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CHAPTER ONE 

The European eel Anguilla anguilla 

1. Introduction  

Eels are important long-lived bony fish, with a complex life cycle, belonging to the family 

Anguillidae. The morphology of anguillid eels is quite similar, however; the colour, body 

size, position of the dorsal fin and maxillary bands of the teeth may vary (Proman & 

Reynolds, 2000; Teng et al., 2009; Watanabe et al., 2009; Leander et al., 2012). In general, 

anguillids are categorized as either temperate or tropical and these vary in their distribution 

and spawning seasons (Arai, 2014; Miller et al., 2014; Watanabe et al., 2014). 

1.1 The genus Anguilla (Schrank, 1798)   

The genus Anguilla consists of 20 species of eel that are widely distributed throughout the 

world (Lintas et al., 1998; Lecomte-Finiger, 2003). Morphological characteristics of the 

species often overlap,  including those of the two species found in the Atlantic; A. anguilla 

and A. rostrata (Lintas et al., 1998). Both species spawn in the Sargasso Sea, but they differ 

in morphometric and genetic traits and are considered as two separate species with a 

relatively recent evolutionary divergence (Lecomte-Finiger, 2003; Jacobsen et al., 2014).  

 The European eel, Anguilla anguilla, contributes to the ecosystems of the sea, rivers and 

lakes across Europe. Indeed, the eel ensures a balanced ecology both as a predator and a prey 

species (Musumeci et al., 2014). The eel diet changes with age  (Musumeci et al., 2014). Eel 

larvae are thought to feed on plankton, or organic detritus (Fitzsimons et al., 2013) and elvers 

on aquatic insects and small crustaceans (Jellyman, 1989). The yellow eel diet mostly 

comprises of insect larvae, fish, crab, worms and clams (Wenner & Musick, 1975), whilst 

larger yellow eels and immature silver eels have a diet that is predominantly piscivorous 

(Dörner & Benndorf, 2003).  Upon migration, adult eels do not feed (van Ginneken et al., 
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2005).  With respect to certain features of the eel life-cycle, including aspects of their 

migration (Tsukamoto et al., 2002; Watanabe et al., 2014), there remains a paucity of 

knowledge and hence the European eel is considered an enigmatic animal that is worthy of 

further detailed study (Miller et al., 2014). 

Eels are catadromous; adults spawn in marine environments and the hatched larvae, known as 

lepotocephali, are transported back to continental areas by oceanic currents (Kimura et al., 

1994). Metamorphosis occurs to form the glass eel and this developmental stage enters 

estuarine waters (Tsukamoto et al., 2002). Within freshwater, further growth and 

development occurs, resulting in formation of the yellow eel. After a period of at least five 

years, developmental changes generate a silver eel which then migrates to the spawning 

grounds. Following spawning, all adult eels die. The precise location of the spawning 

grounds remains unknown; however, Japanese eel eggs have been observed near the West 

Mariana Ridge (Tsukamoto et al., 2002).  In contrast to the long migrations made by 

temperate eels, tropical eel species have much shorter migrations and spawn closer to their 

freshwater habitats (Aoyama et al., 2003; Arai, 2014). 

The larvae of temperate eel species usually enter estuaries between early winter and late 

spring, which is indicative of seasonal spawning (Friedland et al., 2007; Arai, 2014). Indeed, 

the mass migration of temperate eels to spawning grounds primarily occurs throughout 

autumn and winter months, with some slight variation between the species (Wang & Tzeng, 

2000; Aoyama et al., 2003). In contrast, tropical eel larvae are found within estuaries 

throughout the year, suggesting that they are potentially spawning all year round (Tabeta et 

al., 1976; Arai et al., 2000). The precise factors that cause initiation of migration in 

sufficiently mature eels remain unknown; however, rainfall/water levels, water temperature 

and weather conditions are hypothesized as important (Lowe, 1952; Acou et al., 2008; 

Tsukamoto, 2009). 
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The sexual differentiation of eels into male and female is not fully understood, though it is a 

process that occurs in older, silver eels, and population density is thought to have a role 

(Beullens et al., 1997; Tzeng et al., 2000). Males are likely to be produced in population 

dense environments that are typically downstream, with increased temperature and saline 

conditions, whereas females are most likely generated in more upstream, lower density 

environments (Wenner & Musick, 1974; Davey & Jellyman, 2005). 

1.1.1 Biology and life-cycle of Anguilla anguilla 

Throughout much of their life cycle the European eel, A. anguilla, is distributed across 

estuarine and freshwater habitats of Northern and Western Europe and the Mediterranean Sea 

(Wheeler, 1977; Maitland & Lyle, 1991; Dekker, 2003b). It is a long-lived fish, with 

reproductive ages ranging between 6 and 60 years (Casselman, 2003). Adults undergo a long 

migration across the Atlantic Ocean to reach remote spawning grounds in the eastern 

Sargasso Sea (Aoyama, 2009) (Figure 1.1). After spawning, the adults die and fertilized eggs 

undergo embryo development, resulting in leptocephali larvae hatching 47-60 hours post-

fertilization (Pedersen, 2003, 2004). Leptocephali are carried by the Gulf Stream and also, via 

countercurrents that facilitate their transport northeastward (Miller et al., 2014). Much 

remains unknown about the leptocephali during transport across the Atlantic Ocean, not least 

the duration of the journey, which is estimated to vary between 1.5 to 3 years (Kleckner & 

McCleave, 1982; Knights, 2003; Miller et al., 2014). Upon reaching the continental shelf, the 

larvae metamorphose into glass eels. Glass eels enter coastal waters and rivers whereupon 

they darken in colour to yellow-brown elvers, which migrate further into rivers and then 

develop into yellow eels. The yellow eel may inhabit freshwater for extended periods of 

between 5 and 50 years (Melià et al., 2006). Once a yellow eel has stored sufficient body fat, 

it becomes a partially mature silver eel.  Eventually, further development results in formation 

of the silver eel and this developmental stage reduces feeding and the gonads begin to 
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develop (Han et al., 2001; Durif et al., 2006). Unknown factors trigger the complete cessation 

of feeding and the silver eel then initiates migration to the natal spawning grounds in the 

Sargasso Sea; a process that is thought to take between 3.5 to 6 months (Pelster, 2015).   

 

 Figure 1.1: The life-cycle of the European eel A. anguilla (Dekker, 2000). 

1.1.2 The European eel as an economically important species 

A. anguilla is widely distributed throughout European freshwaters and stocks represent an 

important economic resource for fisheries and aquaculture facilities throughout Europe. In the 

UK, the main glass eel fisheries are linked to rivers that drain into the Bristol Channel 

(Peirson et al., 2001); these fish are primarily exported to other European countries for re-

stocking and aquaculture and generate an economic return of between £1 million and £3 

million (Environment Agency UK, 2014). UK yellow and silver eel fisheries are mostly in 

areas of southern and eastern England and captures of 20-30 tonnes occur annually, 

generating between £100,000 to £150,000 (Environment Agency UK, 2014).     
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1.1.3 Status of the European eel population 

European eel stocks are in decline across their geographical distribution and their status is 

now considered below safe biological limits (Geeraerts & Belpaire, 2010). Since the early 

1980s, a 95% decline in recruitment of A. anguilla has occurred and one important 

contributory factor is the insufficient biomass of the spawning stock (Dekker, 2003a; 

Aprahamian et al., 2007). A similar trend has also been noted for the Japanese eel and more 

recently, the American eel (Figure 1.2). 

 

 

Figure 1.2 Trends in glass eel recruitment for the European eel (A. anguilla), Japanese eel   

(A. japonica) and American eel (A. rostrata) (modified from Dekker, 2003). 

In the UK, the European eel is widely distributed throughout rivers and other freshwater 

habitats of England, Wales, Northern Ireland and Scotland (Naismith & Knights, 1993; 

Starkie, 2003; Bark et al., 2007; Lobon-Cervil & Iglesias, 2008). Data on eel stocks in most 

rivers in the UK are derived from multispecies surveys which tend to record 

presence/absence, or relative abundance. Unfortunately, the data shows that numbers have 
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suffered a major decline over a 20-30 year period and now A. anguilla is considered a 

threatened species (Feunteun, 2002; Starkie, 2003; Durif et al., 2010).  Moreover, A. anguilla 

is the fastest declining UK vertebrate and not surprisingly, it is listed as a priority species in 

the recently revised UK Biodiversity Action Plan (UKBAP) (Laycock et al., 2009; Morgan et 

al., 2011). In England and Wales, eel recruitment peaked between 1972-1982 and 1983-1999 

and then was reported to have declined by about 55% (Knights et al., 2001; Bark et al., 

2007).  Recruitment of glass eels has now fallen to approximately 5% of the levels of the late 

1970s and shows no sign of recovery (Aprahamian et al., 2007; Bark et al., 2007; Dekker et 

al., 2007; Heinen & Mangino, 2007). 

1.1.4 Eel management plans 

In 2007, A. anguilla was listed in appendix II by CITES (The Convention on International 

Trade in Endangered Species of wild fauna and flora). This listing demands that the exporting 

state has an export permit, which is only issued after scientists have confirmed that the export 

will not be detrimental to survival of the species. This CITES measure is designed to assist 

establishment of a sustainable fishery for the European eel (Rosen & Smith, 2010).  

The European Commission has also initiated an Eel Recovery Plan to protect European eel 

stocks at sustainable levels (Council Regulation No 1100/2007) (ICES, 2011). Each 

European Member State is now required to establish a national Eel Management Plan to 

allow at least 40% of adult eels to escape from inland waters to the sea for spawning. 

Specifics include limiting eel fishing and further improving river management to assist eel 

migration and restocking. 

Increased concern about reduced eel numbers has led the UK government, through DEFRA 

(Marine, Fisheries and Biodiversity), to legislate for the sustainable exploitation of eel 

fisheries throughout England and Wales. Since the above legislation and measures have only 

recently been implemented, the status of the species remains as critically endangered and A. 
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anguilla  has been included on the IUCN red list of threatened species (ICES, 2006; Freyhof 

& Kottelat, 2008).  

1.1.5 Factors contributing to the European eel population decline 

The European eel population decline is no doubt a consequence of multiple factors that 

together, impact upon eel health and elver recruitment (Bonhommeau et al., 2008; Jacoby et 

al., 2015). A declining eel stock in Europe causes a reduction in the eel spawning stock and 

hence a reduced elver recruitment (Durif et al., 2010).  

1.1.5.1 Environmental factors 

Environmental factors, including climatic changes in ocean conditions, are considered an 

important contributor to the European eel population decline (Castonguay et al., 1994; 

Dekker, 2003a).  Such factors are likely to impact migration of the silver eel to the spawning 

grounds and also, to increase larval mortality during transport to the continental areas (Hanel 

et al., 2014).  

1.1.5.2 Habitat loss 

Eel habitat loss due to drainage of wetland habitats, construction of hydropower stations and 

associated dams and other river barriers, are considered major causes of eel population 

decline (Dekker, 2003a; Liermann et al., 2012; Piper et al., 2013; Davidson, 2014).  

1.1.5.3 Pollution 

Reduced water quality due to organic pollution undoubtedly reduces elver recruitment and 

silver eel migration success to the Sargasso Sea for breeding (Palstra et al., 2006; Geeraerts 

& Belpaire, 2010). The impact of various pollutants on the behaviour and physiology, and 

subsequently the mortality of European eels, has been widely documented (Guimaraes et al., 

2009; Privitera et al., 2014; Belpaire et al., 2015). 
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1.1.5.4 Over fishing   

Over fishing is another important contributing factor in eel population decline since glass and 

yellow eels are captured for export for human consumption and also aquaculture  (Biró, 1977; 

Carder et al., 2007) (see section 1.1.2).   

1.1.5.5 Infectious agents 

The European eel is susceptible to different infectious agents such as parasites, bacteria and 

viruses. Jacob and colleagues compiled a total of 161 parasitic species, including helminths, 

protozoa, arthropods, annelids and molluscs from European eels surveyed from 30 

European/North African countries (Jakob, Walter, et al., 2009). Representative groups of 

helminths have been reported in Atlantic and Pacific eels; however, only a very small number 

of helminth species have been identified as actual, or potential pathogens (Kennedy, 2007b). 

