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Granular activated carbon has numerous applications due to its ability to adsorb and 

desorb gas molecules. Recently, it has been shown to exhibit unusually high low 

frequency sound absorption [Venegas & Umnova, J. Acoust. Soc. Am., 130(5), 2765-

2776, 2011] and [Bechwati et al, J. Acoust. Soc. Am., 132(1), 239-248, 2012]. This 

behavior is determined by both the multi-scale nature of the material, i.e. the existence 

of three scales of heterogeneities, and physical processes specific to micro- and 

nanometer-size pores, i.e. rarefaction and sorption effects. To account for these 

processes a model for sound propagation in granular activated carbon is developed in 

this work. A methodology for characterizing granular activated carbon which includes 

optical granulometry, flow resistivity measurements, and the derivation of the inner-

particle model parameters from acoustical and non-acoustical measurements is also 

presented. The model agrees with measurements of normal incidence surface 

impedance and sound absorption coefficient on three different granular activated 

carbon samples.  

  

PACS number(s): 43.55.Ev, 43.20.Bi, 43.20.Gp, 43.20.Jr 

 



Acoustics of granular activated carbon 3

Influence of sorption on sound propagation in 

granular activated carbon 

R. Venegas & O. Umnova 

 

Rodolfo Venegas  

Carbon Air Ltd., The Innovation Forum, 51 Frederick Road, Salford, England, M6 

6FP and Acoustics Research Centre, University of Salford, Salford, England, M5 

4WT 

r.venegas@carbonair.eu 

 

Olga Umnova 

Acoustics Research Centre, University of Salford, Salford, England, M5 4WT 

Olga.Umnova@salford.ac.uk 

 

I. INTRODUCTION 

Activated carbon is manufactured by carbonizing raw material (e.g. coal, peat, wood, 

nut-shells, etc.) followed by an activation process1,2. The carbonisation is performed 

in an inert atmosphere at 700-1000C. The activation usually consists of selective 

gasification of individual carbon atoms conducted by reaction of the carbon with 

oxidising gases such as carbon dioxide or steam, or mixtures of these two gases 

(usually at 800-900 C). The combination of carbonization and activation creates a 

large surface area characterized by a hierarchical porosity ranging from nanometer to 

micrometer size pores within the material. Granular activated carbons consist of 
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highly porous particles with size usually close to 1 mm. It possesses pores ranging in 

size from nearly a millimetre to a nanometer, i.e. it has multiple scales of 

heterogeneities. Its large surface area determines its remarkable sorption 

characteristics. Sorption is a general term which refers to adsorption, desorption, and 

absorption (penetration of the fluid into the solid phase). The former is a physical or 

chemical process in which the fluid molecules are adhered on to a surface. Adsorption 

can also be understood as an increase in the fluid density in the vicinity of a fluid-

solid interface. Desorption is the opposite phenomenon, i.e. the fluid molecules are 

released from the surface. The adherence in physical adsorption is caused by weak 

van der Waals forces while the chemical bonding is responsible for chemical 

adsorption. The release of the molecules is caused by either an increase of 

temperature or a decrease in pressure which results in a break of the weak physical 

bond1,2.  

The exploration of acoustical applications of granular activated carbon began after it 

was suggested that this material can increase the compliance of a loudspeaker 

enclosure3. The phenomenon was attributed to sorption processes that occur in the 

very small pores within the grains3,4. A similar behaviour has been observed in 

Helmholtz resonators fully and partially filled with granular activated carbon5,6. In 

addition, granular activated carbon has shown unusually large low frequency sound 

absorption5,6,7, which has been attributed (at least partially) to sorption processes.  

The effect of sorption on sound attenuation in straight cylindrical pores has been 

studied in Ref.8 where the sorption dynamics was approximated by a Langmuir 

isotherm model. Mellow et al.4 extended this work to account for rarefactions effects, 

which occur in pores with size l  comparable to the mean free molecular path9 

1 / 2mean gl p R T  . The latter can be interpreted as the average distance travelled 
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by a molecule between two successive collisions9, and depends on the dynamic 

viscosity  , the specific gas constant gR , the gas pressure p , and the absolute gas 

temperature T . The ratio between these lengths 1Kn meanl l is known as the 

Knudsen number9 , and measures the degree of rarefaction. Its value is used for 

assessing the validity of the continuum hypothesis. For Kn 0.01  the continuum 

hypothesis remains valid and the macroscopic acoustic description presented in 

Ref.10,11,12 holds. For 0.01 Kn 0.1   (commonly referred to as the slip-flow regime) 

the effects due to the molecular nature of the gas start becoming considerable. The 

continuum description, however, is valid everywhere in the fluid except in a thin 

Knudsen layer close to the walls. In this layer even an approximate thermodynamic 

equilibrium is failed to be established due to an insufficient number of collisions 

between the gas molecules and the pore walls. To account for this, the continuum 

description is modified by allowing a degree of tangential-velocity slip9,13. The 

rarefaction effects are even stronger for 0.1 Kn 10   and a transition from slip- to 

free molecular flow is observed9.  In this regime the fluid transport is mainly 

determined by a combination of Knudsen and binary diffusions2,14,15,16. The free flow 

regime is attained when Kn 10  and is characterised by negligible inter-molecular 

collisions9 hence Knudsen diffusion is the dominating transport mechanism2,16.  

In the presence of sorption smaller pores are likely to be gradually filled with 

adsorbed gas molecules as the equilibrium pressure increases15. Depending on 

whether this quantity is smaller or larger than the capillary condensation pressure a 

combination of surface diffusion (i.e. mobility of the adsorbed molecules below 

monolayer coverage) and film condensate or capillary condensate flow would be the 

dominant transport mechanisms15. In pores with size comparable to the molecular 

size, the molecules are trapped within the force field of the pore walls and the 
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dominant transport mechanism is an activated diffusion process2,17. Similarly, 

molecular effects influence the thermal behaviour of materials with small 

characteristic pore size in the different regimes characterised by the Knudsen 

number9. For 0.01 Kn 0.1   the continuum description is modified to account for the 

temperature-jump on the pore boundaries using a boundary condition that states that 

the temperature is proportional to the normal component of the temperature 

gradient9,18. For even smaller pores the thermal behaviour might be better described 

using either higher-order temperature-jump boundary conditions or kinetic molecular 

models9. The influence of rarefaction effects on the acoustical properties of porous 

materials has been studied in Ref.19,20. 

Recently, the influence of sorption and diffusion on sound propagation in slit-like 

pores has been theoretically studied in Ref.21. This model and those described in the 

previous publications4,8 are not directly applicable to granular activated carbon 

because i) they do not account for its multi-scale nature nor its geometry, and ii) their 

range of validity has not been assessed using the theory of homogenisation for 

periodic media (HPM)12,22. 

The predictions of the acoustical properties of granular activated carbon were made in 

Ref.7 assuming that the material possesses three characteristic scales (double porosity 

material). However, this model did not include sorption and rarefaction effects at any 

scale. Hence, it was unable to accurately predict the acoustical properties of granular 

activated carbon at low frequencies. The reason for this is that the normalized static 

bulk modulus of granular activated carbon attains a value smaller than one6,7, while 

the current theory of acoustics of porous media predicts its value to be the inverse of 

porosity (hence a value larger than one). Venegas and Umnova7 suggested that the 

discrepancies may be explained by adding an additional scale to the introduced double 
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porosity model and including sorption processes that modify the bulk modulus of 

granular activated carbons into the modelling.  

This idea is developed in the current work where a model for sound propagation in 

granular activated carbon and a methodology for its characterisation are presented. 

