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Abstract: This paper numerically investigates radiative magnetohydrodynamic mixed 

convection boundary layer flow of nanofluids over a nonlinear inclined stretching/shrinking 

sheet in the presence of heat source/sink and viscous dissipation. The Rosseland 

approximation is adopted for thermal radiation effects and the Maxwell-Garnetts and 

Brinkman models are used for the effective thermal conductivity and dynamic viscosity of 
the nanofluids respectively. The governing coupled nonlinear momentum and thermal 

boundary layer equations are rendered into a system of ordinary differential equations via 

local similarity transformations with appropriate boundary conditions. The non-dimensional, 

nonlinear, well-posed boundary value problem is then solved with the Keller box implicit 

finite difference scheme. The emerging thermo-physical dimensionless parameters governing 

the flow are the magnetic field parameter, volume fraction parameter, power-law stretching 

parameter, Richardson number, suction/injection parameter, Eckert number and heat 

source/sink parameter. A detailed study of the influence of these parameters on velocity and 

temperature distributions is conducted. Additionally the evolution of skin friction coefficient 

and Nusselt number values with selected parameters is presented. Verification of numerical 

solutions is achieved via benchmarking with some limiting cases documented in previously 

reported results, and generally very good correlation is demonstrated. This investigation is 

relevant to fabrication of magnetic nanomaterials and high temperature treatment of magnetic 

nano-polymers. 

 

Keywords: Keller-Box Method; Non-linear Stretching/Shrinking Sheet; Heat Source/Sink; 

Nanofluid; power-law stretching parameter; magnetic nanomaterials processing.  

 

1. INTRODUCTION 

 

Nanofluids constitute a subsection of molecular liquids designed to operate at the 

nanoscale. The rapid growth of nanotechnology has witnessed a significant interest in such 
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fluids across the entire breadth of engineering, including aerospace, manufacturing, energy 

technologies and medical industries. It is well-known that the term nanofluid was introduced 

by Choi [1] in 1995, to describe a fluid comprising solid nanoparticles with size typically of 

1to 100 nm suspended in a liquid. Common base fluids are water, ethylene glycol, oil and 

lubricants. Nanoparticles which include aluminium, copper, silver and titanium metals 

with/without their oxides are of great scientific interest as they are effectively a bridge 

between bulk materials and molecular structures. The thermal conductivity of the nano-

particles is high as compared to the conventional fluids, as verified in experimental studies 

conducted by Eastman et al. [2] and Xuan and Lin [3] shown that with a small volumetric 

fraction of nanoparticles (typically less than 5%), the thermal conductivity of the base fluid is 

enhanced by 10-20%. Recently Selimefendigil and Oztop [4] reported that 14.11 % of 

averaged heat transfer enhancement is obtained when both cavities are filled with nanofluids 

at the highest value of nanoparticle volume fractions. Therefore, these nanofluids are capable 

of promoting energy efficiency, improving thermal conductivity and thermal properties of 

heat transport of base fluid. Nanofluids have therefore found significant applications in 

diverse areas including rocket fuels, cooling of nuclear reactors, manufacturing of nano-

polymer sheets, bath cooling of a metallic plates and wires, glass fabrication etc. Recently 

many interesting studies have been reported by various researchers which includes Power law 

fluids in a cavity (Selimefendigil and Oztop [5]), Oldroyd-B fluids (Hayat et al. [6]), 

Maxwell fluids (Abbasi and Shehzad [7]), nanofluid filled in lid driven square enclosure with 

a rotating cylinder (Selimefendigil and Oztop [8]), Squeezing nanofluid flows (Hayat et al. 

[9]), Ferrofluid flow in a partially heated square enclosures (Selimefendigil and Oztop [10]) 

.In certain polymeric processing operations, materials are stretched or contracted at high 

temperature through slits under various thermal conditions to modify the properties. 

Mathematical modelling of such processes provides an important compliment to experimental 

laboratory investigations. Numerical analysis of viscous flow and heat transfer over a non-

linearly stretching sheet has been conducted for a Newtonian fluid by Cortell [11] with 

various thermal boundary conditions using a Runge-Kutta (RK) algorithm. Rana et al. [12] 

employed a finite element method to simulate two-dimensional non-Newtonian nanofluid 

stretching sheet flow from a slit with viscous heating and deformation effects. Furthermore 

numerous reviews on thermal enhancing properties of nanofluids have been addressed in [13-

15].  

  Magnetohydrodynamic (MHD) viscous incompressible flow of electrically 

conducting fluid also features in an extensive range of technologies including magnetic 

materials processing, heat transfer control, purification of crude oil, Hall generators etc. In 

such flows a Lorentzian magnetic body force is generated transverse to the direction of the 

applied magnetic field which is instrumental in regulating high temperature plasmas, energy 

flux and also damping oscillations. Magnetic nanofluids are colloidal suspensions containing 

magnetizable nanoparticles which possess magnetic, fluid and thermal properties.  Fourth 

order R-K method based shooting technique has been employed by Freidoonimehr et al. [16] 

to solve the differential equations describing the unsteady MHD free convection flow in a 

nanofluid past a permeable accelerating stretching vertical surface in the form of assisting 

flow. Makinde et al. [17] studied the combined effects of buoyancy force and convective 

heating on MHD stagnation point nanofluid flow from a vertically heated 

stretching/shrinking sheet as well as Makinde et al. [18] also studied MHD flow of variable 

viscosity nanofluid over radially stretching convective surface. Selimefendigil and Oztop [19-

21] adopted FEM to investigate the influence of inclined magnetic field under different 

geometries which includes backward facing step, cavity with oscillating lid and isothermal 

cylinders portioned with a conductive ring respectively. As well as influence of inclined 
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magnetic field imposed to upper and lower triangular domains by Selimefendigil et al. [22].   

