 0.3115 5.9697 -

RRT 10 0 0 334.8004 1.2537 6.9449 -

PRM 10 0 0 334.5404 1.2537 6.9433 -

DE 10 0 0 118.0599 2.0363 6.5982 488.8

GA 10 0 0 154.5190 0.5786 6.9026 543.2

CSA 10 0 0 210.0471 0.7826 7.0973 652.2

Fix PSO 10 0 0 124.4046 3.8131 6.4567 497.8

Rand PSO 10 0 0 126.8047 0.4970 6.5045 401.5

TVAC PSO 10 0 0 130.4547 0.5119 6.5692 496.8

Linear PSO 10 0 0 123.4652 0.4748 6.5190 411.5

CPSO 10 0 0 115.9784 0.3131 6.1953 470.0

AEPSO 10 0 0 125.2043 0.4971 6.1237 462.6

CAEPSO 10 0 0 104.1725 0.4914 6.0162 441.7

DACPSO 10 0 0 126.2115 0.4711 6.3482 452.3

DPPSO 10 0 0 103.4310 0.4785 6.0241 451.5

 148

In battery consumption factor, DA outperformed other algorithms with 0.3115% battery

consumption on average. CPSO closely follows it with an average of 0.3131% and PF with an

average 0.4154% on battery consumption. DA shown its superiority with becoming the only

method recorded an average travelled distance under 6 meters (5.9697 meters). CAEPSO

recorded just slightly higher average results with 6.0162 meter travelled distance. DPPSO

recorded 0.0079 meters more than CAEPSO and 0.0544 meters more than DA on average. Rand

PSO surprisingly becomes the algorithm which required the least average iteration numbers

with the result of 401.5 iterations. Linear PSO and DPPSO become the second and third best

with the result of 411.5 iterations and 451.5 iterations respectively.

Figure 7-19. Trajectory traces of employed approaches in Path Planning Experiment for

Symmetric Layout (Sub-Experiment 2). Colour variation between trajectories is indicative of

different executions (trials) with maximum 10 trials.

 149

The trajectory traces of the methods utilised in this experiment are illustrated in Figure

7-19. The results show clearly that PF, DA, and DE undertook the same path in all ten runs

within this sub-experiment while RRT is the least consistent algorithm compared to the others

in its travelled paths. Others algorithms were using almost similar path across their ten

executions although they were not as precise as PF, DA, and DE. Although CAEPSO and

DPPSO as not consistence as PF, DA, and DE but some of their paths are quite close to obstacles

which made up to the other paths. It is also made their outcome for total travelled distance quite

short. Between the EA-based methods, DE trajectories are close to the best performing

algorithm (DA) with CSA demonstrating the most opposing from such path compared to the

others even its trajectory traces are quite consistent.

Figure 7-20. Pie Chart of Region Occupied for Dynamic Approaches PSO against other

algorithms in Sub-Experiment 2 (Symmetric Layout).

Figure 7-20 shown pie chart representation of turtlebot’s manoeuvres in different

regions occupation in the experiment layout. In this sub-experiment 2, the initial position of

 150

turtlebot is placed within region 1 and final positions is positioned in regions 7. Irregular shape

obstacle is put in region 5 with partially within region 4.

Results presented in Figure 7-20 points out that all methods are consistent in their

chosen trajectories by only visiting three regions across ten execution (region 1, region 4, and

region 7). Focusing at the pie chart results in Figure 7-20, DA and PF reported almost same

region occupation across the three areas. The noticeable difference between the performances

of these three algorithms is that DA has 4% higher average occupation of destination region

while having around 4% less average occupation of starting region compared PF. RRT and

PRM demonstrated matching pie chart performance with 39%, 40% and 21% average region

occupation in areas 1, 4 and 7 respectively. The three dynamic behaviours based PSO also

demonstrated almost identical pie chart performance with just 1% occupation different amongst

themselves for all three regions considered. The most different algorithm for this pie chart

results is CSA with more time spent in region 7 compared to the others. This issue could be

clarified the poor performance of CSA recorded in Table 7-8 where it is identified as the worst

performing algorithm in almost all categories considered.

Similar to previous sub-experiments, in this sub-experiment 3, all algorithms managed

to steer the turtlebot to its target securely by avoiding any obstacle collision and displacement

problems as shown in Table 7-9. DA recorded 90.6391 seconds in average for execution time

category and became the best performing algorithm. It is followed by DPPSO with a mean

execution time of 156.0103 seconds and CAEPSO with a mean execution time of 157.4145

seconds. DA also outperform other algorithms in battery consumption factor with only 0.3709%

average battery consumption compared with the second (0.5712% for CAEPSO) and the third

(0.6237% for DPPSO) best performing algorithm.

 151

Table 7-9. DAPSO Results for Path Planning in Symmetric Layout (Sub-Experiment 3)

Sub-Experiment 3

Algorithm
Arrived at

Destination

Number of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance

(m)

Convergence

Iterations

PF 10 0 0 184.3313 0.7270 8.4680 -

DA 10 0 0 90.6391 0.3709 7.1247 -

RRT 10 0 0 374.3786 1.3910 8.6183 -

PRM 10 0 0 209.6193 0.7937 8.0842 -

DE 10 0 0 192.5292 1.4948 8.7962 462.0

GA 10 0 0 252.7201 0.9830 9.6089 468.9

CSA 10 0 0 335.1722 1.3168 9.4214 723.5

Fix PSO 10 0 0 286.9791 1.1053 8.5221 502.9

Rand PSO 10 0 0 190.9152 0.7419 8.3127 444.2

TVAC PSO 10 0 0 215.9695 0.8309 8.9183 466.3

Linear PSO 10 0 0 299.9560 1.1573 8.7546 517.9

CPSO 10 0 0 179.8085 0.7031 7.9538 453.9

AEPSO 10 0 0 205.5403 0.9050 7.9706 451.5

CAEPSO 10 0 0 157.4145 0.5712 7.4107 443.3

DACPSO 10 0 0 201.9664 0.6528 7.8479 482.6

DPPSO 10 0 0 156.0103 0.6237 7.5545 430.5

 152

DA managed to find the shortest path on average for total travelled distance with 7.1247

meters and closely followed by CAEPSO and DPPSO with 7.4107 meters and 7.5545 meters

respectively. DPPSO managed to become the best performing algorithm for iteration numbers

category with an average of 430.5 iterations per execution. CAEPSO and Rand PSO recorded

average iteration numbers of 443.3 and 444.2 respectively to become the second best and the

third best performing algorithm. RRT is the least performing algorithm is for execution time

and battery consumption with 374.3786 seconds and 1.3910% on average respectively while

for travelled distance factor, GA recorded the highest travelled distance of 9.6089 meters on

average. Linear PSO recorded 517.9 iteration numbers on average to be considered as the least

performing algorithm for iteration numbers category.

The trajectory traces of the algorithms utilised for sub-experiment 3 are shown in Figure

7-21. DA is the most consistent within its chosen path which was similar to the previous sub-

experiments. CPSO and DPPSO also demonstrated consistency across ten executions in its

chosen path although it is not identical to DA. CAEPSO and DACPSO are quite consistent as

well with only went around the obstacle twice. The algorithm with least consistency are RRT

and GA where they have the most different chosen paths within their trajectory traces. CSA is

quite consistent as well but unfortunately struggling near to destination area. PRM performed

quite well in this sub-experiment (as seen in Table 7-9) compared to previous experiments

because of consistency showed by the algorithm in this sub-experiment where only two

different paths chosen from ten runs.

 153

Figure 7-21. Trajectory traces of employed approaches in Path Planning Experiment for

Symmetric Layout (Sub-Experiment 3). Colour variation between trajectories is indicative of

different executions (trials) with maximum 10 trials.

The initial point is within region 1 while the goal point is within region 9 for this sub-

experiment 3. Nine out of sixteen algorithms considered region 6 as part of their routes towards

the final destination while the remaining algorithms (DA, RRT, PRM, Rand PSO, Linear PSO,

CAEPSO, and DACPSO) did not consider this region within their route. With the consideration

of DA as the best performing algorithm, it is notable for the algorithm that region 6 is neglected

while the percentage of occupation in region 8 is quite high. DA highest occupation region is

region 1 with recorded percentage of 33% where only RRT, Rand PSO, Linear PSO, CAEPSO,

and DACPSO recorded the same or higher occupation percentage within this region.