Some eel parasites are reported to be pathogenic and responsible for organ damage, or even 

death. These pathogenic parasites include the gill monogeneans Pseudodactylogyrus 

anguillae and P. bini (Buchmann, Mellergaard, et al., 1987) (see Chapter 2) and the swim 

bladder nematode Anguillicoloides (=Anguillicola) crassus which causes impairment of swim 

bladder function (Abdelmonem et al., 2010) and is considered a significant threat to the 

migratory success of silver eels (Pelster, 2015).  

1.1.5.5.1 Helminth parasites 

The Natural History Museum Parasite Database in London catalogues 118 species of 

helminth parasites in the European eel (Gibson et al., 2005) and the parasitic worm phyla are 

documented as follows: trematodes (42 species), nematodes (39 species), cestodes (16 

species), acanthocephala (16 species) and monogenea (5 species). With respect to European 

eel from the UK, the Natural History Museum Parasite Database includes information on 30 

parasite species as follows: nematodes (10 species), trematodes (9 species), acanthocephala 

(6 species), monogenean (3 species) and cestodes (2 species) (Table 1.1).  
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Table 1.1 Helminth parasites reported in A. anguilla surveyed from the UK (modified from 

the Natural History Museum Database in London UK) (Gibson et al., 2005). 

Parasitic group Parasite species Reference 

Nematodes Streptocara sp. (Kennedy, 1993a) 

 Goezia inermis (Zeder, 1800) (Norton et al., 2003) 

 Raphidascaris acus (Bloch, 1779) (Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a; 

Kennedy, 1997b; Kennedy, 2001a; Norton et al., 2003) 

 Camallanus lacustris (Zoega, 1776) (Nie & Kennedy, 1991a; Kennedy, Nie, Kaspers, et al., 

1992; Norton et al., 2003) 

 Anguillicola (Anguillicoloides) crassus 

(Kuwahara, Niimi & Itagaki, 1974) 

(Kennedy & Fitch, 1990; Ashworth, 1993; Kennedy, 1993b; 

Pilcher & Moore, 1993; Kennedy, 1998; Ashworth & 

Kennedy, 1999; Kelly et al., 2000; Kennedy et al., 2000; 

Kirk, Kennedy, et al., 2000; Kirk, Lewis, et al., 2000; 

Kennedy, 2001a; Kirk et al., 2002) 

 Spinitectus inermis (Zeder, 1800) (Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1997a; 

Kennedy et al., 2000; Kennedy, 2001b) 

 Cucullanus truttae (Fabricius, 1794) (Kennedy, 2001b; Norton et al., 2003) 

 Paraquimperia tenerrima (Linstow, 1878) (Esch et al., 1988; Nie & Kennedy, 1991c; Kennedy, 1993a; 

Kennedy, 1997b; Kennedy et al., 2000; Kennedy, 2001a; 

Norton et al., 2003) 

 Capillaria spp. (Kennedy, 1993a) 

 Pseudocapillaria spp (Kennedy, 1997b; Kennedy, 2001a) 

Trematodes Deropristis inflata (Molin, 1859) (Kennedy et al., 2000) 

Telogaster opisthorchis (Macfarlane, 

1945) 

(Hine, 1978) 

Crepidostomum farionis (Muller, 1780) (Kennedy, 1993a) 

Diplostomum spathaceum (Rudolphi, 

1819) 

(Esch et al., 1988) 

Phyllodistomum folium (Olfers, 1816)  (Nie & Kennedy, 1992a) 

Stegodexamene anguillae (Macfarlane, 

1951) 

(Hine, 1978) 

Nicolla gallica (Dollfus, 1941) (Norton et al., 2003) 

Podocotyle atomon (Rudolphi, 1802) (Kennedy, Nie, Kaspers, et al., 1992) 

Sphaerostomum bramae (Mueller, 1776) (Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a; 

Kennedy, 1997a; Kennedy, 2001b) 

Acanthocephalans Acanthocephalus anguillae (Muller, 1780) (Bates & Kennedy, 1991; Kennedy, 1992; Norton et al., 

2003) 

Acanthocephalus  clavula Dujardin, 1845 (Esch et al., 1988; Kennedy et al., 2000; Lyndon & 

Kennedy, 2001) 

Acanthocephalus  lucii (Muller, 1777) (Kennedy, 1992; Norton et al., 2003) 

Echinorhynchus truttae Schrank, 1788 (Kennedy, 2001a; Norton et al., 2003) 

Neoechinorhynchus rutili (Muller, 1780) (Kennedy, 1993a, 2001a) 

Pomphorhynchus laevis (Zoega in Muller, 

1776) 

(Brown, 1989; Kennedy, 1996) 

Monogeneans Gyrodactylus anguillae Ergens, 1960 (Kennedy & Di Cave, 1998) 

Pseudodactylogyrus anguillae (Yin & 

Sproston, 1948) 

(Nie & Kennedy, 1991d; Kennedy, Nie, Kaspers, et al., 

1992; Gibson, 1993; Kennedy, 1993b; Kennedy et al., 2000) 

Pseudodactylogyrus bini (Kikuchi, 1929) (Gibson, 1993; Kennedy, 1993b) 

Cestodes Bothriocephalus claviceps (Goeze, 1782) (Esch et al., 1988; Kennedy, Nie, Kaspers, et al., 1992; Nie 

& Kennedy, 1992b; Kennedy, 1993a; Nie & Kennedy, 1993; 

Kennedy, 1997b; Kennedy, 2001a; Norton et al., 2003) 

Proteocephalus macrocephalus (Creplin, 

1825) 

(Nie & Kennedy, 1991b; Kennedy, Nie, Kaspers, et al., 

1992; Kennedy, Nie, & Rostron, 1992; Kennedy, 1993a; 

Kennedy, 1997b; Kennedy et al., 2000; Kennedy, 2001a; 

Norton et al., 2003) 
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Some helminth parasites are known to cause severe symptoms that may result in eventual 

death of the host; including the monogeneans, Pseudodactylogyrus anguillae and P. bini 

(Buchmann et al., 1987; Nie and Kennedy, 1991; Rodrigue et al., 1996; Buchmann, 1997) 

and the swim bladder nematode, Anguillicoloides crassus (Wurtz and Taraschewski, 2000; 

Knopf and Manhke, 2004; Abdelmonem et al., 2010). 

Indeed, these parasitic helminths are considered a threat to both wild and farmed eels (Pelster, 

2014; Newbold et al., 2015; Pelster, 2015; Terech-Majewska et al., 2015). Given that A. 

anguilla production in aquaculture has grown significantly and the culture conditions are 

intensive, eel diseases are particularly problematic within aquaculture facilities (Denmark, 

1987). Moreover, eel farming is currently dependent on the capture of wild glass eels and this 

facilitates the introduction of potential pathogens into the aquaculture environment. The most 

important eel farm pathogen is the gill monogenean Pseudodactylogyrus spp.(Buchmann, 

Mellergaard, et al., 1987; Mellergaard & Dalsgaard, 1987; Buchmann, 1988a). Recently, in 

some countries such as the Netherlands, farmed yellow eels have been restocked into the wild 

to restore natural eel populations; when performed without prior health checks, this 

represents a risk for wild eels (Haenen et al., 2012).  

A. crassus has become one of the most important threats to wild populations of the European 

eel (Muñoz et al., 2015). Kirk (2003) described the spread of the parasitic nematode A. 

crassus to UK eel stocks and suggested that the serious pathology inflicted on the swim 

bladder, and the associated physiological effects, are likely to impair capacity of European 

eels to complete their migration to the spawning grounds and hence impact recruitment levels 

(Kirk, 2003). 
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1.1.5.5.1.1 Anguillicoloides crassus (Kuwahara, Niimi and Itagaki 1974) 

Anguillicoloidae Yamaguti, 1935 is a family of parasitic nematodes infecting eels of the 

genus Anguilla and comprising of two genera: Anguillicola (a single species, A. globiceps) 

and Anguillicoloides (four species: A. crassus, A. papernai, A. australiensis, and A. 

novaezelandiae) (Moravec, 2006; Laetsch et al., 2012). All species have similar life cycles 

that involve intermediate (eg. copepod) and paratenic (eg. small fish) hosts and the adult 

nematodes inhabit the eel swim bladder and feed upon host blood from vessels within the 

wall of the swim bladder (Moravec, 2006). 

A. crassus is indigenous to East Asia and parasitizes the native Japanese eel A. japonica as 

well as introduced and cultured A. anguilla and A. rostrata (Nagasawa et al., 1994; Han et 

al., 2008). In its native host A. japonica the nematode causes little pathogenicity (Nagasawa 

et al., 1994). 

As a consequence of the worldwide eel trade, A. crassus was accidentally introduced into 

Europe in the early 1980s, possibly with importation of infected Japanese eels from Taiwan 

into Germany (Koops & Hartmann, 1989). As such, A. crassus is considered to be an 

invading parasite of the European eel and it is now also documented in the American eel, A. 

rostrata (Johnson et al., 1995; Kirk, 2003). The spread of the parasite has been facilitated by 

a number of factors, though the primary cause is human movement of infected eels for trade 

purpose (Koops & Hartmann, 1989; Kennedy & Fitch, 1990). The success of A. crassus 

colonization outside of Asia has been attributed to its adaptability to different water salinities, 

and to the wide range of intermediate and paratenic hosts (Kirk, Kennedy, et al., 2000; Kirk 

et al., 2002).  

Introduction of A. crassus into UK rivers is hypothesized to have occurred via water changes 

carried out during transport of infected eels (Kennedy & Fitch, 1990; Kirk, 2003). The 

parasite was first documented in UK eels in 1987 following examination of specimens from 
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the River Welland and River Trent in eastern England, and also from the River Thames 

(Kennedy & Fitch, 1990).  

1.1.5.5.1.2 Life cycle of A. crassus 

Eels are infected by A. crassus following ingestion of third-stage larvae present in crustacean 

intermediate hosts and/or by ingestion of juveniles in fish paratenic hosts (Figure1.3). 

Moreover, it is most likely that crustacean intermediate hosts serve as the source of infection 

for smaller eels (<20 cm), whilst larger eels mainly acquire infection by preying on paratenic 

hosts (Kirk, 2003; Emde et al., 2014). 

Adult male and female nematodes copulate in the lumen of the eel swim bladder. Females 

release eggs passively which leave the swim bladder via the pneumatic duct, pass down the 

intestine and hatch in the water, though some eggs hatch in the swim bladder (Kirk, Kennedy, 

et al., 2000). Mature eggs contain a motile second stage larva that hatches in a range of 

salinities and is infective to intermediate and paratenic hosts (Kirk, Kennedy, et al., 2000). 

Many species of copepod and cyclopoid can serve as an intermediate host (Kennedy & Fitch, 

1990; Kirk, Kennedy, et al., 2000; Kirk, Lewis, et al., 2000). When consumed by the 

intermediate host the second-stage larvae of A. crassus penetrate the digestive tract, enter the 

body cavity and moult into third-stage larvae. If intermediate hosts are consumed by eels, 

third stage larvae penetrate the digestive tract, migrate across the body cavity and enter the 

swim bladder wall. These parasites moult to fourth-stage juveniles that then develop into pre-

adults and finally mature adults that feed on host blood and become sexually active. The 

duration of the life cycle is temperature-dependent and in laboratory investigations is reported 

as 3–4 months at 20–22 
o
C (Moravec & Konecny, 1994). If intermediate hosts are consumed 

by paratenic hosts such as small fish, the third-stage larvae may remain, or they may moult 

into fourth-stage larvae or pre-adults. Paratenic hosts are important since they can accumulate 

large numbers of juvenile A. crassus and hence they have contributed to the rapid increase in 
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prevalence of the parasite that has been recorded in Europe (Moravec & Konecny, 1994; 

Kirk, 2003). 

 

Figure 1.3 The life cycle of A. crassus (Kirk, 2003). 

1.1.5.5.1.3 Pathological impact of A. crassus 

In the native Japanese eel A. japonica swim bladder nematodes tend to occur at low 

intensities and hence cause little pathology (Han et al., 2008; Heitlinger et al., 2009; Keppel 

et al., 2014). In contrast, the European eel A. anguilla has very limited resistance to A. 

crassus and the parasite is considered a major pathogen and threat to European eel 

populations (Newbold et al., 2015; Pelster, 2015). Indeed, A. crassus can severely impair 

swim bladder function and is responsible for mortality in both farmed and wild populations, 
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and hence severely limits the capacity of European eels to complete the spawning migration 

(Kirk, 2003; Kennedy, 2007b; Muñoz et al., 2015; Pelster, 2015). 

