
Machine learning aided Android malware classification

Nikola Milosevic

School of Computer Science,
University of Manchester, UK

nikola.milosevic@manchester.ac.uk

Ali Dehghantanha

School of Computing, Science and Engineering
University of Salford, UK

a.dehghantanha@salford.ac.uk

Kim-Kwang Raymond Choo

Department of Information Systems and Cyber Security
The University of Texas at San Antonio, San Antonio, TX 78249-0631, USA

raymond.choo@fulbrightmail.org

Abstract

The widespread adoption of Android devices and their capability to store ac-

cess significant private and confidential information have resulted in these de-

vices being targeted by malware developers. Existing Android malware analysis

techniques can be broadly categorized into static and dynamic analysis. In

this paper, we present two machine learning aided approaches for static anal-

ysis of Android malware. The first approach is based on permissions and the

other is based on source code analysis utilizing a bag-of-words representation

model. Our permission-based model is computationally inexpensive, and is im-

plemented as the OWASP Seraphimdroid Android app that can be obtained

from Google Play Store. Our evaluations of both approaches indicate an F-

score of 95.1% and F-measure of 89% for the source code-based classification

and permission-based classification models, respectively.

Keywords: Static malware analysis, OWASP, Seraphimdroid Android app,

Machine learning

2016 MSC: 00-01, 99-00

Preprint submitted to Computers and Electrical Engineering February 10, 2017



1. Introduction

In our increasingly connected society, the number and range of mobile devices

continue to increase. It is estimated to have approximately 6.1 billion mobile

device users by 2020 [1]. The wealth of private information that is stored on

or can be accessed via these devices made them an attractive target for cyber5

criminals [2]. Studies have also revealed that users generally do not install

anti-virus or anti-malware app installed on their mobile devices, although the

effectiveness of such apps is also unclear or debatable [3]. Hence, mobile devices

are perceived by security professionals among the ”weakest links” in enterprise

security.10

While all mobile operating systems/platforms have been targeted by mal-

ware developers, the trend is generally to focus on mobile operating systems

with a larger market share. A bigger market share [4] along with Google’s

flexible publishing policy on Android’s official application (also referred to as

app) market – Google Play – resulted in Android users being a popular target15

for malware developers. It is also known that Android permission-based secu-

rity model provides little protection as most users generally grant apps requests

permissions [5]. There have also been instances where malicious apps were suc-

cessfully uploaded to Google Play [6]. This suggests a need for more efficient

Android malware analysis tools.20

Existing approaches for malware analysis can be broadly categorized into

dynamic malware analysis and static malware analysis. In static analysis, one

reviews and inspects the source code and binaries in order to find suspicious

patterns. Dynamic analysis (behavioral-based analysis) involves the execution

of the analyzed software in an isolated environment while monitoring and tracing25

its behavior [7].

Early approaches to mobile malware detection were based on the detection

of anomalies in battery consumption [8]. Operating system events, such as API

calls, Input/Output requests, and resource locks, have also been used in dy-

namic malware detection approaches. For example, TaintDroid is a malware30

2



detection system based on anomalies in the app’s data usage behavior [9]. In

[10], the authors created a system that monitored anomalies in Android Dalvik

op-codes frequencies to detect malicious apps. Several approaches utilized ma-

chine learning to classify malware based on their behaviors. For example, the

authors in [11] focused on run-time behavior and classified Android malware35

into the malware families using inter-process communications in combination

with SVM. A random forest-based approach with set of 42 vectors including

battery, CPU and memory usage as well as network behavior was also used for

Android mawlare detection in [12]. In [13], the authors used system calls and

regular expressions to detect data leakage, exploit execution and destructive40

apps.

In order to avoid degrading of mobile devices’ performance, solutions based

on distributed computing and collaborative analysis for both static and dynamic

malware analysis have also been proposed [7]. For example, M0Droid is an

Android anti-malware solution that analyzes system calls of Android apps on45

the server and creates signatures which are pushed to the user devices for threat

detection [14].