The algorithm which considered region 6 as part of their route will spent a high

percentage of occupation within this region. It is because this region is the trickiest area amongst

 154

other areas because of Cul-De-Sac problem. If the algorithm can perform well, the reward is

quite high, but if the algorithm cannot deal with this issue, hence it can punish with a bad result

in term of execution time and total travelled distance. DPPSO could be the algorithm which

benefits from performing well in this problem and become the third best performing algorithm.

It is also noteworthy that the different in average travelled distance between DA-DPPSO is just

0.2860 meter. From the observation, CAEPSO and DACPSO did consider region 6 as one of

their routes twice, but due to the fact that time spent here was quite short hence after rescaling,

it was neglected.

CAEPSO occupied four region in total with the results of 43% for region 1, 25% for

region 2, 26% of region 5 and just 5% for the destination region. DACPSO recorded 38%

occupation for region 1, 24% for region 2, 28% for region 5 and 8% for region 9. Meanwhile

DPPSO as third best performing algorithm considered region 1, region 2, region 5, region 6,

and region 9 with the occupation percentage of 19%, 14%, 10%, 52%, and 5% respectively.

Figure 7-22. Pie Chart of Region Occupied for Dynamic Approaches PSO against other

algorithms in Sub-Experiment 3 (Symmetric Layout).

 155

Table 7-10. Overall Results for DAPSO in Path Planning Experiment on Symmetric Layout

Overall

Algorithm
Arrived at

Destination

Number of

Collisions

Displacement

Problem

Execution

Time (sec)

Battery

Consumption

(%)

Travelled

Distance

(m)

Convergence

Iterations

Best

Performing

Algorithm

PF 10 0 0 139.2497 0.5465 7.4111 - 9

DA 10 0 0 85.0732 0.3449 6.8550 - 17

RRT 10 0 0 364.7862 1.7359 8.2604 - 9

PRM 10 0 0 262.4374 0.9965 8.0963 - 9

DE 10 0 0 146.8259 1.4392 7.6133 473.8 9

GA 10 0 0 183.4562 0.8049 8.0355 510.6 9

CSA 10 0 0 241.1095 0.9186 8.0171 615.9 9

Fix PSO 10 0 0 187.1477 1.9374 7.5644 477.8 9

Rand PSO 10 0 0 154.4897 0.6998 7.4903 422.9 10

TVAC PSO 10 0 0 185.1215 0.8606 7.9662 461.9 10

Linear PSO 10 0 0 189.2685 0.8296 7.6284 459.5 9

CPSO 10 0 0 140.8205 0.4933 7.2104 466.8 9

AEPSO 10 0 0 154.6649 0.7084 7.2202 473.5 9

CAEPSO 10 0 0 128.3390 0.5670 6.9534 463.8 10

DACPSO 10 0 0 156.1648 0.5653 7.3244 479.7 9

DPPSO 10 0 0 126.5876 0.5151 6.9923 453.3 10

 156

Considering all motion planning techniques performance across the three sub-

experiments in this symmetric layout, DA has emerged as the best performing approach. DA is

a consistent top performance on all categories considered and only outperformed once by

DPPSO in the average travelled distance category for sub-experiment 1 in symmetric layout.

CAEPSO and DPPSO are the second and third best performing algorithms in this experiment

due to their consistently high performance in most categories across all three sub-experiments

in this layout. Regarding the comparison between classical and heuristic-based algorithms, the

results have shown heuristic-based methods performed quite well especially in navigation

experiment for maze layout where all heuristic-based approaches managed to outperform all

traditional algorithms (except DA) in total travelled distance factor. On the other hand, in

navigation experiment for symmetric layout, PF managed to outperform almost all EA-based

algorithms in most of the categories considered. It is notable RRT and PRM performed quite

poorly especially in execution time and total travelled distance factor. Although, these methods

are actually among the best path planning algorithm, they are only performing well if it is

implemented for global path planning rather than local path planning.

 157

Figure 7-23. The graph of the best performing algorithm against other algorithms (Execution

Time Factor).

 Figure 7-23 illustrates the performance in execution time factor of each algorithm for

mobile robot navigation within the symmetric layout. DA is considered as the best result that

other algorithms can reach. It is because DA has the full information about the design of the

environment. From the observation, CAEPSO and DPPSO are the most consistent performer

with all sub-experiments recorded the difference five percent less than the result recorded by

DA.

 158

Figure 7-24. The graph of the best performing algorithm against other algorithms (Battery

Consumption Factor).

Figure 7-24 shows the performance of each algorithm against the best performing

algorithm for all sub-experiments involved for battery consumption factor. It is kind of

interesting results as all algorithm shown the different is less than five percent for all algorithms

in the second and third sub-experiments. PF, Rand PSO, CPSO, AEPSO, CAEPSO, DACPSO,

and DPPSO also managed to record the different less than five percent for the first sub-

experiment. The most consistent algorithms are PF, CPSO and DPPSO as all three have similar

outcomes as DA.

 159

Figure 7-25. The graph of the best performing algorithm against other algorithms (Travelled

Distance Factor).

Figure 7-25 illustrates the performance of all algorithms against the best performing

algorithm (DA) for travelled distance category. Only four algorithms recorded results less than

five percent against DA which is CPSO, AEPSO, CAEPSO, and DPPSO with the exclusion of

the first sub-experiment where DPPSO is the best performing algorithm. From the observation,

CAEPSO and DPPSO are recorded a result where CAEPSO shown more consistency compare

to DPPSO. RRT and PRM record the worst results in the first sub-experiment with more than

twenty five percent different against the best performing algorithm, DPPSO.

 160

Figure 7-26. The graph of the best performing algorithm against other algorithms (Iteration

Factor).

TVAC PSO, Rand PSO, and DPPSO are the best performing algorithm for sub-

experiments 1, 2 and 3 respectively as shown in Figure 7-26. Rand PSO is the best performing

algorithm in the first and second sub-experiments with DPPSO been the best performing

algorithm in the third sub-experiments. Rand PSO is the most consistent algorithm none of its

results exceed five percent different from the best performing algorithm. CSA once again shown

a poor performance as two out of three results recorded are more than twenty-five percent

different from the best performing method.

For comparison between classical methods, PF managed to outperform RRT and PRM

in all categories. It is because PF algorithm is more compatible for local path planning compared

to RRT and PRM which PRM is more direct and did not have any influence on random factor

 161

compared to those two. Even DA managed to outperform other methods in all considered

factors, it is due to the fact that DA has an advantage compared to others. Other methods do not

have any knowledge about the environment layout except for the destination point which

forcing them to perform local motion planning on the basis of their online sensory readings

while DA had access to the complete environmental layout and performed global path planning.

Thus, the results achieved by DA is reflected as the perfect optimal performance. From the

overall results, DPPSO is considered as the best performing approach given that it became the

second best to DA in almost every category considered in the research and closely followed by

CAEPSO in the second place.

7.6 Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation

Table 7-11. Significance Analysis for Dynamic Approaches of Particle Swarm Optimisation

(DAPSO).

Category Experiments Approaches Experiments & Approaches

Time (s) p = 3.35928e-40 p = 1.64714e-89 p = 5.67744e-22

Battery

Consumption

(%)

p = 7.22200e-01 p = 2.00000e-04 p = 3.36000e-06

Travelled

Distance (m)
p = 1.13006e-68 p = 3.31946e-19 p = 1.99488e-34

Convergence

iteration
p = 9.00000e-04 p = 0 p = 0

The results of statistical analysis indicated existence of significant difference between

sub-experiments (p = 1.13006e-68 < 0.05), methods utilised (p = 3.3194e-19 < 0.05) and

interaction between sub-experiments and the methods (p = 1.99488e-34 < 0.05). The significant

of findings for the sub-experiment 1 are as follow:

 162

Figure 7-27. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Execution Time factor.

 Execution time (s): The results indicated existence of significant difference between

approaches applied (p = 1.64714e-89 < 0.05). DA confirmed its superiority in this sub-

experiment as best performing algorithm with significant difference against all other

methods. RRT (the least performing algorithm) also shown the existence of statistical

difference against all other methods. CAEPSO and DPPSO showed a lack of significant

difference against PF, DE, CPSO, AEPSO and DACPSO but indicated the existence of

significant difference against RRT, PRM, GA, CSA, Fix PSO, Rand PSO, TVAC PSO,

and Linear PSO.