The model is introduced by making successive use of the theory of acoustics of multi-

scale porous media derived using the method of homogenization for periodic media 

(HPM)12,22. It accounts for both the multi-scale nature of granular activated carbon 

and physical processes specific to small pores.  The paper is organized as follows. In 

Section II.A the wave equation for single porosity materials including sorption and 

rarefaction effects is derived using HPM. A model for sound propagation in double 

porosity granular media7 is then re-called in Section II.B. This model is generalised in 

Section II.C to account for a third porosity scale, i.e. granular activated carbon is 

modelled as a triple porosity material). Three characteristic pore sizes account for the 

existence of inter-granular pores and for two characteristic sizes of intra-granular 

pores. The results of Section II.A are used to model sound propagation at the intra-

particle scales where the effects of rarefaction and sorption are significant. A 

methodology for the characterisation of granular activated carbon is presented in 

Section III.A. A comparison between the model predictions and measurements of 

surface impedance and sound absorption coefficient on three different samples of 

granular activated carbon with different microstructure is shown in section III.B. The 

main findings are summarized in Sec. IV. 
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II. THEORY 

A. Sound propagation in single porosity materials accounting for 

processes specific to small pores 

In this section the wave equation in single porosity materials including rarefaction and 

sorption effects is derived first. This is done by using the homogenisation technique 

for periodic media (HPM)12,22. The different transport mechanisms associated with the 

smallest pores are then discussed and included into the formulation.  

Consider a periodic rigid-frame porous material that is saturated by air and supports 

sorption. Figure 1 shows a diagram with the two scales of the material. 

 

 

Figure 1 Diagram of the scales of a single porosity material supporting rarefaction and sorption effects 

(adapted from Ref.12) 

 

The macroscopic characteristic length is denoted as L  (and is related to the sound 

wavelength   as / 2L   ), and the microscopic characteristic length (or the 

period of the microstructure) as l . The latter is assumed to be comparable to the 

molecular mean free path meanl . The material porosity is defined as /f    , 

where f is the open voids/pore volume and   is the volume of the representative 

elementary volume (REV). The disparity in length scales provides a small expansion 

parameter / 1l L    that ensures the existence of the REV. In addition,   is 
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assumed to be much smaller than the Knudsen number, i.e. Kn 1   . The 

response of a single porosity sorptive material to a sound wave is described by the 

linearized equations of conservation of momentum [Eq. (1)], mass [Eq. (2)], energy 

[Eq. (3)], and by the equation of state [Eq. (4)], along with the slip and temperature-

jump boundary conditions on the pore walls [Eqs. (5) and (6)].  

 2
0p j   u u , (1) 

   0 0aj       u , (2) 

 2
0 pj p j C       , (3) 

 
0 0 0

p

P

 
 

  , (4) 

   1 1v meanc l    u t u n t  on s , (5) 

 
   2

1 Prt meanc l
 


  


n  on s . (6) 

Here  is the angular frequency, pC is the heat capacity at constant pressure,  is the 

thermal conductivity, Pr /pC    is the Prandtl number,   is the ratio between 

specific heats, and 0 , 0P , and 0  are the equilibrium pressure, density and 

temperature respectively. The oscillating velocity, pressure, density, temperature, and 

a density increment due to sorption are denoted as u , p ,  ,  , and  a , 

respectively. Harmonic dependence of the type j te  is assumed. The unit normal 

vector to the boundary s  pointing outward from the pore region is denoted as n  and 

the unit tangential vector collinear with the wall slip as 1t . The parameters 

 2 /v v vc     and  2 /t t tc     are the velocity slip and temperature jump 

coefficients9, which depend on the tangential v  and thermal t  accommodation 



Acoustics of granular activated carbon 10

coefficients. In turn, these coefficients depend of the collision interaction laws 

between gas molecules and the pore walls (equal to 1 or 0 for fully diffuse or 

specularly reflective surfaces respectively), the nature of the saturating gas itself, its 

temperature, and pressure9,19,23. It is often assumed that 1v t   , i.e. all the 

molecules are reflected diffusively19,23.  

The change in density due to sorption a  is modelled using the Langmuir model24,2. 

This model relates the rate of adsorption and desorption and assumes that24,2 : i) the 

surface of the solid is homogeneous, i.e. the adsorption energy is constant over all 

sites of the surface; ii) adsorption is localized, i.e. the molecules are adsorbed at 

definite localized sites; iii) each site can accommodate only one molecule, i.e. 

monolayer coverage; iv) the adsorbed molecules do not interact with each other. It is 

worth reminding that the pressure variations caused by a sound wave are very small. 

This means that the global nature of the isotherm is not of importance. Here the 

Langmuir model is adopted because of both it is widely known and to facilitate 

further comparisons between values of the sorption parameter of the model and those 

found in literature. The equation of the Langmuir model is given by: 

  a
a N a d a

d
k p k

dt

     
   . (7) 

Here 0
j t

a a ae      and 0
j tp P pe   . The term 0a  represents the equilibrium 

density of the adsorbed molecules. The maximum value of the density increment due 

to sorption is denoted as N  while the adsorption and desorption constants as ak  (in 

Pa-1 s-1) and dk  (in s-1) respectively. In general, these depend on temperature and the 

pore size2. By assuming that 0p P  and 0a a   Eq. (7) can be linearized to 

obtain: 
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 

a d N
a

a a

k k
p

j




  



, (8) 

where the sorption characteristic frequency a is defined as: 

 0a a dk P k   . (9) 

The estimates of the dimensionless numbers are now presented. The macroscopic 

characteristic length L  is considered as a reference length (hence the subscript L in 

the dimensionless number estimates below). The procedure for determining the 

estimates of the dimensionless numbers, apart from that for those related to sorption 

effects, is well known and can be found, for example, in Ref.12.  

The ratio of the pressure gradient to the viscous forces per unit volume is given by 

2/Q p    u . Since the flow is forced by the macroscopic pressure gradient and 

occurs in the pores, it can be shown that  2
LQ O   . The transient Reynolds 

number 2
0 /tR j  u u is defined as the ratio of the transient and the viscous 

term in Eq. (1). Under acoustic excitation, the inertial term acts at the local scale, 

which means that  2
tLR O   . The Strouhal number tS  characterizes the transient 

behaviour of the flow and is given by 0/tS j  u . A macroscopic transient 

behaviour corresponds to  1tLS O . The dimensionless number that relates the 

change in density due to sorption and the spatial variations of fluid volume is given by 

0/t aZ j  u . Considering that the variations of acoustic density are of the 

same order as the variations of the density increment due to sorption one can obtain 

the following estimate  1tLZ O . The following dimensionless number 

2
0 /t pN j C      describes the ratio of the inertial and conductivity terms in the 
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equation of conservation of energy. The thermal exchanges occur at the pore scale and 

the conduction and transient terms are of the same order of magnitude, which yields 

 2
tLN O   . The dimensionless number relating the heat source due to pressure 

variations and the conduction term, 2/tM j p    , is estimated as 

 2
tLM O    since the former is of the same order as the inertial term. Finally, the 

dimensionless numbers quantifying the influence of the slip and temperature-jump 

boundary conditions are given by6,27   1 1 /v v meanB c l    t u n t u  and 

   2 / 1 Pr /t t meanB c l      n . Noting that23  1vc O  and   1tc O , they 

are estimated as  KnvLB O   and  KntLB O   respectively.  

Now equations (1)-(6) can be written in dimensionless form as: 

 2 2
0p j    u u , (10) 

 
  0 0a d N

a a

k k
j p

j


  

  
 

       
u , (11) 

 2 2
0 pj p j C        , (12) 

 
0 0 0

p

P

 
 

  , (13) 

   1 1Kn    u t u n t  on s , (14) 

 
   2 Kn

1 Pr

  


  


n  on s . (15) 

Here the spatial variables are defined as /y l X  and /x L X  with X being the 

physical space variable of the system and the macroscopic length L  has been chosen 

as a reference. Hence the differential operators in Eqs. (10)-(15) take the 

form 1
x y       and 2 1 22x xy y         . The quantities are looked for in 
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the form of asymptotic expansions in powers of the small parameter   as 

     
0

, ,ii

i

x y x y




    where 1, , , , ,ap     u t . These are now substituted into 

Eqs. (10)-(15) and the terms of the same order are identified. At 1  , it follows from 

the equation of momentum conservation that  0 0y p  , which means that the 

pressure depends only on the macroscopic spatial variable, i.e.      0 0p p x .  