The swim bladder wall is damaged by L3 penetration and by feeding of L4 and adult 

nematodes upon the blood supply (Kirk, 2003; Keppel et al., 2014). Moreover, repeated 

larval invasion of the swim bladder results in haemorrhage and injury to the connective tissue 

and the blood feeding activity of adults causes mechanical injury to the epithelium (Han et 

al., 2008). As a result, the wall of the swim bladder markedly thickens and displays 

degenerative inflammatory and proliferative changes (Van Banning et al., 1990; 

Abdelmonem et al., 2010). Acute processes are characterized by epithelial hyperplasia and 

hyperaemia of the swim bladder wall (Molnár et al., 1993). Chronic swim bladder 

inflammation is characterised by oedema and hyperplasia of the tissues of the tunica propria 

submucosa, granulomatoid infiltration by mononuclear cells and fibrinoid degeneration 

around the larvae (Molnár et al., 1993; Knopf, 2006). The abdomen of heavily infected eels is 

often swollen due to enlargement of the swim bladder which becomes filled with adults, and 

a black mass of decaying worms and a cloudy fluid of eggs and second-stage juveniles (Kirk, 

2003).  

In addition to the thickening of the swim bladder wall, the host response includes a 

macrophage reaction against larvae. Epithelioid macrophages aggregate around the larvae 

whilst it is in the gut, initiating the formation of a connective capsule around it (Würtz & 

Taraschewski, 2000). A. anguilla antibodies against the L3 larval stage have also been 

detected, but they seem insufficient to control the nematode infection (Knopf, 2006). 

On examining the response of A. crassus upon cultured Japanese eels, it was evident that a 

large percentage of L3 larvae in the gut are eliminated by the host immune response 

(Heitlinger et al., 2009). Furthermore, examination of the swim bladder of these eels showed 

that they contained a high amount of dead encapsulated larvae (Keppel et al., 2014).  This 
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encapsulation was also associated with a distinct thickening of the swim bladder wall (Keppel 

et al., 2014). Indeed, this process was apparent to a much greater extent in Japanese eels 

compared to European eels and as a result, A. japonica displays only minor changes to the 

swim bladder wall (Keppel et al., 2014). 

1.1.5.5.2 Viral infections of A. anguilla  

Viral infections are a threat to both cultured and wild A. anguilla and are considered a 

contributory factor in the decline of European eel stocks (Haenen et al., 2012; Bandin et al., 

2014). Three viruses of particular concern have been noted; Herpesvirus anguillae (HVA or 

Anguillid Herpesvirus 1 (AngHV-1), an Aquabirnavirus (Eel Virus European (EVE)) and a 

Rhabdovirus (Eel Virus European X (EVEX)) (Haenen et al., 2009). In the UK, HVA has 

recently been reported to cause mortality to wild eel stocks (Armitage et al., 2014). 

1.1.5.5.3 Bacterial infections of A. anguilla  

Pathogenic bacteria, including Vibrio vulnificus, V. anguillarum, Pseudomonas 

anguilliseptica and Edwardsiella tarda, may cause disease to both wild and cultured A. 

anguilla; particularly when a stress factor, such as injury, is involved (Amaro et al., 1995; 

Amaro & Biosca, 1996; Marco-Noales et al., 1999; Marco-Noales et al., 2001). 

Edwardsiellosis, a lethal bacterial septicaemia caused by the Gram-negative bacterium E. 

tarda, is a common epizootic disease of cultured and wild European eel; indeed, the rates at 

which E. tarda have been isolated from wild populations are reported to range of 9 to 23% 

(Alcaide et al., 2006). Another important bacterial-induced disease, particularly responsible 

for mortality in farmed environments, is Vibriosis, caused by the pathogenic bacterium V. 

vulnificus serovar E (biotype 2) (Collado et al., 2000) .    
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1.1.6 The European eel immune system 

Both innate and adaptive immune responses are mounted by fish to control infections 

(Alvarez-Pellitero, 2008) and their molecular study is provoking increasing interest towards 

further understanding of fish immunology (Zhu et al., 2013). Similar to other fish species, the 

innate immune system in eels comprises a large number of physical, cellular, and humoral 

factors that act as the first line of defence against viruses, bacteria and parasites (Gollock et 

al., 2005; Knopf et al., 2008). Moreover, macrophages seem to play an important role in the 

immune responses of fish towards helminth parasites (Whyte et al., 1989; Secombes & 

Chappell, 1996). Active phagocytes, complement components and enzyme activities, 

including lysozyme and cathepsins, are present early in eel development, before, or soon after 

hatching, to control infection (Magnadóttir, 2006).  

External factors can influence the activity of innate immune responses, including water 

temperature and pH, oxygen concentration and pollution and also, handling and crowding 

stress, food additives and immunostimulants within the aquaculture environment(Sures et al., 

2001). Internal factors, such as nematode infection, result in increased stress and young fish 

are especially sensitive to such stress due to infestation by the L3 stage of A. crassus (Sures et 

al., 2001).  Indeed, this resulting increased stress leads to a diminished macrophage response 

that ultimately may cause higher susceptibility to other pathogens (Sures et al., 2001). 

Experimental results suggest that A. crassus infection may be responsible for a decreased 

macrophage phagocytic response and hence higher susceptibility to other pathogenic 

conditions. This effect on the macrophage response seems directly linked to the number of 

adult parasites present in the swim bladder (Terech-Majewska et al., 2015). 

An extensive non-specific eel immune response has been found in response to juvenile 

parasites entering the swim bladder wall from the body cavity and also, to adults and juvenile 
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nematodes present in the swim bladder lumen (Kirk, 2003; Knopf, 2006).  It is believed that 

this cellular response plays an essential role in the development of immunity against A. 

crassus as it results in fibrosis that is thought to inhibit subsequent invasion by further 

juvenile nematodes (Kirk, 2003). Molnar (1994) suggested that phagocytes and cytokines 

were crucial to this response. However, other work has demonstrated that macrophages and 

granulocytes around A. crassus larvae in the swim bladder wall do not seem to attack the L3 

and L4 stage nematodes (Knopf, 2006); albeit, L3 larvae appear to have a positive effect on 

the migration of these cells to this location (Knopf et al., 2008). 

Eels heavily infected with A. crassus need at least 20% more energy reserves to manage 

migration due to the damaged swim bladder and this increased energetic requirement results 

in less energy available for other physiological functions, including immune responses 

(Palstra et al., 2007; Sjöberg et al., 2009). Importantly, total protein level and total 

immunoglobulin levels in serum were found to be significantly declined in A. crassus 

infected eels compared with non-infected animals (Muñoz et al., 2015). Furthermore, 

immunological parameters such as the spleen phagocyte respiratory burst activity and 

potential killing activity were found to be significantly reduced in A. crassus infected eel 

compared to controls (Terech-Majewska et al., 2015). 

Genes of the major histocompatibility complex (MHC) code for key functions in the adaptive 

immune response of vertebrates and most of them show exceptionally high polymorphism. 

This polymorphism is associated with selection by diverse and changing parasite 

communities (Lenz et al., 2009). Recently, it has been reported that relatively high diversity 

exists at the MHC class IIA and class IIB loci of the European eel; however, there appeared 

to be a lack of positive selection on the MHC class IIB gene and this may have contributed to 

the lack of adaptive potential for the species (Bracamonte et al., 2015). 
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1.2 Objectives 

As discussed earlier (sections 1.1.3 and 1.1.5), the European eel has suffered major 

population decline and multi-factorial efforts are underway to understand further the reasons 

for the species being listed as threatened. Some eel parasite infections are associated with 

host morbidity and mortality and hence have contributed to the species decline.  In particular, 

A. crassus and Pseudodactylogyrus spp. are considered major eel pathogens.  However, much 

less is known about some of the other eel helminths, including nematodes, cestodes and 

acanthocephalans. To this end, the overall aim of this PhD study is to provide more detailed 

knowledge on helminth infections in wild European eels sampled from multiple locations 

across England and Wales. It is an extension of an earlier study that examined swim bladder 

nematode infections, and also, trypanosome and herpes viral infections, in A. anguilla from 

English and Welsh rivers (Ab-Aziz, 2012).   

 

The objective of the current chapter is to provide details about the individual host animals.  

Subsequent chapters are then focused upon describing infection data for gill monogeneans 

(Chapter 2), gastrointestinal nematodes (Chapter 3), acanthocephalans and cestodes (Chapter 

4) and finally, the helminth community structures (Chapter 5).  
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1.3 Materials and Methods   

1.3.1 Sampling  

One hundred and forty European eels, A. anguilla, were acquired from 14 sampling sites (10 

eel per site) across England and Wales between August 2009 and October 2012. The eel 

sampling was carried out during routine surveys conducted by the Environment Agency 

(contacts: Dr Chris Williams and Dr Miram Aprahaimen) at the following sites; North Wales: 

River Mawddach-eden, River Clwyd-Meirchion, River Dee-Eitha and Clwyd-Elwy; South 

Wales: River Rhymney, River Cadoxton and River Taff; North West England: River Leven, 

River Gowy, River Bela, River Hether Burn and River Petteril; South East England: River 

Crouch (Figure 1.1). In addition, samples were received from the River Crane (South East 

England) following a severe raw sewerage pollution event in October 2011 (The Guardian, 

2011). Specimens were frozen and shipped on ice to The University of Salford for parasite 

analyses. All specimens were then stored in the -20 
o
C freezer and thawed prior to 

processing. 

1.3.2 Classical Morphological Examination 

Eel samples were labelled according to the catchment location and date of collection. Prior to 

processing, specimens were thawed out overnight. Body length and weight of each eel was 

determined and recorded. These measurements were utilized to calculate the eel condition 

factor, K (Fulton, 1904). 

       K =  W(100) 

                    L
3 

W = weight (g) and L = length (cm) 

1.3.3 Statistical analyses 

Statistical analysis of data was carried out using Minitab 16 (licensed to The University of 

Salford).  
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1.4 Results  

1.4.1 Eel morphometric data 

Eel body length, weight and condition factor were determined for the 140 specimens from the 

14 river catchment sites (Figure 1.4) across England and Wales (Appendix I and Table 1.2). 

The body length of the examined eels was non-parametrically distributed and ranged from 10 

to 86 cm (mean body length = 30.7 ±14.9 cm) and the body weights ranged from 1.2 g to 

1380 g (mean body weight = 94.0 ±212.2 g).     

The greatest mean length and mean weight were recorded in eels collected from the River 

Crane in England (mean length = 75.7±6.1 cm; mean weight = 810.7±241.1 g); indeed, the 

largest eel specimen (CN3) (Figure 1.5) had a body length of 86 cm and weighed 1380 g. The 

lowest mean length and weight were recorded in eels sampled from the River Dee-Eitha in 

Wales (mean length = 21.7±7.5 cm; mean weight = 19.8±22.1 g). A closer inspection of the 

eels morphometric data indicated that all ten specimens from the River Crane appeared 

significantly larger (Mann-Whitney test: p < 0.0001 for both length and weight) than the eel 

from the other 13 catchment sites (Figure 1.6 and Figure 1.7).  Indeed, mean eel length and 

weight data from each of these remaining 13 rivers showed positive skewness (Figure 1.7) 

(Anderson-Darling normality test: p = 0.027) and there were no significant differences in 

these morphometrics compared to the population (excluding the River Crane) (Mann-

Whitney test: p > 0.05).     