 163

Figure 7-28. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Energy Consumption factor.

 Battery Consumption (%): The results shown there is significant difference between

algorithms for this category (p = 0.002 < 0.05). Figure 7-28 illustrates DA shown

existence of significant difference against RRT, and Fix PSO. PF, CPSO, AEPSO,

ACPSO, and DPPSO showed significant difference against Fix PSO. Meanwhile, the

other algorithms indicated a lack of significant difference amongst themselves.

 164

Figure 7-29. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Travelled Distance factor.

 Total travelled distance (m): The findings shown existence of significant difference

amongst algorithms (p = 3.31946e-19 < 0.05). Figure 7-29 illustrates DA, CAEPSO,

and DPPSO showed significant difference against RRT, PRM, GA, CSA, Fix PSO,

TVAC PSO, and Linear PSO. PF, DE, Rand PSO, CPSO, DACPSO, and AEPSO only

shown significant difference against CSA but indicated a lack of statistical difference

against other algorithms.

 165

Figure 7-30. Box Plot of Significant Difference in Mobile Robot Navigation Problem

(Symmetric Layout) for Iteration factor.

 Convergence iteration: The results of significant analysis shown existence of significant

difference for this considered factor (p = 0.00 < 0.05). Figure 7-30 shows all algorithms

shown significant difference CSA. Meanwhile, the other algorithms are shown

insignificant difference among themselves.

7.7 Summary

This chapter has discussed the results achieved from two set of layouts for mobile robot

navigation experiment. Two types of proposed PSO (Morphology based PSO and Dynamic

Behaviours based PSO) were tested against twelve algorithms and thirteen algorithms

respectively (including four classical path planning methods). From the observation, discussion,

 166

and analysis, all newly introduced PSOs are considered as encouraging especially for MPSO,

CAEPSO, and DPPSO where they managed to outperform other evolutionary algorithms

(except DA, due to its advantages) almost easily. These three algorithms are outstanding

especially sub-experiment 1 for symmetric layout where they managed to outperform DA for

total travelled distance category although they did not have any pieces of knowledge about the

map design. From the findings as well, these algorithms shown a lack of significant different

against the best performing algorithm for all categories considered which shown their

competitiveness even though they did not have any information about the layouts.

 167

CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

8.1 Conclusion

Particle Swarm Optimisation (PSO) belongs as one of the evolutionary based

algorithms, which is a population-based stochastic algorithm and a popular option in the past

years for solving any types of optimisation problems as it has excellent capabilities to overcome

those problems. However, despite the popularity of this approach, with most of the optimisation

problems that have different dimension and requirement for parameter settings, it has two major

drawbacks. The first drawback is the suitable limitation or boundaries applied for particles in

the algorithm. The other is the parameter settings.

This research attempts to solve these two major problems which are the compatibility

of PSO to be implemented onto the online application and the adaptable evolutionary

techniques to any optimisation problems. Hence, the first two techniques are focusing on

tackling the first problem mentioned above while the other three techniques concentrating on

another problem. Morphology PSO and Constricted MPSO do not only manage to outperform

(or at least par) the other algorithms but also manage to give decent outcome as well in both

simulation and real-world environment as seen in all experiments involved. The main goal is to

find a technique which is not only adaptable to any optimisation problems but can converge

towards the global optimal within complex circumstances as well. Not only on simulation

 168

platform but in the real-world platform too. Hence, these three dynamic behaviour PSOs named

as Constricted Area Extended PSO (CAEPSO), Dynamic Acceleration Coefficients PSO

(DACPSO) and Dynamic Parameterising PSO (DPPSO) have been proposed. This dynamic

behaviour is not only giving those three algorithms adaptability skills but also the ability to

perform splendidly in online application as well as evidence shown in mobile robot navigation

problem.

Three main experiments had been designed to assess the performance of five proposed

methods against existing evolutionary algorithms including four classical methods for mobile

robot navigation experiment. In the first experiment (the benchmark function), focusing on

Morphology based PSO, both proposed algorithms performed quite well, especially for MPSO.

CMPSO might not perform well as MPSO due to the constriction factor that was added to

velocity equation. This constriction effect reduced almost 30% of the actual value obtained

from velocity equation which was the step size for the particle. Hence, this probably affects the

exploration behaviour of the swarm at the beginning of iterations and as a result, the global

optimal outcome cannot be achieved in the end. The same result was achieved in the second

experiment (engineering design) where MPSO became the best performing algorithm compared

to the other EA-based methods. MPSO also managed to become overall the best performing

algorithm compared to the other EA-based methods including several classical path planning

methods (with an exceptional of Dijkstra’s Algorithm).

The three dynamic based PSO were outstanding regarding performance especially

CAEPSO and DPPSO throughout all experiments involved. In benchmark function experiment,

DPPSO was the best overall performing algorithm with CAEPSO in second with only one

benchmark function short. Both of them shared the top spot as the best performing algorithm

 169

for engineering design optimisation problems. Meanwhile, DACPSO’s overall outcomes were

not far off from CAEPSO and DPPSO in this type of optimisation problems. CAEPSO and

DPPSO once again managed to dominate all categories considered for mobile robot navigation

problems with an exemption of Dijkstra’s Algorithm since DA has an advantage compare to

the other algorithms. Hence, it is seen as the best results can be achieved by the other algorithms.

This research has also verified several studies done previously. This research verified a

research which stated the Differential Evolution is performing better than Genetic Algorithm

(Ab Wahab et al., 2015; Dong, Liu, Tao, Li, & Xin, 2012). On the one hand, this research

confirmed the superiority of Constricted PSO against Linear PSO (Bai, 2010; Parsopoulos &

Vrahatis, 2011; Syed Abdullah et al., 2012; Trelea, 2003; H. Zhu et al., 2013) concerning

overall performances. On the other hand, it has also certified Linear PSO is superior compared

to the basic PSO (Fix PSO) regarding performance (Arasomwan & Adewumi, 2013).

In conclusion, all objectives for this research have been achieved, and it also managed

to solve the two main problems commonly faced by researchers in swarm intelligence field.

However, these approaches are not limited to PSO algorithm only as it is not specifically

designed to only one evolutionary algorithm. Therefore, these approaches can be implemented

to any evolutionary algorithms as long as the right elements are manipulated to achieve these

types of approaches.

8.2 Future Work

This research has introduced two new methods for a PSO-based algorithm for solving both

simulation and online optimisation problems. It will be interesting to investigate further to see

 170

the capabilities and performances of these five new proposed algorithms. Here are several

suggestions that can be looked into to assess their limits:

1. Implement the proposed methods on the online application using microscopic

approach.

In the third experiment, the online application is used as a platform to the capabilities

of each algorithms utilised. For EA-based algorithms, the macroscopic approach is

employed instead of microscopic because of several constraints. Therefore, it will be

appealing to see the behaviour and results of each EA-based methods when it is

implemented using microscopic approach for mobile robot navigation problems.

2. Fine tuning the ac and ap value for better results.

The current values used for ac and ap are 0.005. This value is obtained from several

different values tested on multiple benchmark functions which can be referred in

Appendix B. However, more precise value of ac and ap can be acquired using any

optimisation algorithm such as DE, CSA or PSO.

3. Use different approaches for Dynamic Acceleration Coefficients PSO.

Dynamic Acceleration Coefficients PSO (DACPSO) has shown quite decent overall

performances compared to Linear PSO. However, it is not as good as MPSO, CAEPSO

or DPPSO. Perhaps the fix awarding population approach is not quite efficient to

enhance the overall performance of PSO. Therefore, different approaches such as high

awarding population or low awarding population approach can be used to give a better

performance in the end for DACPSO.

4. Test on higher and lower iteration.

 171

This research utilised a thousand iterations for each EA-based algorithms involved

including the newly proposed PSO. It will be interesting to observe the effect of lower

and higher iteration towards these five newly proposed PSO regarding behaviour and

final outcomes.

5. Test on bigger and smaller population size.

One of the variables that can affect the outcome of the optimisation problem is the

population size. Small population size can lead to premature convergence, and massive

population size can result in an excessive computing power. This research utilised

population size of hundred which aimed to make it more challenging for the EA-based

algorithm to find the best result with a limited population. Hence, it will be fascinating

to investigate the consequence of smaller and bigger population size towards all five

proposed methods.