Subsequent orders of expansion provide the following set of equations: 

        0 1 0 0
0y y xp p j    u u , (16) 

  0 0y  u , (17) 

         0 00 0
1 1Kn y   u t u n t  on s , (18) 

      0 0 0
0y pj p j C       , (19) 

  
 

 0 02 Kn

1 Pr y
 


  


n  on s , (20) 

 
     0 0 0

0 0 0

p

P

 
 

  , (21) 

  
 

      0 0 0 1
0 0a d N

x y
a a

k k
j p

j


  

  
 

         
u u . (22) 

The oscillatory Stokes [Eqs. (16)-(18)] and heat conduction problems [Eqs. (19)-(20)] 

are decoupled and both constitute sets of linear equations. They may therefore be 

formally expressed as linear operators acting on the source terms, i.e.  

      0 0, ,Kn
x

y
p




  
k

u


, (23) 

        1 0 1, ,Kn xp y p p   π
 

, (24) 
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      0 0, ,Knk y
j p


 







. (25) 

Here  , , Kny k


 and  , ,Knk y 


 denote the  periodic microscopic dynamic 

viscous permeability tensor and the microscopic dynamic thermal permeability 

distribution respectively. Note that the pressure field has been expressed in terms of 

zero mean π


 part and an integration constant  1p


. 

Substituting Eqs. (23)-(25) into Eqs. (16)-(20), two decoupled boundary value 

problems are formulated: 

 0
y yj




  k k π I
  

, (26) 

 0y  k


, (27) 

     0 0
1 1Kn y   k t k n t

 
 on s .  (28) 

 0 1p
y

C
j k k





   
 

, (29) 

 
 

2 Kn

1 Pr yk k



   


n

 
 on s , (30) 

where I is the unitary second-rank tensor. The dynamic permeabilities are then 

calculated by averaging the solution over the REV as: 

    , Kn , , Kn
y

y k k


, (31) 

    , Kn , , Kn
y

k k y  


. (32) 

The average is taken over the complete volume, i.e. 

  1
f

y
d


   

  . (33) 
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The macroscopic description is then obtained by taking the volume average over the 

compatibility condition (Eq. (22)). Note that the equation of state has been used to 

express  0  in this equation: 

 
   

 
     

0 0
0 0 1

0 0 0

0a d N
x y

a a
y

k kp
j p

P j


    

 
         

u u . (34) 

Using the divergence theorem and considering periodicity, the slip boundary 

condition, orthogonality, and the thermodynamic identity  0 0 0/ 1 /pP C     , 

one can obtain the macroscopic wave equation for pressure: 

 
 

 
   

0
0,Kn

,Kn, , x x
a d

j p
p

E k k


 

 
    

 

k
. (35) 

It is clear that the overall (macroscopic) flow is not affected by sorption effects. The 

dynamic viscous permeability is given by Eq. (31) and does not depend on the 

sorption parameters. Its properties have been analysed, for example, in Ref.12,27. On 

the other hand, the dynamic bulk modulus is significantly altered by sorption and can 

be written in terms of the classical contribution to thermal dissipation due to heat 

conduction including rarefaction effects  , KnhE   and one additional contribution, 

 , ,s a dE k k , due to sorption processes, i.e. 

     11 1,Kn, ,a d h sE k k E E
   , (36) 

where  

       1

0
0

, Kn
, Kn 1h p

kP
E j C

   
 

 
   

 
. (37) 

    

1

0 0

0

, , a d N
s a d

a a

P P k k
E k k

j

  
    


 

    
. (38) 
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This general formulation can be simplified as follows. For an isotropic material  (or 

considering only a preferential flow direction) the viscous permeability becomes a 

scalar, i.e. kk I . The viscous characteristic frequency, which determines the 

transition from viscous to inertia-dominated sound propagation in the material, is 

given by10,11,12 0 0/v k    , where   is the tortuosity and 0k  is the static 

viscous permeability. For materials with pore size in the order of the molecular mean 

free path 1v   GHz at normal conditions19. Hence the sound propagation through 

the material can be assumed viscosity-dominated in the audible frequency range and 

the dynamic permeability in Eq. (35) can be approximated by its static value, i.e. 

   0, Kn Knvk k   . Since the thermal characteristic frequency is in the 

order10,12 of the viscous characteristic frequency, i.e.  t vO  , the sound 

propagation can be assumed isothermal and the dynamic bulk modulus associated to 

heat conduction (Eq. (37)) can be approximated by its isothermal value, i.e. 

  0 /h tE P   .  

Furthermore, the adsorbed layer can be considered in equilibrium with the fluid phase 

since the average residence time of adsorption (i.e. the inverse of the sorption 

characteristic frequency) ranges from 1310 to 910 s for physical adsorption2. Hence 

one can estimate the dynamic bulk modulus in the audible frequency range associated 

to sorption effects as   1
0 0/ ( )s a NE P     . Here the dimensionless 

parameter  2
0 0/ 1P b P b    depends on both the equilibrium pressure and the 

Langmuir constant /a db k k . The static bulk modulus is therefore given by: 

    
0

0 1
0

1
0

1 N

P
E E

   
  


. (39) 



Acoustics of granular activated carbon 17

This expression shows that the bulk modulus is modified by sorption effects if the 

term 1
0N    is not negligible. Furthermore, its value normalized to the equilibrium 

pressure, i.e. 0 0/E P , can be smaller than unity. For a porous material with circular 

cylindrical pores with pore radius nr  and porosity n , the maximum value of the 

density increase associated to sorption is given by4: 

 
2

N
n m

m

r S

  , (40) 

where  m  is the mass of the saturating fluid molecule and mS   is the area occupied by 

each molecule. For air, these are given by 264.8106 10m    kg and   

2 194 4.3265 10m airS r    m2, where the radius of an air molecule is28 

101.855 10airr   m. Introducing this expression into Eq. (39) one concludes that the 

classical static bulk modulus is recovered when 1
0 0N    and/or 0  . The 

former occurs when the pores are large while the latter when either 0 0P b   (i.e. 

0 a dP k k ) or 0P b  (i.e. 0 a dP k k ).  

As the effect of sorption on the bulk modulus is strong in the smaller pores (see 

Eq.(40)), the processes specific to them should be discussed. For pores smaller than 

the molecular mean free path the Knudsen number becomes large and the dominant 

transport mechanism is Knudsen diffusion9,16 rather than viscous slip flow. It states 

that the diffusive transport is proportional to the pressure gradient2,9,16,29 and the 

filtration velocity is given by: 

    0 0
x

y
A p  u , (41) 

where 0/gA D P  and the Knudsen diffusion coefficient for an array of cylindrical 

pores is given by2,29 ( / 3) 8 /g n n gD r R T  . The macroscopic wave equation Eq. 
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(35), however, still remains valid, although with a modified “permeability”, and can 

be obtained by replacing the argument of the divergence in Eq. (35) by  0
xA p . 

When molecular diffusion is also present, the Knudsen diffusion coefficient in Eq. 

(41) should be replaced by an effective diffusion coefficient given by 

1 1 1
e ij gD D D    , where ijD is the binary gas diffusivity2.  

Even smaller pores are expected to be filled with adsorbed gas molecules at normal 

conditions and the fluid transport is primarily determined by capillary condensate 

flow2,15, for which the filtration velocity is given by Eq. (41) and 0 /n lA k  . Here l  

is the dynamic viscosity of the condensate and for the case of cylindrical 

pores10 2
0 / 8n n nk r .  

