1

Time spent in sedentary posture is associated with

2

waist circumference and cardiovascular risk

- 3 William W. Tigbe^{a,*}
- 4 Malcolm H. Granat^b
- 5 Naveed Sattar^c
- 6 Michael E.J. Lean^d
- 7
- 8 ^a Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- ^b School of Health Sciences, Brian Blatchford Building, University of Salford, Salford M6 6PU, UK.
- ^c Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre,
 University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
- ^d School of Medicine, Life-Course Nutrition & Health, University of Glasgow, 4th Floor, Walton
 Building, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK.
- 14

15 ***Corresponding author:**

- 16 Dr. William Tigbe
- 17 Division of Health Science
- 18Warwick Medical School
- 19 University of Warwick
- 20 Gibbet Hill Road
- 21 Coventry CV4 7AL UK.
- 22 Email: W.W.Tigbe@warwick.ac.uk
- 23 Tel: +44 2476150539
- 24 Fax: +44 2476528375
- 25
- 26 Key words: sedentary time, standing, stepping, physical activity, coronary risk
- 27 Running Title: Coronary risk of time spent sitting.

28 Word count: Text – 3,824; Abstract - 246

29 Number of figures: 1; Number of tables: 3

30 **Conflict of Interest**: The authors have no conflict of interest to declare.

31 Abstract

32 Background

The relationship between metabolic risk and time spent sitting, standing and stepping has not
been well established. The present study aimed to determine associations of objectively measured
time spent siting, standing and stepping, with coronary heart disease (CHD) risk.

36 Methods

37 A cross-sectional study of healthy non-smoking Glasgow postal workers, n=111 (55 office-

workers, 5 women, and 56 walking/delivery-workers, 10 women), who wore activPAL physical

39 activity monitors for seven days. Cardiovascular risks were assessed by metabolic syndrome

40 categorisation and 10-y PROCAM risk.

41 **Results**

42 Mean(SD) age was 40(8) years, BMI 26.9(3.9)kg/m² and waist circumference 95.4(11.9)cm.

43 Mean(SD) HDL-cholesterol 1.33(0.31), LDL-cholesterol 3.11(0.87), triglycerides

44 1.23(0.64)mmol/l and 10-y PROCAM risk 1.8(1.7)%. Participants spent mean(SD) 9.1(1.8)h/d

45 sedentary, 7.6(1.2)h/d sleeping, 3.9(1.1)h/d standing and 3.3(0.9)h/d stepping, accumulating

46 14,708(4,984)steps/d in 61(25) sit-to-stand transitions per day. In univariate regressions -

47 adjusting for age, sex, family history of CHD, shift worked, job type and socio-economic status -

48 waist circumference (p=0.005), fasting triglycerides (p=0.002), HDL-cholesterol (p=0.001) and

49 PROCAM-risk (p=0.047) were detrimentally associated with sedentary time. These associations

50 remained significant after further adjustment for sleep, standing and stepping in stepwise

51 regression models. However, after further adjustment for waist circumference, the associations

were not significant. Compared to those without the metabolic syndrome, participants with the metabolic syndrome were significantly less active – fewer steps, shorter stepping duration and longer time sitting. Those with no metabolic syndrome features walked >15,000 steps/day, or spent >7h/day upright.

56 **Conclusion**

57 Longer time spent in sedentary posture is significantly associated with higher CHD risk and

58 larger waist circumference.

59

60

61 Introduction

Sedentary occupation and overall behaviour is now the norm in modern societies. Technological 62 advancements in Western economies have reduced the energy requirements of daily living, with 63 populations spending more hours sitting, at work, in transport and during leisure-time.¹ There is 64 65 little evidence to suggest that reduced occupational physical activity leads to compensatory increases during leisure-time, or vice versa.²⁻⁵ Studies from Europe, US and Australia find that 66 adults spend half of work days sitting (average 4.2 h/d) and about 2.9 h/d of leisure-time sitting.⁶⁻ 67 8 68 69 70 71 An increasing body of literature suggests that sitting time, independent of physical activity levels, promotes cardiovascular disease.^{9,10} Both self-report and objective data have shown that time 72 73 spent sedentary has an independent detrimental association with coronary and diabetes-related metabolic risk factors, such as waist circumference, blood glucose, insulin and triglycerides and 74 HDL-cholesterol.¹¹⁻¹⁶ Healy et al.¹⁵ found that accelerometer-determined time spent inactive was 75 76 significantly associated with waist circumference, blood lipid and glucose profiles. Another recent study found that while physical activity log and recall methods failed to show any clear 77 relationship, accelerometer-measured objective activity was directly related to 10-y Framingham 78 coronary risk.¹⁷ 79