Hayat et al. [23] used a homotopy method to analyze the three-dimensional hydromagnetic 

viscous flow of nanofluid subject to convective surface boundary conditions. Abolbashari et 

al. [24] employed HAM to study the entropy analysis in an unsteady magneto hydrodynamic 

nanofluid regime adjacent to an accelerating stretching permeable surface with the water as 

the base fluid. The analytical solution for two dimensional MHD mixed convection 

viscoelastic fluid flow over a porous wedge with thermal radiation is investigated by Rashidi 

et al. [25] by adopting HAM. Heat and Mass Transfer of a steady MHD convective and Slip 

flow due to a rotating disk with viscous dissipation and Ohmic heating reported by Rashidi 

and Erfani [26] by adopting DTM with Pade approximation. Very recently MHD nanofluid 

flow in stretching/shrinking convergent / divergent channel with Duan-Rach Approach 

(DRA) by Dogonchi and Ganji [27], buoyancy flow and heat transfer of MHD flow with 

KKL (Koo- Kleinstreuer -Li) effective thermal conductivity and viscosity correlation model 

by Dogonchi and Ganji [28].   

 As elaborated earlier, transport phenomena from a stretching/shrinking sheet have 

attracted many researchers owing to the relevance of this type of flow to materials processing 

operations including extrusion of polymer sheets, annealing of copper sheets in metallurgy 

etc. The pioneering work in this area was presented by Sakiadis [29-30]. Crane [31] extended 

the Sakiadis model to study the forced convection flow from a stretching sheet in a viscous 

incompressible fluid. Goldstein [32] elaborated that the shrinking flow is essentially a 

backward flow and the mass suction is needed to maintain the flow.  It is worth mentioning 

here that the stretching sheet velocity formulation need not necessarily be a linear one. In 

polymeric extrusion processes nonlinear stretching is common. Gupta and Gupta [33] further 

verified that the stretching of the sheet is not necessarily linear for heat and mass transfer 

problems in the presence of suction/blowing. Motivated by emerging applications of nano-

polymers, Hamad and Ferdows [34] reported similarity solutions for viscous flow and heat 

transfer of nanofluid over a non-linearly stretching sheet with an assumption that the 

stretching velocity and transverse magnetic field is varied as a power function of the distance 

from the origin. They observed that behavior of the fluid flow changes with the type of 

nanoparticles type and furthermore also considered stagnation point, porous medium, internal 

heat generation and suction effects. Nonlinearity in the stretching sheet process has been 

addressed with quadratic (power-law) and also exponential models. Akyildiz and Siginer [35] 

obtained Galerkin-Legendre spectral solutions for thermal boundary layer flow over a 

nonlinear stretching sheet with a power-law stretching model. Stagnation point flow over a 

permeable stretching/shrinking sheet in a copper-water nanofluid was investigated by Bachok 

et al. [36]. Steady state two-dimensional stagnation-point flow of a water based nanofluid 

over an exponentially stretching/shrinking sheet was investigated with a computational 

shooting method by Bachok et al. [37]. They observed that the similarity solution for the 

steady stagnation-point flow over an exponentially stretching/shrinking sheet is larger than 

compared with the linear stretching/shrinking sheet case solution. Rana and Bhargava [38] 

investigated laminar boundary layer fluid flow which results from the non-linear stretching of 

flat surface in a nanofluid with a finite element method.  

Heat generation/ absorption effects arise in many thermo fluid processes including cooling of 

electronic equipment, hot spot/sink modification of polymer manufacture, cooling/heating of 

plastic products etc. Thermal radiation heat transfer also arises in high temperature materials 

synthesis. Selimefendigil and Oztop [39] reported that the elastic modulus of the side walls 

can be used to control the fluid flow and heat transfer inside the cavity and cylindrical nano 

particles gives the best performance in terms of heat transfer enhancement. Khan et al. [40] 

investigated non-aligned magnetized stagnation point flow of variable viscosity nanofluids 
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from a stretching sheet with radiative heat flux effects. Very recently Selimefendigil and 

Oztop [41] reported that as the value of the elastic modulus of the inclined wall and 

nanoparticle volume fraction increase, local and average heat transfer enhances. Gorla and 

Gireesha [42] presented dual solutions for stagnation point flow and heat transfer of 

Williamson viscoelastic nanofluids from a stretching/shrinking sheet under convective 

boundary conditions, showing that thermal boundary layer thickness increases with 

Williamson parameter (viscoelastic effect). Khan et al. [43] studied three-dimensional flow 

of nanofluid over a non-linearly stretching sheet with radiative flux effects. Selimefendigil 

and Oztop [44] reported that the local and averaged heat transfer enhances as the value of the 

solid volume fraction of the nanoparticle increases and this more effective for higher values 

of Richardson number. 

Although significant studies have been reported of magnetic, radiative and nanofluid 

flows from horizontal stretching/contracting sheets, relatively sparse attention has been 

afforded to inclined stretching/contracting sheet magnetized nanofluid flows in the presence 

of a heat source/sink. Therefore, the objective of present investigation is to extend the work 

reported by Hamad and Ferdows [34] and Pal et al. [45] by considering heat source/sink 

effects in addition to viscous dissipation for two different water based Newtonian nanofluids 

in transport from an inclined non-linear stretching/shrinking sheet. An implicit finite 

difference scheme due to Keller [46] has been adopted for solving the coupled non-linear 

ordinary differential equation system emerging. Extensive details of the mathematical 

formation of the problem, numerical method of solution, grid independence study and 

validation are presented. The effects of various governing physical parameters on velocity 

and temperature profiles are discussed via figures and tables in section 5. Finally, a summary 

of noteworthy results are presented in section 6. The current simulations are relevant to 

electromagnetic nanofluid materials processing under high temperature.     

 

2. MATHEMATICAL FORMULATION OF THE MODEL 

 

Consider the steady, two-dimensional, laminar, incompressible, magnetohydrodynamic 

dissipative flow of an electrically-conducting nanofluid from an inclined stretching or 

shrinking sheet, orientated at an angle,  )900( 00    to the vertical. The physical model 

is illustrated in Fig. 1  
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Fig. 1. Flow configuration and coordinate system 

 

The stretching of the sheet, which physically represents a nano polymer, is induced by 

applying two equal and opposite forces simultaneously along the x-axis. By keeping the 

origin fixed, the sheet is stretched with nonlinear velocity
n

w cxxu )( , where c is a constant 

and n is a nonlinear stretching parameter. The x-axis is directed along the continuous 

stretching/shrinking sheet and the y-axis is measured normal to the x-axis. It is assumed that 

flow takes place for 0y  and the temperature at the stretching/shrinking sheet takes a 

constant value 0wT  while the temperature of the ambient nanofluid takes the constant value 

T  as y . The inclination angles 0000 90090,0 and  represent the vertical, 

horizontal and general inclined stretching (or shrinking) sheet respectively. A non-uniform 

magnetic field of strength
2/)1()(  m

o xBxB  is applied in the transverse direction, where oB is 

constant related to magnetic field and )1( m  is a power law exponent.  Furthermore, the 

base fluid and the nanoparticles are in thermal equilibrium and no-slip occurs between them. 