Overall, the condition factor of the eels ranged from 0.04-0.29 (mean = 0.15±0.04) and the 

distribution was non-parametric. The greatest mean condition factor was recorded in eels 

from the River Crane in England (0.19±0.03), whereas the lowest mean condition factor was 

noted in specimens from the River Dee-Eitha in Wales (0.11±0.04). There were significant 

differences between the condition factors of the eels sampled from the Rivers Crane, Petteril, 

Dee-Eitha and Hether Burn relative to the population (Mann-Whitney test: p < 0.05).   
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Figure 1.4 Map of England and Wales showing the 14 eel sampling sites. (http://WWW.euwfd.com/html/a 

quick guide to rbmaps in the uk.html) 1: Mawddach-eden; 2: Clwyd-Meirchion; 3: Dee-Eitha; 4: Rhymney; 5: 

Cadoxton; 6: Leven; 7: Gowy; 8: Bela; 9: Hether Burn; 10:  Petteril; 11: Clwyd-Elwy; 12: Taff; 13: Crouch; 14: 

Crane.  
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Table 1.2 Mean length (ML), weight (MW) and mean condition factor (MK) of eel examined at different 

catchment sites from England and Wales.  Ten eels were examined at each site (sd = standard deviation) 
 

Eel Catchment Site Code  ML(cm) 

(±sd) 

MW(g)  

(±sd) 

MK  

(±sd) 

Date of 

acquisition 

Crouch: England C 35.4±8.8 50.2±51.0 0.15±03 02/08/2009 

Leven: England RL 30.4±8.3 50.3±48.4 0.15±0.02 29/09/2009 

Crane: England CN 75.7±6.1 810.7±241.1 0.19±0.03 08/10/2012 

Hether Burn:  England HB 21.4±3.6 13.0±5.6 0.13±0.04 29/09/2009 

Petteril: England RP 29.4±8.4 58.4±39.6 0.18±0.06 17/09/2009 

Bela: England B 29.8±10.6 43.6±59.5 0.15±0.02 18/08/2009 

Gowy: England RG 34.1±4.7 54.9±17.5 0.13±0.02 03/06/2010 

Mawddach-eden: Wales M 26.1±10.2  38.4±48.1 0.14±0.01 03/03/2010 

Clwyd-Meirchion: Wales MC 23.9± 8.7 28.6±31.2265 0.16±0.05 03/03/2010 

Dee-Eitha: Wales D 21.7±7.5 19.8±22.1 0.11±0.04 03/03/2010 

Cadoxton: Wales CD 24.9±4.3 22.7±16.1 0.11±0.03 30/10/2009 

Rhymney: Wales R 28.8±3.1 40.5±16.4 0.16±0.04 30/10/2009 

Clwyd-Elwy: Wales CE 24.9±8.4 29.4±26.1 0.14±0.02 03/03/2010 

Taff: Wales TB 23.8±2.9 22.4±9.4 0.16±0.02 30/10/2009 

TOTAL  30.7±14.9 94.0±212.2 0.15±0.04  

 

 

 

 

 

 

 

Figure 1.5 Representative images of (A): a small eel acquired from the River Cadoxton and 

(B): a large eel acquired from the River Crane. 

 

A 

B 
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Figure 1.6 Distribution of the eel samples based upon body length category.  

 

 

 

Figure 1.7 A scatterplot of eel length against eel weight for the 140 eel specimens surveyed 

across England and Wales.   
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1.5 Discussion 

The eels studied in this thesis were obtained from the Environment Agency as detailed in 

Table 1.1. River Crane specimens were acquired following a serious pollution event 

involving raw sewerage (The Guardian, 2011) whereas all remaining specimens were 

obtained as a consequence of routine eel surveys conducted as part of the legislation covered 

by European Eel Management Plans. As such, there was limited input into this aspect of the 

study design and hence the precise sampling dates and locations, along with other biological 

and chemical data associated with these sites are unfortunately unknown. Nonetheless, some 

general characteristics of the sites are known. For example, the River Bela is associated with 

an area of limestone geology in Cumbria and hence the water is reported to be reasonably 

alkaline (pH 8.5) (South Cumbria Rivers Trust, www.scrt.co.uk). Moreover, it is generally 

considered that the water quality of UK rivers is improving. In England, the biological and 

chemical quality of the water is reported as ‘good’ across 73 % and 80% of the rivers. In 

Wales, these characteristics are enhanced since 87% and 95% of Welsh rivers are considered 

biologically and chemically ‘good’  (Brown et al., 2011).  

The most recent Biodiversity Action Plan (BAP) indeed corroborates the biological and 

chemical analyses of UK river water (Morgan et al., 2011). In England, 4748 river sites were 

surveyed and 1755 qualified as having at least one category of special interest (37%) 

associated with biodiversity.  In Wales, 989 river sites were surveyed and 491 had at least one 

category of special interest (49.6%) associated with biodiversity. With respect to the 

catchment sites from which eels were sampled in this thesis, the BAP data is summarised 

below (Table 1.3). The River Petteril had the highest number of qualifying criteria (n=5) 

given that it is a shingle river that is a site of special scientific interest within a conservation 

area and contains at least three CB vegetation components. Overall though, 6 out of the 7 



25 

 

surveyed Welsh rivers had qualifying criteria considered important for the BAP and for 

England, this was 5 out of the 7 rivers.   

Table 1.3 Summary of the data on the 14 catchment sites surveyed in this study utilised for 

the Biodiversity Action Plan (Morgan et al., 2011). # Contains 3 or more of the following CB 

vegetation components: crowfoots, starworts, pondweeds, milfoils, bryophytes, emergent and 

other aquatics as defined by the EC Habitats Directive, Annex 1, Habitat H3260. 

 

River site Shingle 

river 

Number of 

qualifying 

BAP 
criteria 

Special Area 

of 

Conservation 

Site of 

Special 

Scientific 
Interest 

Species list: category A (all) and category B (fish 

only) 

Crouch: England - 0 - - A. anguilla (B) 

Leven: England - 2 - - Austropotamobius pallipes (A) and 6 category B 

species including A, anguilla and Salmo trutta and 
S. salar   

Crane: England - 1 - - Osmerus eperlanus (A) and 3 category B species: 

A. anguilla, S. salar and Cottus gobio.   

Hether Burn:  

England 

- 1 - - 6 category B species including A. anguilla, S. 

trutta, S. salar and C. gobio. 

#Petteril: England Yes 5 Yes Yes 7 category B species including A. anguilla, S. 

trutta, S. salar, C. gobio, Lampetra fluviatilis, and 
Petromyzon marinus. 

Bela: England - 1 - - 6 category B species including A. anguilla, S. 

trutta, S. salar, C. gobio and Lampetra sp. 

Gowy: England - 0 - - 5 category B species: A. anguilla, S. trutta, C. 
gobio, L. fluviatilis, L. planeri and Petromyzontidae 

(B). 

Mawddach-eden: 
Wales 

Yes 3 Yes Yes 2 category A species: Margaritifera margaritifera 
and Rhytidiadelphus and 4 category B species 

including  

A. anguilla, S. trutta and S. salar. 

Clwyd-Meirchion: 
Wales 

- 1 - - 3 category B species including: A. anguilla, C. 
gobio. 

Dee-Eitha: Wales - 2 Yes Yes 2 category B species: A. anguilla and C. gobio. 

Cadoxton: Wales - 0 - - 4 category B species including A. anguilla, C. 
gobio and L. planeri. 

Rhymney: Wales Yes 2 - - 6 category B species including A. anguilla, S. 

trutta, S. salar, C. gobio.   

Clwyd-Elwy: 

Wales 

Yes 2 - - 6 category B species including A. anguilla, S. salar, 

S. trutta, C. gobio, L. planeri and Petromyzontidae 

(B). 

Taff: Wales - 1 - - Meotica anglica (A) and 5 category B species 

including A. anguilla, C. gobio and S. trutta.   

 

The eels sampled from all the Welsh rivers and 6 of the English rivers have morphometric 

parameters indicative of them being at the yellow eel developmental stage (Simon, 2007; 

Lasne & Laffaille, 2008). In contrast, the size of the eels sampled from the River Crane is 

significantly larger than the other 130 specimens and is consistent with at least some of them 

being at the silver eel stage (Holmgren et al., 1997; Melià et al., 2006). Although freezing 

results in a reduction in eel size and weight (Wickstrom, 1986), no correction was applied to 
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the morphometric data since the length of freezing and number of freeze-thaw cycles was 

unknown upon acquisition of the samples.   

Eel length can be used as a pseudomeasure of age (Tzeng et al., 1994; Hedger et al., 2008) 

and hence it is highly likely that all the specimens from the River Crane were significantly 

older than the remainder of the surveyed fish. Indeed, an eel ageing study performed on 

specimens sampled from different lakes in Germany concluded that the average eel growth 

rate was 4.5 cm per year and that individuals of approximately 45 cm in length were between 

7 and 10 years old (Naismith & Knights, 1993; Simon, 2007). Exact ageing by otolith 

examination was not used in this study because the mode of sample acquisition and potential 

differences in sample handling and storage between the sites may impact upon the viability of 

the otoliths as a means of eel ageing (Proctor & Thresher, 1998).  

The mean condition factor data reported in this study are consistent with other published 

reports (Kangur & Kangur, 1998; Simon, 2007). The eels sampled from the Rivers Crane and 

Petteril had significantly higher K values than the population and this could be interpreted as 

these animals being in a healthier condition. However, since the eel from the Crane are 

significantly longer than the rest of the population, it is likely that the high K value is at least 

in part due to the specimens being at a later developmental stage. Consequently, the condition 

factor of the Crane eel may add support to the interpretation that these animals are mostly at 

the silver stage and preparing to migrate by depositing fat stores. Since eel sampled from the 

river Petteril are of average length, the significantly greater condition factor most likely 

indicates that these specimens were sampled from an environment that was providing a 

plentiful supply of prey and hence was ecologically good for A. anguilla. This is certainly 

corroborated by the data from the BAP (Morgan et al., 2011) (Table 1.2). The eel sampled 

from the Rivers Dee-Eitha and Hether Burn were the smallest specimens surveyed and they 

had significantly lower K values than the population. Interpretation of this requires caution 
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since there are multiple factors that could account for the difference in condition factor, 

including a paucity of prey, the developmental stage and the time of year. As such, it is not 

possible to state with certainty that the eel from the Dee-Eitha and Hether Burn were of 

poorer overall health than the rest of the population. Indeed, given that these eel were 

sampled from rivers assessed as having criteria important for the BAP (Morgan et al., 2011) 

(Table 1.2) then the river quality of the Dee-Eitha and Hether Burn could be considered as 

being ecologically good. 

In summary, the eel specimens studied in this thesis have been acquired from diverse sites 

across England and Wales. The population has a range of body size that is indicative of 

considerable variation of age and also includes some specimens most likely to be at the silver 

eel stage. As such, this population should form a good representative sample set for analysis 

of helminth infections in UK eel.   
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CHAPTER TWO 

Gill monogeneans  

2.1 Introduction   

The Monogenea is a class of Platyhelminths that includes more than 53 families, mostly 

parasitic on the external surfaces and gills of freshwater and marine fishes. Monogeneans are 

usually well adapted to their fish host and due to their short and direct life cycle they often 

reach epizootic levels relatively quickly in confined habitats such as an aquaculture facility 

(Rohde & Watson, 1985; Boeger & Kritsky, 1993, 1997; Whittington, 2004). These parasites  

feed on the superficial layers of fish skin and gills (Buchmann, Køie, et al., 1987; Buchmann 

& Lindenstrøm, 2002). Despite their high host specificity in the wild (Sasal et al., 1999) 

some monogeneans are also capable of infecting other hosts when several species are 

confined together (Thoney & Hargis, 1991). The health of the host is usually impaired by 

heavy monogenean infection and death is not uncommon (Thoney & Hargis, 1991). 

2.1.2 Pseudodactylogyrus spp.  

2.1.3 Morphology 

Species of Pseudodactylogyrus are very similar in appearance and can be very difficult to 

distinguish. Generally, P. bini is longer and narrower than P. anguillae (Ogawa & Egusa, 

1976; Chan & Wu, 1984). For example, under fixed conditions the maximum length of P. 

bini, is 1960 µm and the maximum and minimum width is reported as 336 µm and 120 µm.  

In contrast, the maximum length of P. anguillae is 1659 µm and the maximum and minimum 

width is recorded as 364 µm and 138 µm (Ogawa & Egusa, 1976; Chan & Wu, 1984). 

However, species differentiation is based on the sclerotized structures because different 

treatments during preparation of the parasites can affect the size of unsclerotized structures. 

Consequently, the size and shape of the hamuli are characteristics on which a taxonomic 



29 

 

separation of the 2 species is based (Arafa & Reda, 2012). The hamuli of P. bini are shorter 

and stouter than these of P. anguillae (Ogawa & Egusa, 1976; Chan & Wu, 1984; Ogawa et 

al., 1985). Ogawa et al. (1985) stated that the hamuli of P. bini were up to 70 µm in length, 

whereas the hamuli are at least 80 µm long in P. anguillae. The length of the bar connecting 

the hamuli has also been noted as generally longer in P. anguillae than in P. bini, although an 

overlap exists (Table 2.1). 

Table 2.1 Reported dimensions of the gill monogeneans P. bini and P. anguillae and their 

associated hamuli and connective bars.    