80

81

82 There is a paucity of evidence on the relationship between objectively measured sedentary behaviour patterns, such as sitting/lying and upright postures, and cardiovascular risk. In a Dutch 83 cross-sectional study van der Berg et al.¹⁸ found that, an additional hour of time spent sedentary 84 posture was associated with a 22% greater odds for type 2 diabetes and a 39% greater odds for 85 the metabolic syndrome. Other studies have used accelerometer counts as a proxy^{14,15} but low 86 acceleration counts also include periods of quiet standing or standing still which is metabolically 87 different from sitting. In both animal and human studies, sitting, unlike standing, is associated 88 with reduced skeletal muscle lipoprotein lipase activity and detrimental changes in lipid profile.¹⁻ 89 ²¹ The present study examined the associations between CHD risk and time spent in objectively-90 91 measured postures (sitting, lying and standing) and of stepping.

92 93

94 Methods

A cross-sectional study of postal workers was undertaken to relate time spent sedentary (sitting/
lying) and stepping to CHD risk factors in apparently healthy individuals. The study aimed to
include a range of different physical activity profiles, involving both mainly sedentary officebound postal workers and more active delivery staff.

99

100

101 Study Participants

Recruitment was carried out by local advertisement, with no incentives offered, from the Royal
Mail Group in Greater Glasgow, Scotland. The employees (n = 5,335; 90.2% men) worked in

four shifts: full-day (9am to 5pm), early (5am to 1pm) and late (1pm to 9 pm) and night (9pm to
5am) with two days off work, including Sunday, each week. Only apparently healthy, nonsmokers, with no personal history of myocardial infarction, stroke, CHD, hypertension or
diabetes mellitus were included. None of the participants was on any lipid, blood pressure or
glucose lowering medication. All volunteers, 59 delivery (5 women) and 59 office staff (10
women) aged 22 to 60 years, were invited to the study and data collection took place between
September 2006 and September 2007.

- 111
- 112

113 **Protocol**

Participants wore a physical activity monitor (activPAL, PAL Technologies Ltd, Glasgow, UK) 114 for seven days, had weight, height and blood pressure measured, and provided fasting blood 115 116 samples. Seven participants (3 male delivery and 4 male office workers) refused to provide blood samples, thus the final sample for analysis was 111, 56 delivery workers (5 women) and 55 office 117 workers (10 women). The study aims and protocol were explained and informed written consent 118 obtained, following approval from the Ethics Committee of Glasgow Caledonian University. 119 Socio-demographic data, including age, home address postcode and family history of CHD, were 120 obtained. From postcodes, national tables²² were used to provide the Scottish Index of Multiple 121 122 Deprivation (SIMD) score for each participant, as a measure of socioeconomic status, rated from 1 (least deprived) to 5 (most deprived). Weight, height and waist circumference were measured 123 according to the WHO protocol²³. Fasting serum concentrations were measured of glucose (by 124 hexokinase method), adiponectin (R&D Elisa) and lipids namely, triglycerides, total cholesterol, 125

LDL cholesterol and HDL cholesterol (by automated analyser) in quality controlled NHSlaboratory.

- 128
- 129

Coronary risk was assessed using the PROCAM.²⁴ This risk calculator generates 10-year CHD 130 risk, for men aged 35-65y and women aged 45-65y, based on sex, age, family history of CHD, 131 cigarette smoking, systolic blood pressure, fasting HDL-cholesterol, LDL-cholesterol, 132 triglycerides and fasting glucose concentration. The ages of 67 men and 6 women fell within the 133 ranges appropriate for this risk calculator. As a second indication of CHD risk and of diabetes 134 risk, participants were classified as having metabolic syndrome, or not, using both the NCEP 135 criteria²⁵ and IDF criteria²⁶: fasting serum triglycerides >1.7 mmol/l, glucose >5.6 mmol/l, HDL-136 137 cholesterol $\leq 1.03 \text{ mmol/l}$ for men or $\leq 1.30 \text{ mmol/l}$ for women, waist circumference $\geq 102 \text{ cm}$ for men or \geq 88cm for women, and blood pressure \geq 130/85 mmHg. 138

139

140

141 **Physical activity recording**

Physical activity and sedentary behaviour were recorded for seven consecutive days using the activPAL monitor to provide time spent stepping, standing and sitting/lying as well as steps, mean stepping rate and number of sit-to-stand transitions per day. In addition, though the activPAL does not differentiate sleeping (lying posture) from sitting posture, time spent sleeping was extracted from the activPAL raw output. This was defined as prolonged periods (>2 hours) of continuous inactivity during sleeping hours. Sleeping hours were simply night hours for those who worked day shifts and day hours for the two participants who worked night shifts. Sleep duration was subtracted from total sedentary time to obtain waking hours' sedentary time,
referred to as sedentary time in this manuscript. Both short and long sleep durations have been
reported to be associated with higher risk of CHD.²⁷