Under these aforementioned assumptions the continuity, momentum and energy equations 

following [45], in the presence of thermal radiation, magnetic field, viscous dissipation and 

heat generation/absorption for the mixed convection flow can be shown to take the form: 

 

Continuity equation 
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The following boundary conditions are imposed at the stretching/shrinking sheet and in the 

freestream: 
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Here u and v are the velocity components along the x- axis and y-axis directions 

respectively and c is a constant for which 0c corresponds to the stretching sheet and 0c  

for the shrinking sheet, T is the temperature of the nanofluid, g is the acceleration due to 

gravity, wv is the wall mass flux with 0wv for suction and 0wv for injection respectively. 

Furthermore, nf  is the coefficient of dynamic viscosity of the nanofluid, nf  is the thermal 

expansion coefficient of the nanofluid, nf is the thermal diffusivity of the nanofluid, nf  is 

the effective density of the nanofluid, and nfpc )(  is the heat capacitance of the nanofluid 

which are defined as follows: 
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In the open literature different correlations exist for the electrical conductivity of nanofluids. 

Correlations which are functions of particle size, temperature and solid particle volume 

fractions were also developed. Very recently, Selimefendigil and Oztop ([21]) utilized 

Maxwell’s electrical conductivity model which is used to calculate the effective electrical 

conductivity of a random suspension of spherical nanoparticles. In this study, the electrical 

conductivity of the nanofluid is a linear interpolation of base fluid and nanoparticle volume 

fraction is utilized and is given by:   

sfnf )())(1()(             (5) 

Where   is the solid volume fraction of the nanofluid, f is the reference density of 

the fluid fraction, s  is the reference density of the solid fraction, f  is the viscosity of the 

fluid fraction, f  thermal expansion coefficient of the fluid, s  is the thermal expansion 

coefficient of the nanoparticles, sk is the thermal conductivity of the solid fraction, fk is the 

electrical conductivity of the fluid and nfk  is the thermal conductivity of the nano fluid. With 

an assumption for the optically thick boundary layer we adopt Rosseland’s diffusion 
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approximation for the radiative heat flux 
rq as given by
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Proceeding with the analysis, it is pertinent to introduce the following similarity 

transformations: 
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Where, f is the kinematic viscosity of the fluid and the stream function  is defined as 
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Now by substituting Eq. (7) and the aforementioned nanofluid properties into the Eqs. 
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The corresponding transformed boundary conditions for the stretching/shrinking sheet flow 

are given by: 
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Using Eq. (7) and Eq. (11) the local skin friction coefficient and the local Nusselt number can 

be expressed as  
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3. NUMERICAL SOLUTION OF NONLINEAR BOUNDARY VALUE PROBLEM 

 

The system of nonlinear coupled and inhomogeneous ordinary differential equations Eq. (8) 

and Eq. (9) subject to the boundary conditions in Eq. (10) are solved numerically using an 

implicit finite difference scheme known as the Keller-Box method [48]. Furthermore, this 

method is found to be suitable in dealing with nonlinear parabolic partial differential 

equations. It has been implemented in an extensive range of nanofluid and 

magnetohydrodynamic transport problems and readers are referred to [48]-[52]. Further 
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details of this method are available for convection flows in the monograph of Cebeci and 

Bradshaw ([53]). This method has four fundamental steps.  

 

 
 

Fig. 2. Net rectangle for finite difference approximation 

 

The first step involves converting the Eqs. (8) - (9) into a system of first order ordinary 

differential equations. Thus, the coupled differential equations of third order in )(f and 
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In the second step derivatives are approximated in the new system of first order equations 

with central difference approximations by considering the net rectangle in the planex  as 

shown in Fig. 2 and the net points are defined as ,00 x ,1 nnn kxx    ,00  jjj h 1  
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In the third step the emerging nonlinear algebraic equations are linearized with Newton’s 

method by using iterates of the form i

j

i

j

i

j )()()( 1  and then cast into matrix vector form. 

Finally, the linearized algebraic equations are solved using a block tri-diagonal elimination 

scheme implemented in MATLAB software with the suitable initial solution. This method is 

unconditionally stable (Cebeci and Bradshaw [53]), has a second order accuracy and is 

relatively easy to program, thus making it highly attractive for engineering analysis. For this 

iterative scheme to solve the system of equations, a convergence criterion is required. This is 

specified as follows: when the difference between two successive approximations is 

sufficiently small ( 510 ) the solutions are taken to have converged to the requisite 

accuracy. Mathematical details are omitted for brevity. 

 
Table 1: Thermo-physical properties of water and nanoparticles 

 

Physical properties H2O Cu Al2O3 

Cp(j/kg k) 4179 385 765 

ρ(kg/m3) 997.1 8933 3970 

K(W/m k) 0.613 401 40 

β X10
-5

(1/k) 21 1.67 0.85 

σ (S/m) 5.5x10
-6

 59.6x10
6
 35x10

6
 

In the computations, the thermo-physical properties of water and metal nanoparticles ( ,2OH

Cu and 32OAl ) are specified according to Table 1 (Khan et al. [40].) 

 

4. GRID INDEPENDENCE STUDY 

 

In order to ensure the obtained numerical solutions are independent of mesh density i.e. 

grid specification, the effects of grid size on the solutions are studied.  The boundary 

conditions for y  at  are replaced by a sufficiently large value where the velocity and 

temperature profiles approach to zero. The MATLAB code is run with three different grid 

sizes 801x801, 1001x1001 and 1201x1201 as shown in the Table 2 for stretching and 

shrinking sheet cases and in each case very good agreement is observed between the profiles. 