6. Combining MPSO with AEPSO.

MPSO and AEPSO were two variants of PSO in this research which showed promising

results throughout all experiments involved. However, these two variants have a

different type of approaches where AEPSO is using sub-swarm while MPSO is only

using single level swarm. Therefore, the combination of MPSO and AEPSO are

predicted to give a better outcome for the optimisation problem.

 172

REFERENCES

Ab Wahab, M. N., Nefti-Meziani, S., & Atyabi, A. (2015). A comprehensive review of swarm

optimisation algorithms. PLoS ONE, 10(5). http://doi.org/10.1371/journal.pone.0122827

Abdallah, H., Emara, H. M., Dorrah, H. T., & Bahgat, A. (2009). Using Ant Colony

Optimization algorithm for solving project management problems. Expert Systems with

Applications, 36(6), 10004–10015. http://doi.org/10.1016/j.eswa.2008.12.064

Abu-Dakka, F. J., Valero, F., & Mata, V. (2012). Evolutionary Path Planning Algorithm for

Industrial Robots. Advanced Robotics, 26(11–12), 1369–1392.

http://doi.org/10.1080/01691864.2012.689743

Alam, M. S., & Rafique, M. U. (2015). Mobile robot path planning in environments cluttered

with non-convex obstacles using particle swarm optimization. Control, Automation and

Robotics (ICCAR), 2015 International Conference on.

http://doi.org/10.1109/ICCAR.2015.7165997

AlRashidi, M. R., & El-Hawary, M. E. (2009). A survey of particle swarm optimization

applications in electric power systems. IEEE Transactions on Evolutionary Computation,

13(4), 913–918. http://doi.org/10.1109/TEVC.2006.880326

Araghi, S., Khosravi, A., & Creighton, D. (2015). Intelligent cuckoo search optimized traffic

signal controllers for multi-intersection network. Expert Systems with Applications, 42(9),

4422–4431. http://doi.org/10.1016/j.eswa.2015.01.063

Atyabi, A., & Phon-Amnuaisuk, S. (2007). Particle swarm optimization with area extension

(AEPSO). In 2007 IEEE Congress on Evolutionary Computation, CEC 2007 (pp. 1970–

 173

1976). http://doi.org/10.1109/CEC.2007.4424715

Atyabi, A., Phon-Amnuaisuk, S., & Ho, C. K. (2010). Applying area extension PSO in robotic

swarm. Journal of Intelligent and Robotic Systems: Theory and Applications, 58, 253–

285. http://doi.org/10.1007/s10846-009-9374-2

Atyabi, A., & Powers, D. M. W. (2010). The use of Area Extended Particle Swarm

Optimization (AEPSO) in swarm robotics. In 11th International Conference on Control,

Automation, Robotics and Vision, ICARCV 2010 (pp. 591–596).

http://doi.org/10.1109/ICARCV.2010.5707854

Atyabi, A., & Powers, D. M. W. (2013). Cooperative area extension of PSO: Transfer learning

vs. uncertainty in a simulated swarm robotics. In ICINCO 2013 - Proceedings of the 10th

International Conference on Informatics in Control, Automation and Robotics (Vol. 1, pp.

177–184).

Atyabi, A., & Powers, D. M. W. (2013). Review of classical and heuristic-based navigation and

path planning approaches. International Journal of Advancements in Computing

Technology (IJACT), 5(14), 1–14.

Bai, Q. (2010). Analysis of Particle Swarm Optimization Algorithm. Computer and Information

Science, 3(1), 180–184. http://doi.org/10.5539/cis.v3n1P180

Balaprakash, P., & Birattari, M. (2006). Incremental local search in ant colony optimization:

Why it fails for the quadratic assignment problem. Ant Colony Optimization and Swarm

Intelligence, 156–166.

Banks, A., Vincent, J., & Anyakoha, C. (2007). A review of particle swarm optimization. Part

 174

I: Background and development. Natural Computing. http://doi.org/10.1007/s11047-007-

9049-5

Banks, A., Vincent, J., & Anyakoha, C. (2008). A review of particle swarm optimization. Part

II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative

applications. In Natural Computing (Vol. 7, pp. 109–124). http://doi.org/10.1007/s11047-

007-9050-z

Barraquand, J., Langlois, B., & Latombe, J.-C. (1992). Numerical potential field techniques for

robot path planning. IEEE Transactions on Systems, Man, and Cybernetics, 22(2), 224–

241. http://doi.org/10.1109/21.148426

Basu, M., & Chowdhury, A. (2013). Cuckoo search algorithm for economic dispatch. IET

Generation, Transmission & Distribution, 60(February), 99–108.

http://doi.org/10.1016/j.energy.2013.07.011

Baterina, A. V., & Oppus, C. (2010). Image edge detection using ant colony optimization.

WSEAS Transactions on Signal Processing, 6(2), 58–67.

http://doi.org/10.4156/jdcta.vol6.issue11.24

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life

Reviews, 2(4), 353–373. http://doi.org/10.1016/j.plrev.2005.10.001

Blum, C., & Li, X. (2008). Swarm Intelligence in Optimization. Swarm Intelligence

Introduction and Applications, 43–85. http://doi.org/10.1007/978-3-540-74089-6

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to

artificial systems. Handbook of Nature-Inspired and Innovative Computing.

 175

http://doi.org/10.1007/s13398-014-0173-7.2

Bratton, D., & Kennedy, J. (2007). Defining a standard for particle swarm optimization. In

Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007 (pp. 120–127).

http://doi.org/10.1109/SIS.2007.368035

Brezina Jr Zuzana Čičková, I. (2011). Solving the Travelling Salesman Problem Using the Ant

Colony Optimization. Management Information Systems, 6(4), 10–14.

Busch, J., Quirico, M., Richter, L., Schmidt, M., Raatz, A., & Nyhuis, P. (2015). A genetic

algorithm for a self-learning parameterization of an aerodynamic part feeding system for

high-speed assembly. CIRP Annals - Manufacturing Technology, 64(1), 5–8.

http://doi.org/10.1016/j.cirp.2015.04.044

Cagnina, L. C., Esquivel, S. C., & Coello Coello, C. A. (2008). Solving engineering

optimization problems with the simple constrained particle swarm optimizer. Informatica

(Ljubljana), 32(3), 319–326.

Cen, Y. C. Y., Song, C. S. C., Xie, N. X. N., & Wang, L. W. L. (2008). Path planning method

for mobile robot based on ant colony optimization algorithm. 2008 3rd IEEE Conference

on Industrial Electronics and Applications, 298–301.

http://doi.org/10.1109/ICIEA.2008.4582528

Cesmeci, D., & Gullu, M. K. (2010). Sub-swarm converging linear particle swarm optimization.

In Signal Processing and Communications Applications Conference (SIU), 2010 IEEE

18th (pp. 736–739).

Chang, Y., & Yu, G. (2013). Multi-Sub-Swarm PSO Classifier Design and Rule Extraction.

 176

International Workshop on Cloud Computing and Information Security, 104–107.

Chaowanawatee, K., & Heednacram, A. (2012). Implementation of Cuckoo Search in RBF

Neural Network for Flood Forecasting. 2012 Fourth International Conference on

Computational Intelligence, Communication Systems and Networks, 22–26.

http://doi.org/10.1109/CICSyN.2012.15

Chen, Y. B., Yu, J. Q., Su, X. L., & Luo, G. C. (2014). Path Planning for Multi-UAV Formation.

Journal of Intelligent and Robotic Systems: Theory and Applications, 77(1), 229–246.

http://doi.org/10.1007/s10846-014-0077-y

Cheng, G., & Zelinsky, A. (1995). A Physically Grounded Search in a Behaviour Based Robot.

In Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence (pp.

547–554).

Chernbumroong, S., Cang, S., & Yu, H. (2015). Genetic algorithm-based classifiers fusion for

multisensor activity recognition of elderly people. IEEE Journal of Biomedical and Health

Informatics, 19(1), 282–289. http://doi.org/10.1109/JBHI.2014.2313473

Chia, S.-H., Su, K.-L., Guo, J.-H., & Chung, C.-Y. (2010). Ant Colony System Based Mobile

Robot Path Planning. 2010 Fourth International Conference on Genetic and Evolutionary

Computing, 210–213. http://doi.org/10.1109/ICGEC.2010.59

Chiao Mei, F. C., Phon-Amnuaisuk, S., Alias, M. Y., & Leong, P. W. (2008). Adaptive GA:

An essential ingredient in high-level synthesis. In 2008 IEEE Congress on Evolutionary

Computation, CEC 2008 (pp. 3837–3844). http://doi.org/10.1109/CEC.2008.4631319

Chiu, C., Cheng, Y., & Chang, C. (2012). Comparison of Particle Swarm Optimization and

 177

Genetic Algorithm for the Path Loss Reduction in an Urban Area. Journal of Applied

Science and …, 15(4), 371–380.