152

153

154 The activPAL was worn on the mid anterior thigh using adhesive tape according to the 155 manufacturer's guidance and throughout seven days except during activities that risk it being in 156 contact with water, e.g. bathing or swimming. Participants were asked to note down any nonwear periods in the food diary that they also completed as part of the wider study (not relevant to 157 158 the current study) and these were checked with each participant at the debrief session. The interdevice reliability (ICC = 0.99) and accuracy (95.9% agreement with direct observation) of the 159 160 activPAL for reporting time spent sedentary, standing and walking have been reported previously.²⁸ The inter-device reliability (0.99) and accuracy (\geq 98.99%, depending on walking 161 speed) for step count and stepping rate have also been reported.²⁹ Stepping rate (cadence) is 162 reported by the activPAL as number of steps per minute during stepping time. Data were 163 accepted for inclusion with a minimum of three 24-hour periods, including a non-work day, as 164 recommended by others.³⁰ 165

166

167

168 **Data analyses**

Age, SIMD values (1 to 5), family history of CHD, job type (delivery or office worker) and
work-shifts were obtained. Outcome variables for physical activity were daily time (h) spent
sedentary, standing and stepping, step count, average stepping rate and daily sit-to-stand

transitions. The outcome measures included BMI, waist circumference, systolic and diastolic
pressure, fasting lipids (triglycerides, total cholesterol, LDL, HDL cholesterol), fasting glucose,
and adiponectin. The 10-year PROCAM CHD risk score was generated from age, blood pressure,
fasting HDL and LDL cholesterol, triglycerides and glucose.²⁴ The presence of the metabolic
syndrome (derived from levels of fasting glucose, triglycerides, HDL cholesterol, blood pressure
and waist circumference) was also obtained.

178

179

180 The data were tested for normality and summary data were produced using SPSS version 18.0. 181 Univariate associations were explored and multivariable linear regressions undertaken to model the relationship between sedentary time and CHD risk. Adjustment for age, sex, SIMD, family 182 history of CHD, job type and shift (model 1). Job type was considered because self-selection into 183 job type cannot be ruled out. Similarly, as shift patterns may affect sleep patterns, this was 184 185 included in the model. In addition, further stepwise adjustments were made for sleep duration (model 2), then standing (model 3), stepping in replacing standing (model 4), both standing and 186 stepping (model 5). These stepwise adjustments showed that including stepping time in model 5 187 did lead to improvement in the R^2 value for any of five outcome variable but rather a drop in R^2 188 189 was observed in model 4. We believe this was due to the observed strong correlation between sitting, standing and stepping r = 0.34-0.61, p <0.001). One approach would have been to employ 190 191 compositional data analysis. However, rather than fitting compositional data that are not 192 clinically meaningful, stepping time was excluded in the final model (model 6) where additional adjustments were also made for waist circumference. It is thought that body size may have 193 194 bidirectional relationship with sedentary behaviour, and thereby predict the behaviour.³¹

196

Adjusting for the same variables as above, binary logistic regression was modelled to determine the odds of the metabolic syndrome from the physical activity parameters. The associations were explored in the whole sample and for the 67 men only. Separate analyses were not undertaken for the 15 women.

201

202

203 **Results**

204 All 111 participants completed the full 7d study. Fifteen participants worked full day shifts, 92 205 early shift, three late shift and only one worked night shift. A third (32 men; 4 women) had first-206 degree family histories of CHD. The distribution of the participants by SIMD was as follows: n =207 13, 20, 17, 23 and 38 for SIMD 1, 2, 3, 4 and 5 respectively. During the study, the shift patterns of the participants were full-day (n = 15), early (n = 92), late (n = 4). The summary statistics of 208 the study participants are shown in Table 1. For the 73 participants aged between 35-65y (men, 209 210 n=67) and 45-65y (women, n=6), among whom PROCAM could be applied, 10y PROCAM risk 211 ranged from 0.1-12.0%, mean 1.9(SD 1.7)%.

- 212
- 213

In exploratory univariate analyses, waist circumference (correlation coefficient, r = 0.28, p

=0.002), fasting triglycerides (r = 0.30, p = 0.002), HDL cholesterol (r = -0.38, p < 0.0001) and

216 10-y PROCAM risk (r = 0.33, p = 0.004) were significantly and adversely associated with

sedentary. Waist circumference (r = -0.23, p = 0.014), fasting triglycerides (r = -0.22, p = 0.018), 217 HDL cholesterol (r = 0.24, p < 0.01) and 10-y PROCAM risk (r = -0.37, p = 0.001) were 218 significantly and favourably associated with stepping time. In these non-adjusted correlations, 10-219 y PROCAM risk showed an inverse significant (r = -0.25, p = 0.031) association with daily step 220 count, and serum adiponectin levels showed an inverse significant association with sedentary 221 222 time (r = -0.24, p = 0.012) and a positive significant association with standing time (r = 0.93, p = 223 0.002). Standing time also had a significant positive association with HDL cholesterol (r = 0.36, p = 0.0001) and a significant inverse association with waist circumference (r = 0.20, p = 0.033). 224 Physical activity and sedentary behaviour were not significantly associated with BMI. blood 225 226 pressure, serum glucose or LDL cholesterol. None of the risk factors was significantly associated with stepping rate or number of sit-to-stand transitions. 227