Measurements P. bini  (µm) P. anguillae (µm) 

Maximum body length # 1960 1659 

Maximum body width # 336 364 

Minimum body width # 120 138 

Hamuli length # ≤  70  ≥ 80 

length of the connective  bar * 9-13 9-16 

Width of the connective bar * 42-54 50-64 

               # (Buchmann, Mellergaard, et al., 1987); * (Gelnar et al., 1996). 

2.1.4 Origin and distribution 

Species of the genus Pseudodactylogyrus (Gusev, 1965) are specific monogenean gill 

parasites of anguillid eels. The two known species, Pseudodactylogyrus anguillae (Yin & 

Sproston, 1949) and P bini (Kikuchi, 1929), were originally described from the Japanese eel 

Anguilla japonica in China and Japan, respectively. Kikuchi (1929) described Dactylogyrus 

bini on the gills of A. japonica and also reported another parasite with larger hooks; however, 

no morphological description of the latter specimen was given. Yin & Sproston (1948) found 

the same two dactylogyrids on A. japonica from China and re-assigned D. bini as 

Neodactylogyrus bini (Kikuchi, 1929) and the other species as Neodactylogyrus anguillae 

Yin & Sproston, 1948.  
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Gussev (1965) studied gill monogeneans on A. reinhardti Steindachean, 1867 from Australia 

and proposed the genus Pseudodactylogyrus by highlighting that the haptor and the two 

hamuli were directed ventrally, instead of dorsally, as occurs for the genus Dactylogyrus. As 

such, the names of these two species were proposed as Pseudodactylogyrus bini (Kikuchi, 

1929; Gussev, 1965) and P. anguillae (Yin & Sproston, 1949; Gussev, 1965). 

P. anguillae infections of A. anguilla have been recorded from Japan, China and Taiwan 

(Kikuchi, 1929; Yin & Sproston, 1949; Ogawa & Egusa, 1976; Chan & Wu, 1984; Chung et 

al., 1984), as well as from localities throughout Europe (Buchmann, Mellergaard, et al., 

1987; Nie & Kennedy, 1991d; Gelnar et al., 1996; Škoríková et al., 1996; Sures, Knopf, 

Würtz, et al., 1999; Aguilar, Álvarez, et al., 2005; Gerard et al., 2013). In addition, the 

discovery of P. anguillae infections in the African longfin eel, A. mossambica (Peters, 1852), 

represents the first record of a pseudodactylid occurring in the Indian Ocean (Christison & 

Baker, 2007). A subsequent study on the island of Reunion confirmed that pseudodactylids 

may reach high prevalence in A. mossambica and also, that P. bini is present, though at 

greater reduced intensity relative to P. anguillae (Sasal et al., 2008).   

P. anguillae infection in the American eel, A. rostrata, was first noted in Canada (Cone & 

Marcogliese, 1995).  Subsequently, P. bini and also P. anguillae, were reported in A. rostrata 

for the first time in the United States (Hayward et al., 2001) and pseudodactylid infections 

continue to be problematic in the American eel (Larrat  2012). 

The first report of Pseudodactylogyrus bini and P anguillae in Europe was from an eel 

production plant in the Kalinin region of the western Soviet Union  (Golovin, 1977) and the 

parasites were subsequently noted to cause disease problems at eel farms (Buchmann, 1988a). 

It was assumed that both species of gill monogenean were introduced into Europe with 

imports of Anguilla japonica, with a resulting host switch to A. anguilla and hence P.  
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anguillae and P. bini are considered invasive parasites (Buchmann, 1987). However, Nie & 

Kennedy (1991) have suggested that P. anguillae may not be an invasive parasite since it 

could potentially be considered as an overlooked natural parasite of A. anguilla.  

Indeed, the report of the presence of P. anguillae from North America may support the idea 

that this monogenean is a natural parasite of the American eel and by extension, the European 

eel, and hence it is not an introduced Asian species (Hayward et al., 2001). Moreover, P. 

anguillae has been documented infrequently at some localities; for example, it was reported 

in only 8 of 1066 A. rostrata eels sampled from 29 sites across Nova-Scotia, Canada.  (Cone 

& Marcogliese, 1995).  

The first UK report of the occurrence of P. anguillae in the European eel, A. anguilla was 

from three localities in Devon, southwest England (Nie & Kennedy, 1991d). The study 

investigated the seasonal dynamics of P. anguillae in fresh and estuarine waters throughout a 

complete year. The data confirmed that the prevalence and abundance of P. anguillae 

correlated with the season and was highest in late summer/early autumn and low throughout 

the winter.  Consequently, the study (Nie & Kennedy, 1991d) confirmed that populations of 

P. anguillae are able to reproduce and maintain themselves in eel in English waters and that 

the parasites overwinter on eel at low levels of infection. P. bini was not reported in this 

study and absence of this parasite was hypothesized to be due to the enhanced salinity of the 

water at the locations examined (Nie & Kennedy, 1991d).  

2.1.5 Life-cycle  

The life cycles of both species of Pseudodactylogyrus are similar; they are direct and typical 

of most monogenean parasites (Figure 2.1). P. bini and P. anguillae differ slightly in their 

ecology; P. bini is less able to tolerate salinity than P. anguillae which can reproduce in 

waters of up to 20% salinity, though not in sea water (Nie & Kennedy, 1991d). In addition, P. 
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bini requires higher temperatures for reproduction; it is unable to develop at 10
o
C, though at 

25-34
o
C it produces more eggs than A. anguillae (Buchmann, 1988d). 

 

Figure 2.1 The life cycle of Pseudodactylogyrus spp. involves an egg which embryonates 

and hatches to release a free swimming ciliated larva (oncomirasidium). This larval stage 

attaches to the host gill, sheds its ciliated cells and develops into the adult parasite from 

which eggs are produced by self-fertilisation (Buchmann, 2012).  

Eggs of both species are oval and have a 7 to 14 µm long pedicule that possesses a distal 

extension with an adhesive function. Eggs of P. bini are 56-112 x 49-63 µm (Chan & Wu, 

1984), whilst those of P. anguillae are slightly smaller at 60-80 x 50-60 µm (Golovin & 

Shukhgalter, 1979). The egg release rate of P .anguillae is temperature dependent; at 10
o
C an 

average of 1.2 eggs were released per worm per day, whilst at 20
o
C and 28

o
C the mean eggs 

released per worm per day was reported as 9.6 and 7.7 respectively (Imada & Muroga, 1978).  

There is no comparable data published for P. bini.   

Development time for the egg is dependent on water temperature. Eggs fail to hatch at 

temperatures below 10
o
C and the optimal temperature for development and hatching is 

around 25 - 29
o
C, which allows development to occur in 10-12 days (Buchmann, 1988d, 



33 

 

1990). Indeed, this is the usual temperature for eel aquaculture (Koie, 1991; Buchmann, 

1993a). In rivers, P. bini is reported to overwinter as eggs whereas P. anguillae may 

overwinter on gills (Koie, 1991). Shed eggs hatch to produce oncomiracidia, which are short 

lived and need to find an eel before they can develop further into adults. Oncomiracidia of 

Pseudodactylogyrus spp. have 2 pairs of eye spots, a spherical pharynx, 14 marginal hooks 

and 4 ciliated areas. Oncomiracidia of P. bini measure 162-193 x 42-70 µm and display a fast 

swimming movement, both in straight and curved lines for 30 min at 19 - 26
o
C.  Following 

attachment to the host, the oncomiracidia of P. anguillae develop into mature parasites in 6 - 

7 days at 28
 o
C (Golovin & Shukhgalter, 1979). 

P. bini and P. anguillae parasitize the gills of eel and can co-occur on the same eel 

(Buchmann, 1988b). The distribution of the two species on the gills, although partially 

overlapping, is reported to differ; P. bini prefers the anterior gill arches and P. anguillae the 

posterior ones on smaller eels, whilst larger eels do not show the same distribution 

(Buchmann, 1988c, 1989a; Matejusova et al., 2003; Fang et al., 2008b). There is a positive 

correlation between the body length of an eel and the parasite intensity; small eels from 

aquaculture may harbour up to 200+ parasites, whereas infection levels in larger eels may 

exceed 1000+ (Buchmann, 1989b). 

2.1.6 Pathology 

It is thought that Pseudodactylogyrus species are normally not pathogenic to their natural eel 

host Anguilla japonica in the wild and that in aquaculture, they generally only cause gill 

damage when present in large numbers (Kennedy, 2007b; Fang et al., 2008a; Buchmann, 

2012). However, the European eel A. anguilla is highly susceptible to Pseudodactylogyrus 

infections (Koie, 1991; Knopf & Mahnke, 2004; Kania et al., 2010) and in experimental 
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studies it has been shown that infection prevalence and parasite intensities are significantly 

higher in European eels compared to A. japonica (Jianping et al, 2008).  

A. anguilla of all stages from glass eels to adults, appear susceptible to infection (Buchmann, 

1988a, 1988d). Generally, infections in wild eels are reported to initiate a stress response and 

also, to cause some localised gill tissue damage (Koie, 1991), though this is not thought to 

impact upon the ability of the eel to migrate (Kennedy, 2007b). However, 

Pseudodactylogyrus infection in eel farms is considered a serious problem that results in 

significant economic losses (Buchmann, 1993b; Kennedy, 2007b). The pseudodactylids are 

introduced to aquaculture via infected elvers which are the basis of commercial eel 

production. The parasites are able to live and reproduce rapidly under the favourable farm 

conditions. In moderate to heavily infected eels, the parasites are widely distributed over the 

gill filaments, and the hamuli perforate the gill tissue and contact gill cartilage resulting in 

increased mucus secretion and destruction of gill structures (Chan & Wu, 1984). 

Histologically, gill filaments appear congested with erosions and ulcers and they are 

surrounded by mucous desquamated epithelial cells and leukocytes. The gill filaments show 

edema, congestion and hyperplasia of the mucus secreting cells (Abdelmonem et al., 2010). 
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2.2 Objectives 

There is very limited information on the extent of Pseudodactylogyrus spp. in wild eel 

populations in the United Kingdom. The main objective of this chapter therefore is to screen 

the European eel, A. anguilla, from English and Welsh river systems in order to report 

primary infection data for pseudodactylids within UK water systems. In addressing this 

objective the project will (i) determine the primary infection data for Pseudodactylogyrus 

spp. within European eel populations from fourteen river systems across England and Wales 

and (ii) develop molecular diagnostic tools to assist species identification between P. 

anguillae and P. bini. 
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2.3 Materials and Methods 

2.3.1 Classical Morphological Examination 

2.3.1.1 Sampling 

Eel samples were acquired according to Chapter 1 (1.3). 

2.3.1.2 Processing 

On the day of examination, eels were thawed and necropsies performed using a dissection kit 

and the gill tissue removed. Necropsy included the microscopic examination of the gill 

surfaces and any exudate for the presence of gill monogenean parasites. For each animal, gills 

were dissected in a Petri dish containing distilled water under x 100 and x 160 magnification 

using a Wild Heerbrugg, M3B (Switzerland) dissecting microscope. 

 2.3.2 Prevalence and intensity 

Pseudodactylogyrus spp. were collected from the examined infected eels and placed in a Petri 

dish containing distilled water, The total number of parasites was determined for each animal 

allowing a description of the primary infection data. Representative parasites were examined 

further by microscopy as described below and the remaining was stored at -20
o
C in 70% (v/v) 

ethanol.  

2.3.3 Imaging  

Representative gill parasites were fixed in 10% (v/v) formalin and mounted unstained onto 

microscope slides. A Leica Dulb M26 microscope was utilized in conjunction with the Leica 

Application suite, version 3.5 and digital camera DFC31FX to capture images of the parasites 

to assist in identification. 
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2.3.4 Molecular parasitological analysis 

Given the difficulty in morphological discrimination between the pseudodactylids caused by 

repeated freeze/thawing of animals a molecular identification was carried out based on 

differences in the 18S rRNA gene sequences of P. anguillae (gi: 13810563) and P. bini (gi: 

14717824).  

2.3.4.1 DNA extraction from pseudodactylids 

DNA was extracted from parasites using the PureLink Genomic DNA Kit (Invitrogen by Life 

Technologies) as described by the manufacturer.  Briefly, a pseudodactylid was placed in a 

1.5 ml eppendorf tube and 180 µl PureLink Genomic Digestion Buffer and 20 µl Proteinase 

K (20 mg / ml) was added for each sample. The sample was incubated overnight in a water 

bath at 55
o
C with occasional vortexing to ensure complete sample lysis. To remove any 

particulates the lysate was centrifuged at 13,000 g for 3 minutes. The supernatant was 

transferred to a sterile microcentrifuge tube and 20 µl RNase (20 mg / ml) was added.  The 

sample was briefly vortexed and 200 µl genomic lysis/binding buffer was added.  The sample 

was briefly vortexed and 200 µl 96-100% ethanol was added and then transferred to the spin 

column placed inside a collection tube. The column was centrifuged at 13,000 g for 1 minute. 