Static malware analysis techniques mainly rely on manual human analysis,

which limits the speed and scalability of investigation. Different approaches to

automate the static analysis process have also been proposed. [15] suggested50

transforming malware source code into Calculus for Communicating Systems

(CCS) statements and utilized formal methods for checking the software’s be-

havior. However, their approach requires human analysts to formally describe

the unwanted behavior, which could still be time-consuming. The authors in

[16] proposed a methodology to generate fingerprints of apps that captures bi-55

nary and structural characteristics of the app. Machine learning techniques can

be used to automate static malware analysis process. In [17], pattern recogni-

tion techniques are used to detect malware, while other works used standard

machine learning algorithms such as perception, SVM, locality sensitive hashing

and decision trees to assist in malware analysis (see [18]). In [19], the authors60

extracted network access function calls, process execution, string manipulation,

3



file manipulation and information reading, prior to applying different machine

learning algorithms to classify malicious programs. In [20], the authors ex-

tracted 100 features based on API calls, permissions, intents and related strings

of different Android apps and applied Eigen space analysis to detect malicious65

programs. Sahs and Khan used Androguard to obtain permissions and control

flow graphs of Android apps and created a SVM-based machine learning model

to classify Android malware [21].

In this paper, we demonstrate the utility of employing machine learning

techniques in static analysis of Android malware. Specifically, techniques such70

as manifest analysis and code analysis are utilized to detect malicious Android

apps. The contributions of this paper are two-folded:

1. We present a machine learning model for Android malware detection based

on app permissions. This approach is lightweight and computationally

inexpensive, and can be deployed on a wide range of mobile devices.75

2. We then present a new approach to perform code analysis using machine

learning, which provides higher accuracy and is capable of revealing more

granular app behaviors. Static code analysis of malware is a task generally

undertaken by forensics and malware analysts. However, our research

results indicate the potential to automate several aspects of the static80

code analysis, such as detecting malicious behavior within the code.

The structure of this paper is as follows. In the next section, we present the

research methodology used in this paper. Research results are then presented,

followed by a discussion of the findings. Finally, the paper is concluded and

several future directions are suggested.85

2. Methodology

Combination of permissions may give a clear indication about the capabili-

ties of the analyzed app(s). From combining the permissions, it can be induced

weather the app may cause harm or behave maliciously. We hypothesize that

malicious apps will have certain patterns and common permission combinations,90

4



which can be learned by a machine learning algorithm. On the other hand, the

app code reflects the app’s behavior and, therefore, is a common choice for static

malware analysis. We utilize two machine learning techniques, namely: classi-

fication and clustering. As apps can be classified into malware and goodware,

the task of malware detection can be modeled as a classification problem.95

Classification is a supervised machine learning technique, which can be used

to identify category or sub-population of a new observation based on labeled

data. Clustering is an unsupervised machine learning technique that is capable

of forming clusters of similar entities. Clustering algorithms are useful when

only a small portion of dataset is labeled. The labeled examples can be utilized100

to infer the class of unlabeled data. Labels obtained through clustering can be

subsequently used to retrain a classification model with more data.

Also, in this research, we conducted four experiments, namely: permission-

based clustering, permission-based classification, source code-based clustering,

and source code-based classification. For the training and testing of our machine105

learning models, we utilize M0Droid dataset, which contains 200 malicious and

200 benign Android apps [14].

2.1. Permission-based analysis

In this approach, we use Android’s permission names as features to build a

machine learning model since Android security model is based on app permis-110

sions. Every app has to acquire the required privileges to access the different

phone features. During an app installation, a user is asked whether to grant the

app access to the permissions requested. Malicious apps usually require certain

permissions. For example, in order to access and exfiltrate sensitive information

from the SD card, a malicious app would require access to both the SD card115

and Internet. Our approach is to model combinations of the Android permis-

sions requested by such malicious apps. We propose an approach that uses the

appearance of specific permissions as features for a machine learning algorithm.

In this approach, we first extract the permissions from our dataset and cre-

ate a model. For training, we use Weka toolkit and evaluate several machine120

5



learning algorithms, including SVM, Naive Bayes, C4.5 Decision trees, JRIP

and AdaBoost. Classification algorithms we chose differ in their underlying

concept. Support Vector Machines is a non-probabilistic supervised machine

learning binary classification algorithm. SVM is capable of nonlinear classifica-

tion that maps inputs into high dimensional feature space. C4.5 decision tree is125

a statistical classifier that builds a decision tree based on information entropy.