- 228
- 229

After adjusting for age, sex, SIMD, family history of CHD, job type and shift worked, greater 230 waist circumference, higher serum triglycerides and lower HDL cholesterol were significantly 231 (p <0.05) associated with longer time spent sedentary (model 1 in table 2). These associations 232 233 remained significant after adjustments were made for sleep (model 2), then standing (model 3), 234 stepping (model 4) and then both standing and stepping in addition to sleep (model 5). After further adjustment for waist circumference (model 6), the associations of sedentary time with 235 236 triglycerides and HDL cholesterol were no longer significant. Sedentary time appears to be better predictor of waist circumference, serum triglycerides and HDL cholesterol than stepping, 237 standing and sleeping durations (models 3 and 4). However, this association was no longer 238 significant after further adjusting for waist circumference (model 6). No significant association 239

was observed between physical activity behaviour and serum adiponectin in the adjusted
analyses. The variables together explained (R²) 18.5% of variance in serum triglycerides, 30%
for HDL cholesterol, 23% for adiponectin, 22% for waist circumference and 48% for 10-year
PROCAM risk (model 5 in table 2). Sleep duration was a strong positive predictor of serum
HDL cholesterol, even after adjusting for waist circumference. No significant associations were
found between physical activity behaviour and BMI or LDL cholesterol. Analysis for men alone
did not change the overall findings.

247

248

Higher 10-year PROCAM risk was significantly (p < 0.05) associated with sedentary time, 249 adjusting for age, sex, SIMD, family history of CHD, job type and shift worked (model 1 in 250 251 table 2). This association remained significant after further adjustment for sleep (model 2) but not after adjusting for standing, stepping or waist circumference (models 3-6). Sedentary time 252 explains (R² change) 2% of the variance in 10-year PROCAM risk, 2% in waist circumference, 253 1% in serum HDL and 4% in serum triglycerides (table 2). The association of sedentary time 254 with PROCAM risk (Figure 1) appears to be curvilinear, such that greater deterioration of risk 255 256 is associated with longer time spent sedentary. However, the introduction of a quadratic term (square of sedentary time) in the model did not yield a significant association ($R^2 = 0.01, 95\%$ 257 CI: -0.01 - 0.03). One additional hour per day sitting was associated with 0.18% (95% CI 0.01-258 259 0.36%) greater 10-year PROCAM risk.

260

261

Thirteen study participants had the metabolic syndrome, as defined by NCEP.³² Compared to those without the metabolic syndrome, participants with the metabolic syndrome were significantly less active, with lower step count, slower stepping rate, shorter stepping duration and longer time spent sedentary (table 3). Twenty participants satisfied the IDF consensus criteria for metabolic syndrome.²⁶ These participants similarly spent more time in a sedentary posture and walked less than those without metabolic syndrome (table 3). Those participants with no metabolic syndrome features walked \geq 3.5 hour/day, >15,000 steps/day, or spent >7h/day upright.

270

The logistic regression model was used to explore the association between physical activity time and the development of the metabolic syndrome. After adjusting for age, sex, family history of CHD, job type, shift worked, socioeconomic status and shift worked, no significant association was found between time in posture and activity with the development of the metabolic syndrome.

276

277 **Discussion**

The present study set out to relate objectively measured time spent in sedentary posture, standing and stepping to a comprehensive list of cardiovascular and diabetes-related risk factors. The data indicate that sedentary behaviour is associated with coronary and diabetes risk as reflected by metabolic syndrome, with elevated waist circumference, elevated serum triglycerides, and lowered serum HDL cholesterol. After adjusting for socio-demographic variables, sleep and physical activity (stepping and standing), time spent sedentary was positively associated with coronary risk, as determined by PROCAM. This association has been quantified to demonstrate
the level of risk (the β coefficient or odds ratio) associated with sedentary behaviour.