In pores with size comparable to that of the saturating fluid molecules, the latter are 

trapped within the force field of the pore walls and the dominant transport mechanism 

is determined by an activated diffusion process showing an Arrhenius temperature 

dependence2,17. In this case, the filtration velocity is given by Eq. (41) with 

0/cA D P , where the configurational diffusivity (also known as micropore or 

intracrystalline diffusivity) is denoted as c C fD D c . Here fc  is the thermodynamic 

correction factor, which equals to one in the Henry’s or low coverage region, or for 

small differential changes in pressure or concentration2; and 

 exp /C C c gD D E R    is the corrected diffusivity. In this expression, CD   

represents the corrected diffusivity at infinite temperature and cE is the activation 

energy, which is usually one-third to one-half of the heat of adsorption2,17. It should 

be noted that a surface resistance at the nanopore mouth may be considered, but this 

would be in series with the mass transfer diffusion determined by the configurational 
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diffusivity21. Hence the surface resistance effect may be included into a lumped 

diffusivity without changing the general structure of the model.  

 All these transport processes are likely to be simultaneously occurring in the intra-

granular pores of activated carbon, however their combined influence on the 

macroscopic flow is, as it will be shown in Section IIC, negligible compared to that of 

the mesoscopic (i.e. integranular) fluid network. Hence a detailed description of the 

fluid transport at the very small scales might not be required in a first approximation. 

It is worth noting that the expression derived for the bulk modulus (Eq. (39)) remains 

unaffected by the variety of possible diffusion mechanisms because it depends on the 

variation of density over pressure and not on the filtration velocity. 

As has been shown in Ref.8, the direct application of the model developed in this 

section to granular activated carbon does not accurately predict its acoustical 

properties. This is because this model, while accounting for sorption and rarefaction 

or diffusion effects, does not provide an adequate representation of both the geometry 

of the material and the several scales of heterogeneities of granular activated carbons. 

The double porosity model introduced in Ref.7 takes both of these features into 

account but does not include sorption effects. This model is briefly recalled in the 

next section and will then be extended in Section III to include a third scale of 

heterogeneities and the effects specific to small pores. The latter will be done using 

the results derived above. 

 

B. Sound propagation in double porosity granular materials  

Three characteristic lengths can be identified in a double porosity granular material7,26 

(see Figure 2). The characteristic size pl  is determined by the size of the meso-
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heterogenities, which for a granular porous material corresponds to the particle size. 

The characteristic size ml is determined by the size of the pores within the particles 

and is comparable to meanl . To model the material as an homogenous equivalent fluid 

the assumption of separation of scales should be satisfied, e.g. / 1pl L    and 

0 / 1p ml l   . The meso and micro porosities are /p fp p    and /m fm m     

respectively, where fp  and fm are the open voids/pore volume, and p and m  

denote the volume of the REVs. The overall porosity of the material is given by 

 1db p p m      . The subscript db (meaning “double bulk modulus”) denotes a 

double porosity quantity.  

 

 

Figure 2: Diagram of the scales of a double porosity material (adapted from Ref.26) 

 

The wave equation in a rigid-frame double porosity granular material has the same 

general form6,7,25,26,29 as that of Eq. (35). However, E  and k  should be replaced by 

the dynamic bulk modulus dbE and dynamic viscous permeability dbk  of the double 

porosity granular material. The macroscopic acoustic behaviour is significantly 

affected by the interscale ratio 0 . In the case of high-permeability contrast, i.e. 
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3
0 10  , the pores in the particles have negligible contribution to the macroscopic 

fluid flow and the dynamic permeability dbk  coincides with that of a packing of solid 

particles6,7,26, i.e.          1db p p m p       k k k k , where pk  and mk  are 

the dynamic permeability tensors of the mesoscopic and the microscopic domains. 

The dynamic bulk modulus is given by6,7,26:  

    
 
   

1

0
11

,Kn
,Kn ,Kn

p
db d

p m m m

P
E F

E E E


 

   


   
        

, (42) 

where dF is a function that describes pressure diffusion effects, and pE  and mE are 

the dynamic bulk modulus of the mesoscopic and microscopic domains, which can be 

calculated using Eq. (37). In the case of low-permeability contrast, i.e. 1
0 10  , the 

dynamic viscous permeability of the microscopic fluid network should be included in 

the calculation of the overall permeability and dF  should be replaced by 1 in Eq. (42) 

(see Ref.6,7,26).  

This general formulation is now applied to model an unconsolidated double porosity 

granular material as an array of identical porous spheres6,7. The pores in the spheres 

are assumed cylindrical. The particle radius and the intergranular porosity are denoted 

as pr  and p , while the micropore radius and microporosity as mr  and m , 

respectively. The dynamic viscous and thermal permeabilities of the meso domain are 

calculated with models derived using a self-consistent approach30,31. In particular, the 

model for the dynamic viscous permeability considered here is the so-called P-

estimate, which is given by30,31: 

    
2

21 3 /
v

p

j
k

C x

 



, (43) 

where 
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  
  

tanh 1

tanh 1

Ax B x
C

ax b x




 


 
, (44) 

   
2 2

2
3 1 3 1

6 2

x x
A x 

   
       

   
, (45) 

   
2 2

2 23 1 3 1
2 6

x x
B x x 

   
       

   
, (46) 

     
2

21 2 4
3 3 1

3 6 cosh ( 1)

x
a x

x
 

 
 

        
, (47) 

  
2

2 2
3 1 1

2

x
b x 


 
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 

, (48) 

  1/3
1 p   , 1/2 /p vx j r  , and 0/v    . (49) 

The static viscous permeability is recovered from Eq. (43) assuming that frequency 

tends to zero30. 

 
 
 

52
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k



  

  
       

. (50) 

The dynamic thermal permeability is given by31: 

 
  
  

2 3
2

1 tanh 13
( ) 1 1

tanh 1
t t

p t t
t tt

x x
k j x

x xx

   


   
            

, (51) 

where / Prtx x  and Prt v   

The dynamic viscous permeability mk is calculated using19 Eq. (52) and the bulk 

modulus mE  is calculated by setting m   and mk k   in Eq. (37) and considering 

that mk  is given by19 Eq. (53).  

   2( ,Kn) 1 ,Knm m v c ck j G s     . (52) 

     2, Kn 1 , 2 Kn / ( 1) Prm m t c pr ck j G N s         , (53) 
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    
   

1

0 1

2
,Kn

Knc

J s
G s

s J s sJ s



. (54) 

In these equations 3/2 /c m vs j r  , Kn /mean ml r , and 0,1J   are Bessel functions of the 

first kind of order 0 and 1.  

Finally, the function that describes pressure diffusion effects, and the interscale 

coupling, is given by7: 

   2

3
( ) 1 cotdF z z z

z
  , with /p m mz r j k E   . (55) 

 

C. A model for sound propagation in granular activated carbon 

A complete model for sound propagation in granular activated carbon is introduced in 

this section. The model assumes that granular activated carbon features four scales 

(see Figure 3) and can be modelled as a collection of identical porous spheres in 

which the two inner-particle scales (e.g. microscopic scale and, in addition to it, a 

nanoscopic scale) are both modelled as arrays of cylindrical pores. The introduction 

of a nanoscopic scale is motivated by the well documented existence of nanopores in 

granular activated carbon1. Moreover, it was experimentally found7 that absorption of 

low frequency sound by a granular activated carbon is in direct correlation with its 

nanopore volume: activated carbons with larger nanopore volume show a much 

improved low frequency sound absorption7.  

It is worth mentioning that pores with size smaller than 2 nm are called micropores in 

the IUPAC recommendation32. However, as argued in Ref.2, this denomination is 

arbitrary. In order to keep our terminology compatible with earlier works on acoustics 

of multi-scale porous materials6,7,25,26 and to provide a direct reference to the pore 

size, the pores at the nanoscopic scale are denoted as “nanopores”, while those at the 
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microscopic scale are called “micropores”. This means that what is called “nanopore 

volume” here is analogous to “micropore volume” as proposed in Ref.32. 