Choi, Y., & Chang, D. (2013). Development of pressure vessel design process using

optimization and structural reliability method. In Safety, Reliability, Risk and Life-Cycle

Performance of Structures and Infrastructures - Proceedings of the 11th International

Conference on Structural Safety and Reliability, ICOSSAR 2013 (pp. 4931–4934).

Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in

a multidimensional complex space. IEEE Transactions on Evolutionary Computation,

6(1), 58–73. http://doi.org/10.1109/4235.985692

Contreras-Cruz, M. a., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015). Mobile robot

path planning using artificial bee colony and evolutionary programming. Applied Soft

Computing, 30, 319–328. http://doi.org/10.1016/j.asoc.2015.01.067

Das, S., Nagaratnam Suganthan, P., & Member, S. (2011). Differential Evolution_A Practical

Approach to Global Optimization. IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, 15(1). http://doi.org/10.1109/TEVC.2010.2059031

De Jong, K. A., & Spears, W. M. (1992). A formal analysis of the role of multi-point crossover

in genetic algorithms. Annals of Mathematics and Artificial Intelligence, 5(1), 1–26.

http://doi.org/10.1007/BF01530777

De Medeiros, L. F. (2015). Using genetic algorithm for calculating the production mix in

business plan simulator . Gestao E Producao, 22(3), 624–635.

http://doi.org/10.1590/0104-530X142-12

 178

Deep, K., & Singh, P. K. (2015). Design of robust cellular manufacturing system for dynamic

part population considering multiple processing routes using genetic algorithm. Journal of

Manufacturing Systems, 35, 155–163. http://doi.org/10.1016/j.jmsy.2014.09.008

Demirel, N. Ç., & Toksarı, M. D. (2006). Optimization of the quadratic assignment problem

using an ant colony algorithm. Applied Mathematics and Computation, 183(1), 427–435.

http://doi.org/10.1016/j.amc.2006.05.073

Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische

Mathematik, 1, 269–271. http://doi.org/10.1007/BF01386390

Donglan, Z. (2014). Research on the Sensor Coarse Signal Processing Model Based on

Adaptive Genetic Algorithm. In COMPUTER-AIDED DESIGN, MANUFACTURING,

MODELING AND SIMULATION III (Vol. 443, pp. 342–345).

http://doi.org/10.4028/www.scientific.net/AMM.443.342

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational

Intelligence Magazine, 1(4), 28–39. http://doi.org/10.1109/MCI.2006.329691

Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical

Computer Science, 344(2–3), 243–278. http://doi.org/10.1016/j.tcs.2005.05.020

Dorigo, M., & Gambardella, L. M. (1997). Ant Colony System : A Cooperative Learning

Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary

Computation, 1(1), 1–24.

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. Mendeley Desktop.

http://doi.org/10.4249/scholarpedia.1461

 179

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in particle

swarm optimization.pdf. In the Congress on Evolutionary Computation 2000 (pp. 84–88).

http://doi.org/10.1109/CEC.2000.870279

Elbanhawi, M., & Simic, M. (2014). Sampling-Based Robot Motion Planning: A Review. IEEE

Access, 2, 56–77. http://doi.org/10.1109/ACCESS.2014.2302442

Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-based

optimization algorithms. Advanced Engineering Informatics, 19(1), 43–53.

http://doi.org/10.1016/j.aei.2005.01.004

Engelbrecht, A. P. (2010). Heterogeneous Particle Swarm Optimization. In Swarm Intelligence

(Vol. 6234, pp. 191–202). http://doi.org/10.1007/978-3-642-15461-4_17

Engelbrecht, A. P. (2011). Scalability of a heterogeneous particle swarm optimizer. In IEEE

SSCI 2011 - Symposium Series on Computational Intelligence - SIS 2011: 2011 IEEE

Symposium on Swarm Intelligence (pp. 1–8). http://doi.org/10.1109/SIS.2011.5952563

Figueiredo, E. M. N., & Ludermir, T. B. (2012). Effect of the PSO topologies on the

performance of the PSO-ELM. In Proceedings - Brazilian Symposium on Neural

Networks, SBRN (pp. 178–183). http://doi.org/10.1109/SBRN.2012.26

Fleetwood, K. (1999). An Introduction to Differential Evolution. New Ideas in Optimization,

79–108. http://doi.org/10.1038/155531c0

Fong, S., Wong, R., & Vasilakos, A. V. (2016). Accelerated PSO Swarm Search Feature

Selection for Data Stream Mining Big Data. IEEE Transactions on Services Computing,

9(1), 33–45. http://doi.org/10.1109/TSC.2015.2439695

 180

Gao, H., Kwong, S., Yang, J., & Cao, J. (2013). Particle swarm optimization based on

intermediate disturbance strategy algorithm and its application in multi-threshold image

segmentation. Information Sciences, 250, 82–112.

http://doi.org/10.1016/j.ins.2013.07.005

Geraerts, R., & Overmars, M. H. (2004). A comparative study of probabilistic roadmap

planners. In Springer Tracts in Advanced Robotics (Vol. 7 STAR, pp. 43–57).

http://doi.org/10.1007/978-3-540-45058-0_4

Gupta, S., Kumar, V., & Agarwal, G. (2010). Task Scheduling in Multiprocessor System Using

Genetic Algorithm. In 2010 Second International Conference on Machine Learning and

Computing (pp. 267–271). http://doi.org/10.1109/ICMLC.2010.50

Han, W., Zhang, X., Jiang, H., & Li, W. (2014). An Ant Colony Optimization Algorithm for

Software Project Management. Control and Automation (CA), 2014 7th Conference on.

http://doi.org/10.1109/CA.2014.12

He, Y., Zeng, Q., Liu, J., Xu, G., & Deng, X. (2013). Path planning for indoor UAV based on

Ant Colony Optimization. 2013 25th Chinese Control and Decision Conference (CCDC),

2919–2923. http://doi.org/10.1109/CCDC.2013.6561444

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor MI University

of Michigan Press (Vol. Ann Arbor). http://doi.org/10.1137/1018105

Hwang, Y. K., & Ahuja, N. (1992). A potential field approach to path planning. IEEE

Transactions on Robotics and Automation, 8(1), 23–32. http://doi.org/10.1109/70.127236

Imran, M., Hashim, R., & Khalid, N. E. A. (2013). An overview of particle swarm optimization

 181

variants. In Procedia Engineering (Vol. 53, pp. 491–496).

http://doi.org/10.1016/j.proeng.2013.02.063

Iqbal, N., Zerguine, A., & Al-Dhahir, N. (2015). Decision Feedback Equalization using Particle

Swarm Optimization. Signal Processing, 108, 1–12.

http://doi.org/10.1016/j.sigpro.2014.07.030

Jahanzaib, M., Masood, S. A., Nadeem, S., Akhtar, K., & Shahbaz, M. (2012). Application of

Genetic Algorithm (GA) approach in the formation of manufacturing cells for group

technology. Life Science Journal, 9(4), 799–809.

Jaillet, L., & Porta, J. M. (2013). Path planning under kinematic constraints by rapidly exploring

manifolds. IEEE Transactions on Robotics, 29(1), 105–117.

http://doi.org/10.1109/TRO.2012.2222272

Junjie, P. J. P., & Dingwei, W. D. W. (2006). An Ant Colony Optimization Algorithm for

Multiple Travelling Salesman Problem. First International Conference on Innovative

Computing, Information and Control - Volume I (ICICIC’06), 1.

http://doi.org/10.1109/ICICIC.2006.40

Kavraki, L. E., Kavraki, L. E., Svestka, P., Svestka, P., Latombe, J.-C., Latombe, J.-C., …

Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-

dimensionalconfiguration spaces. Robotics and Automation, IEEE Transactions on, 12(4),

566–580. http://doi.org/10.1109/70.508439

Kennedy, J. (2006). Swarm intelligence. Handbook of Nature-Inspired and Innovative

Computing, 187–219. http://doi.org/10.1007/0-387-27705-6_6

 182

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Neural Networks, 1995.