286

287

These findings, if proven to be a causal relationship, may offer support for a health promotion 288 289 intervention in the workplace, to reduce sitting and increase time spent in an upright posture. 290 Animal studies have shown that preventing ambulatory activity of the hind limb over 24 hours could lead to a reduction in plasma HDL-cholesterol by 22% and lipoprotein lipase activity (the 291 hormone responsible for triglyceride catabolism) by 90% to 95%.^{19,33} LPL activity in limb 292 muscles is dependent on local contractile activity. Sedentary behaviour therefore promotes CHD 293 independently from lack of moderate-vigorous physical activity, and as demonstrated 294 previously⁴, adults do not necessarily compensate sedentary posture at work with upright posture 295 296 after work. Reducing sedentary behaviour by spending more time upright, thereby engaging limb 297 and trunk muscles, is a simple protective mechanism to reduce CVD. The metabolic cost of upright posture is approximately 33-40% higher than that of sitting posture.^{34,35} It is recognised 298 that one recent small study³⁶ of energy expenditure of some activities (lasting ≤ 15 min duration) 299 300 found no significant difference in energy expenditure between sitting and standing. Mansoubi et al. ^{37,} on the other hand, suggest reclassifying some sitting-based activities as non-sedentary 301 because they may involve energy expenditures > 1.5 METs, the cut-off for sedentary behaviour 302 by definition.³⁸ It is our view that participation in such activities are not a common occurrence. It 303 is rather unusual to engage in sitting activities that expend more energy than standing activities. 304 However, fitting more upright time into busy workdays on a habitual basis is an easy message, 305 306 and is potentially acceptable. Encouraging leisure time physical activity is of course valuable, but tends to result in erratic and poorly sustained improvements.³⁹⁻⁴¹ Efforts to increase participation
in moderate-to-vigorous physical activity are complementary with that of reducing sedentary
behaviour.

310

311

Previous research using pedometers has related step counts to risks. In the present study, using 312 the activPAL which is more accurate and reliable than pedometers in measuring steps²⁹, we found 313 that waist circumference and 10-y PROCAM risk were associated with step count in unadjusted 314 315 data, but not after adjustments. The presence of the metabolic syndrome was significantly 316 associated with daily step count. Though the number of cases of the metabolic syndrome was relatively small, the findings corroborate previous results. Schofield et al.⁴² reported that 317 318 Australian adolescent girls who achieved less than 10,000 steps/day were significantly more likely to have two or more CHD risk factors. We have further shown that CHD risk has stronger 319 associations with time spent stepping and in sedentary posture than with step count. 320 321

322

A previous cross-sectional study involving 168 subjects reported that greater number of breaks in sedentary time (i.e. 'transitions' to standing posture) had beneficial associations with waist circumference, BMI, triglycerides and 2-hour postprandial glucose.⁴³ That pattern was not confirmed in the present study; in neither the unadjusted nor the adjusted analyses were sit-tostand transitions associated with coronary risk. However, unlike this previous study, ours did not include 2-hour postprandial glucose but rather fasting blood glucose only, and this may explain the difference in findings. Importantly, the differences in the findings - in particular the 330 association with waist circumference, BMI and triglycerides - may also lie in data quality: in the previous study, sedentary time was estimated by actiGraph, setting an arbitrary cut-off (≤ 100 331 counts/minute) as a proxy for sedentary time, while actiGraph counts rising above this value were 332 considered transitions out of sedentary behaviour. Secondly, the actiGraph does not differentiate 333 standing still from sitting and lying, and will therefore misclassify a change from standing still to 334 stepping as a break in sedentary time⁴⁴. Standing still is different from sitting in that the former is 335 known to elicit cardio-protective metabolic changes in skeletal muscles.^{20,21} The activPAL, used 336 in the present study accurately measures sit-to-stand transitions²⁷, so our data are likely to be 337 338 more reliable.

339

340

341 We found no demonstrable relationship between physical activity or sedentary behaviour and blood pressure, the latter being within the normal ranges, although previous studies reported 342 higher blood pressure with longer television watching time⁴⁵ and lower energy expenditure.⁴⁶ 343 Furthermore, no significant association was found between fasting glucose and the physical 344 activity parameters despite earlier reports of independent association of objectively measured 345 346 light-intensity physical activity with 2-hour postprandial glucose in other non-diabetic subjects.^{45,47} The differences may be due to the differences in the measurement of sedentary 347 behaviour: television watching time, accelerometer counts and heart rate in the previous studies 348 349 versus time spent sitting and lying in the present study. The difference may also be due the 350 differences in outcome measures: fasting glucose versus 2-hour postprandial glucose. A more 351 recent large study involving 2,497 participants wearing the same activity monitor as in the 352 present study (the activPAL) found higher odds for type 2 diabetes with sedentary behaviour.¹⁸

The present study adds significant new information to the recent studies and reviews⁴⁴⁻⁵⁰ which call for valid and reliable quantitative assessment of sedentary behaviour and its relationship with CVD and diabetes. Future studies should endeavour to use similar assessment methods for both sedentary behaviour and the outcome variables.

357

358

In man, adiponectin appears to reflect insulin sensitivity but may not be a powerful upstream determinant.⁵¹ We found no significant relationship between adiponectin and physical activity measures, in keeping with prior studies which have yielded differing results.⁵²⁻⁵⁴ Adiponectin levels were, however, significantly associated with waist circumference, reflecting the wellknown relationship between insulin sensitivity and obesity.