 

 

Figure 3: Diagram of the scales of a triple porosity sorptive material 

 

The macroscopic scale is determined by the wavelength in the material while the 

mesoscopic, microscopic, and nanoscopic scales are characterized by their 

characteristic lengths, i.e. pl  , ml  , and nl . These scales have porosities  p , m , and 

n , which are the meso, micro, and nano porosities respectively. Note that the 

subscript tb (meaning “triple bulk modulus”) indicates a triple porosity quantity. The 

overall porosity of the material is given by: 

       1 1 1tb p p u p p m m n                , (56) 

The ratio between the mesoscopic and microscopic characteristic lengths is assumed 

to be in the order of  3
0 / 10m pl l O   , which indicates a high permeability 

contrast condition and implies that the inner particle permeability does not affect the 

macroscopic flow7,26. This can be shown by comparing the respective velocities. The 
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ratio between the microscopic and mesoscopic velocities is in the order of 7,26 

     2 2 6/ / / 10m p m p m m p pu u O k k O l l O      while that between the nanoscopic 

and microscopic velocities depends on the dominant transport process at the 

nanoscopic scale. If Knudsen diffusion dominates at the nanoscopic scale (i.e. in 

nanopores in the order of tens of nanometers) this is given by 

    1 1 2
0/ / / 1 Knn m g m n mean m mu u O D P k O l l l C    . Since Kn 5mC   for 

 m meanl O l  the estimation of the velocity ratio yields  5/ 10n mu u O  . Adding 

binary diffusion into the modelling does not significantly alter the order of magnitude 

analysis since  510ijD O  m2/s for most gases at normal conditions2. For smaller 

nanopores (in the order of nanometers) in which condensate flow dominates, the 

estimation of the fluid velocity ratio reads    2 1 2 1 6/ / 10n m n l mu u O l l O     . Here it 

has been assumed that the viscosity of the condensate is two orders of magnitude 

larger than that of the gas15.  To estimate the velocity ratio for the case where the 

nanopores have a size in the order of that of gas molecules, an estimate of the 

configurational diffusivity cD  is needed. For example, cD  of several gases in carbon 

molecular sieve 5A was measured using chromatography in Ref. 33. Its value for N2 at 

20C can be calculated using the reported values of 81.5 10CD 
   m2/s and 16.3cE   

kJ/mol as 111.85 10cD    m2/s. Similarly, this parameter was measured in Ref. 34 

using a gravimetric technique for the same type of materials. Its value at 303K was 

given by 101.2 10cD    m2/s and 106.5 10cD   m2/s for N2 and O2, respectively. In 

Ref.43 values of 81.98 10CD 
   m2/s and 12.156cE   kJ/mol were obtained for 

diffusion of N2 in an activated carbon monolith by fitting experimental breakthrough 

curves to a theoretical model. Using those values, the estimation of the 
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configurational diffusivity at 20C is given by 101.35 10cD    m2/s. In general, this 

parameter varies widely depending on the saturating fluid, the properties of the solid 

frame, and their interaction. Moreover, it can show remarkably different values 

depending on the measurement method used, as can be seen in figure 8 of Ref.35 

where cD for the system propane-silicalite-1 measured with 9 different methods 

shows variations of about 4 orders of magnitude. As argued in Ref.36, a value obtained 

from measurements using chromatography may be used for the practical purpose of 

estimating its order of magnitude. Therefore, the diffusivity cD  is considered to be in 

the order of 1110 - 1010 m2/s and the velocity ratio  1 1
0/ /n m c mu u O D P k    is then 

estimated as in the order of 710 - 610 . 

These estimates confirm that, regardless of the dominant transport mechanism in the 

particles, the macroscopic flow is determined by the fluid flow at the mesoscopic 

(intergranular) scale and that the dynamic viscous permeability of the triple porosity 

material can be approximated as  tb pk k  and is given by Eq. (43).  

The dynamic bulk modulus of a triple porosity sorptive material is given by: 

     1
11

,Kn,
p

tb d
p u

E b F
E E





 
  
 
 

, (57) 

Here the dynamic bulk modulus of the mesoscopic domain pE is calculated by setting 

p   and pk k   in Eq. (37), and using Eq. (51) for pk . The function dF  that 

describes pressure diffusion effects is calculated by evaluating Eq. (55) at 

/p u uz r j k E   , where the inner particle permeability is approximated as 

u mk k since the filtration velocity at the nanoscale is negligible compared to that of 

the microscopic fluid network and is calculated using Eq.(52).  
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The dynamic bulk modulus of the inner-particle scales uE  is calculated as: 

     1
11

, Kn, m
u nm

m n

E b F
E E





 

  
 

. (58) 

In this equation the dynamic bulk modulus of the microscopic domain mE  is 

calculated by setting m   and mk k   in Eq. (37) and noting that mk  is calculated 

from Eq. (53). The dynamic bulk modulus of the nanoscopic scale is calculated using 

Eq. (39) for n  . The function nmF  represents the inter-scale (nano-micro) mass 

diffusion (note that this is the same as qG in Eq. 36 of Ref.21 but for a bulk material 

instead of a single slit pore) and can be calculated using the scaling function26 

   * 01 /nmF j B B    , where   1
0 * *( 1 / 2)bB B j j M      , * / dnm   , 

  01 /dnm m cD B   , and   2
08 / 1b m dM B    . For the inner particle geometry 

considered in this work (i.e. an array of cylindrical micropores whose walls are 

composed of an array of cylindrical nanopores) the parameters are given by26 

 2 2
0 ln 3 / 2 2 / 2 / 4m m m m mB r          and (1 ) /d m m mr     . Considering that 

( )m meanr O l  and cD  is in the order of 1110 - 1010 m2/s, the characteristic frequency 

dnm is between 2000 to 20000 rad/s. On the other hand, it is further noticed that the 

pressure diffusion characteristic frequency associated with dF  in Eq. (57), which is 

estimated as 2 2
0( / )d m pO P l l  , is of the same order or smaller than dnm  for the 

materials under study. This means that for frequencies much larger than d  the 

second term on the right-hand-side in Eq. (57) tends to zero and the contribution of 

the inner-particle physical phenomenon (i.e. sorption, diffusion, and rarefaction 

effects) becomes negligible, i.e. the overall bulk modulus at high frequencies is 

determined by that of the mesoscopic fluid network only. In practical terms, if the 
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condition d dnm  is satisfied, one can consider that   1nmF    or that the material 

is in “adsorption equilibrium control” following the denomination in Ref.21 as the 

function dF will approach to zero faster. The main advantage of this is that, in absence 

of measured values of cD , this is not considered as another parameter to be adjusted. 

If the condition above is not satisfied, i.e. d dnm  , then the full model for 

 nmF  should be taken into account. 

Further considering isothermal sound propagation at the inner-particle scales (see 

Section II.A) leads to the following simplified expression for uE : 

      
1

1
0 0

0 0

1
0, 1m nm

u NE b
P P

   


 
    

 
. (59) 

Note that this assumption also implies that dF  in Eq. (57) should be evaluated at 

0 0/p u uz r j k E   , where19  2
0 1 4Kn / 8u m mk r   is the static viscous 

permeability of the microscopic domain.  

The macroscopic static bulk modulus is then calculated from Eqs. (57) and (59) as: 

    
0

1
0

1
0,

1
tb

tb N

P
E b

  
 

 
. (60) 

where   1 1 1tb p m n       .  

The following conclusions can be made from Eq. (60). The static bulk modulus 

decreases when: i) the nanoporosity is increased, ii) the nanopore size is decreased 

(see Eq. (40)) , and iii) the material is saturated with a fluid having heavier molecules 

or molecules with smaller surface area (see Eq. (40)).  

The expressions for the characteristic impedance cZ  and wave number cq  of granular 

activated carbon; and those of normal incidence surface impedance wZ , pressure 
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reflection coefficient R , and sound absorption coefficient   of a rigidly-backed layer 

of thickness d are now recalled10:  

 /c tb tbZ E j k   and /c tb tbq j k E    (61) 

  cotw c cZ jZ q d  ,    0 0/w wR Z Z Z Z   , and 
2

1 R   , (62) 

where 0 0 0Z c  is the characteristic impedance of air. These expressions are used to 

relate the effective permeability tbk  and effective bulk modulus tbE  with the 

quantities measured in the experiments. 