Proceedings., IEEE International Conference on (Vol. 4, pp. 1942–1948 vol.4).

http://doi.org/10.1109/ICNN.1995.488968

Khatib, O. (1986). Real time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics and Research.

http://doi.org/10.1177/027836498600500106

Kia, R., Khaksar-Haghani, F., Javadian, N., & Tavakkoli-Moghaddam, R. (2014). Solving a

multi-floor layout design model of a dynamic cellular manufacturing system by an

efficient genetic algorithm. Journal of Manufacturing Systems, 33(1), 218–232.

http://doi.org/10.1016/j.jmsy.2013.12.005

Kim, D. K., Jeong, K. S., McKay, R. I. B., Chon, T. S., & Joo, G. J. (2012). Machine learning

for predictive management: Short and long term prediction of phytoplankton biomass

using genetic algorithm based recurrent neural networks. International Journal of

Environmental Research, 6(1), 95–108.

Kiranyaz, S., Ince, T., Yildirim, A., & Gabbouj, M. (2010). Fractional particle swarm

optimization in multidimensional search space. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, 40(2), 298–319.

http://doi.org/10.1109/TSMCB.2009.2015054

Kuffner, J., & LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path

planning. Proc. IEEE International Conference on Robotics and Automation ICRA ’00,

2(Icra), 995--1001 vol.2. http://doi.org/10.1109/ROBOT.2000.844730

Kumar, A., & Chakarverty, S. (2011). Design optimization for reliable embedded system using

 183

Cuckoo search. In ICECT 2011 - 2011 3rd International Conference on Electronics

Computer Technology (Vol. 1, pp. 264–268).

http://doi.org/10.1109/ICECTECH.2011.5941602

Kumar, M., Husian, M., Upreti, N., & Gupta, D. (2010). Genetic Algorithm: Review and

Application. International Journal of Information Technology and Knowledge

Management, 2(2), 451–454.

Lan, T., & Li, W. (2010). A macroscopic state model of swarm robot system. In Proceedings -

2010 2nd WRI Global Congress on Intelligent Systems, GCIS 2010 (Vol. 2, pp. 258–261).

http://doi.org/10.1109/GCIS.2010.239

Langeveld, J. (2011). A Generic Set-Based Particle Swarm Optimization Algorithm. In ICSI

2011: International conference on swarm intelligence (pp. 1–10).

LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Planning. In,

129, 98–11. http://doi.org/10.1.1.35.1853

LaValle, S. M. (2011). Motion Planning. Part II: Wild Frontiers. IEEE Robotics & Automation

Magazine, 18(June), 108–118. http://doi.org/10.1109/MRA.2011.941635

Layeb, A. (2011). A novel quantum inspired cuckoo search for knapsack problems.

International Journal of Bio-Inspired Computation, 3(5), 297.

http://doi.org/10.1504/IJBIC.2011.042260

Lerman, K., Martinoli, A., & Galstyan, A. (2005). A Review of Probabilistic Macroscopic

Models for Swarm Robotic Systems. In Swarm Robotics (Vol. 3342, pp. 143–152).

http://doi.org/10.1007/978-3-540-30552-1_12

 184

Li, T., Chen, W., Zheng, X., & Zhang, Z. (2009). An improvement of the ant colony

optimization algorithm for solving travelling salesman problem (TSP). Wireless

Communications, Networking and Mobile …, 1–3.

http://doi.org/10.1109/WICOM.2009.5302937

Li, Y., & Chen, Y. (2010). A genetic algorithm for job-shop scheduling. Journal of Software,

5(3), 269–274. http://doi.org/10.4304/jsw.5.3.269-274

Lihong, Q., & Shengping, L. (2012). An improved genetic algorithm for integrated process

planning and scheduling. International Journal of Advanced Manufacturing Technology,

58(5–8), 727–740. http://doi.org/10.1007/s00170-011-3409-0

Litao, Z., Tiejun, W., Xi, J., & Jin, J. (2012). The machine learning classifier based on Multi-

Objective Genetic Algorithm. In Proceedings - 2012 7th International Conference on

Computing and Convergence Technology (ICCIT, ICEI and ICACT), ICCCT 2012 (pp.

405–409).

Liu, B. L. B., Choo, S.-H. C. S.-H., Lok, S.-L. L. S.-L., Leong, S.-M. L. S.-M., Lee, S.-C. L.

S.-C., Poon, F.-P. P. F.-P., & Tan, H.-H. T. H.-H. (1994). Integrating case-based reasoning,

knowledge-based approach and\nDijkstra algorithm for route finding. Proceedings of the

Tenth Conference on Artificial Intelligence for Applications, 149–155.

Liu, Y., & Passino, K. M. (2000). Swarm Intelligence : Literature Overview. Measurement And

Control, 2015(614), 9. http://doi.org/http://dx.doi.org/10.1.1.135.8765

Ma, L., Wang, K., & Zhang, D. (2009). A universal texture segmentation and representation

scheme based on ant colony optimization for iris image processing. Computers &

Mathematics with Applications, 57(11–12), 1862–1868.

 185

http://doi.org/10.1016/j.camwa.2008.10.012

Martinoli, A., & Easton, K. (2003). Optimization of swarm robotic systems via macroscopic

models. In Proc. of the Second Int. Workshop on Multi-Robots Systems (pp. 1–12).

Retrieved from http://infoscience.epfl.ch/record/28065/files/NATO_03.pdf

Meier, A., Gonter, M., & Kruse, R. (2013). Accelerating Convergence in Cartesian Genetic

Programming by Using a New Genetic Operator. Gecco’13: Proceedings of the 2013

Genetic and Evolutionary Computation Conference, 981–988.

http://doi.org/doi:10.1145/2463372.2463481

Mitchell, M. (1995). Genetic algorithms: An overview. Complexity, 1(1), 31–39.

http://doi.org/10.1002/cplx.6130010108

Norouzi, M., De Bruijn, F., & Miró, J. V. (2012). Planning stable paths for urban search and

rescue Robots. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 7416 LNCS, 90–101.

http://doi.org/10.1007/978-3-642-32060-6_8

Noto, M., & Sato, H. (2000). A method for the shortest path search by extended

Dijkstra\nalgorithm. Smc 2000 Conference Proceedings. 2000 Ieee International

Conference on Systems, Man and Cybernetics. “Cybernetics Evolving to Systems,

Humans, Organizations, and Their Complex Interactions” (Cat. no.0, 3, 0–4.

http://doi.org/10.1109/ICSMC.2000.886462

Olascuaga-Cabrera, J. G., López-Mellado, E., & Mendez-Vazquez, A. (2011). A multi-

objective PSO strategy for energy-efficient ad-hoc networking. In Conference

Proceedings - IEEE International Conference on Systems, Man and Cybernetics (pp.

 186

2632–2639). http://doi.org/10.1109/ICSMC.2011.6083994

Ouyang, X., Zhou, Y., Luo, Q., & Chen, H. (2013). A novel discrete cuckoo search algorithm

for spherical traveling salesman problem. Applied Mathematics and Information Sciences,

7(2), 777–784. http://doi.org/10.12785/amis/070248

Parsopoulos, K. K. E., & Vrahatis, M. N. (2011). Particle Swarm Optimization Method for

Constrained Optimization Problems. Optimization, 181(6), 1153–1163.

http://doi.org/10.1016/j.ins.2010.11.033

Ponnambalam, S. G. (2009). Mobile robot path planning using ant colony optimization. 2009

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 851–856.

http://doi.org/10.1109/AIM.2009.5229903

Price, K., Storn, R. M., & Lampinen, J. A. (2005). Differential Evolution: A Practical Approach

to Global Optimization (Natural Computing Series). The Journal of Heredity, 104, 542.

Raja, P. V., & Bhaskaran, V. M. (2013). Improving the Performance of Genetic Algorithm by

Reducing the Population Size. International Journal of Emerging Technology and

Advanced Engineering, 3(8), 86–91.