Finally, in the present study, the far field boundary condition  is replaced by a sufficiently 

large value 10max   and for all the computations in this numerical study the adopted grid 

size is 1001x1001 with step size of 0.001. 
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Table 2. Grid independence study for different grid sizes when 05.0  

 

)(f  : Velocity Profiles )( : Temperature Profiles 

1f  1f  1f  1f  

801 1001 1201 801 1001 1201 801 1001 1201 801 1001 1201 

1 1 1 -1 -1 -1 1 1 1 1 1 1 

0.9794 0.9794 0.9794 -0.9966 -0.9966 -0.9966 0.9953 0.9953 0.9953 0.9964 0.9964 0.9964 

0.9597 0.9597 0.9597 -0.9931 -0.9931 -0.9931 0.9904 0.9904 0.9904 0.9929 0.9929 0.9929 

0.941 0.941 0.941 -0.9897 -0.9897 -0.9897 0.9856 0.9856 0.9856 0.9893 0.9893 0.9893 

0.9232 0.9232 0.9232 -0.9863 -0.9863 -0.9863 0.9806 0.9806 0.9806 0.9858 0.9858 0.9858 

0.9061 0.9061 0.9061 -0.9829 -0.9829 -0.9829 0.9756 0.9756 0.9756 0.9822 0.9822 0.9822 

0.8897 0.8897 0.8897 -0.9795 -0.9795 -0.9795 0.9706 0.9706 0.9706 0.9787 0.9787 0.9787 

0.874 0.874 0.874 -0.9761 -0.9761 -0.9761 0.9655 0.9655 0.9655 0.9752 0.9752 0.9752 

0.8588 0.8588 0.8588 -0.9727 -0.9727 -0.9727 0.9604 0.9604 0.9604 0.9717 0.9717 0.9717 

0.8443 0.8443 0.8443 -0.9693 -0.9693 -0.9693 0.9553 0.9553 0.9553 0.9682 0.9682 0.9682 

 

5. VALIDATION OF NUMERICAL RESULTS 

 

To ascertain the correctness of the numerical values obtained through the implicit finite 

difference scheme, a comparison of skin friction coefficient and Nusselt number is made with 

results obtained through the numerical scheme in some limiting cases. For various values of 

power law exponent parameter, values of )0(f   and )0(  with 0Ec and 1.0Ec  are 

compared in the absence of heat source/sink parameter and are documented in Table 3. This 

allows verification of the Keller box solutions with those reported by Hamad and Ferdows 

[34] for a stretching sheet case.  

Furthermore, a comparison is also made for the case of absence of heat source/sink for 

horizontal stagnation point flow over a stretching/shrinking sheet which corresponds to the 

case studied by Pal et al. [46] wherein the Runge-Kutta RKF45 method with a shooting 

technique was employed. These comparisons are presented quantitatively in Table 4. It is 

evident from Table 3 that present the Keller box finite difference numerical values correlate 

closely with the solutions obtained by Hamad and Ferdows [34] which confirms the accuracy 

of the present results. Very good correlation is also achieved for both the shrinking and 

stretching sheet cases with the solutions of Pal et al. [45] in Table 4. Confidence in the 

present Keller box solutions is therefore justifiably high.  

 

Table 3. Comparison of )0(f  for various values of m and )0(  for several values of m

and Ec when 2/00,0,0,0,0.5Pr   andQNrRiM for a stretching sheet 

 

m  

)0(f   

m  

)0(   

Hamad and Ferdows  

[34] 

Present 

results  

Hamad and Ferdows  
[34] 

Present  
results  

Hamad and Ferdows  
[34] 

Present 
results  

0Ec  1.0Ec  

0.5 0.8897 0.88976 0.75 3.1246 3.12463 3.0156 3.01562 
1 1.0043 1.00457 1.5 3.5672 3.56735 3.4566 3.45661 
3 1.1481 1.14812 7 4.1848 4.1851 4.1354 4.13562 
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Table 4 Comparison of Skin friction and Nusselt number for various values of effPr  when 

2/0   andQ  

 

effPr  

Stretching sheet Shrinking sheet 

Dulal Pal et al.  [45] Present results Dulal Pal et al.  [45] Present results 

)0(f   )0(   )0(f   )0(   )0(f   )0(   )0(f   )0(   

2.5 -1.0721 2.3838 -1.07211 2.38389 6.1208 12.900 6.12084 12.90123 

3.0 -0.8389 1.6065 -0.83898 1.60654 0.5687 5.8575 0.56872 5.85756 
3.5 -0.8413 1.7548 -0.84135 1.75486 0.6223 6.8193 0.62236 6.81931 

 

Table 5 Values of Skin friction and Nusselt number for various values of EcandQS ,  when 

5.2Pr eff  

 

S  Q  Ec  
Stretching Sheet Shrinking Sheet 

fx C2/1Re  
xx Nu2/1Re  fx C2/1Re  

xx Nu2/1Re  

0.25 0.5 0.01 -32.514 3.6879 1.6029 2.1036 

0.25 1 0.01 -32.514 3.7859 1.5682 2.3841 

0.25 1.5 0.01 -32.514 3.879 1.5337 2.641 

0.25 2 0.01 -32.514 3.9681 1.4994 2.8782 

0.25 1.5 0.1 -32.514 3.7859 1.5682 2.641 

0.25 1.5 0.2 -32.514 3.1979 1.5683 2.2213 

0.25 1.5 0.3 -32.514 2.6099 1.5683 1.8017 

0.25 1.5 0.4 -32.514 2.0219 1.5684 1.3821 

0.75 0.5 0.01 -34.0052 4.693 1.8148 4.856 

0.75 1 0.01 -34.0052 4.7794 1.7754 5.0094 

0.75 1.5 0.01 -34.0052 4.863 1.7361 5.1567 

0.75 2 0.01 -34.0052 4.9441 1.6971 5.2983 

0.75 1.5 0.1 -34.0052 4.7794 1.7754 5.1567 

0.75 1.5 0.2 -34.0052 3.9634 1.7755 4.6894 

0.75 1.5 0.3 -34.0052 3.1475 1.7756 4.2221 

0.75 1.5 0.4 -34.0052 2.3315 1.7756 3.7548 

 

Additionally in Table 5 computations are provided for the variation of skin friction 

fx C2/1Re and Nusselt number (wall heat transfer rate) i.e. 
xx Nu2/1Re for both the stretching 

sheet and shrinking sheet cases, with variation in suction parameter (S >0), heat source (Q>0) 

and Eckert number (Ec). For the stretching sheet case (extending sheet), skin friction is 

decreased with increasing suction i.e. the flow is decelerated. Conversely skin friction is 

enhanced for the shrinking sheet case with greater suction. With greater heat source i.e. heat 

generation, Nusselt number is enhanced for both the stretching sheet and shrinking sheet 

cases, however the enhancement is much greater for the shrinking sheet case. With increasing 

Eckert number the skin friction is not influenced tangibly for the stretching sheet case. 