In summary, a model for sound propagation in granular activated carbons has been 

proposed in this section. This model accounts for the existence of three scales of 

heterogeneities and depends on physical constants of the saturating fluid and seven 

parameters, namely the particle radius pr , intergranular porosity (or mesoporosity) 

p , micropore radius mr , microporosity m  , nanopore radius nr , nanoporosity n , 

and the ratio between the adsorption and desorption constants, i.e. the Langmuir 

constant /a db k k . The next section proposes a methodology for the measurements 

or deduction of these parameter values from acoustical and/or non-acoustical 

measurements.  

III. RESULTS AND DISCUSSIONS  

A. Material characterization 

Three activated carbon samples, denoted as sample A, B, and C, are investigated in 

this paper. Samples A and B are made out of coal and have very similar intergranular 

characteristics but different intragranular ones. Sample C is made out of coconut shell 

and its intragranular characteristics are very similar to those of sample A but their 

intergranular ones differ. The model parameters for these samples are shown in 
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TABLE I. It is explained throughout this section how these parameters have been 

measured or calculated. 

 

 
p  pr  

[mm] 

m  mr   

[µm] 

n  nr   

[nm] 

610b  

[1/Pa] 

tb  

A 0.2997 0.7363 0.7064 0.4131 0.2593 0.3303 3.4696 0.8477 

B 0.3083 0.7536 0.5571 0.2054 0.1602 0.2386 3.9565 0.7427 

C 0.332 0.3062 0.6639 0.0958 0.2791 0.4060 8.5242 0.8381 

TABLE I. Model parameters of granular activated carbon samples.  

 

1. Equivalent particle radius 

An equivalent particle radius pr  of the granular activated carbon samples has been 

measured using optical granulometry following the procedure detailed in Ref.6,7. The 

complementary cumulative equivalent particle radius distribution for the three 

activated carbon samples is shown in Figure 4.  For example, 75% of the particles of 

the sample A have an equivalent particle radius larger than 0.639 mm.  The equivalent 

particle radius distribution for the sample A and B follows a log-normal distribution37 

       2 2, 1/ 2 exp ln / 2f t t t         with parameters 7.2513     and  

0.2741  , and 7.2129     and  0.2112  , respectively; while that for the 

sample C follows a Weibull distribution37        1
, / / exp /f t t t

        

with parameters 43.382 10    and 3.9126  . Therefore, the mean value and 

standard deviation (in parenthesis) of the equivalent particle radius distribution for the 

samples A, B, and C are 0.7363 (0.2056) mm, 0.7535 (0.1609) mm, and 0.3062 
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(0.0876) mm respectively. The equivalent particle radius pr  is set to the mean value 

of the equivalent particle radius distribution, as shown in TABLE I. 

 

 

Figure 4: Complementary cumulative equivalent particle radius of granular activated carbon samples A 

(a),  B (b), and C (c). Markers - data. Lines – fitted distributions. The inset plots correspond to the 

processed images for samples A (a), B (b), and C (c). The black rectangle at the bottom-right of these 

images represents 10 mm. The number of particles considered for the samples A, B, and C are 2208, 

2439, and 1880 respectively. 

 

2. Flow resistivity measurements and mesoporosity estimation 

Since the granular activated carbons exhibit high permeability contrast, which implies 

that the overall permeability can be approximated by that of the mesoscopic fluid flow 

network, measurements of flow resistivity can be used to estimate the mesoporosity7. 

The flow resistivity has been measured by following the standard procedure detailed 

in Ref.38.  Figure 5 shows the flow resistivity as a function of the flow rate for the 

three granular activated carbon samples. For the samples A and B measurements on 

layers 2-cm and 4-cm thick have been conducted in an attempt to estimate the 

variability of the flow resistivity with respect to both the packing condition and the 
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layer thickness. TABLE II shows the static flow resistivity values as well the 

estimated values of the mesoporosity. This has been calculated by inverting the 

theoretical expression for flow resistivity calculated as 0 0/p pk  with the static 

viscous permeability 0 pk being given by Eq.(50). The equivalent particle radius 

measured previously has been also used in the calculation of the mesoporosity. The 

observed variability in flow resistivity is 6.14% for the sample A and 6.85% for the 

sample B. This corresponds to an average variability in mesoporosity of 1.77% and 

1.62% respectively. The flow resistivity and the mesoporosity can be considered as 

thickness independent and both are not significantly affected by the activated carbon 

packing conditions. This justifies having taken only one flow resistivity measurement 

for the sample C. The mesoporosity presented in TABLE I corresponds to the average 

value of mesoporosity shown in TABLE II. 

 

 

Figure 5: Flow resistivity as a function of the flow rate for the granular activated carbon sample A 

(top), B (middle), and C (bottom). Diamonds - measurements for a 4-cm layer. Circles and Squares -  

measurements for 2-cm layers of different samples but the same material. Lines are fitted straight lines. 
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 Flow resistivity [kRayl] Mesoporosity p  

Measurement A B C A B C 

(a) d = 4 cm 23.0667 20.0410 -- 0.305 0.312 -- 

(b) d = 2 cm 24.6232 20.4436 -- 0.299 0.302 -- 

(c) d = 2 cm 26.0870 22.7196 95.7414 0.295 0.311 0.332 

Average 
24.5923 

(1.5104) 

21.068 

(1.444) 
95.7414

0.2997 

(0.005)

0.3083 

(0.005) 
0.332 

TABLE II. Measured flow resistivity of the activated carbon samples and their mesoporosity 

estimations. Standard deviation values are shown in brackets. 

 
 
3. Overall, micro- and nano porosity measurements 

The overall porosity has been calculated as 1 /tb b c    using measurements of the 

bulk density of the samples b  and the density of the solid frame, which is assumed 

to be that of carbon black, i.e. 2.2c  g/cm3. The bulk density b of the samples A, 

B, and C is 0.335 g/cm3, 0.566 g/cm3, and 0.356 g/cm3 respectively. The nanoscopic 

porosity has been calculated as n b nV   using the bulk density of the materials and 

the known nanopore (0-2 nm) volume nV  (or micropore volume as defined in Ref. 32). 

The nanopore volume measured using a standard isotherm measurement technique, 

i.e. Nitrogen @ 77 K, and the Dubinin-Radushkevich method1,2,39 has been provided 

by the sample manufacturer and is equal to 0.774 cm3/g, 0.283 cm3/g, and 0.784 

cm3/g for the samples A, B, and C respectively. The microporosity has been deduced 

from Eq. (56) as        1 / 1 1m tb p n p p n            . All porosity values are 

shown in TABLE I.  
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4. Bulk modulus measurements and estimation of Langmuir constant and micro- 

and nanopore radii 

The bulk modulus for the granular activated carbon samples has been measured using 

the two-thickness method40 and is shown in Figure 6. The anomalous behavior of the 

bulk modulus of activated carbon, i.e. its static value less than unity, is clearly 

observed. The measured normalized static bulk modulus, i.e   *
0Re 0 /tb tbE E P  , 

has been estimated by extrapolating the real part of the dynamic bulk modulus to zero 

frequency. This corresponds to 0.4277, 0.5026, and 0.3542 for the samples A, B, and 

C respectively. The inset plot shows the measurement of the bulk modulus for an 

array of non-porous particles7 (lead shots) with porosity 0.39p   and mean particle 

radius of  0.55pr  mm (see section III.A in Ref.7 for more details about this material 

and its characterization). It is clear that the normalised bulk modulus of the collection 

of lead shots tends to the classical value of the inverse of porosity at low frequencies. 

 

 

Figure 6: Real part of the dynamic bulk modulus of granular activated carbon samples A, B, and C. 

Markers – measured data. Lines – fitted straight lines. The inset plot shows the same parameter but for 

an array of non-porous particles (lead shots).  
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The micropore and nanopore radii, i.e. mr  and nr , have been calculated through a best 

fitting routine using the differential evolution algorithm41. This routine minimises the 

square of the absolute difference between the predicted and measured characteristic 

impedance. As part of this routine the Langmuir constant b  is calculated so as to 

match the predicted normalised static bulk modulus with its measured value using 

 1 1
02 1 2 1 4b P         where the dimensionless parameter   is estimated 

as 1 1 * 1
0 (( ) 1)N tb tbE        . The values of mr , nr , and b are shown in TABLE I.  