Rapaić, M. R., & Kanović, Ž. (2009). Time-varying PSO - convergence analysis, convergence-

related parameterization and new parameter adjustment schemes. Information Processing

Letters, 109, 548–552. http://doi.org/10.1016/j.ipl.2009.01.021

Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical

particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions

on Evolutionary Computation, 8, 240–255. http://doi.org/10.1109/TEVC.2004.826071

 187

Rimon, E., & Koditschek, D. (1992). Exact Robot Navigation Using Artificial Potential

Functions. Robotics and Automation, IEEE, 8(5), 501–518.

http://doi.org/10.1109/70.163777

Rizzoli, A. E., Montemanni, R., Lucibello, E., & Gambardella, L. M. (2007). Ant colony

optimization for real-world vehicle routing problems. Swarm Intelligence, 1(2), 135–151.

http://doi.org/10.1007/s11721-007-0005-x

Roberge, V., Tarbouchi, M., & Labonte, G. (2013). Comparison of parallel genetic algorithm

and particle swarm optimization for real-time UAV path planning. IEEE Transactions on

Industrial Informatics, 9(1), 132–141. http://doi.org/10.1109/TII.2012.2198665

Salama, K. M., & Freitas, A. A. (2013). Learning Bayesian network classifiers using ant colony

optimization. Swarm Intelligence, 7(2–3), 229–254. http://doi.org/10.1007/s11721-013-

0087-6

Sa-ngawong, N., & Ngamroo, I. (2015). Intelligent photovoltaic farms for robust frequency

stabilization in multi-area interconnected power system based on PSO-based optimal

Sugeno fuzzy logic control. Renewable Energy, 74, 555–567.

http://doi.org/10.1016/j.renene.2014.08.057

Schyns, M. (2015). An ant colony system for responsive dynamic vehicle routing. European

Journal of Operational Research, 245(3), 704–718.

http://doi.org/10.1016/j.ejor.2015.04.009

Seda, M. (2007). Roadmap methods vs. cell decomposition in robot motion planning.

Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics

and Automation, 127–132. Retrieved from

 188

https://planiart.usherbrooke.ca/redmine/attachments/69/Roadmap_vs_Cell_Decompositi

on.pdf\nfiles/1334/540-323.pdf\nhttp://www.wseas.us/e-

library/conferences/2007corfu/papers/540-323.pdf

Selvi, V. (2010). Comparative Analysis of Ant Colony and Particle Swarm Optimization

Techniques. International Journal of Computer Applications, 5(4), 1–6.

http://doi.org/10.5120/908-1286

Senthil Arumugam, M., Ramana Murthy, G., Rao, M. V. C., & Loo, C. K. (2007). A novel

effective particle swarm optimization like algorithm via extrapolation technique. In 2007

International Conference on Intelligent and Advanced Systems, ICIAS 2007 (pp. 516–

521). http://doi.org/10.1109/ICIAS.2007.4658442

Sfeir, J., Saad, M., & Saliah-Hassane, H. (2011). An improved Artificial Potential Field

approach to real-time mobile robot path planning in an unknown environment. 2011 IEEE

International Symposium on Robotic and Sensors Environments (ROSE), 208–213.

http://doi.org/10.1109/ROSE.2011.6058518

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. 1998 IEEE International

Conference on Evolutionary Computation Proceedings. IEEE World Congress on

Computational Intelligence (Cat. No.98TH8360).

http://doi.org/10.1109/ICEC.1998.699146

Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to Autonomous Mobile Robots.

Robotica (Vol. 23).

Sim, K. M., & Sun, W. H. (2002). Multiple ant-colony optimization for network routing. In

Proceedings - 1st International Symposium on Cyber Worlds, CW 2002 (pp. 277–281).

 189

http://doi.org/10.1109/CW.2002.1180890

Sirbiladze, G., & Kapanadze, M. (2012). Genetic algorithm approach for the prediction of

business risks’ dynamics of enterprise. In 2012 6th International Conference on

Application of Information and Communication Technologies, AICT 2012 - Proceedings.

http://doi.org/10.1109/ICAICT.2012.6398507

Sivaraj, R., & Ravichandran, T. (2011). A review of selection methods in genetic algorithm. Int

J Eng Sci Tech, 3(5), 3792–3797.

Song, P., & Kumar, V. (2002). A potential field based approach to multi-robot manipulation.

International Conference on Robotics and Automation, 2(May), 1217–1222.

http://doi.org/10.1109/ROBOT.2002.1014709

Storn, R., & Price, K. (1997). Differential Evolution -- A Simple and Efficient Heuristic for

global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–

359. http://doi.org/10.1023/A:1008202821328

Stützle, T., & Hoos, H. H. (2000). MAX-MIN Ant System. Future Generation Computer

Systems, 16(8), 889–914. http://doi.org/10.1016/S0167-739X(00)00043-1

Syed Abdullah, S. L., Hussin, N. M., Harun, H., & Abd Khalid, N. E. (2012). Comparative

study of random-PSO and Linear-PSO algorithms. In 2012 International Conference on

Computer and Information Science, ICCIS 2012 - A Conference of World Engineering,

Science and Technology Congress, ESTCON 2012 - Conference Proceedings (Vol. 1, pp.

409–413). http://doi.org/10.1109/ICCISci.2012.6297280

Tian, Y., Yan, L., Park, G., Yang, S., Kim, Y., Lee, S., & Lee, C. (2007). Application of RRT-

 190

based local Path Planning Algorithm in Unknown Environment. International Symposium

on Computational Intelligence in Robotics and Automation, 456–460.

Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and

parameter selection. Information Processing Letters, 85(6), 317–325.

http://doi.org/10.1016/S0020-0190(02)00447-7

Tuppadung, Y., & Kurutach, W. (2011). Comparing nonlinear inertia weights and constriction

factors in particle swarm optimization. International Journal of Knowledge-Based and

Intelligent Engineering Systems, 15(2), 65–70. http://doi.org/10.3233/KES-2010-0211

Üçoluk, G. (2002). Genetic algorithm solution of the TSP avoiding special crossover and

mutation. Intelligent Automation & Soft Computing, 8(3), 265–272.

http://doi.org/10.1080/10798587.2000.10642829

Uguz, S., Sahin, U., & Sahin, F. (2014). Edge detection with fuzzy cellular automata transition

function optimized by PSO. Computers and Electrical Engineering.

http://doi.org/10.1016/j.compeleceng.2015.01.017

Valle, Y. Del, Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J. C., & Harley, R. G.

(2008). Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power

Systems. IEEE Transactions on Evolutionary Computation, 12(2), 171–195.

http://doi.org/10.1109/TEVC.2007.896686

Walton, S., Hassan, O., Morgan, K., & Brown, M. R. (2011). Modified cuckoo search: A new

gradient free optimisation algorithm. Chaos, Solitons and Fractals, 44(9), 710–718.

http://doi.org/10.1016/j.chaos.2011.06.004

 191

Wang, H., Yu, Y., & Yuan, Q. (2011). Application of Dijkstra algorithm in robot path-planning.

In 2011 2nd International Conference on Mechanic Automation and Control Engineering,

MACE 2011 - Proceedings (pp. 1067–1069). http://doi.org/10.1109/MACE.2011.5987118

Wang, J. Q., Zhang, S. F., Chen, J., Yang, J. B., & Sun, S. D. (2010). Resource-constrained

multi-project scheduling based on ant colony optimization algorithm. 2010 IEEE

International Conference on Intelligent Computing and Intelligent Systems, 3(1), 716–

719. http://doi.org/10.1109/ICICISYS.2010.5658268

Wang, L., Geng, H., Liu, P., Lu, K., Kolodziej, J., Ranjan, R., & Zomaya, A. Y. (2014). Particle

Swarm Optimization based dictionary learning for remote sensing big data. Knowledge-

Based Systems, 79, 43–50. http://doi.org/10.1016/j.knosys.2014.10.004

Wang, Y., & Chirikjian, G. S. (2000). A New Potential Field Method for Robot Path Planning.

Proceedings - IEEE International Conference on Robotics and Automation, 2(April), 977–

982. http://doi.org/10.1109/ROBOT.2000.844727

Xu, Y., Chen, G., & Yu, J. (2006). Three Sub-Swarm Discrete Particle Swarm Optimization

Algorithm. In 2006 IEEE International Conference on Information Acquisition (pp. 1224–

1228).

Yahya, B. N. ., Bae, H. ., Bae, J. ., & Kim, D. . (2012). Generating valid reference Business

Process model using genetic algorithm. International Journal of Innovative Computing,

Information and Control, 8, 1463–1477.