However a significant reduction in Nusselt number arises for the stretching sheet with greater 

Eckert number and a weaker decrease is observed for the shrinking sheet case over the same 

range of variation in Eckert number. The conversion of kinetic energy into thermal energy via 

viscous heating enhances temperatures in the boundary layer. This serves to heat the 

nanofluid and decreases the rate of heat transfer at the sheet surface (wall) manifesting in a 

fall in Nusselt numbers for both the shrinking or stretching scenarios. These trends are 
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consistent with other studies including Rana et al. [12] and Pal et al. [45]. The solutions in 

Table 5 also provide a useful benchmark for other researchers who may wish to extend the 

present model and validate different numerical procedures against the present Keller box 

computations. 

 

6. RESULTS AND DISCUSSION 

 

Comprehensive numerical computations have been carried out to study the effects of 

diverse parameters on thermo-fluid characteristics in the nanofluid boundary layer regime. 

Graphical distributions of the influence of magnetic field parameter ( M ), volume fraction 

parameter ( ), suction parameter (S), power law stretching parameter ( m ), inclination angle 

( ), effective Prandtl number ( effPr ), Eckert number ( Ec ) and Richardson number ( Ri ) on 

velocity, temperature, local skin friction ( fx C2/1Re ) and local Nusselt number (
xx Nu2/1Re ) 

profiles are presented in Figs. 3 – 34. In this paper we computed the results for the above 

physical parameters by fixing the value ,05.0 ,8.6Pr  0.1Nr and the parameter values 

for which the numerical computations are carried out are presented in the respective figure 

legends. Furthermore, The CPU took 6.52 seconds to compute the velocity profiles and 5.37 

seconds to compute the temperature profiles for 1001 nodal points with the Intel core i3 

processor under windows platform, which are computed by using the Matlab command tic; { 

Statements … … } toc;. 

Two different water based nanofluids OHCu 2  and OHOAl 232  are considered for 

both the stretching sheet ( 1f ) and the shrinking sheet ( 1f ) cases for velocity 

and temperature profiles. It is worth mentioning here that the momentum boundary layer 

thickness for OHCu 2 nanofluid is greater than the other water based nanofluid 

OHOAl 232   and this is attributable to the higher density of Cu  compared with 32OAl . The 

velocity profiles for stretching sheet/shrinking sheet commence with the surface velocity and 

decay to zero asymptotically at a distance sufficiently far from the plate surface. Furthermore, 

the velocity and temperature distributions for OHCu 2 exceed those of the OHOAl 232 

profiles, and this is associated with the high thermal conductivity of Cu  relative to 32OAl

which in turn leads to lower momentum boundary layer thickness and higher thermal 

boundary layer thickness of OHCu 2 nanofluid compared with OHOAl 232   nanofluid. 

The impact of transverse magnetic field, as characterized in the magnetic parameter, 

M, on nanofluid velocity profiles is depicted in Figs. 3 and 4. An increase of magnetic field 

M parameter in the transverse direction to flow field induces a reduction in the velocity 

distributions for both cases of a stretching sheet ( 0c ) and a shrinking sheet ( 0c ). It is 

noteworthy that for the stretching sheet case the velocity )(f  commences with the sheet 

velocity and then decays to zero asymptotically at the edge of hydrodynamic boundary layer. 

However for the shrinking sheet case the velocity )(f  starts with sheet velocity, attains a 

maximum value near the vicinity of sheet surface and thereafter decays to zero in the 

freestream. Only the stretching sheet case therefore produces a monotonic decay. Effectively 

the momentum boundary layer thickness increases with an increase in magnetic field i.e. M

for water based nanofluids. The deceleration in the boundary layer flow is due to the presence 

of a Lorentz magnetohydrodynamic drag force which acts perpendicular to the magnetic 

field. This resistive force inhibits the flow.  
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Figs. 5 and 6 respectively present the influence of magnetic field parameter M on 

temperature distribution for OHCu 2 and OHOAl 232  . We infer from both Figs. 5 and 6 

that temperature profiles are increased with an increase in magnetic field parameter. The 

supplementary work expended in dragging the nanofluid against the action of the magnetic 

field is dissipated as thermal energy. This heats the nanofluid, elevates temperatures and also 

increases thermal boundary layer thickness for both stretching and shrinking sheets. The 

stretching sheet temperature distribution is a consistent monotonic decay from the wall 

(sheet) to the freestream (peak temperature is always at the wall), whereas the shrinking sheet 

case follows a parabolic profile with a peak in temperature some distance from the wall. 

Figs. 7-10 illustrate the influence volume fraction ( ) of spherical shaped nano- 

particles on velocity and temperature distributions for stretching and shrinking sheet cases 

with OHCu 2 and OHOAl 232   nanofluids. Whenever   increases, the velocity profiles 

are decreased in Figs. 7 and 8 for both stretching and shrinking sheets and temperature 

profiles are increased in Figs. 9 and 10 for both stretching and shrinking sheets. However, the 

thermal conductivity of water based nanofluids increases as the nanoparticle size increases 

due to the low viscosity of the base fluid which promotes the particle clustering and this in 

turn leads to interconnecting channels for thermal energy to propagate. Therefore as volume 

fraction increases the thermal conductivity of water based nanofluid is enhanced. Therefore, 

momentum boundary layer thickness is decreased and thermal boundary layer thickness is 

increased.  Furthermore, inspection of the graphs demonstrates that the velocity and 

temperature profiles for OHOAl 232  nanofluid are markedly lower in magnitude than that of 

OHCu 2 nanofluid since Cu  has a significantly higher conductivity than the 32OAl .  