For the three samples the values for mr  and nr  are in the order of those commonly 

found in activated carbon1,2. It must be emphasised that these values should not be 

considered as realistic pore radii, instead they represent the effective pore sizes. This 

is because the complicated inner geometry of a highly heterogeneous activated carbon 

has been approximated in the model by ordered arrays of cylindrical monodisperse 

micro and nanopores. However, mr  and nr  values and the measured equivalent 

particle radius confirm the assumptions of high-permeability contrast between the 

meso and micro scales, respectively.  

Furthermore, the values obtained for mr  and nr  also validate the assumption 1nmF   

for the scaling function in Eq. (58) which relies on the condition d dnm  . 

Considering that 0 0(1 ) /d p m mP k D     , where 2
0 (1 ) /15p pD r  , one can 

deduce that the condition for the characteristic frequencies is satisfied for 

configurational diffusivity values  0 0 0(1 ) / 1c p m m mD P k B D      . From this 

inequality, the minimum configurational diffusivity values for the condition 

d dnm  to be satisfied are given by 111.18 10 , 123.28 10 , and 136.61 10  m2/s for 
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the samples A, B, and C respectively. Since cD is in the order of 1110 - 1010 m2/s for 

the materials under study (see Section II.C), it is then concluded that the condition 

d dnm  is satisfied and the simplifying assumption 1nmF   is thereby validated. 

Since air is mostly composed of nitrogen the obtained values for the Langmuir 

constant, which are in the order of 610 1/Pa, are compared to those reported in 

literature for nitrogen adsorption on to activated carbon. Isotherm measurements in 

Ref.42 were taken at different temperatures (ranging from 30C to 60C) on a granular 

activated carbon sample with particle size 0.85-1.70 mm and a BET surface area of 

1200 m2g-1, which is a material comparable to sample A in this paper. The Langmuir 

constant was calculated as42  0 exp / gb b H R T  , where the pre-exponential value 

0b and the average isosteric heat of adsorption H  were obtained by fitting the 

measured data to the Langmuir model. The reported values for these parameters are42 

10
0 1.2089 10b    1/Pa and 24.12 H   kJ.mol-1, which at normal conditions results in 

62.3995 10b   1/Pa. In Ref.43 measurements on an activated carbon sample in 

monolithic form were presented. The reported parameters are43 9
0 1.76 10b    1/Pa and 

17.082H   kJ.mol-1, which yields at normal conditions 61.9462 10b   1/Pa. In 

Ref.44 the Langmuir-Freundlich model was used to fit the measured data for a PCB-

type activated carbon with average grain size of 0.115 mm and BET surface area of 

1150-1250 m2g-1 (comparable to sample C in this paper). At normal pressure and 

temperature an effective Langmuir constant of 62.9441 10b   1/Pa can be deduced. It 

is pertinent to note that the Langmuir constant for oxygen is of the same order of 

magnitude. Hence the values obtained for the Langmuir constant in the present paper 

correlate well with those found in literature.  
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B. Comparison with data and discussions 

Measurements of normal incidence surface impedance and sound absorption 

coefficient of granular activated carbons were performed using a vertically-installed 

B&K 4206 impedance tube. The two-microphone method described in the standard 

ISO 10534-245 was followed. Measured data for rigidly-backed 2-cm layers of 

different granular activated carbon samples are compared with the values predicted by 

the model in Figure 7. Note that the predictions obtained by assuming that sorption 

effects are negligible are also plotted for comparison. A good agreement between the 

data and the model predictions is observed. It is worth highlighting that the imaginary 

part of the surface impedance at low frequencies tends to 

    Im 0 0 /w tbZ E d      . From this equation and Eq. (60) one can 

conclude that the smaller than usual values of the surface impedance imaginary part at 

low frequencies are a direct consequence of its anomalous bulk modulus; and hence 

attributed to sorption effects. As follows from Eq. (61) and (62) the layer thickness in 

the denominator of the low-frequency approximation of the surface impedance is 

multiplied by a factor of  1
01tb N     instead of just the overall porosity tb . 

This means that a layer of granular activated carbon tends to behave, acoustically, as 

if it were thicker than it physical is, which makes this material attractive for acoustical 

applications where space is constrained. 

Figure 8 shows the measured and predicted normal incidence sound absorption 

coefficient of rigidly-backed 3-cm layers of different granular activated carbon 

samples. A good agreement is observed between measurements and predictions. The 

slight disagreement between the data and the predictions for the sample C around 300 

Hz is due to the vibration of the grains6, which is not accounted for in the model.  



Acoustics of granular activated carbon 38

Sample A provides a much larger low-frequency sound absorption coefficient than 

sample B. It is worth reminding that the samples A and B have nearly identical 

mesoscopic properties (mesoporosity, particle radius, and flow resistivity) but 

different inner-particle characteristics (see TABLE I). These differences account for 

those in absorption coefficients at low frequencies. On the other hand, samples A and 

C have similar inner-particle characteristics but different mesoscopic ones. The 

particle size strongly affects the flow resistivity value and the larger it is the lower is 

the high frequency sound absorption coefficient. The inset plot shows a good 

agreement between the predictions of the model for an array of non-porous particles 

(lead shots) and the measured values. To further highlight the absorptive properties of 

granular activated carbon, the predictions of the model for an array of non-porous 

particles with the same mesoscopic parameters (particle radius and mesoporosity) as 

those of sample A, B, and C are also plotted in the main figure. As previously shown 

in Ref.7, the sound absorption coefficient of an array of non-porous particles is 

remarkably different than that of granular activated carbon. It is worth mentioning 

that because of the nearly identical mesoscopic characteristics of the samples A and B 

the model would predict a nearly the same sound absorption coefficient, which is 

clearly not the case. 

The sound absorption coefficient of 4-cm thick rigidly-backed layers of activated 

carbon is shown in Figure 9. The proposed model is able of capturing the general 

sound absorptive trend at high frequencies as well. Some discrepancies found in this 

frequency range are likely to be due the underestimation of the material tortuosity by 

the analytical model6. 
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Figure 7: Normalized surface impedance of a rigidly-backed 2-cm layer of granular activated carbon 

samples A (a), B (b), and C (c). Markers - measurements. Continuous lines - predictions of the model 

proposed in this work. Dashed lines - predictions obtained assuming negligible sorption effects. Black - 

real part. Grey - imaginary part.  

 

 
Figure 8: Normal incidence sound absorption coefficient of a rigidly-backed 3-cm layer of granular 

activated carbon sample A, B and C. Markers - measurements. Lines - predictions. Dashed lines - 

predictions for a packing of non-porous particles with the same mesoscopic properties as those of 

samples A, B, and C. The inset plot shows the predictions (line) of the model for an array of non-

porous lead shots and the measured values (circles). 
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Figure 9: Normal incidence sound absorption coefficient (up to 6.4 kHz) of a rigidly-backed 4-cm layer 

of granular activated carbon sample A, B and C. Markers - measurements. Lines - predictions. 

 

Finally, the sensitivity of sound absorption coefficient to the values of Langmuir 

constant and nanopore and micropore radii is illustrated by Figure 10. The particle 

radius and porosities of the sample A, as well as the layer thickness (d=3cm), have 

been kept constant in this analysis. The grey area in the main plot shows where the 

predicted values for sound absorption coefficient for different values of the Langmuir 

constant and nanopore radius fall. These have been varied from 810  to 510  1/Pa and 

from the size of an air molecule to 1 nm, respectively (note that the micropore radius 

has been kept constant). As previously discussed, by minimising the static bulk 

modulus an increase of the absolute value of the imaginary part of the surface 

impedance is achieved. In turn, this allows the material to acoustically behave as if it 

were thicker than it physically is. Therefore, it is not surprising that the limiting upper 

value of the sound absorption coefficient corresponds to the largest Langmuir 

constant and the smallest nanopore radius. The lower limiting value corresponds to 

the smallest Langmuir constant and largest nanopore radius within the range 
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considered, and approaches both that of a non-sorptive triple porosity material and 

that of a double porosity non-sorptive material. A collection of non-porous particles 

provides much lower sound absorption coefficient values. The inset plot shows the 

influence of the micropore radius. This has been varied so that the condition 

d dnm   is satisfied, i.e.  0.06,0.74mr   μm for the sample A (the other parameters 

are kept constant). An increase in sound absorption coefficient is observed as the 

micropore radius increases. This is a direct consequence of the dissipation of sound 

energy caused by pressure diffusion effects around the characteristic frequency d . 