Yan, X., Wu, Q., Liu, H., & Huang, W. (2013). An Improved Particle Swarm Optimization

Algorithm and Its Application. International Journal of Computer Science, 10(1), 316–

324.

 192

Yan Cang Li, Li Na Zhao, & Zhou, S. J. (2011). Review of Genetic Algorithm. Advanced

Materials Research, Volumes 17, 365–367.

http://doi.org/10.4028/www.scientific.net/AMR.179-180.365

Yang, X. S., & Deb, S. (2009). Cuckoo search via Levy flights. In 2009 World Congress on

Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings (pp. 210–214).

http://doi.org/10.1109/NABIC.2009.5393690

Yang, X. S., & Deb, S. (2013). Multiobjective cuckoo search for design optimization.

Computers and Operations Research, 40(6), 1616–1624.

http://doi.org/10.1016/j.cor.2011.09.026

Yang, X. S., Deb, S., Karamanoglu, M., & He, X. (2012). Cuckoo search for business

optimization applications. In 2012 National Conference on Computing and

Communication Systems, NCCCS 2012 - Proceeding (pp. 29–33).

http://doi.org/10.1109/NCCCS.2012.6412973

Yang, X.-S., & Deb, S. (2010). Engineering Optimisation by Cuckoo Search. Int. J.

Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.

http://doi.org/10.1504/IJMMNO.2010.035430

Yin, C., & Wang, H. (2010). Developed Dijkstra shortest path search algorithm and simulation.

In 2010 International Conference on Computer Design and Applications, ICCDA 2010

(Vol. 1). http://doi.org/10.1109/ICCDA.2010.5541129

Yu, B., Yang, Z.-Z., & Yao, B. (2009). An improved ant colony optimization for vehicle routing

problem. European Journal of Operational Research, 196(1), 171–176.

http://doi.org/10.1016/j.ejor.2008.02.028

 193

Zhang, C., Zhen, Z., Wang, D., & Li, M. (2010). UAV path planning method based on ant

colony optimization. 2010 Chinese Control and Decision Conference, 3790–3792.

http://doi.org/10.1109/CCDC.2010.5498477

Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop

scheduling problem. Expert Systems with Applications, 38(4), 3563–3573.

http://doi.org/10.1016/j.eswa.2010.08.145

Zhang, J., De-Shuang, H., & Kun-Hong, L. (2007). Multi-sub-swarm particle swarm

optimization algorithm for multimodal function optimization. In Evolutionary

Computation, 2007. CEC 2007. IEEE Congress on (pp. 3215–3220).

Zhang, Y., Gong, D., & Zhang, J. (2013). Robot path planning in uncertain environment using

multi-objective particle swarm optimization. Neurocomputing, 103, 172–185.

http://doi.org/10.1016/j.neucom.2012.09.019

Zhang, Y., Wang, S., & Ji, G. (2015). A Comprehensive Survey on Particle Swarm

Optimization Algorithm and Its Applications. Mathematical Problems in Engineering.

http://doi.org/10.1155/2015/931256

Zhao, D., Luo, L., & Zhang, K. (2010). An improved ant colony optimization for the

communication network routing problem. Mathematical and Computer Modelling, 52(11–

12), 1976–1981. http://doi.org/10.1016/j.mcm.2010.04.021

Zhu, H., Wang, Y., Wang, K., Chen, Y., Zhang, Y., Gong, D., … Pelevic, B. (2013).

Constrained Portfolio Selection using Particle Swarm Optimization. Expert Systems with

Applications, 8(2), 1–14. http://doi.org/10.1016/j.ins.2012.09.030

 194

Zhu, Y. F., & Tang, X. M. (2010). Overview of swarm intelligence. In ICCASM 2010 - 2010

International Conference on Computer Application and System Modeling, Proceedings

(Vol. 9). http://doi.org/10.1109/ICCASM.2010.5623005

Zou, X., Ge, B., & Sun, P. (2012). Improved Genetic Algorithm for Dynamic Path Planning.

International Journal of Information and Computer Science, 1(2), 16–20.

 195

APPENDICES

Appendix A

This appendix offers some pictures from Autonomous Indoor Mapping using Husky A200

experiments by implementing Morphology based PSO and Dynamic based PSO.

Husky A200

 196

View from on board Wireless Camera

View of process in constructing Indoor Map

 197

Appendix B

Finding suitable values for ap and ag of Morphology Particle Swarm Optimization (MPSO) with

population of 10000 with 10000 iterations on over ten runs per benchmark functions.

Beale Function

Trail ap and ag = 0.5 ap and ag = 0.05 ap and ag = 0.0005

1 1.710E-10 8.000E-12 3.000E-12

2 9.260E-09 9.900E-11 7.000E-11

3 3.000E-12 0.000E+00 1.500E-11

4 5.420E-10 0.000E+00 9.900E-11

5 6.000E-12 1.690E-10 0.000E+00

6 1.170E-09 1.865E-09 4.000E-12

7 2.000E-12 2.841E-09 3.100E-11

8 8.000E-11 1.040E-10 0.000E+00

9 4.100E-11 1.030E-09 0.000E+00

10 5.780E-10 0.000E+00 0.000E+00

Mean 1.185E-09 6.116E-10 2.220E-11

SD 2.862E-09 9.955E-10 3.493E-11

Hump Function

Trail ap and ag = 0.5 ap and ag = 0.05 ap and ag = 0.0005

1 4.6549E-08 4.6511E-08 4.6516E-08

2 4.6786E-08 4.6519E-08 4.6515E-08

3 4.6513E-08 4.6516E-08 4.6511E-08

 198

4 4.6524E-08 4.6538E-08 4.6512E-08

5 5.0508E-08 4.6511E-08 4.6510E-08

6 4.8527E-08 4.6511E-08 4.6520E-08

7 4.9710E-08 4.6513E-08 4.6510E-08

8 4.6516E-08 4.6511E-08 4.6513E-08

9 4.8822E-08 4.6510E-08 4.6510E-08

10 4.4797E-07 4.6523E-08 4.6510E-08

Mean 8.7843E-08 4.6516E-08 4.6513E-08

SD 1.2654E-07 8.7312E-12 3.3682E-12

Matyas Function

Trail ap and ag = 0.5 ap and ag = 0.05 ap and ag = 0.0005

1 2.000E-12 2.000E-11 1.220E-10

2 1.912E-09 0.000E+00 0.000E+00

3 1.670E-10 1.470E-10 0.000E+00

4 4.650E-10 0.000E+00 0.000E+00

5 2.800E-11 1.560E-10 2.020E-10

6 5.000E-12 0.000E+00 0.000E+00

7 3.564E-08 0.000E+00 5.500E-11

8 3.580E-10 3.700E-11 5.000E-12

9 6.200E-11 0.000E+00 0.000E+00

10 2.380E-10 4.738E-09 0.000E+00

Mean 3.888E-09 5.098E-10 3.840E-11

SD 1.117E-08 1.487E-09 6.991E-11

 199

Rastrigin Function

Trail ap and ag = 0.5 ap and ag = 0.05 ap and ag = 0.0005

1 1.993E-05 5.903E-05 2.600E-11

2 2.997E-04 3.186E-06 2.020E-10

3 4.500E-11 3.113E-06 5.030E-10

4 8.900E-06 1.794E-07 3.158E-08

5 8.689E-07 7.400E-11 8.600E-11

6 1.851E-03 1.987E-09 4.300E-11

7 2.735E-06 2.660E-10 5.983E-08

8 3.901E-05 7.000E-12 3.564E-09

9 1.064E-04 9.841E-07 2.484E-05

10 7.510E-08 1.241E-08 3.432E-09

Mean 2.329E-04 6.651E-06 2.494E-06

SD 5.762E-04 1.845E-05 7.853E-06

 200

Appendix C

Testing environment with a combination of odd and regular shape of obstacles.

 201

The experiments have been carried indoor. Appendix C shows environment layout. Black

blocks represent obstacles with blue point represents the starting point and red point represents

the goal points. The shortest distance between them in straight line is 6.041. There are 11

obstacles in the map with smallest size is 72cm2 (obstacle no 9 and 11) and largest size is

63504cm2 (obstacle no 5). The largest obstacle gap is between 10 and 11 where the distance is

140cm. The smallest obstacle gap is between obstacle 8 and 10 with 50cm follow by obstacle

7 and 9 with 55cm.