Each node of the tree algorithm selects a feature and splits its sets of samples

into subsets until classes can be inferred. Random forest is an ensemble classifi-

cation algorithm that combines a number of decision trees and returns the mode

of individual decisions by decision trees. Naive Bayes is a simple probabilistic130

classifier that is based on applying Bayes theorem with strong independence

assumption between features. Bayesian network is a probabilistic graphical

model that represents a set of random variables and their inter-dependencies

in directed acyclic graph. JRIP is a propositional rule learner that tries every

attribute with every possible value and adds a rule which results to the greatest135

information gain. Logistic regression is a statistical regression model where de-

pendent variable is used to estimate the probability of binary response based on

multiple features. AdaBoost is a meta algorithm that can be used with many

other algorithms to improve their performance by combining their outputs into

a weighted sum which represents the final output.140

We then used the modified Weka 3.6.6 library 1 for Android to develop the

OWASP Seraphimdroid Android app, which is using support vector machines

with sequential minimal optimization 2.

We also apply several clustering techniques in order to evaluate the per-

formance of our unsupervised and supervised learning algorithms. Training,145

testing and evaluation of our model are performed using Weka Toolkit by ap-

plying the Farthest First, Simple K-means and Expectation maximization (EM)

1http://www.pervasive.jku.at/Teaching/lvaInfo.php?key=346&do=uebungen
2https://www.owasp.org/index.php/OWASP_SeraphimDroid_Project

https://github.com/nikolamilosevic86/owasp-seraphimdroid

6

http://www.pervasive.jku.at/Teaching/lvaInfo.php?key=346&do=uebungen
https://www.owasp.org/index.php/OWASP_SeraphimDroid_Project
https://github.com/nikolamilosevic86/owasp-seraphimdroid


algorithms. Simple K-means is a clustering algorithm where samples are clus-

tered into n clusters, in which each sample belongs to a cluster with the nearest

mean. Farthest First algorithm uses farthest-first traversal to find k clusters150

that minimize the maximum diameter of a cluster, and Expectation maximiza-

tion (EM) assigns a probability distribution to each instance which indicates

the probability of it belonging to each of the clusters.

2.2. Source code-based analysis

The second approach is a static analysis of the app’s source code. Malicious155

codes generally use a combination of services, methods, and API calls in a way

that is not usual for non-malicious app [11]. Machine learning algorithms are

capable of learning common combinations of malware services, API and system

calls to distinguish them from non-malicious apps.

In this approach, Android apps are first decompiled and then a text mining160

classification based on bag-of-words technique is used to train the model. Bag-

of-words technique has already showed promising results for classification of

harmful apps on personal computers [22]. Decompiling Android apps to conduct

static code analysis involves several steps. First, it is necessary to extract the

Dalvik Executable file (dex file) from the Android application package (APK165

file). The second step is to transform the Dalvik Executable file into a Java

archive using the dex2jar tool 3. Afterwards, we extract all .class files from the

Java archive and utilize Procyon Java decompiler (version 0.5.29) to decompile

.class files and create .java files. Then, we merge all Java source code files of

the same app into one large source file for further processing.170

Since Java and natural language text have some degree of similarity, we apply

the technique used in natural language processing, known as ”a bag-of-words”.

In this technique, the text, or Java source code in our case, is represented as a

bag or set of words which disregards the grammar or word order. The model

takes into account all words that appear in the code. Our approach considers the175

3https://github.com/pxb1988/dex2jar

7

https://github.com/pxb1988/dex2jar


whole code including import statements, method calls, function arguments, and

instructions. The source code obtained in the previous step is then tokenized

into unigrams that are used as a bag-of-words. We use several machine learn-

ing algorithms for classifications, namely: C4.5 decision trees (in Weka toolkit,

it is known as J48), Naive Bayes, Support Vector Machines with Sequential180

Minimal Optimization, Random Forests, JRIP, Logistic Regression and Ad-

aBoostM1 with SVM base. We performed our training, testing and evaluation

using Weka Toolkit. For source code analysis, we also utilized ensemble learn-

ing with combinations of three and five algorithms and majority voting decision

system. Ensemble learning combines multiple machine learning algorithms over185

the same input, in hope to improve the classification performance. The number

of algorithms is chosen in a way that system is able to unambiguously choose

the output class based on majority of votes.

We also experiment with clustering on the source code. Clustering algo-

rithms we use include the Farthest First, Simple K-means and Expectation190

maximization (EM). A flow diagram of the process is presented in Figure 1.

Figure 1: Workflow of Android file decompiling and machine learning-based malware detection

methodology

8



2.3. Ensemble learning

To improve the performance of our learning algorithms, our tests were per-

formed using ensemble learning with voting for both permission-based and

source code-based analysis. Ensemble methods use multiple classification al-195

gorithms to obtain better performance than could be obtained from any of the

constituent algorithms individually. The final prediction is chosen as the label

that was predicted by the majority of classifiers. We also experiment with en-

sembles that contained combinations of three and five algorithms. Odd number

of algorithms allow us to unambiguously choose the class with majority voting.200

For classification algorithms, we use SVM, C4.5, Decision Trees, Random Tree,

Random Forests, JRIP, and Linear Regression.