- 364
- 365

366 Strengths and Limitations

Our study has strengths, but also limitations. We used a more intensive measured assessment, 367 which provides more reliable data than conventional step-counters, but this inevitably restricts 368 study numbers and power. We used appropriate statistical methods to avoid over-reporting 369 370 positive findings, and have not made assertions that invoke beta errors, which could arise from 371 low power. The sample was of white Caucasians, not balanced between the sexes, so conclusions cannot be drawn for other races or for women alone. The main conclusions are based on data 372 373 adjusted for sex, but while we have no a priori reason to suspect sex differences, we have confirmed in sensitivity analyses that the main findings remain for men alone. Though the 374 activPAL does not differentiate sleeping (lying posture) from sitting posture, it was possible to 375

identify sleep from the raw output, as prolonged periods (>2 hours) of continuous inactivity
during sleep hours. Sedentary time is usually reported as a single measure, including sleeping
time. Adjusting for sleep as best as we could is therefore a strength of the study.

379

380

381 The study could have benefited from body composition data but due to lack of facilities for these 382 measures. Waist circumference, adjusted for sex and age, is a more robust predictor than BMI of body fat measured by densitometry, and where the range of body fat is narrow a greater waist 383 circumference is a marker of elevated visceral fat mass.⁵⁵ In the present study, waist 384 circumference was shown to have significant positive association with sedentary behaviour - the 385 latter explaining 3% of the variance in waist circumference (table 2). After adjusting for waist 386 circumference, the association between sedentary time and 10-year PROCAM risk and with HDL 387 388 cholesterol were no longer significant, but the association with triglycerides remained significant. 389 It is possible that any effects of sedentary behaviour on CHD risk act through an elevated waist circumference and dyslipidaemia. 390

391

392

The present study reports results from cross-sectional data of healthy participants with relatively low PROCAM-determined CHD risk. Although our data are cross-sectional, our subjects were selected as healthy, so we feel reverse-causality would be improbable. There is ample existing evidence for coronary risk reduction with greater physical activity, but health promotion does not achieve activity targets sustainably for large numbers, so it will be important to test, prospectively, the proposal that CHD risk might be reduced by increasing time spent in a vertical posture. It will also be valuable to include a range of ethnic and racial groups and more women inany future studies.

401

402

403 **Conclusion**

- 404 Longer time spent in sedentary posture is significantly associated with higher CHD risk,
- 405 including larger waist circumference, higher triglycerides and lower HDL cholesterol. Future
- 406 prospective research is required to ascertain if new targets for sitting, lying, standing and
- 407 stepping, to avoid metabolic risk, can be proposed. The levels associated with zero risk factors in
- 408 the present study, >15,000 steps/day or >7 hours per day spent upright, would be challenging and
- 409 difficult to sustain unless incorporated into occupations.

Funding

This research was funded by Glasgow Caledonian University as part of a PhD project.

Conflict of Interest

This research was funded by Glasgow Caledonian University as part of a PhD project. Although Professor Malcolm Granat is a director of PAL Technologies Ltd, this research is not intended in any way to promote the activPAL monitor or the company. Professor Naveed Sattar's research is supported by the British Heart Foundation and Diabetes UK. Professor Mike Lean's research is supported by Diabetes UK and by Counterweight Ltd. The other authors have no conflict of interest to declare.

References

- Health Development Agency, 2004. The Effectiveness of Public Health Interventions for Increasing Physical Activity among Adults: A Review of Reviews. Health Development Agency, London.
- 2. Fox FR, Hillsdon M. Physical activity and obesity. *Obesity reviews* 2007; 8(1):115–21.
- 3. Parsons TJ, Thomas C, Power C. Estimated activity patterns in British 45 year olds: crosssectional findings from the 1958 British birth cohort. *Eur J Clin Nutr* 2009; **63**:978-985.