The collection tube was discarded and the spin column placed inside a clean collection tube. 

500 µl wash buffer 1 was added to the spin column and centrifuged at 13,000 g for 1 minute. 

The spin column placed inside a new collection tube and 500 µl wash buffer 2 was added and 

the column was centrifuged at 13,000 g for 3 minutes. Finally, the spin column was placed 

inside a sterile 1.5 ml microcentrifuge tube and 100 µl genomic elution buffer was added.  

After one minute incubation at room temperature the column was centrifuged at 10,000 g for 

1 minute. The eluted DNA was removed from the collection tube and placed in a labelled 

Eppendorf tube for storage at -20
o
C prior to further molecular analysis.     
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2.3.4.2 DNA quality control  

The concentration and purity of extracted DNA samples were determined 

spectophotometerically (A260/A280) using a NanoDrop Lite Instrument (ThermoFisher 

Scientific). Briefly, 1 µl of distilled water was added to the centre of the surface of the 

NanoDrop instrument to allow instrument calibration at 260 nm and 280 nm. The surface was 

then cleansed using tissue to remove excess water, and the above procedure was repeated. 

The surface was cleaned again and 1µl of the DNA sample was added to the instrument. 

Readings at 260nm and 280 nm were recorded, allowing DNA concentration and purity to be 

determined.    

2.3.5 Polymerase chain reaction (PCR) 

Inspection of the NCBI GenBank database revealed limited molecular information for 

Pseudodactylogyrus spp. as only 18S rRNA gene sequences were available. Upon alignment, 

it was apparent that a few nucleotide changes were present in the DNA sequences encoding 

the 18S rRNA genes of P. anguillae (gi: 13810563) and P. bini (gi: 14717824). PCR primers 

were therefore designed to amplify a 514 bp fragment of the 18S rRNA gene of both P. 

anguillae and P. bini that included a region of variation between these species. The primer 

sequences were as follows, PseudoF primer: 5’-TGGGAGGATTGACAGAATGA-3’ and 

PseudoR primer: 5’-GGCCTTGCTAAACCATTCAA-3’. Oligonucleotides were synthesized 

by Eurofins MWG Operon and re-suspended in PCR-grade H2O to a stock concentration of 

10 pM and stored at -20
o
C until required. 
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2.3.5.1 PCR Profile  

The PCR was carried out in a total volume of 25 µl as follows: 2 µl of pseudodactylid 

genomic DNA template, 0.5 µl Taq polymerase (10 units/µl, BioTaq DNA polymerase, 

Bioline), 0.5µl each of forward and reverse primers (5 pmol/µl), 2.5 µl of 10x PCR buffer, 

2.5 µl of deoxynucleotide triphosphate mix (dNTPs; 1.25 mM each dNTP), 2.5 µl of MgCl2 

(25 mM stock) and 14 µl PCR-grade H2O.  For negative control purposes, distilled water was 

utilized instead of DNA template. Throughout PCR set-up, all aliquots were carried out using 

barrier tips to prevent potential aerosol contamination of samples. The PCR cycling profile 

consisted of an initial denaturation step at 94
o
C for 5 minutes, followed by denaturation of 

94
o
C for 30 seconds, annealing at 64

o
C for 30s and extension at 72

o
C for 30s.  This cycle 

profile was repeated a total of 36 times, followed by a final extension of 10 minutes at 72
o
C.  

All PCR reactions were performed on a MultiGene machine (Labnet International. Inc.) 

2.3.5.2 Optimization of PCR conditions 

PCR reaction conditions were optimized using a temperature gradient and a dilution series of 

MgCl2. The optimisation was assessed by determination of PCR product recovery and 

specificity using agarose gel electrophoresis (2.3.6).  

2.3.6 Agarose gel electrophoresis 

PCR products were visualized on a 1% (w/v) agarose gel. The gel was prepared by dissolving 

1g of agarose powder (Sigma) in 100ml of 1 X TAE buffer (Tris-Acetate-EDTA, Severn 

Biotech Ltd) by gentle heating in a microwave oven. When the solution had cooled to 

approximately 50
o
C, 5µl of Gelred dye (Biotium) was added to the mixture and then the 

molten agarose was poured into a gel casting tray and a multi-well comb inserted. The 

solution was allowed to set for at least 30 min and then the comb removed and the gel 

transferred to an electrophoresis tank containing sufficient 1 X TAE buffer to cover the gel 

surface. 



40 

 

12µl of PCR product was mixed with 3µl 5X gel loading buffer (Fermentas) and then 

carefully aliquoted into the wells of the agarose gel. In an adjacent well, 4 µl of the 1 kb 

Hyperladder (Bioline) was also aliquoted to allow subsequent size determination of the PCR 

products.  The DNA was electrophoresed through the agarose gel at 110 volts (100mA) for 

approximately 60 minutes. PCR products were then visualized using a short-wave UV 

Transillaminator Box and imaged with Gene Snap software (SynGen). The gel image was 

captured using a Polaroid camera (Sony UPP-110 HG) and the resulting image was saved.   

2.3.7 PCR product purification 

The PCR product was purified using the Isolate II PCR and Gel purification Kit (BioLine) as 

described by the manufacturer. Briefly, 2 volumes of binding buffer were added to 1 volume 

of PCR product and mixed well. The mixture was added onto the surface of the purification 

column, placed within a 2 ml collection tube and centrifuged at 13,000 g for 30 seconds. The 

flow-throw was discarded and 700 µl wash buffer was added onto the column and 

centrifuged at 13,000 g for 30 seconds. The flow-throw was again discarded and the 

centrifugation was repeated as above to remove any residual ethanol. Finally, the column was 

placed in a sterile 1.5ml microcentrifuge tube and 30 µl elution buffer was added to the 

column. Following 1 minute incubation at room temperature the column was centrifuged at 

13,000 g for one minute to elute the purified PCR product. The recovery of purified PCR 

product was verified by subjecting a 1µl aliquot to spectrophotometric analysis using the 

Nana-Drop (2.3.4.2). 
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2.3.8 DNA sequencing  

The PCR product was purified (2.3.7) and the concentration was determined as described 

previously (2.3.4.2). A sufficient quantity of the PCR product at the recommended DNA 

concentration (1 ng/µl per 100bp) was then subjected to DNA sequencing (Source 

Bioscience) with the required primers, PseudoF and PseudoR (3.2 pmol/µl). The resulting 

sequences were analysed using FinchTV (v.1.4.0) (Geospiza Inc) and subsequently compared 

with other reference sequences in the GenBank DNA database using BLAST (Altschul et al., 

1990). Nucleotide sequences were aligned with reference sequences available in GenBank, 

using the multiple sequence alignment program ClustalW2 (Larkin et al., 2007).  

2.3.9 Restriction digestion of PCR products 

Purified PCR products were digested using the restriction endonuclease Xag1, (EcoN1) 

(Fermentas, Life Sciences) following the recommended protocol of the manufacturer.  

Briefly, 8 µl of the purified PCR product was added to 9.6µl PCR-grade water, 2µl 10x 

Buffer R and 0.4 µl Xag1 (20 units/ µl). A control digest comprising of 0.5 µl (Concentration 

491µg/ml) unmethylanated λ DNA (Promega, Madison, WI USA) was also digested with 

Xag1 in a total volume of 20 µl.  Reactions were mixed gently and incubated at 37
o
C for 3 

hours. The digests were then mixed with 4 µl of 5X gel loading buffer (Fermentas) and 

analysed by agarose gel electrophoresis as described above (2.3.6).  

2.3.10 Statistical analyses 

The Fisher’s exact test was used to compare differences in prevalence between geographic 

regions and also between host factors (length, weight and condition factor). The Mann-

Whitney test was used to assess the significance of differences in intensity of infection 

between the different geographic regions and also between host factors (length, weight and 

condition factor). All tests were conducted using Minitab 16 (licensed to the University of 

Salford).  
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2.4 Results 

2.4.1 Parasitological Examination  

Morphological examination of eel gills confirms that Pseudodactylogyrus spp. parasites were 

present in 50 of the 140 (35.7%) European eel, Anguilla anguilla, that were surveyed from 6 

locations in England and only 4 River sites in Wales (Figure 2.2). 

 

 

 

Figure 2.2 Representative light micrograph showing a Pseudodactylogyrus spp. extracted 

from an infected eel sampled from the River Leven. A: Anterior end showing eye spots. P: 

Posterior end showing the free hook (X100).  

 

P 

A 
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2.4.1.1 Primary infection data: the environment 

In total, 50 of the 140 (35.7%) European eel examined were infected with pseudodactylids.  

The infected eel were sampled from 10 out of the 14 (71.4%) river systems surveyed across 

England and Wales (Table 2.2). The rivers Clwyd-Meirchion, Maddach-Eden and Dee-Eitha 

from North Wales, and the River Gowy from Northwest England, appear from the sampling 

and analysis carried out in this study, to be uninfected with the gill monogenean parasites.   

At sites positive for pseudodactylids, the prevalence ranged from 10 to 100%. The River 

Crouch showed the highest prevalence of infection (100%), while the lowest prevalence 

(10%) was observed in the Rivers Bela in England and Taff in Wales.     

Table 2.2 Summary of pseudodactylid infection in wild eel sampled from 14 catchment sites 

across England and Wales. Ten eels were examined from each site.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Catchment location Site label Pseudodactylid infected eel (%) 

Mawddach-eden: Wales M 0% 

Clwyd-Meirchion: Wales MC 0% 

Dee-Eitha: Wales D 0% 

Taff: Wales TB 10% 

Clwyd-Elwy: Wales CE 40% 

Rhymney: Wales R 60% 

Cadoxton: Wales CD 70% 

Gowy: England RG 0% 

Bela: England B 10% 

Petteril: England RP 20% 

Hether Burn: England HB 40% 

Crane: England CN 70% 

Leven: England RL 80% 

Crouch: England C 100% 
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Overall, 619 pseudodactylids were collected from the eel (mean abundance = 4.42 sd±13.94; 

mean intensity =12.38 sd±21.12). The number of pseudactylids extracted from individual eel 

ranged between 1 and 125; the latter being isolated from a fish sampled from the river Leven 

(specimen RL2). A single pseudodactylid was extracted from 16% of infected animals (8/50).  

Moreover, the majority 70% (35/50) of the infected hosts carried less than 10 pseudodactylids 

and hence only 22% (11/50) of the infected eels harboured 10+ gill monogeneans (Tables 2.3 

and 2.4). With respect to the sampling sites, the River Leven yielded most pseudodactylids (n 

= 232) and the lowest number was recovered from the River Taff (n = 1).   

Table 2.3 Eel morphometric data for animals with gill monogenean infections sampled from 

sites across Wales. Ten eels were examined from each site. 

 

 

 

 

 

 

Catchment sites         

location 

Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

pseudodactylids 

River Cadoxton: CD       

 

CD1 

CD2 

CD3 

CD4 

CD5 

CD6 

CD9 

33 

27 

24 

28 

28.5 

22 

21 

59.9 

30.4 

21.4 

28.3 

32.6 

11.0 

8.8 

0.17 

0.15 

0.06 

0.13 

0.05 

0.10 

0.09 

14 

5 

4 

2 

4 

2 

29 

River Rhymney: R           R1 

R3 

R4 

R5 

R6 

R9 

32 

30 

31.5 

27 

30 

23.5 

48.9 

42.3 

67.2 

29.3 

39.7 

12.7 

0.15 

0.16 

0.22 

0.15 

0.15 

0.10 

5 

22 

9 

11 

3 

3 

River Clwyd-Elwy: CE CE1 

CE4 

CE5 

CE8 

39 

34 

29 

22 

72.9 

70.1 

39.3 

16.8 

0.12 

0.18 

0.16 

0.16 

4 

11 

1 

1 

River Taff: TB TB4 22 15.6 0.15 1 



45 

 

Table 2.4 Eel morphometric data for animals with gill monogenean infections sampled from 

sites across England. Ten eels were examined from each site. 