The influence of the other parameters, e.g. porosities and particle radius, has been 

investigated in Ref.6. 

 

 

Figure 10: Sensitivity of sound absorption coefficient   to the Langmuir constant and nanopore and 

micropore radii. Main plot: Predictions of the model for i) a triple porosity sorptive (black line) and 

non-sorptive (dahsed grey line) material, ii) a double porosity non-sorptive material ( 0n  , continuous 

grey line), and iii) a packing of non-porous particles ( 0n m   , continuous light grey line). The grey 

area shows   for different combinations of Langmuir constant and nanopore radius values (see the text 

for more details). Inset plot: Influence of the micropore radius. Measured values are shown with 

markers. 
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IV. CONCLUSIONS 

A model for sound propagation in granular activated carbon has been developed 

which takes into account three scales of heterogeneities (i.e. meso, micro, and nano 

scales) and physical processes specific to small pores, e.g. rarefaction at the 

microscopic scale and sorption at the nanoscopic scale. The model is capable of 

predicting both the anomalous behaviour of the bulk modulus and the unusually large 

low frequency sound absorption by granular activated carbons. The latter is shown to 

be in direct correlation with the amount of nanometre size pores and hence is 

attributed to sorption processes. 

In general, the dissipation of sound energy in granular activated carbon is caused by 

viscosity and heat conduction effects at the mesoscopic scale (intergranular voids), 

pressure diffusion between the mesoscopic and inner-particle scales (affected by 

rarefaction effects), and the effect the sorption processes at the nanoscopic scale. The 

macroscopic bulk modulus and pressure diffusion characteristics of the multi-scale 

material are modified in response to a local increase of density in very small pores 

caused by the adsorbed molecules.  

A methodology for the acoustic characterisation of granular activated carbon that 

included different techniques, e.g. optical granulometry and flow resistivity, isotherm, 

porosity, and acoustic measurements, and a best fitting routine, was also introduced. 

Using this methodology the obtained model parameters were found physically 

plausible, similar to those commonly encountered in granular activated carbon, and 

provided accurate predictions of the acoustical properties of granular activated 

carbon.  

Despite the good agreement between the measurements and the predictions, it has to 

be reminded that the Langmuir constant was not measured directly and two of the 
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model parameters (nanopore radius nr  and micropore radius mr ) were adjusted. This 

suggests that model as it stands may only be applicable to materials similar to 

granular activated carbon saturated by air at normal conditions. A complete validation 

of the model, and consequently its generalization to a wider class of granular 

adsorbents, would require taking direct measurements of all the model parameters 

(including the configurational diffusivity) and/or measurements of the acoustical 

properties of granular activated carbon at different temperature, pressure, and/or 

saturating gas conditions; as this would allow varying the sorption behavior of the 

material. For example, saturating the material with helium would provide an 

interesting way of suppressing the sorption effect. 

Moreover, rarefaction and sorption processes are not the only physical processes 

likely to be influencing sound propagation in materials with very small pores. For 

example, activated diffusion, surface diffusion, film condensate flow, capillary 

condensate flow, molecular diffusion, and Knudsen diffusion have been reported to 

significantly influence the isothermal mass transport in activated 

carbon2,14,15,16,17,36,46,47,48. Some of these processes have been considered in the model 

but a detailed investigation of their influence on sound interaction with multiscale 

porous materials is an interesting topic for future research that might lead to their 

more effective exploitation in acoustics. 
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TABLE I. Model parameters of granular activated carbon samples. 

 
p  pr  

[mm] 

m  mr   

[µm] 

n  nr   

[nm] 

610b  

[1/Pa] 

tb  

A 0.2997 0.7363 0.7064 0.4131 0.2593 0.3303 3.4696 0.8477 

B 0.3083 0.7536 0.5571 0.2054 0.1602 0.2386 3.9565 0.7427 

C 0.332 0.3062 0.6639 0.0958 0.2791 0.4060 8.5242 0.8381 



Acoustics of granular activated carbon 50

TABLE II. Measured flow resistivity of the activated carbon samples and their 

mesoporosity estimation. Standard deviation values are shown in brackets. 

 Flow resistivity [kRayl] Mesoporosity p  

Measurement A B C A B C 

(a) d = 4 cm 23.0667 20.0410 -- 0.305 0.312 -- 

(b) d = 2 cm 24.6232 20.4436 -- 0.299 0.302 -- 

(c) d = 2 cm 26.0870 22.7196 95.7414 0.295 0.311 0.332 

Average 
24.5923 

(1.5104) 

21.068 

(1.444) 
95.7414

0.2997 

(0.005)

0.3083 

(0.005) 
0.332 
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FIGURE CAPTIONS 

Figure 1: Diagram of the scales of a single porosity material supporting rarefaction and sorption effects 

(adapted from Ref.12) 

 

Figure 2: Diagram of the scales of a double porosity material (adapted from Ref.26) 

 

Figure 3: Diagram of the scales of a triple porosity sorptive material 

 

Figure 4: Complementary cumulative equivalent particle radius of granular activated carbon samples A 

(a), B (b), and C (c). Markers - data. Lines – fitted distributions. The inset plots correspond to the 

processed images for samples A (a), B (b), and C (c). The black rectangle at the bottom-right of these 

images represents 10 mm. The number of particles considered for the samples A, B, and C are 2208, 

2439, and 1880 respectively. 

 

Figure 5: Flow resistivity as a function of the flow rate for the granular activated carbon sample A 

(top), B (middle), and C (bottom). Diamonds  - measurements for a 4-cm layer. Circles and Squares - 

measurements for 2-cm layers of different samples but the same material. Lines are fitted straight lines. 

 

Figure 6: Real part of the dynamic bulk modulus of granular activated carbon samples A, B, and C. 

Markers – measured data. Lines – fitted straight lines. The inset plot shows the same parameter but for 

an array of non-porous particles (lead shots). 

 

Figure 7: Normalized surface impedance of a rigidly-backed 2-cm layer of granular activated carbon 

samples A (a), B (b), and C (c). Markers - measurements. Continuous lines - predictions of the model 

proposed in this work. Dashed lines - predictions obtained assuming negligible sorption effects. Black - 

real part. Grey - imaginary part.  

 

Figure 8: Normal incidence sound absorption coefficient of a rigidly-backed 3-cm layer of granular 

activated carbon sample A, B and C. Markers - measurements. Lines - predictions. Dashed lines - 
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predictions for a packing of non-porous particles with the same mesoscopic properties as those of 

samples A, B, and C. The inset plot shows the predictions (line) of the model for an array of non-

porous lead shots and the measured values (circles). 

 

Figure 9: Normal incidence sound absorption coefficient (up to 6.4 kHz) of a rigidly-backed 4-cm layer 

of granular activated carbon sample A, B and C. Markers - measurements. Lines - predictions. 

 

Figure 10: Sensitivity of sound absorption coefficient   to the Langmuir constant and nanopore and 

micropore radii. Main plot: Predictions of the model for i) a triple porosity sorptive (black line) and 

non-sorptive (dahsed grey line) material, ii) a double porosity non-sorptive material ( 0n  , 

continuous grey line), and iii) a packing of non-porous particles ( 0n m   , continuous light grey 

line). The grey area shows   for different combinations of Langmuir constant and nanopore radius 

values (see the text for more details). Inset plot: Influence of the micropore radius. Measured values are 

shown with markers. 
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