3. Evaluation and Discussion

We evaluated the performance of our approaches using 10-fold cross valida-

tion. In 10-fold cross validation, the original sample was randomly partitioned205

into ten equal sized sub-samples. A single sub-sample was retained for the test-

ing, while the remaining nine were used for training. The process was repeated

ten times, and each time using a different sub-sample for testing. The results

were then averaged to produce a single estimation. The main advantage of this

method is that all samples were used once only for validation. The metrics we210

used for the evaluation of the algorithms are precision, recall and F-measure,

which are widely used in the text mining and machine learning communities.

Classified items can be true positive (TP – items correctly labeled as belonging

to the class), false positive (FP - items incorrectly labeled as belonging to a cer-

tain class), false negative (FN - items incorrectly labeled as not belonging to a215

certain class), and true negative (TN - items correctly labelled as not belonging

to a certain class).

Given the number of true positives and false negatives, recall is calculated

using the following formula:

Recall =
TP

(TP + FN)

9



The recall is sometimes referred to as ”sensitivity” or the ”true positive rate”.

Given the number of true positive and false positive classified items, precision

(also known as ”positive predictive rate”) is calculated as follows:

Precision =
TP

(TP + FP )

The measure that combines precision and recall is known as F-measure, given

as:

F =
(1 + β2) ∗Recall ∗ Precision
β2 ∗ Precision+Recall)

,

where β indicates the relative value of precision. A value of β = 1 (which is

usually used) indicates the equal value of recall and precision. A lower value220

indicates a larger emphasis on precision and a higher value indicates a larger

emphasis on recall [23].

3.1. Evaluation of permission-based classification

The evaluation of machine learning algorithms performing permission-based

classification is presented in Table 1.225

Algorithm Precision Recall F-Score

C4.5 decision trees 0.827 0.827 0.827

Random forest 0.871 0.866 0.865

Bayes Networks 0.747 0.747 0.747

SVM with SMO 0.879 0.879 0.879

JRip 0.821 0.819 0.819

Logistic regression 0.823 0.822 0.821

Table 1: Evaluation results of permission-based classification using single machine learning

algorithms

As observed from Table 1, support vector machines with sequential minimal

optimization has the best performance with a F-measure value of 0.879. In other

words, this algorithm correctly classified 87.9% of test instances in 10-fold cross

validation. The algorithm is also efficient, in terms of speed, as it took only 0.04

10



seconds to train the model. Instances were also classified faster; thus, making230

this approach suitable for real-time classification of (malicious) apps. We then

integrated this model for classification based on permissions with SVM in the

OWASP Seraphimdroid Android app 4, which can be obtained from Google

Play Store 5.

On the other hand, Bayesian algorithms such as Naive Bayes and Bayesian235

networks have the worst performance. This could be due to the small dataset

(comprising only 387 instances) used in this study. Bayesian algorithms usu-

ally require much larger datasets than SVM to train the model with a higher

accuracy. A larger dataset may also the improve SVM model performance.

SVM algorithm outperforms Naive Bayes, Bayesian Network, JRip and Lo-240

gistic regression on statistical t-test with a confidence interval of 0.05. However,

it is not significantly statistically better than decision trees and random forests.

In Table 2, we present the results of ensemble learning using majority voting.

We experimented with ensembles of three algorithms in order to determine

which algorithm(s) contribute to the best results in ensembles. The best three245

performing algorithms are SVM with SMO, Logistic Regression and Random

Forest with an F-measure of 0.891. This is only a slight improvement compared

to using the SVM algorithm in isolation. The t-test suggested that ensemble

learning is not significantly better with a confidence interval of 0.05.

On the other hand, ensemble algorithms were much slower as more time is250

needed to apply multiple machine learning algorithms (in our case, three or five)

and post-process results. Since the significance test showed that the performance

of the ensemble learning algorithm is not significantly better than the single

machine learning algorithm, there is no benefit in using these algorithms in

production.255

Both results from the single classifier and ensemble method present a promis-

ing performance that can be used in anti-malware systems. This method would

4https://github.com/nikolamilosevic86/owasp-seraphimdroid
5https://play.google.com/store/apps/details?id=org.owasp.seraphimdroid

11

https://github.com/nikolamilosevic86/owasp-seraphimdroid
https://play.google.com/store/apps/details?id=org.owasp.seraphimdroid


be able to detect unknown and new malware samples since it does not rely on

signatures, but rather on learned dangerous permission combination. Our find-

ings echoed the findings of previous studies such as [24], which demonstrated260

the potential of machine learning algorithms in achieving a high detection rate,

even on new malware samples.

