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Abstract Inherent irreversibility in the flow of a reactive third grade fluid though a channel with

convective heating is examined. It is well known that heat dissipated from the exothermic chemical

reaction passes through fluid in an irreversible manner and as a result entropy is generated contin-

uously within the channel. Analytical solutions of the resulting dimensionless nonlinear boundary-

value-problems arising from the governing equations were obtained by using perturbation method.

These solutions are utilized to obtain the entropy generation rate and Bejan number for the system.

The influence of various important parameters on the entropy generation rate and Bejan number

are shown graphically and discussed accordingly.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Studies related to reactive viscous incompressible fluid flow
through a channel are important in several manufacturing,

energy and petrochemical applications. Chemical reactions
may be extremely sophisticated in viscoelastic polymer flows
as described by Kamal and Ryan [1]. Lactic acid production

is another example of non-Newtonian reactive flow [2,3]. A
comprehensive description of the many complex polymers aris-
ing in different systems has been provided quite recently by
Halley and George [4]. In [4] the importance of improving
mathematical models to describe transport phenomena more
accurately has also been emphasized. A number of researchers

in recent years have therefore investigated both analytically
and numerically chemical reaction phenomena in non-
Newtonian processing systems. For instance, Makinde [5–7]
studied the flow and stability of combustible fluid using a pow-

erful and rapidly convergent analytical approximant. Chi-
nyoka [8] employed Direct Numerical Simulation (DNS) to
study two-dimensional Oldroyd-B viscoelastic flow with

Arrhenius kinetics and thermal convection. Bég et al. [9]
employed a spectral quasilinearization numerical method to
investigate the flow of combustible gel propellant in a hybrid

rocket chamber with Newtonian cooling. They utilized the
third grade Rivlin-Ericksen (‘‘differential” fluid) model for
viscoelasticity and validated solutions carefully with the
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Figure 1 Viscoelastic reactive channel flow domain.
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variational iteration method (VIM). Further studies of
strongly exothermic fluid flows in various geometries are doc-
umented in Refs. [10–16].

In recent years, entropy generation modeling has also
become an active area of thermal engineering sciences since
heat passes through a fluid in an irreversible manner and there

is an obvious change in entropy of the fluid particles. This is
attributable to the temperature difference in the fluid particle
which will lead to a random or disordered motion of the fluid

particles. Evidently, this will minimize the efficiency of the sys-
tem. Motivated by the fact that many thermal processes occur
at extremely high temperature, the principal objective of this
analysis was to examine the thermal performance of the chan-

nel flow problem studied earlier by Makinde [5]. This is neces-
sary to measure the efficiency of the setup since increased
entropy depletes the energy level of the system. The approach

here follows the second law of thermodynamics that is based
on the original pioneering work of Bejan [17] which has revo-
lutionized thermal optimization of engineering processes and

subsequently used by Adesanya and Makinde [18], Adesanya
and Falade [19], Adesanya and Makinde [20] and Adesanya
et al. [21] for non-Newtonian liquids. Pakdemirli and Yilbas

[22] considered the third grade fluid model with Vogel viscosity
to study the entropy generation analysis in a pipe. They
showed that different viscosity parameters may either increase
or decrease the entropy generation number. Hooman et al. [23]

obtained numerical solutions for entropy effects on forced con-
vection flow in a channel. More recent works on entropy gen-
eration analysis for various flow configurations is documented

in [24–31].
The plan of study is as follows: in Section 2, the mathemat-

ical formulation (reactive non-Newtonian fluid dynamics and

heat transfer) of the problem is presented. In Section 3 pertur-
bative series solutions are presented for the non-dimensional
boundary value problem while in Section 4, the entropy gener-

ation analysis is described. In Section 5, graphical results and
interpretation are provided. Section 6 concludes the paper.
2. Mathematical reactive non-Newtonian thermofluid model

Steady-state laminar flow of a chemically-reactive fluid
between two rigid horizontal parallel plates containing an iso-
tropic, homogenous porous medium saturated with the fluid is

considered. The exothermic chemical reaction is simulated fol-
lowing Arrhenius kinetics and a third grade non-Newtonian
Rivlin-Ericksen (‘‘differential” fluid) model is implemented to

simulate the viscoelastic effects. The channel depth is 2a. The
fluid flow is induced by a constant applied axial pressure gra-
dient and is hydrodynamically and thermally fully developed.