Figs. 11 and 13 present the effect of the sheet power-law parameter )(m on velocity 

and temperature profiles for OHCu 2 and  OHOAl 232   nanofluids for the stretching sheet 

case and Figs. 12 and 14 for the shrinking sheet case. It is observed from Figs. 11 and 12 that 

the velocity profiles are decreased with an increase of power-law parameter and decay from a 

maximum at the sheet surface asymptotically to zero in the freestream.  Similarly for the 

shrinking sheet, an increase in power-law parameter decreases the velocities. However the 

profiles grow from a minimum at the wall to achieve a maximum in the free stream for the 

shrinking sheet, which is the opposite trend i.e. in Figs. 12 and 14 velocity is consistently 

decreased with increasing values of )(m . Therefore more intensive stretching or shrinking of 

the sheet induces deceleration in the flow. We infer from Fig. 13 that temperature profiles are 

decreased near surface of the sheet and increased in the region away from the sheet surface 

with an increase in power-law parameter. Furthermore Fig. 14 demonstrates that the fluid 

temperature profiles exhibit a parabolic distribution. In both stretching and shrinking sheet 

cases, generally the copper-water nanofluid attains higher temperatures than the aluminium 

oxide water nanofluid. 

Figs. 15 and 16 present the nanofluid temperature distributions for both the stretching 

and shrinking (contracting) sheet cases for different values of heat source parameter )0( Q . 

We do not consider the heat sink )0( Q  case. Fig. 15 illustrates that an increase ofQ leads to 

increase in the temperature profiles in the thermal boundary layer regime, owing to the 

generation of energy in the thermal boundary layer. The nanofluid is energized by the 

presence of a heat source. Therefore, when heat is absorbed the buoyancy force also 

accelerates the flow. The stretching sheet temperature profile however follows a monotonic 

decay from the wall to the free stream. In Fig. 16 although for the shrinking sheet, there is 

also a boost in temperature profiles with heat source (Q>0), the profiles consistently exhibit a 
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temperature overshoot near the surface of the sheet. This overshoot is displaced progressively 

further from the sheet surface with greater heat source (generation) which increases the 

magnitudes of temperatures throughout the boundary layer. Therefore greater heat source 

serves to increase thermal boundary layer thickness. Again it is evident that copper water 

nanofluid temperatures exceed those computed for the aluminum oxide water nanofluid case.  

    Figs. 17 and 18 depict the influence of angle of inclination )(  on the evolution of 

velocity distributions for both stretching and shrinking sheet cases. It is clearly observed from 

Fig. 17 that velocity is decreased with an increase of angle of inclination for the stretching 

sheet case, implying that the nanofluid experiences increased drag at the sheet surface. 

Furthermore, the buoyancy effects decrease by a factor of gravity component )cos( as the 

inclination angle is increased. Hence the fluid attains higher magnitudes of velocity for the 

vertical stretching sheet case compared with the inclined stretching sheet. Magnitudes are 

consistently positive however indicating that backflow is never attained at any angle of 

inclination. Consequently, momentum boundary layer thickness increases with greater 

inclination of the sheet. Similarly Fig. 18 shows that with increasing inclination angle, the 

shrinking sheet flow is also decelerated i.e. smaller magnitudes of velocity are computed. The 

decrease in buoyancy force therefore also decelerates the flow for the shrinking sheet case; 

however the shrinking sheet exhibits consistently negative values corresponding to flow 

reversal, a trend which is not observed in the stretching sheet case.  

Figs. 19 and 20 present the effect of Richardson number )(Ri on the velocity profiles 

for both the stretching and shrinking sheet cases. The heat and cooling of the sheet surface 

and absence of free convection currents are physically represented by different values of 

Richardson number, specifically 00,0  RiandRiRi respectively. By increasing the 

Richardson number, the thermal buoyancy force term is increased in Eqn. (8) i.e. the 

momentum equation. Fig. 19 demonstrates that the velocity profiles are increased for 

stretching sheet case whereas Fig. 20 clearly indicates the opposite i.e. that the nanofluid flow 

is decelerated for the shrinking sheet case with greater Richardson number i.e. values are 

increasingly negative for velocity. If the Richardson number is much less than unity, 

buoyancy is relatively insignificant. If it is much greater than unity, buoyancy is dominant. If 

the Richardson number is of order unity, as considered in the present graphs, the flow is 

buoyancy-driven: the energy of the flow derives from the potential energy in the system 

originally. The larger buoyancy force caused by greater Richardson number serves to 

accelerate the flow in a stretching sheet whereas it decelerates the flow in a shrinking sheet. 

Buoyancy therefore exerts a very profound effect on the flow development for the different 

scenarios of stretching and shrinking. In general the copper-water nanofluid achieves better 

acceleration than the aluminium-water nanofluid. 

The influence of suction parameter )(S  on velocity profiles in the cases of stretching 

and shrinking sheet cases are shown in Figs. 21 and 22 respectively. The velocity profiles for 

water based nanofluids OHCu 2 and OHOAl 232   decrease with an increase of the suction 

parameter for the stretching sheet whereas they increase for the shrinking sheet. The increase 

in suction draws nanofluid laterally through the sheet surface. This generates an adherence of 

the nanofluid boundary layer to the stretching sheet, destroys momentum in the fluid near the 

sheet surface and consequently stabilizes the momentum boundary layer growth. Therefore, 

nanofluid momentum boundary layer thickness is increased with greater suction as shown in 

Fig. 21. Conversely for the shrinking sheet (Fig. 22) the flow is accelerated with greater 

suction (less negative velocity values arise) and this decreases momentum boundary layer 

thickness. As a result, suction can be used effectively for controlling the momentum 
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boundary layer growth/decay by using stretching/shrinking sheets respectively. Again copper 

water nanofluid achieves better flow acceleration than the aluminium oxide water nanofluid. 

Figs. 23 and 24 illustrate the influence of Eckert number (Ec) on temperature profiles. 