Algorithm Precision Recall F-Score

Random tree+Random forest+C4.5 0.878 0.876 0.876

Random tree+Random forest+SVM with SMO 0.885 0.884 0.884

SVM with SMO+Logistic regression+Random forest 0.892 0.891 0.891

Bayes Nets+SVM with SMO+Logistic Regression 0.879 0.876 0.876

C4.5+ Random forests+ Random tree+

SVM with SMO+Logistic regressing 0.895 0.894 0.894

Table 2: Evaluation results of permission-based classification using ensemble learning

There are, however, limitations with this approach. For the permission-

based approach, we reported an F-measure of 87.9% for single machine learning

algorithms. In other words, some malware samples would be undetected and265

some non-malicious apps classified as malicious. In our case, 340 apps were cor-

rectly classified, while 47 were incorrectly classified. Using ensemble learning,

the number of misclassified instances was reduced to 42. Our reported perfor-

mance is higher than those reported in [25]. Also, our permission-based analysis

model is not computationally expensive and when implemented in the OWASP270

Seraphimdroid app, we were able to scan and classify all 83 installed apps on

the test device (i.e., a Nexus 5 device with Quad-core 2.3 GHz, 2 GB RAM) in

under 8 seconds.

3.2. Evaluation of permission-based clustering

Clustering refers to the grouping of similar items together, without any275

knowledge of how the grouping should be performed. Clustering is different

from supervised learning, where the training set is defined in a way that shows

how to perform classification. In clustering, there are no labels or training sets.

12



The set of elements is clustered into a certain number of groups, which are

usually formed based on the elements’ similarity.280

Table 3 presents the results of our permission-based clustering approach. In

our case, apps will be grouped according to whether they use a similar set of

permissions. However, if an app uses a similar set of permissions as some mal-

ware, it does not mean that the app is malicious. As it can be seen from Table 3,

the results are not as good as classification. The best algorithm incorrectly clus-285

tered more than 35% of the instances while permission-based classification only

incorrectly classified around 10.5% of the instances. In our permission-based

analysis, clustering had a higher error rate than classification.

Algorithm Correctly clustered instances Incorrectly clustered instances

SimpleKMeans 229 (59.17%) 158.0 (40.83%)

FarthestFirst 199 (51.42%) 188.0 (48.58%)

EM 250 (64.6%) 137.0 (35.4%)

Table 3: Evaluation results of permission-based clustering

3.3. Evaluation of source code-based classification

Of the 400 apps in our data set, we were unable to decompile 32 of them290

(10 non-malicious and 22 malicious), perhaps due to code encryption and ob-

fuscation or instability of our Java decompiler. Nevertheless, the remaining 368

source files were sufficient to train a good model.

The evaluation of the classification for the analysis of the app’s source code

is presented in Table 4.295

As Table 4 shows, over 95% of instances were correctly classified using SVM.

The high accuracy of source code-based classification reveals that the machine

can infer app behavior from its source code. Even though the bag-of-words

model disregards grammar and word order in text (in our context, the source

code), it is possible to train a successful machine learning model that is able300

to distinguish malicious app from non-malicious app. Other machine learning

algorithms such as Random Forests, Logistic Regression and JRip were also

13



Algorithm Precision Recall F-Score

C4.5 decision trees 0.886 0.886 0.886

Random forest 0.937 0.935 0.935

Naive Bayes 0.825 0.821 0.820

Bayesian networks 0.825 0.821 0.819

SVM with SMO 0.952 0.951 0.951

JRip 0.916 0.916 0.916

Logistic regression 0.935 0.935 0.935

Table 4: Evaluation results of source code-based classification using single machine learning

algorithm

evaluated and had an F-score of over 90%. Therefore, source code appears to be

a viable source of information for a machine learning classification algorithm.

Also, with the machine learning-based source code analysis, it is possible to305

analyze whether an Android package (apk) is malicious in less than 10 seconds,

which is significantly faster than a human analyst.