- 4. Tigbe WW, Lean ME, Granat MH. A physically active occupation does not result in compensatory inactivity during out-of-work hours. *Prev Med* 2011; **53(1-2)**:48-52.
- Wolin KY, Bennett GG. Interrelations of Socioeconomic Position and Occupational and Leisure-Time Physical activity in the National Health and Nutrition Examination Survey. J Phys Act Health 2008; 5(2):229-2241.
- 6. Brown WJ, Miller YD, Miller R. Sitting time and work patterns as indicators of overweight and obesity in Australian adults. *Int J Obes Relat Metab Disord* 2003; **27(11)**:1340–1346.
- Dong L, Block G, Mandel S. Activities Contributing to Total Energy Expenditure in the United States: Results from the NHAPS Study. *Int J Behav Nutr Phys Act* 2004; 1(1):4.
- 8. Jans MP, Proper KI, Hildebrandt VH. Sedentary behavior in Dutch workers: differences between occupations and business sectors. *Amer J Prev Med* 2007; **33(6)**:450–454.
- Hamilton MT, Healy GN, Dunstan DW, Zderic TW, Owen N. Too little exercise and too much sitting: Inactivity physiology and the need for new recommendations on sedentary behavior. *Curr Cardiovasc Risk Rep* 2008; 2(4):292-298.
- 10. Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. *Exerc Sport Sci Rev* 2010; **38(3)**:105-113.
- Gardiner PA, Healy GN, Eakin EG, Clark BK, Dunstan DW, Shaw JE, et al. Associations between television viewing time and overall sitting time with the metabolic syndrome in older men and women: the Australian diabetes obesity and lifestyle study. *J Amer Ger Soc* 2011; 59(5):788-796.

- 12. Gill JM, Bhopal R, Douglas A, Wallia S, Bhopal R, Sheikh A, et al. Sitting time and waist circumference are associated with glycemia in U.K. South Asians: Data from 1,228 adults screened for the PODOSA trial. *Diabetes Care* 2011; 34(5):1214-1218.
- Healy GN, Dunstan DW, Salmon J, Shaw JE, Zimmet PZ, Owen N. Television time and continuous metabolic risk in physically active adults. *Med Sci Sports Exerc* 2008a; 40(4):639-645.
- Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic Risk. The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). *Diabetes Care* 2008b; **31**(2):369-372.
- 15. Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardiometabolic biomarkers in US adults: NHANES 2003-06. *Eur Heart J* 2011:32:590-597.
- Wijndaele K, Healy GN, Dunstan DW, Barnett AG, Salmon J, Shaw JE, et al. Increased cardiometabolic risk is associated with increased TV viewing time. *Med Sci Sports Exerc* 2010;42 (8):1511-1518.
- Suminski RR, Poston WS, Foreyt JP, St Jeor S. Physical activity assessed with three different methods and the Framingham Risk Score on 10-year coronary heart disease risk. *Med Sci Monit 2008*; 14(1):1-9.
- van der Berg JD, Stehouwer CD, Bosma H, van der Velde JH, Willems PJ, Savelberg HH, et al. Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: The Maastricht Study. *Diabetol* 2016; **59(4)**:709-718.

- Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. *J Physiol* 2003; 551:673-682.
- Hamilton MT, Hamilton DG, Zderic TW. Exercise physiology versus inactivity physiology: An essential concept for understanding lipoprotein lipase regulation. *Exerc Sport Sci Rev* 2004; **32(4)**:161-166.
- Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. *Diabetes* 2007; 56(11):2655-2667.
- 22. Scottish Executive. 2006. Using the Scottish index of multiple deprivation 2006: guidance.Scottish Executive, Edinburgh.
- 23. WHO 1995. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee, 1995. *World Health Organization technical report series*, 854, 1-452.
- Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. *Circulation* 2002; **105**(3):310-315.
- Grundy SM, Brewer HBJr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. *Circulation* 2004; 109(3):433-438.

- 26. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome a new world-wide definition. A Consensus Statement from the International Diabetes Federation. *Diabet Med* 2006;
 23(5):469-480.
- 27. Ayas NT, White DP, Manson JE, Stampfer MJ, Speizer FE, Malhotra A, et al. A prospective study of sleep duration and coronary heart disease in women. *Arch Intern Med* 2003; 163:205-209.
- Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. *Brit J Sports Med* 2006; 40(12):992-997.
- 29. Ryan CG, Grant PM, Tigbe WW, Granat MH. The validity and reliability of a novel activity monitor as a measure of stepping. *Brit J Sports Med* 2006; **40:779**–784.
- Tudor-Locke C, Burkett L, Reis JP, Ainsworth BE, Macera CA, Wilson DK. How many days of pedometer monitoring predict weekly physical activity in adults? *Prev Med 2005*; 40(3):293-298.
- Ekelund U, Brage S, Besson H, Sharp S, Wareham NJ. Time spent being sedentary and weight gain in healthy adults: reverse or bidirectional causality? *Am J Clin Nutr* 2008; 88(3):612-617.
- 32. Adult Treatment Panel III. Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and

Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). *J Amer Med Assoc* 2001; **285**:2486–2497.