The correlation between the kinetic energy in the flow and the boundary layer enthalpy 

difference is simulated via Eckert number. Due to internal friction heating between molecules 

of the fluid, mechanical energy is converted to thermal energy which heats the fluid in 

stretching sheet flow (Fig. 23). Therefore, an increase in Eckert number causes an increase in 

thermal energy contributing to the flow and will enhance the temperature of the water based 

nanofluids in the stretching sheet and also manifest in greater thermal boundary layer 

thickness. However the nature of shrinking sheet flow (contraction of the nanofluid sheet) 

generates the opposite response and temperatures are found to be decreased with greater 

Eckert number. The impact of viscous dissipation therefore is influenced by the nature of the 

boundary layer regime- it heats the boundary layer for a stretching sheet whereas it cools the 

boundary layer for a contracting sheet, and these aspects are of some importance in materials 

processing operations. However irrespective of whether the sheet is stretching or shrinking 

(contracting), the copper water nanofluid attains higher temperatures than the aluminium 

oxide water nanofluid. 

Figs. 25 and 26 illustrate the variations in the temperature profiles for different values 

of effective Prandtl number ( effPr ) for the stretching and shrinking sheet cases respectively. 

The Prandtl number refers to the relative contribution of momentum diffusion to thermal 

diffusion in the boundary layer regime. An iincrease in effPr  generally results in a decrease in 

the temperature distribution in the thermal boundary layer for both stretching and shrinking 

sheet cases. However very close to the wall (sheet) in the shrinking sheet case there is a short-

lived weak increase in temperature profiles. This anomaly is however eliminated very quickly 

and the dominant trend is for a reduction in temperatures with greater effective Prandtl 

number. Smaller values of effPr are equivalent to an increasing thermal conductivity, and 

therefore heat is able to diffuse away from the heated surface more rapidly than at higher 

values of effPr . Consequently the rate of heat transfer near the sheet surface is reduced. 

Therefore, an increase in the value of effPr causes a reduction in the thickness of the thermal 

boundary layer for both shrinking and stretching sheet cases. Furthermore the copper water 

nanofluid attains greater thermal boundary layer thickness than the aluminium oxide water 

nanofluid case.  

Figs. 27-34 illustrate the response in skin friction ( fx C2/1Re ) and Nusselt number (

xx Nu2/1Re ) for the OHCu 2 nanofluid, with variation in selected thermo-physical 

parameters. Figs. 27-28 present, for both stretching and shrinking sheet cases, the values of 

fx C2/1Re and 
xx Nu2/1Re  for suction parameter )10(  S vs. the dimensionless parameters 

which includes ,Ri ,m  and M . Evidently with increasing Ri and m (power law parameter) 

the values of  fx C2/1Re  are decreased for stretching sheet case whereas the converse trend is 

observed for the shrinking sheet case. Fig. 29 demonstrates that the values of fx C2/1Re  are 

decreased for increasing values of  and M in the stretching sheet case where as for shrinking 

sheet case the reverse trend is observed in Fig. 30. It is also evident from Figs. 31 and 33 that 

the 
xx Nu2/1Re values are decreased with increasing values of Ri and M for the stretching sheet 

case while with increasing values of   and m  the values of 
xx Nu2/1Re are decreased for the 

shrinking sheet scenario, initially with lower values of S and thereafter the opposite trend is 



17 

 

observed for increasing values of S in Figs. 32 and 34. The values of 
xx Nu2/1Re are increased 

with increasing values of    and m for the stretching sheet case in Figs. 31 and 33 while the 

same trend is observed with increasing values of Ri and M for the shrinking sheet case as 

shown in Figs. 32 and 34. We further note that in all computations the radiative-conductive 

parameter (Nr) has been fixed and is not explicitly considered. 

7. CONCLUSIONS 

 

Magnetohydrodynamic radiative mixed convection and dissipative boundary layer 

flow of nanofluid from a nonlinear inclined stretching/shrinking sheet in the presence of heat 

source/sink and viscous dissipation has been studied theoretically and numerically in this 

paper. The governing coupled nonlinear momentum and thermal boundary layer equations 

are transformed into ordinary differential equations by using local similarity transformations. 

The emerging nonlinear boundary value problem is solved with the Keller-Box implicit finite 

difference method. The originality of the present study entails an elaboration of the influence 

of governing parameters on velocity and temperature distributions for stretching/shrinking 

sheet cases utilizing two different types of water based nanofluids OHCu 2 and

OHOAl 232   under nonlinear boundary conditions. Verification of the Keller box solutions 

has been achieved via comparison with previously published reports and generally very close 

correlation is observed. The principal findings of the current simulation may be summarized 

thus: 

 The velocity profiles are decreased with increasing values of magnetic field parameter, 

volume fraction parameter and power-law parameter for both stretching sheet and 

shrinking sheet cases.  

 For the stretching sheet case the velocity profiles are increased with increasing 
Richardson number and are decreased with increasing suction parameter whereas the 

opposite trend is computed for the shrinking sheet case. 

 The temperature distribution values are increased with greater magnetic field parameter, 
volume fraction parameter and power-law parameter for both stretching and shrinking 

sheet cases.  

 With increasing Eckert number the temperature values are increased for the stretching 
sheet case and the opposite trend is observed for the shrinking sheet case.  

 With increasing power-law parameter, temperature is decreased initially and then 

increased with suction parameter. 

 With increasing effective Prandtl number, temperature is decreased in the case of a 
stretching sheet whereas the converse behavior is found for a shrinking sheet case.  

 For the stretching sheet case, the skin friction coefficient and local Nusselt number are 
decreased by decreasing the Richardson number and magnetic field parameter values. 

Moreover, an increase in the power-law parameter and volume fraction parameter results 

in a decrease in the skin friction coefficient whereas the reverse trend is observed for the 

local Nusselt number with increasing power-law parameter and volume fraction 

parameter. 

 For the shrinking sheet case with an increase in Richardson number and magnetic field 

parameter, the local Nusselt number and skin friction coefficient are both increased. 