Algorithm Precision Recall F-Score

C4.5 decision tree+random tree+random forests 0.950 0.948 0.948

Logistic regression+C4.5+SVM with SMO 0.947 0.946 0.946

Random tree+Random Forest+SVM with SMO 0.825 0.821 0.820

SVM with SMO+Logistic regression+Random forest 0.942 0.940 0.940

SVM with SMO+Logistic regression+

AdaBoostM1 with SVM base 0.952 0.951 0.951

Logistic regression+JRip+Random Forests+

C4.5+SVM with SMO 0.950 0.948 0.948

SVM with SMO+Logistic regression+

Simple Logistic regression+AdaBoostM1 with SVM base 0.958 0.957 0.956

Table 5: Evaluation results of source code-based classification using ensemble learning

In Table 5, we present the results of ensemble learning methods. Ensemble

14



learning with voting had a slight improvement compared to the best results

from using single machine learning algorithms (the best F-measure of ensem-310

ble learning was 0.956; the F-measure of SVM was 0.951) by combining SVM

with SMO, logistic regression, LogitBoost with simple regression functions as

base learners (simple logistic regression) and AdaBoostM1 with SVM as a base.

Some of the ensembles (e.g. C4.5 decision tree+random tree+random forests

or SVM with SMO+Logistic regression+Random Forest) performed worse than315

SVM with SMO. Since the F-measure of C4.5 decision trees was 0.886, it had

a negative impact on the ensembles. Ensembles that contained SVM may have

misclassified some instances if the majority of algorithms voted for the wrong

class. The combination of algorithms in one case (SVM with SMO+Logistic re-

gression+Simple Logistic regression+AdaBoostM1 with SVM base) had slightly320

improved classification performance (by 0.5% in F-measure), but it was not

statistically significant. Our source code analysis approach allows successful

classification of new malware in 95.1% cases with a single machine learning

algorithm.

3.4. Evaluation of source-based clustering325

Table 6 presents the results of source code clustering. These results were

more promising than the those obtained from permission-based clustering since

the best performance of correctly clustered instances increased from 64.6% to

82.3%. The increase in performance is due to the fact that source code provides

a greater amount of data based on which clustering can be done. However,330

there were still 17.6% incorrectly clustered instances. Since clustering is a type

of unsupervised machine learning algorithm, it creates clusters that are based on

code similarity. This is not necessarily a good indication of the code’s malicious

behavior. The way clustering maps instances in the absence of any supervi-

sion is the main reason that its performance is worse than the classification335

algorithms. The results for non-supervised learning can be used for creating

larger labeled data sets. Classification (SVM) performed 14% better than the

best clustering method, which indicates that clustering should not be used for

15



detecting malware but only for expanding small datasets if necessary.

Algorithm Correctly clustered instances Incorrectly clustered instances

SimpleKMeans 303 (82.3%) 65 (17.66%))

FarthestFirst 296 (80.44%) 72 (19.56%)

EM 300 (81.53%) 68 (18.47%)

Table 6: Evaluation results of permission-based clustering

4. Conclusion and Future Research Directions340

In this paper, we presented two machine learning aided (classification and

clustering) approaches based on app permissions and source code analysis to de-

tect and analyze malicious Android apps. The use of machine learning allows our

algorithms to detect new malware families with high precision and recall rates.

Our approach complements existing signature-based anti-malware solutions, as345

the latter is not capable of detecting malicious software until the appropriate

signatures are released. Specifically, we demonstrated that the permission-based

method was able to classify malware from goodware in 89% of cases while source

code analysis classification performance was over 95%. Accuracy rates of 95.1%

using SVM, and 95.6% using the ensemble learning method are comparable with350

existing state-of-the art solutions.

The majority of existing approaches need to perform analysis on the re-

mote server or they require the Android device to be rooted. However, our

permission-based approach can run on Android devices without root access and

offers a relatively good accuracy in malware detection. Source code-base analy-355

sis approach, to the best of our knowledge, is the only automated Android static

malware analysis method that uses machine learning to scan the entire source

code of an app. Other static malware detection approaches are usually limited

to monitoring a set of API or system calls, ignoring import code snippets such

as operator statements and other code features. Our source code-based classi-360

fication is computationally more expensive as it requires decompilation of the

16



files prior to analysis. However, detailed analysis of decompiled code does not

take more than 10 seconds per app. Practically, this method can be used to

scan and classify any apps including those on Google Play and other app stores.