- Bey L, Akunuri N, Zhao P, Hoffman EP, Hamilton DG, Hamilton MT. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity. *Physiol Genomics* 2003; 13:157-167.
- Reiff C, Marlatt K, Dengel D R. (2012). Difference n caloric expenditure in sitting versus standing desks. *J Phys Act Health* 2012; **9**:1009-1011.
- 35. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, et al.
 2011 Compendium of Physical Activities: a second update of codes and MET values. *Med Sci Sports Exerc.* 2011;43(8):1575-1581
- 36. Speck RM, Schmitz KH. (2011). Energy expenditure comparison: A pilot study of standing instead of sitting at work for obesity prevention. *Prev Med* 2011; **52**: 283-284.
- 37. Mansoubi M, Pearson N, Clemes SA, Biddle SJ, Bodicoat DH, Tolfrey K, et al. Energy expenditure during common sitting and standing tasks: Examining the 1.5 MET definition of sedentary behavior. BMC Public Health 2015; 15, 516.
- 38. Network SBR. Letter to the editor: standardized Use of the terms "sedentary" and "sedentary behaviours" *Appl Physiol Nutr Metab.* 2012; **37**:540–542.
- Barnes PM, Schoenborn CA. Physical activity among adults: United States, 2000. Advance data from vital and health statistics; no. 333. Hyattsville, MD: National Center for Health Statistics, 2003. <u>http://www.cdc.gov/nchs/data/ad/ad333.pdf</u>.

- 40. Mitchell R, Catto S. 2009. Are people in Scotland becoming more active? Combined results from Scotland's routine national surveys supplementary analysis of trends in inactivity (1995-2006). Glasgow: NHS Health Scotland.
- 41. Stamatakis E, Ekelund U, Wareham NJ. Temporal trends in physical activity in England: the Health Survey for England 1991 to 2004. *Prev Med 2007*; **45**(6):416-423.
- 42. Schofield G, Schofield L, Hinckson EA, Mummery WK. Daily step counts and selected coronary heart disease risk factors in adolescent girls. *J Sci Med Sport* 2009; **12(1)**:148-155.
- 43. Healy GN, Wijndaele K, Dunstan DW, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in Sedentary Time Beneficial associations with metabolic risk. *Diabetes Care* 2008c;
 31(4):3661-3666.
- 44. Barreira TV, Zderic TW, Schuna JM Jr, Hamilton MT, Tudor-Locke C. Free-living activity counts-derived breaks in sedentary time: Are they real transitions from sitting to standing?
 Gait Posture 2015; 42(1):70-72.
- 45. Thorp AA, Healy GN, Owen N, Salmon J, Ball K, Shaw JE, et al. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian Diabetes, Obesity and Lifestyle (AusDiab) study 2004-2005. *Diabetes Care*, 2010;
 33(2):327-334.
- 46. Wareham NJ, Wong MY, Hennings S, Mitchell J, Rennie K, Cruickshank K, et al.
 Quantifying the association between habitual energy expenditure and blood pressure. *Int J Epidemiol* 2000;**29**(**4**):655-660.

- 47. Healy GN, Wijndaele K, Dunstan DW, Cerin E, Shaw JE, Zimmet PZ, et al. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. *Diabetes Care* 2007; **30**(6):1384-1389.
- 48. Dunstan DW, Thorp AA, Healy GN. Prolonged sitting: is it a distinct coronary heart disease risk factor? *Curr Opin Cardiol* 2011; **26**(5):412-419.
- 49. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. *Ann Intern Med.* 2015;**162**(2):123-132.
- 50. Young DR, Hivert MF, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT, et al. Sedentary Behavior and Cardiovascular Morbidity and Mortality: A Science Advisory from the American Heart Association. *Circul.* 2016; **134(13)**: e262-279.
- Cook JR, Semple RK. Hypoadiponectinemia--cause or consequence of human "insulin resistance"? J Clin Endocrin Metab 2010; 95:1544-1554.
- 52. Ahmadizad S, Haghighi AH, Hamedinia MR. Effects of resistance versus endurance training on serum adiponectin and insulin resistance index. *Eur J Endocrinol* 2007;**157**(**5**):625-631.
- 53. Ring-Dimitriou S, Paulweber B, von Duvillard SP, Stadlmann M, LeMura LM, Lang J, et al. The effect of physical activity and physical fitness on plasma adiponectin in adults with predisposition to metabolic syndrome. *Eur J Appl Physiol* 2006; **98(5)**:472-481.

- 54. Yatagai T, Nishida Y, Nagasaka S, Nakamura T, Tokuyama K, Shindo M, et al. Relationship between exercise training-induced increase in insulin sensitivity and adiponectinemia in healthy men. *Endocr J* 2003; **50(2)**:233-238.
- Lean ME, Han TS, Deurenberg P. Predicting body composition by densitometry from simple anthropometric measurements. *Am J Clin Nutr* 1996; 63(1): 4-14.

Figure Legends

Figure 1: Associations of predicted cardiovascular risk with time spent in sedentary posture. The regression line and the 95% confidence interval of prediction are shown. Adjustments were made for sex, age, job type, shift worked, family history of CHD, waist circumference (where waist circumference is not the dependent variable), and time spent sleeping and time in upright posture.