The physical model is illustrated below in Fig. 1. The equations
governing the transport, following Makinde [5] are as follows:

� dP

dx
þ l

d2u

dy02
þ 6b3

d2u

dy02
du

dy0
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¼ 0 ð1Þ
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The appropriate boundary conditions imposed are as
follows:
At y0 ¼ þa : u ¼ 0;
dT

dy0
¼ �hðT� T0Þ ð3Þ

At y0 ¼ 0 :
du

dy0
¼ dT

dy0
¼ 0 ð4Þ

Here u is the fluid velocity, T is the fluid temperature, h is the
heat transfer coefficient, k is the thermal conductivity of the

material, Q is the heat of reaction, A is the rate constant, C0

is the initial concentration of the reactant species, R is the uni-
versal gas constant, b3 is the material coefficient, E is the acti-

vation energy, P is the modified fluid pressure and l is the
dynamic viscosity of the non-Newtonian fluid. The following
dimensionless quantities and parameters are deployed to

obtain the non-dimensional form of the governing equations:
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Here U is the fluid characteristic velocity, Ta is the ambient

temperature, h denotes non-dimensional temperature, y is
dimensionless channel width (depth), w is dimensionless axial
velocity, Bi is the Biot number, G is the non-dimensional pres-

sure gradient parameter, c is the dimensionless non-Newtonian
(viscoelastic material) parameter within which b3 is the third
grade viscoelastic fluid material parameter [32], k represents

the Frank-Kamenetskii chemical kinetic parameter, m is the
viscous heating parameter and 2 is activation energy
parameter.

In view of Eq. (5), the dimensionless boundary-value prob-

lem assumes the form:
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dy2
þ 6c
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 !" #
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The corresponding normalized boundary conditions
become the following:
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w ¼ 0; dh
dy
¼ �Bih on y ¼ 1

dw
dy
¼ 0; dh

dy
¼ 0 on y ¼ 0

)
ð8Þ
3. Methods of solution

3.1. Perturbation technique

Following [5], to obtain the analytical solution of Eqs. (6)–(8),
we assume a perturbative series solution of the form:

w ¼
X1
n¼0

unc
n; h ¼

X1
n¼0

hnk
n ð9Þ

where 0 < c � 1 and 0 < k � 1 are assumed small parame-
ters. Substituting (9) in (7) and (8) and equating coefficients,

we get the following:
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Eqs. (10) and (11) are coded in the DifferentialSolve algorithm
in a symbolic package - Mathematica. This gives the solutions
as partial sums:

w ¼
XM
n¼0

unc
n; h ¼

XM
n¼0

hnk
n ð12Þ

where M is the point of truncation for the series solution. Due
to large output of the symbolic solutions only graphical results
are presented in Section 5 and the series expansions are omit-
ted for brevity.

3.2. Adomian Decomposition Method (ADM)

To validate the accuracy of the solutions obtained by regular

perturbation above, we need to validate the solution using
another rapidly converging semi-numerical method [33]. To
implement this method, the dimensionless boundary-valued-

problems (6)–(8) are integrated as follows:
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The solutions of the integral Eqs. (13) and (14) are assumed

in the form:

u ¼
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un; h ¼
X1
n¼0

hn ð15Þ

We first identify the nonlinear terms as follows:
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Using (15) in (13) and (14) we obtain
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Noting (16), the Adomian polynomials for the nonlinear
terms are computed as follows:
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Table 1 Convergence of solutions when M ¼ 3;2¼ 0:1 ¼ m ¼ k;Bi ¼ 10; c ¼ 0:01.

y wPerturbation wADM Abs Error hPerturbation hADM Abs Error

�1 0 1.7130E�17 1.71E�17 0.0108030 0.0108057 2.6886E�06

�0.75 0.215486 0.215486 0 0.0343656 0.0343748 9.18258E�06

�0.5 0.370497 0.370497 0 0.0511111 0.0511258 1.46827E�05

�0.25 0.463957 0.463957 0 0.0611240 0.0611424 1.83873E�05

0 0.495188 0.495188 0 0.0644559 0.0644756 1.96960E�05

0.25 0.463957 0.463957 0 0.0611240 0.0611424 1.83873E�05

0.5 0.370497 0.370497 0 0.0511111 0.0511258 1.46827E�06

0.75 0.215486 0.215486 0 0.0343656 0.0343748 9.18258E�06

1 0 1.7130E�17 1.71E�17 0.0108030 0.0108057 2.68862E�06
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The following partial sum

u ¼
XM
n¼0

un; h ¼
XM
n¼0

hn ð22Þ

are used to evaluate the unknown constants and consequently
the approximate solutions. Eqs. (18)–(22) are carefully coded
in Mathematica software giving out huge symbolic solutions.
Convergence of the two solution methods is shown in Table 1.