Future research includes the evaluation of the proposed models using a signif-365

icantly bigger labeled balanced data sets and utilizing online learning. Another

research focus is combining static and dynamic software analysis in which mul-

tiple machine learning classifiers are applied to analyze both source code and

dynamic features of apps in run-time.

References370

[1] A. Boxall, The number of smartphone users in the world is expected to

reach a giant 6.1 billion by 2020 (2015).

URL http://www.digitaltrends.com/mobile/

smartphone-users-number-6-1-billion-by-2020/

[2] A. Dehghantanha, K. Franke, Privacy-respecting digital investigation, in:375

Privacy, Security and Trust (PST), 2014 Twelfth Annual International Con-

ference on, IEEE, 2014, pp. 129–138.

[3] J. Walls, K.-K. R. Choo, A review of free cloud-based anti-malware

apps for android, in: 14th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications (Trust-380

Com/BigDataSE/ISPA), IEEE, 2015, pp. 1053–1058.

[4] M. Kitagawa, A. Gupta, R. Cozza, I. Durand, D. Glenn, K. Maita, L. Tay,

T. Tsai, R. Atwal, M. Escherich, E. He, A. Jump, B. Lakehal, C. Lu, T. H.

Nguyen, A. Sato, V. Tripathi, A. Zimmermann, W. Lutman, Market share:

Final pcs, ultramobiles and mobile phones, all countries, 2q15 update, Tech.385

rep. (2015).

[5] C. Chia, K.-K. R. Choo, D. Fehrenbacher, How cyber-savvy are older mo-

bile device users?, in: M. H. Au, K.-K. R. Choo (Eds.), Mobile Security

and Privacy, Syngress/Elsevier, Waltham, MA, 2017, Ch. 4, pp. 67–83.

17

http://www.digitaltrends.com/mobile/smartphone-users-number-6-1-billion-by-2020/
http://www.digitaltrends.com/mobile/smartphone-users-number-6-1-billion-by-2020/
http://www.digitaltrends.com/mobile/smartphone-users-number-6-1-billion-by-2020/
http://www.digitaltrends.com/mobile/smartphone-users-number-6-1-billion-by-2020/
http://www.digitaltrends.com/mobile/smartphone-users-number-6-1-billion-by-2020/
http://www.digitaltrends.com/mobile/smartphone-users-number-6-1-billion-by-2020/


[6] N. Viennot, E. Garcia, J. Nieh, A measurement study of google play, in:390

ACM SIGMETRICS Performance Evaluation Review, Vol. 42, ACM, 2014,

pp. 221–233.

[7] A.-D. Schmidt, J. H. Clausen, A. Camtepe, S. Albayrak, Detecting sym-

bian os malware through static function call analysis, in: Malicious and

Unwanted Software (MALWARE), 2009 4th International Conference on,395

IEEE, 2009, pp. 15–22.

[8] T. K. Buennemeyer, T. M. Nelson, L. M. Clagett, J. P. Dunning, R. C.

Marchany, J. G. Tront, Mobile device profiling and intrusion detection using

smart batteries, in: Hawaii International Conference on System Sciences,

Proceedings of the 41st Annual, IEEE, 2008, pp. 296–296.400

[9] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, A. N. Sheth, Taintdroid: an information-flow tracking system

for realtime privacy monitoring on smartphones, ACM Transactions on

Computer Systems (TOCS) 32 (2) (2014) 5.

[10] G. Canfora, F. Mercaldo, C. A. Visaggio, Mobile malware detection using405

op-code frequency histograms, in: Proceedings of International Conference

on Security and Cryptography (SECRYPT), 2015.

[11] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,

L. Cavallaro, Droidscribe: Classifying android malware based on runtime

behavior, Mobile Security Technologies (MoST 2016) 7148 (2016) 1–12.410

[12] M. S. Alam, S. T. Vuong, Random forest classification for detecting an-

droid malware, in: Green Computing and Communications (GreenCom),

2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International

Conference on and IEEE Cyber, Physical and Social Computing, IEEE,

2013, pp. 663–669.415

[13] T. Isohara, K. Takemori, A. Kubota, Kernel-based behavior analysis for

android malware detection, in: Computational Intelligence and Security

18



(CIS), 2011 Seventh International Conference on, IEEE, 2011, pp. 1011–

1015.

[14] M. Damshenas, A. Dehghantanha, K.-K. R. Choo, R. Mahmud, M0droid:420

An android behavioral-based malware detection model, Journal of Infor-

mation Privacy and Security 11 (3) (2015) 141–157.