However with increasing power-law parameter and volume fraction parameter values, the 

skin friction coefficient is increased whereas the local Nusselt number is decreased 

initially and thereafter increased with suction parameter values.    
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Appendix I 

 
Nomenclature 

 vu,  Velocity components along ),( yx axes  

)( 1ms   

wu  Stretching/Shrinking sheet velocity 

  Stream function 

  Similarity variable 

f  Dimensionless velocity 

g  Acceleration due to gravity )( 2ms   

m  Nonlinear stretching parameter 

b  Constant 

c  Stretching/shrinking parameter (>0 for 

stretching sheet and <0 for shrinking sheet) 

M  Dimensionless magnetic field parameter 

S  Suction/injection parameter 

Q  Heat Source/Sink parameter 

Nr  Thermal radiation parameter 
2Re x  Reynolds number 

Ri  Richardson number (Buoyancy parameter) 

Ec   Eckert number 

xNu  Nusselt number 

Pr  Prandtl number 

effPr  Effective Prandtl number 

fC  Skin friction coefficient 

Gr  Thermal Grashof number 

B  External uniform magnetic field 

Bo  Magnetic field strength 

rq  Thermal radiative heat flux 

Ks  Thermal conductivity of the solid 

             )( 11  KWm  
 

fK  Thermal conductivity of the fluid 

             )( 11  KWm  

nfK  Thermal conductivity of the nanofluid 

             )( 11  KWm  

T   Local temperature of the fluid )(K  

wT   Temperature of the fluid at the wall )(K  

T   Free stream temperature )(K  

*k  Mean absorption coefficient 

Greek symbols 

  Thermal diffusivity coefficient )( 12 sm  

f  Thermal diffusivity of the fluid )( 12 sm  

s  Thermal diffusivity of the solid )( 12 sm  

nf  Thermal diffusivity of the nanofluid 

)( 12 sm  

  Thermal expansion coefficient )( 1K  

f  Coefficient of thermal expansion of the fluid 

)( 1K   

s  Coefficient of thermal expansion of the solid 

)( 1K   

f  Density of the fluid friction )( 3Kgm  

s  Density of the solid friction )( 3Kgm
  

nf  Density of the nanofluid )( 3Kgm
 

v  Kinematic viscosity )( 12 sm  

fv  Kinematic viscosity of the fluid )( 12 sm
 

   Dynamic viscosity )( 2Nsm  

f  Dynamic viscosity of the fluid )( 2Nsm
 

nf
 
 Dynamic viscosity of the nanofluid 

)( 2Nsm
 

  Electrical conductivity )( 1sm  

s  Electrical conductivity of the solid )( 1sm  

f  Electrical conductivity of the fluid )( 1sm  

nf  Electrical conductivity of the nanofluid

)( 1sm  

*  Stefan–Boltzmann constant  

pc
 
 Specific heat at constant pressure  

)( 13  KJm
 

nfpc )(  Heat capacitance of the nanofluid   

)( 13  KJm
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fpc )(  
 
Heat capacitance of the fluid )( 13  KJm  

spc )(
  

Heat capacitance of the solid )( 13  KJm  

   Nanoparticle volume fraction parameter
 

  Non-dimensional temperature 

Subscripts
 

f  Fluid Phase 

 s  Solid phase  

nf  Nanofluid 

w  Condition at the wall 

  Condition at freestream 
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Fig. 3. The dimension less velocity profiles for different values of M for stretching sheet. 

 
Fig. 4. The dimension less velocity profiles for different values of M for stretching sheet. 
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Fig. 5. The dimension less temperature profiles for different values of M for stretching sheet. 

 
Fig. 6. The dimension less temperature profiles for different values of M for shrinking sheet. 
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Fig. 7. The dimension less velocity profiles for different values of  for stretching sheet. 

 
Fig. 8. The dimension less velocity profiles for different values of  for stretching sheet. 
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Fig. 9. The dimension less temperature profiles for different values of  for stretching sheet. 

 
Fig. 10. The dimension less temperature profiles for different values of  for shrinking sheet. 
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Fig. 11. The dimension less velocity profiles for different values of m for stretching sheet. 

 
Fig. 12. The dimension less velocity profiles for different values of m for stretching sheet. 
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Fig. 13. The dimension less temperature profiles for different values of m for stretching sheet. 

 
Fig. 14. The dimension less temperature profiles for different values of m for shrinking sheet. 
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Fig. 15. The dimension less temperature profiles for different values of Q for stretching sheet. 

 
Fig. 16. The dimension less temperature profiles for different values of Q for shrinking sheet. 
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Fig. 17. The dimension less velocity profiles for different values of  for stretching sheet. 

 
Fig. 18. The dimension less velocity profiles for different values of  for shrinking sheet. 
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Fig. 19. The dimension less velocity profiles for different values of Ri for stretching sheet. 

 
Fig. 20. The dimension less velocity profiles for different values of Ri for shrinking sheet. 
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Fig. 21. The dimension less velocity profiles for different values of S for stretching sheet. 

 
Fig. 22. The dimension less velocity profiles for different values of S for shrinking sheet. 
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Fig. 23. The dimension less temperature profiles for different values of Ec for stretching sheet. 

 
Fig. 24. The dimension less temperature profiles for different values of Ec for shrinking sheet. 
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Fig. 25. The dimension less temperature profiles for different values of effPr for stretching sheet. 

 
Fig. 26. The dimension less temperature profiles for different values of effPr for shrinking sheet. 
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Fig. 27. Variation of the skin friction coefficient with mandRi for stretching sheet. 

 
Fig. 28. Variation of the skin friction coefficient with mandRi for shrinking sheet. 
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Fig. 29. Variation of the skin friction coefficient with Mand for stretching sheet. 

 
Fig. 30. Variation of the skin friction coefficient with Mand for shrinking sheet. 
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Fig. 31. Variation of the local Nusselt number with mandRi for stretching sheet. 

 
Fig. 32. Variation of the local Nusselt number with mandRi for shrinking sheet. 
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Fig. 33. Variation of the local Nusselt number with Mand for stretching sheet. 

 
Fig. 34. Variation of the local Nusselt number with Mand for shrinking sheet. 
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Highlights 

 
 Inclined stretching/shrinking sheet magnetic nanofluid flow studied. 

 

 Keller’s box method employed for numerical solution. 
 

 Heat source/sink, radiation and viscous dissipation effects examined. 
 

 Stronger heat source increases thermal boundary layer thickness. 
 

 Results are relevant to high-temperature magnetic nano-materials processing. 
 