4. Entropy generation analysis

The heat transfer process within the channel is irreversible [18].

Then the random motion of the fluid particles within the flow
channel and heat transfer encourages entropy production.
Mathematically, the equation for the total entropy generation

arising from heat transfer and fluid friction irreversibilities can
then be written as

EG ¼ k

T2
a

dT

dy0

� �2

þ l
Ta

du0

dy0

� �2

lþ 2b3

du0

dy0

� �2
 !

ð23Þ

Using the aforementioned dimensionless quantities and

parameters, as defined in Eq. (5), the equation for the dimen-
sionless form of (13), emerges in due course, as follows:

NS ¼ dh
dy

� �2

þ km
2

dw

dy

� �2

1þ 2c
dw

dy

� �2
 !

ð24Þ

Now, substituting Eq. (12) into Eq. (14), the entropy pro-

duction rate for the flow in the channel can be computed.
Figure 2 Velocity profile at different values of Frank-Kamenet-

skii parameter.
Using (14), we get N1; N2 represent heat transfer and fluid fric-
tion irreversibilities respectively:

N1 ¼ dh
dy

� �2

; N2 ¼ km
2

dw

dy

� �2

1þ 2c
dw

dy

� �2
 !

ð25Þ

Next, we get the Bejan number (Be) as follows:

Be ¼ N1

NS

¼ N1

N1 þN2

¼ 1

1þ U
; U ¼ N2

N1

ð26Þ

The graphical results for Ns are shown in Figs. 2–6 and

those corresponding to Be and U are illustrated in Figs. 7–11.

5. Results and interpretation

In this section, the graphical results associated with Eqs. (22)
and (23) are presented for various values of the flow
parameters.

Fig. 2 describes the effect of Frank-Kamenetskii parameter
on velocity field. As this parameter increases, the velocity
decreases. Fig. 3 displays the variation of Frank-Kamenetskii

parameter on temperature distribution. Increased Frank-
Kamenetskii parameter values lead to increase in the reaction
and viscous heating source terms and therefore increases the
temperature.

Fig. 4 illustrates the entropy generation rate at various val-
ues of the Frank-Kamenetskii parameter (k). As seen from the
plot, elevating the Frank-Kamenetskii parameter encourages

entropy generation in the flow channel. This is physically true
since internal heat generation increases with the increasing
concentration of the reagents. The exothermic chemical inter-

actions encourage the rate of heat transfer from the combus-
tion zone to the cool wall. In addition, the heat is
transferred through the fluid has melting effect on the fluid vis-
cosity, and this means that inter-particle collision will be

encourage; thus, more heat is being generated by viscous inter-
action of the fluid particles. Therefore, concentration of the
reagent is one factor to be monitored to achieve the best result.

Fig. 5 depicts the effect of third grade material parameter
ðcÞ on the entropy generation in the channel. From the graph,
entropy production in the fluid layer closer to the walls

decreases as the non-Newtonian material parameter increases.
This is because as the third grade material effect increases, the
fluid becomes more viscoelastic as a result of stronger bonding

forces between the fluid particles in the laminar flow. Also, the
heat released due to exothermic chemical reaction is absorbed
to excite the fluid particles. Hence entropy generation must be
on the decrease as presented in the graph. The downward trend



Figure 3 Temperature profile at different values of Frank-Kamenetskii parameter.

Figure 4 Entropy generation at different values of Frank-

Kamenetskii parameter.

Figure 5 Entropy generation at different values of third grade

material effect.

Figure 6 Entropy generation at different values of viscous

heating parameter.

Figure 7 Entropy generation at different values of Biot number.
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observed here is due to the imbalance between the nonlinear
heat and the linear convective cooling at the walls as the third
grade material parameter increases.
In Fig. 6, the influence of viscous heating parameter (m) on
the entropy generation rate within the flow channel is pre-
sented. It is clear that an increase in the viscous heating param-



Figure 8 Entropy generation at different values of activation

energy parameter.

Figure 9 Bejan number at different values of activation energy

parameter.

Figure 10 Bejan number at different values of viscous heating

parameter.