 

The mean intensity of pseudodactylid infection in eels examined from different catchment 

sites ranged from 1 to 29±42.7 parasites per eel; the former from the river Taff in Wales and 

the latter from the river Leven in England. The mean parasitic abundance in infected eels 

from different river sites surveyed ranged from 0.1±0.31 to 23.2±39.6 pseudodactylids; the 

former from the river Taff and the latter from the river Leven (Table 2.5). Overall, the 

parasites were over-dispersed (dispersion index = 44) (Figure 2.3). 

Catchment sites         

location 

Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

pseudodactylids 

River Crouch: C C157 

C107 

C117 

C59 

C74 

C116 

C71 

C131 

C40 

C48 

33 

32 

28 

32 

50 

29 

47 

39 

32 

31 

65.8 

47 

27.5 

50.1 

209.2 

36.4 

198.2 

112 

43.9 

44.7 

0.18 

0.14 

0.13 

0.15 

0.17 

0.15 

0.19 

0.19 

0.13 

0.15 

56 

19 

34 

12 

2 

3 

7 

2 

5 

1 

River Leven: RL RL1 

RL2 

RL3 

RL5 

RL6 

RL8 

RL9 

RL10 

21 

52 

27 

34 

35 

29.5 

30 

26 

13.9 

187.0 

35.8 

55.9 

71.3 

30.3 

38.1 

22.3 

0.16 

0.13 

0.18 

0.14 

0.17 

0.11 

0.14 

0.13 

5 

125 

51 

10 

2 

5 

1 

33 

River Crane: CN CN3 

CN5 

CN6 

CN7 

CN8 

CN9 

CN10 

86 

70 

74 

86 

77 

69 

74 

1380.3 

668.6 

839.7 

805.7 

661.9 

563.5 

743.4 

0.22 

0.19 

0.21 

0.13 

0.14 

0.17 

0.18 

12 

2 

1 

2 

3 

2 

52 

Hether Burn: HB          HB3 

HB4 

HB5 

HB7 

23 

24 

25 

20 

14.7 

16 

18.6 

7.8 

0.12 

0.12 

0.12 

0.09 

3 

2 

27 

1 

River Petteril: RP       RP5 

RP6 

35.5 

27.5 

74.9 

38.2 

0.17 

0.18 

2 

1 

River Bela: B  B2 32 49.1 0.15 5 
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Table 2.5 Summary of the primary infection data for gill monogeneans isolated from 

European eel sampled across England and Wales. Ten eels were examined from each site. 

Eel catchment sites Prevalence 

rate (%) 

Total number 

of parasite 

Mean parasitic 

abundance (±sd) 

Mean Infection 

Intensity (±sd) 

Crouch: England 100 141 14.1±17.9 14.1±17.9 

Leven: England 80 232 23.2±39.6 29±42.7 

Crane: England 70 74 7.4±15.2 10.6±17.3 

Hether Burn: England 40 33 3.3± 7.9 1.4±0.8 

Petteril: England 20 3 0.4±0.7 1.5±0.5 

Bela: England 10 5 0.5±1.6 5 

Cadoxton: Wales 70 60 6 ±8.6 8.6± 9.1 

Rhymney: Wales 60 53 5.3 ±6.7 8.8 ±6.6 

Clwyd-Elwy: Wales 40 17 1.7±3.5 4.3±4.7 

Taff: Wales 10 1 0.1±0.3 1 

 35.7 619 4.42 ±13.94 12.38 ±21.12 

 

 

Figure 2.3 Summary of the dispersion of pseudodactylids within the sampled eel populations. 
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Upon analysis of the infection data at a regional level it was evident that all examined rivers 

in South East England and South Wales contained eel infected with pseudodactylids (Table 

2.6). In North West England, only the River Gowy appeared to contain pseudodactylid-free 

eel. In contrast, the pseudodactylid-free condition was predominant in North Wales since 

only 1 catchment site (Clwyd-Elwy) out of the 4 rivers showed eel with a monogenean 

infection. Overall, eel sampled from South East England had the greatest prevalence, and also 

greatest mean abundance, of pseudodactylid infection. In contrast, the lowest prevalence and 

mean abundance was observed in eel sampled from North Wales.  

Overall, the regional prevalence data was significantly different (p: 10
-4

-0.0357) between the 

areas with the exception of the data observed for North West England and South Wales (p: 

0.155).  There were no significant differences observed in intensity of infection between the 

four geographic regions (p: 0.285-0.909). However, on analysis of pseudodactylid 

abundance, there were significant differences (p: 10
-4

-0.0282) between the regions with the 

exception of the comparison between North West England and South Wales (p: 0.136).              

Table 2.6 Regional infection data for pseudodactylids isolated from European eel sampled 

across England and Wales. ^No significant difference between these regions. 

Regions Number 

of river 
sites 

examined  

Number of 

pseudodactylid-
positive river 

sites  

Number 

of 
examined 

eel  

Number 

of 
infected 

eel 

Pseudodactylid 

prevalence rate 
(%) 

Number of 

pseudodactylids 

Mean 

abundance 
(±sd) 

Mean 

intensity 
(±sd) 

Intensity 

range 

North 

West 

England 

5 4 50 15 30%^ 273 5.5±19.56^ 

 

 

18.2±3.0^ 1 to 125 

South 

East 

England 

2 2 20 17 85% 215 
 

10.8±16.9 
 

12.7±2.8^ 
 

 

1 to 56 

North 

Wales 

4 1 40 4 10% 17 0.4± 1.8 4.3± 4.7^ 1 to 11 

South 

Wales 

3 3 30 14 46.7%^ 114 3.8± 6.9^ 8.1± 8.3^ 1 to 29 

Total 14 10 140 50 35.71% 619 4.4±13.9 12.4±21.3^ 1 to125 
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2.4.1.2 Primary Infection data: the host 

For the pseudodactylid infected eels, the body length ranged from 20 to 86 cm (mean = 36.8 

±17.5 cm) and body weight ranged from 7.7 to 1380 g (mean = 138±240.87 g). For 

uninfected eels, the body length ranged from 10 to 86 cm (mean = 28.97±13.44 cm) and body 

weight ranged from 1.2g to 1380g (mean = 156.57±282.4 g). The mean condition factor for 

infected eel is 0.15±0.05, whilst the mean average condition factor for the uninfected eel is 

0.14±0.05 (Table 2.3 and 2.4). None of this data was statistically significant (p < 0.03).   

Upon analysis of different categories of eel length it was apparent that mean pseudodactylid 

abundance and intensity increased as eel body length category increased (Table 2.7). Indeed, 

to corroborate this, only 1 pseudodactylid was recovered from the 26 specimens considered to 

form the smallest examined length category of eel. Differences in the intensity of infection 

were significant between the smallest length category and all the other length categories (p: 

0.0001 – 0.013). In addition, the intensity of infection was also significantly different 

between the second smallest length category and the second largest length category (p = 

0.025). There were no other significant differences in the intensity of infection between 

remaining length categories (p > 0.05). The prevalence of pseudodactylids also increased up 

to the eel category size 30.5 – 35cm and the prevalence of infection for the smallest length 

category of eel was significantly different to the pseudodactylid infection prevalence data 

observed for all other length categories (p: 0.0001 – 0.017). There was no significant 

difference in the prevalence of infection when comparisons were made between all the other 

length categories (p: 0.087 – 1.0).  
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Table 2.7 Pseudodactylid infection data with respect to category of eel body length.               
*Significant difference (p < 0.05) when compared to the smallest length category. 

#
 Significant difference (p < 

0.05) when compared to the smallest length category. 
a
 Significant difference (p < 0.05) when compared to the 

second smallest length category. 

Body 

length 

range 

(cm) 

Mean body 

length 

(±sd) (cm)  

Number 

of 

examined 

eel 

Number 

of 

infected 

eel 

Pseudodactylid 

prevalence rate 

(%) 

Number of   

pseudodactylids 

Mean intensity 

(±sd) 

Intensity 

range 

10-20 16.9±3.0 26 1 3.80% 1 1 1 

20.5-25 22.4±1.4 32 9 28.1%* 76 8.44±11.16# 1 - 29 

25.5-30 27.9±1.4 32 15 46.9%* 177 11.8±15.71# 1 - 51 

30.5-35 32.6±1.3 22 12 54.6%* 149 12.42±14.68#,a 1 - 56 

35.5-86 53.9±17.4 28 13 46.4%* 216 16.62±35.34# 1 - 125 

On analysis of the pseudodactylid infections with respect to eel weight categories (Table 2.8), 

a similar trend was noted as above for eel length. Prevalence of pseudodactylids increased up 

to the weight category 30.1- 60 g and the lowest intensity of infection was observed in the 

smallest eel. To corroborate this finding, the prevalence of infection for the smallest weight 

category of eel was significantly different to the pseudodactylid infection prevalence data 

observed for the largest two weight categories (p: 0.0008 – 0.005). In addition, the second 

smallest weight category had a significantly different prevalence of infection when compared 

to the second largest weight category (p = 0.044). There was no significant difference in the 

infection data when comparisons were made between all the other weight categories (p: 0.136 

– 0.632). With respect to intensity of infection, there was a highly significant difference in 

parasite burden between the smallest weight category and the two largest weight categories 

(p: 0.003-0.0004). In addition there was a significant difference between the intensity data for 

the second smallest weight category and the second largest weight category (p=0.0435). 

There was no significant difference in the intensity data between all other classes of eel body 

weight (p>0.05).   
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Table 2.8 Pseudodactylid infection data with respect to category of eel body weight.  
*Significant difference (p < 0.05) when compared to the smallest weight category. 

b
 Significant difference (p < 

0.05) when compared to the second smallest weight category. 
#
 Significant difference (p < 0.05) when compared 

to the smallest weight category. 
a
 Significant difference (p < 0.05) when compared to the second smallest weight 

category. 

  Eel body 

weight 

range (g) 

Mean body 

weight (±sd) 

(g) 

Number 

of  

examined 

eel 

Number 

of  

infected 

eel 

Pseudodactylid 

prevalence (%) 

Number of  

pseudodactylids 

Intensity 

range 

Mean 

intensity  

(±sd) 

1.2 - 15 8.6±4.1 39 6 15.4% 43 1 - 29 7.2±10.8 

15.1 - 30 22.1±4.4 32 9 28.1% 115 1 - 34 12.8±14.4 

30.1 - 60 42.9±8.5 33 18 54.5%*,b 167 1 - 51 9.3±12.1#,a 

60.1 - 1380 301.4±345.7 36 17 47.2%* 294 1-125 17.3±32.4# 

With respect to eel condition factor, there was no significant difference in pseudodactylid 

prevalence of infection between the different categories of condition factor (Table 2.9) (p: 

0.119 – 0.629). In addition, there was no significant difference when the intensity of infection 

was analysed between the different categories of condition factor (p: 0.182-0.798). 

Table 2.9 Pseudodactylid infection data with respect to category of eel condition factor.  

 

 

 

 

 

Condition 

factor 

range 

Mean 

condition 

factor 

(±sd) 

Number of 

eel 

examined 

Number 

of 

infected 

eel 

Pseudodactylid 

prevalence (%) 

Number of 

pseudodactylids 

Intensit

y range 

Mean 

intensity 

(±sd) 

0.04-0.12 0.09±0.03 34 11 32.4 84 1-29 7.6±10.1 

0.13-0.14 0.13±0.00 38 10 26.3 234 1-125 23.4±37.9 

0.15-0.16 0.15±0.00 28 13 46.4 75 1-22 5.8±6.0 

0.17-0.29 0.19±0.03 40 16 40 226 1-56 14.1±19.8 
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2.4.2 Pseudodactylogyrus spp. morphological analysis 

The two species of pseudodactylid documented in European eel are highly similar in 

appearance and can be morphologically very difficult to distinguish. As such, careful 

morphometric analysis of Pseudodacylogyrus spp. is crucial to species identity. An example 

of the difficulty of using a classical morphometric approach, particularly with samples 

subjected to repeat freeze–thaw cycles, is illustrated below (Figure 2.4). The body size of the 

pseudodactylid (extracted from eel sample CD9) was found to be 479µm in length which is 

within accepted limits for both P. anguillae and P. bini (section 2.2.3).   

 

Figure: 2.4 A representative pseudodactylid (isolated from eel CD9). A: anterior end 

showing eye spots; P: posterior end showing the free hooks. 