[15] F. Mercaldo, V. Nardone, A. Santone, C. A. Visaggio, Download malware?

no, thanks: how formal methods can block update attacks, in: Proceedings

of the 4th FME Workshop on Formal Methods in Software Engineering,425

ACM, 2016, pp. 22–28.

[16] E. B. Karbab, M. Debbabi, D. Mouheb, Fingerprinting android packaging:

Generating dnas for malware detection, Digital Investigation 18 (2016) S33–

S45.

[17] L. Nataraj, S. Karthikeyan, G. Jacob, B. Manjunath, Malware images:430

visualization and automatic classification, in: Proceedings of the 8th inter-

national symposium on visualization for cyber security, ACM, 2011, p. 4.

[18] H. V. Nath, B. M. Mehtre, Static malware analysis using machine learning

methods, Recent Trends in Computer Networks and Distributed Systems

Security (2014) 440–450.435

[19] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, P. L.

de Geus, Identifying android malware using dynamically obtained features,

Journal of Computer Virology and Hacking Techniques 11 (1) (2015) 9–17.

[20] S. Y. Yerima, S. Sezer, I. Muttik, Android malware detection: An

eigenspace analysis approach, in: Science and Information Conference440

(SAI), 2015, IEEE, 2015, pp. 1236–1242.

[21] J. Sahs, L. Khan, A machine learning approach to android malware de-

tection, in: Intelligence and Security Informatics Conference (EISIC), 2012

European, IEEE, 2012, pp. 141–147.

19



[22] V. A. Benjamin, H. Chen, Machine learning for attack vector identification445

in malicious source code, in: Intelligence and Security Informatics (ISI),

2013 IEEE International Conference on, IEEE, 2013, pp. 21–23.

[23] W. Hersh, Evaluation of biomedical text-mining systems: lessons learned

from information retrieval, Briefings in bioinformatics 6 (4) (2005) 344–356.

[24] J. Z. Kolter, M. A. Maloof, Learning to detect and classify malicious exe-450

cutables in the wild, The Journal of Machine Learning Research 7 (2006)

2721–2744.

[25] Cyveillance, Cyveillance testing finds av vendors detect on average less than

19% of malware attacks (2010).

URL http://www.businesswire.com/news/home/20100804005348/en/455

Cyveillance-Testing-Finds-AV-Vendors-Detect-Average

5. Biography of authors

5.1. Nikola Milosevic

Nikola Milosevic is a PhD student at the University of Manchester, School

of Computer Science, where his research topics focus around machine learn-460

ing and natural language processing. Also he is involved with OWASP (Open

Web Application Security Project) as a founder of OWASP Serbia local chap-

ter, OWASP Manchester local chapter leader and a project leader of OWASP

Seraphimdroid mobile security project.

5.2. Ali Dehghantanha465

Dr. Ali Dehghan Tanha is a Marie-Curie International Incoming Fellow in

Cyber Forensics, a fellow of the UK Higher Education Academy (HEA) and

an IEEE Sr. member. He has served for many years in a variety of research

and industrial positions. Other than Ph.D in Cyber Security he holds several

professional certificates such as GXPN, GREM, CISM, CISSP, and CCFP.470

5.3. Kim-Kwang Raymond Choo

20

http://www.businesswire.com/news/home/20100804005348/en/Cyveillance-Testing-Finds-AV-Vendors-Detect-Average
http://www.businesswire.com/news/home/20100804005348/en/Cyveillance-Testing-Finds-AV-Vendors-Detect-Average
http://www.businesswire.com/news/home/20100804005348/en/Cyveillance-Testing-Finds-AV-Vendors-Detect-Average
http://www.businesswire.com/news/home/20100804005348/en/Cyveillance-Testing-Finds-AV-Vendors-Detect-Average
http://www.businesswire.com/news/home/20100804005348/en/Cyveillance-Testing-Finds-AV-Vendors-Detect-Average
http://www.businesswire.com/news/home/20100804005348/en/Cyveillance-Testing-Finds-AV-Vendors-Detect-Average

	Introduction
	Methodology
	Permission-based analysis
	Source code-based analysis
	Ensemble learning

	Evaluation and Discussion
	Evaluation of permission-based classification
	Evaluation of permission-based clustering
	Evaluation of source code-based classification
	Evaluation of source-based clustering

	Conclusion and Future Research Directions
	Biography of authors
	Nikola Milosevic
	Ali Dehghantanha
	Kim-Kwang Raymond Choo