Figure 11 Bejan number at different values of Frank-Kamenet-

skii parameter.
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eter enhances the entropy production. This is correct in view of
the fact that more and more heat is liberated from inter-
particle collisions; in other words, kinetic energy generates
heat energy since it is an additional heat source.
Fig. 7 depicts the entropy generation rate as the symmetric
Biot number increases at the walls. As shown in the graph the
entropy generation rate decreases with an increase in the con-

vective cooling parameter. This is due to the irreversible heat
flow from the surface of hot walls to the ambient, in a manner
that satisfies the Newtonian cooling law. This results in a min-
imization of the entropy in the fluid region close to the cool

walls. Biot numbers considered are much greater than 0.1 i.e.
this corresponds to the ‘‘thermally thick” scenario as elabo-
rated by Prasad et al. [34] and Bég et al. [35]. The case where

Bi < 0:1 is known as the ‘‘thermally-thin” scenario and is
not relevant to polymeric flows since heat conduction inside
the body is much faster than the heat convection away from

its surface implying that temperature gradients are negligible
inside the body. The Biot number ðBi ¼ ha=kÞ is directly pro-
portional to the convection heat transfer coefficient at the

channel wall and inversely proportional to thermal conductiv-
ity, for a given channel width. Lower thermal conductivity is
associated therefore with higher Biot numbers and significant
cooling.

Fig. 8 displays the effect of the activation energy parameter
(2) on the entropy generation rate. As seen from the plot an
increase in the activation energy parameter is observed to

lower the entropy generation rate within the flow channel. This
arises since a rise in the fluid activation energy parameter cor-
responds to a decrease in the fluid activation energy. Hence,

the higher the activation energy parameter, the lower the tem-
perature. Therefore this reduction in temperature is expected
to discourage entropy generation within the channel. Similarly
an increase in the activation energy parameter physically

means an associated decrease in the fluid friction due to a rise
in fluid viscosity as shown in Eq. (15) (the viscoelastic param-
eter, c, featuring in Eq. (15) is inversely proportional to the

dynamic viscosity).
Fig. 9 demonstrates that with increasing activation energy

parameter (2), Bejan number is consistently enhanced across

the channel span. Evidently, as the irreversibility due to fluid
friction continues to decrease, the Bejan number tends to be
elevated and eventually will attain unity value. This is physi-

cally correct since increase in activation energy parameter as
shown in earlier implies decreased activation energy and
reduced fluid viscosity. When this happens, heat transfer is
expected to dominate over fluid friction irreversibility.



Figure 12 Bejan number at different values of Biot number.
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Fig. 10 illustrates the variation in Bejan number across the
channel with viscous heating parameter (m). As viscous heat-

ing increases, more heat is generated within the flow channel
due to increased frictional interactions within the moving fluid
layers and hence fluid friction irreversibility dominates over
heat transfer irreversibility in the channel.

Fig. 11 shows the response in Bejan number with various
values of the Frank-Kamenetskii parameter (k). As seen from
the graph, an increase in the Frank-Kamenetskii parameter

leads to huge increase in the heat transfer irreversibility due
to the exothermic nature of the chemical reaction. Therefore,
heat transfer dominates over fluid friction irreversibility as

the Frank-Kamenetskii parameter increases, i.e. as the chemi-
cal kinetic effect intensifies.

Fig. 12 depicts the evolution in Bejan number with a varia-

tion in Biot number. An increase in Biot number is shown to
strongly reduce Bejan number. The result shows that heat
transfer to the wall decreases as the convective cooling at the
walls intensifies. Hence irreversibility due to fluid friction (vis-

cous dissipation) dominates over heat transfer as the Biot
number increases.

6. Conclusion

In the present analysis, we have examined the heat irreversibil-
ity in the exothermically reactive flow of a third grade fluid

through a vertical channel with convective cooling at the walls.
The irreversibility analysis has been conducted using the sec-
ond law of thermodynamics. The dimensionless momentum

and heat conservation equations have been solved by perturba-
tion method. The velocity and temperature solutions have been
used to compute the entropy generation number (Ns) and

Bejan number (Be). The present investigation has shown that
for the thermally-thick scenario:

(i) an increase in both viscous heating and Frank-

Kamenetskii parameter needs to be monitored since they
contribute significantly to destruction of the thermo-
fluid system while third grade material effect, Biot num-

ber and activation energy discourage entropy profile.
(ii) an increase in the fluid activation energy and Frank-

Kamenetskii was seen to encourage the dominance of
heat transfer irreversibility over fluid friction. On the
other hand, increasing values of the Biot number and

viscous heating parameter encourages fluid friction irre-
versibility over heat transfer irreversibility in the flow
channel.

The present analysis has neglected time-dependent effects,
which will be addressed soon.
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