 

Moreover, measurements of the hamuli and connective bar were equally inconclusive.  For 

example, the length of the hamuli was 62µm and the length and width measurements of the 

connecting bar were 46 µm and 10µm respectively (parasite isolated from eel sample CD9) 

(Figure 2.5, A, B & C). All these measurements are within acceptable ranges for P. bini and 

P. anguillae (see Table 2.1).   

 

 

P A 
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Figure 2.5 A representative pseudodactylid (isolated from eel CD9) showing the hamuli and 

measurements utilised for species identification attempts (x 400).  (a) The arrow represents 

the length measurement (=62µm). (b) The arrow represents the width of the connective bar 

(11 µm).  (c) The arrow represents the length of the connective bar (46 µm).    

 

 

1 

A 

C 

A 
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2.4.3 Molecular determination of pseudodactylid species  

Given the difficulty in using morphological keys for pseudodactylid species confirmation a 

molecular diagnostic approach was employed. Examination of the NCBI GenBank database 

showed very limited entries for P. anguillae and P. bini. However, 18S rRNA gene sequences 

were present for both parasites and further analysis indicated that it would be possible to 

discriminate between the two pseudodactylids by PCR amplification of the respective 18S 

rRNA genes and subsequent restriction digestion of the products with EcoN1(Xag1) (Figure 

2.6) showing alignment of the two 18S rRNA genes). If the source of DNA is P. anguillae, 

then the PCR product will be cut into two pieces by EcoNI, fragments sizes (358bp and 

156bp). Whereas if P. bini, the PCR product will not be digested (514 bp). Total helminth 

genomic DNA was extracted from representative parasites and its 18S rRNA gene was PCR 

amplified. The resulting product was examined by agarose gel electrophoresis, (Figure 2.7) 

confirming the presence of a 514bp specific product. A PCR product of 514bp derived for P. 

bini well be expected to remain 514bp (i.e. uncut) following incubation with Xag1, in 

contrast, a P. anguillae derived PCR product well be cut by Xag1 into two fragments of 

358bp and 156bp.   
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gi|13810563|dbj|AB060591.1|      AACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTTAGCC 50 

gi|14717824|dbj|AB065113.1|      AACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTTAGCC 50 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      ATGCATGCCTCAGTACATAACCTTAACATGGTGAAACCGCGAATGGCTCA 100 

gi|14717824|dbj|AB065113.1|      ATGCATGCCTCAGTACATAACCTTAACATGGTGAAACCGCGAATGGCTCA 100 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TTAAATCAGCTATGGTTCCTTGGATCATAATTCTACTACATGGATAACTG 150 

gi|14717824|dbj|AB065113.1|      TTAAATCAGCTATGGTTCCTTGGATCATAATTCTACTACATGGATAACTG 150 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TAGTAATTCTAGAGCTAATACATGCCTCGATGCCCTGATCCGTAAGGTGA 200 

gi|14717824|dbj|AB065113.1|      TAGTAATTCTAGAGCTAATACATGCCTCGATGCCCTGATCCGTAAGGTGA 200 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GGGGCGCAGTTATTAGATTACAAACCAAACGGGTTCGCCCGTGGTCTGTG 250 

gi|14717824|dbj|AB065113.1|      GGGGCGCAGTTATTAGATTACAAACCAAACGGGTTCGCCCGTGGTCTGTG 250 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      ATGACTCTGGATAACTTTGTATGATCGCAGCTGGCCCTGTTGTCGGCGAT 300 

gi|14717824|dbj|AB065113.1|      ATGACTCTGGATAACTTTGTATGATCGCAGCTGGCCCTGTTGTCGGCGAT 300 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GGATCCATCAAATATCTGCCCTATCAACTTTCGACGGTAGACGACATGCC 350 

gi|14717824|dbj|AB065113.1|      GGATCCATCAAATATCTGCCCTATCAACTTTCGACGGTAGACGACATGCC 350 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TACCGTGGTTATGACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGG 400 

gi|14717824|dbj|AB065113.1|      TACCGTGGTTATGACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGG 400 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCACGCAAAT 450 

gi|14717824|dbj|AB065113.1|      GAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCACGCAAAT 450 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TACCCACTCTCTGAACGAGGAGGTAGTGAAGATAAATATCGATACAGGAC 500 

gi|14717824|dbj|AB065113.1|      TACCCACTCTCTGAACGAGGAGGTAGTGAAGATAAATATCGATACAGGAC 500 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TTATTATAGGCTCTGTAATCGAAATGAGTGCATTTTAAATCCTACAACGA 550 

gi|14717824|dbj|AB065113.1|      TTATTATAGGCTCTGTAATCGAAATGAGTGCATTTTAAATCCTACAACGA 550 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GGATCAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAACTCCAGCT 600 

gi|14717824|dbj|AB065113.1|      GGATCAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAACTCCAGCT 600 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CCAATAGCATATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATC 650 

gi|14717824|dbj|AB065113.1|      CCAATAGCATATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATC 650 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TGGGCCTGGCTCGATTGCTAGTCTGTGCGCGTGTGTGAAAGCATGAGTGT 700 

gi|14717824|dbj|AB065113.1|      TGGGCCTGGCTCGATTGCTAGTCTGTGCGCGTGTGTGAAAGCATGAGTGT 700 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GCGGGCTGGTATATTCGGGTCGGCTTCATAGCTGTGTCTGGCGGCCTTCA 750 

gi|14717824|dbj|AB065113.1|      GCGGGCTGGTATATTCGGGTCGGCTTCATAGCTGTGTCTGGCGGCCTTCA 750 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CGGGCTGTCGGATGGTGTTAAGTGTCTGTGGCGTTCCCTCAGGGGGACGT 800 

gi|14717824|dbj|AB065113.1|      CGGGCTGTCGGATGGTGTTAAGTGTCTGTGGCGTTCCCTCAGGGGGACGT 800 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TGCGGCTTAGCACTATGGTACGTTGATGCCCTTAACCGGGTGTCCGTAAC 850 

gi|14717824|dbj|AB065113.1|      TGCGGCTTAGCACTATGGTACGTTGATGCCCTTAACCGGGTGTCCGTAAC 850 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TCGCAGCACGTTTACTTTGAACAAATTTGAGTGCTCAAAGCAGGCCGTTT 900 

gi|14717824|dbj|AB065113.1|      TCGCAGCACGTTTACTTTGAACAAATTTGAGTGCTCAAAGCAGGCCGTTT 900 

                                 ************************************************** 
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gi|13810563|dbj|AB060591.1|      GTTGCCTGAAGATTCTTGCATGGAATAATGGAATAGGACTTTGGTCCTAT 950 

gi|14717824|dbj|AB065113.1|      GTTGCCTGAAGATTCTTGCATGGAATAATGGAATAGGACTTTGGTCCTAT 950 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TTTGTTGGTTTGATAGAACCGAAGTAATGATAAAAAGAGACAGACGGGGG 1000 

gi|14717824|dbj|AB065113.1|      TTTGTTGGTTTGATAGAACCGAAGTAATGATAAAAAGAGACAGACGGGGG 1000 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CATTTGTATGGCGGCGCTAGAGGTGAAATTCGTTGACCGTCGCCAGACAA 1050 

gi|14717824|dbj|AB065113.1|      CATTTGTATGGCGGCGCTAGAGGTGAAATTCGTTGACCGTCGCCAGACAA 1050 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CCTAAAGCGAAAGCATCTGCCAAGTATGTTTTCATTTACCAGGAGCGAAA 1100 

gi|14717824|dbj|AB065113.1|      CCTAAAGCGAAAGCATCTGCCAAGTATGTTTTCATTTACCAGGAGCGAAA 1100 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GTCAGAGGTTCGAAGACGATCAGATACCGTCCTAGTTCTGACCATAAACG 1150 

gi|14717824|dbj|AB065113.1|      GTCAGAGGTTCGAAGACGATCAGATACCGTCCTAGTTCTGACCATAAACG 1150 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      ATGCCAACTGACGATCCGCGTAAGCTCTTCAATGAGCTCGCGGGCAGTCT 1200 

gi|14717824|dbj|AB065113.1|      ATGCCAACTGACGATCCGCGTAAGCTCTTCAATGAGCTCGCGGGCAGTCT 1200 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CCGGGAAACCTGTAAGTCTATGGGTTCCGGGGAAAGTATGGTTGCAAAAC 1250 

gi|14717824|dbj|AB065113.1|      CCGGGAAACCTGTAAGTCTATGGGTTCCGGGGAAAGTATGGTTGCAAAAC 1250 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      TGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCTTGCG 1300 

gi|14717824|dbj|AB065113.1|      TGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCTTGCG 1300 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GCTTAATTTGACTCAACACGGGGAAACTCACCCGAACCGGACACTGGGAG 1350 

gi|14717824|dbj|AB065113.1|      GCTTAATTTGACTCAACACGGGGAAACTCACCCGAACCGGACACTGGGAG 1350 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GATTGACAGAATGATTGCTCTTTCATGATTCAGTGGCTAGTGGTGCATGG 1400 

gi|14717824|dbj|AB065113.1|      GATTGACAGAATGATTGCTCTTTCATGATTCAGTGGCTAGTGGTGCATGG 1400 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CCGTTCTTAGTTGGTGGTACGAACTGTCTGGTTAATTCCGATAACGAACG 1450 

gi|14717824|dbj|AB065113.1|      CCGTTCTTAGTTGGTGGTACGAACTGTCTGGTTAATTCCGATAACGAACG 1450 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      AGACTCTAACCTGCTAAATAGTATGGTTGCAAAATATTACGTGGCCCCCT 1500 

gi|14717824|dbj|AB065113.1|      AGACTCTAACCTGCTAAATAGTATGGTTGCAAAATATTACGTGGCCCCCT 1500 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GTGCTGGCGCCTTCCCTCGGGCAGGTGGTCGGGACAGGACCTCGTAAGCA 1550 

gi|14717824|dbj|AB065113.1|      GTGCTGGCGCCTTCCCTCGGGCGGGTGGTCGGGACAGGACCTCGTAAGCA 1550 

                                 ********************** *************************** 

 

gi|13810563|dbj|AB060591.1|      GGTCAAACTTCTTAGAGGAACAGGCGCCAAAAAGGCGTACGAAAGAGAGC 1600 

gi|14717824|dbj|AB065113.1|      GGTCAAACTTCTTAGAGGAACAGGCGCCAAAAAGGCGTACGAAAGAGAGC 1600 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      AATAACAGGTCTGTGATGCCCTAAGATGTCCGGGGCCGCACGCGTGCTAC 1650 

gi|14717824|dbj|AB065113.1|      AATAACAGGTCTGTGATGCCCTAAGATGTCCGGGGCCGCACGCGTGCTAC 1650 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      AATGACGATGCTAGTGAGGATGATTCACTGGTCCGAAAGGATCGGTAAAA 1700 

gi|14717824|dbj|AB065113.1|      AATGACGATGCTAGTGAGGATGATTCACTGGTCCGAAAGGATCGGTAAAA 1700 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CTTTTCAATCATCGTCGTGCCTGGGATTGGGGTTTGCAATTGTCCCCCAT 1750 

gi|14717824|dbj|AB065113.1|      CTTTTCAATCATCGTCGTGCCTGGGATTGGGGTTTGCAATTGTCCCCCAT 1750 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GAACCAGGAATTCCTAGTAAGCACAAGTCATCACCTTGTGCTGATTACGT 1800 

gi|14717824|dbj|AB065113.1|      GAACCAGGAATTCCTAGTAAGCACAAGTCATCACCTTGTGCTGATTACGT 1800 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CCCTGCCCTTTGTACACACCGCCCGTCGCTACTACCGATTGAATGGTTTA 1850 

gi|14717824|dbj|AB065113.1|      CCCTGCCCTTTGTACACACCGCCCGTCGCTACTACCGATTGAATGGTTTA 1850 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      GCAAGGCCATTGGATCGAGTCCATACGGTTCACGCTGTTTGGATTTGAGA 1900 
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gi|14717824|dbj|AB065113.1|      GCAAGGCCATTGGATCGAGTCCATACGGTTCACGCTGTTTGGATTTGAGA 1900 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      AGATGGTCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTT 1950 

gi|14717824|dbj|AB065113.1|      AGATGGTCGAACTTGATCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTT 1950 

                                 ************************************************** 

 

gi|13810563|dbj|AB060591.1|      CCGTAGGTGAACCTGCAGAAGGATC 1975 

gi|14717824|dbj|AB065113.1|      CCGTAGGTGAACCTGCAGAAGGATC 1975 

                                 ************************* 

 

Figure 2.6 An alignment of the 18S rRNA sequences of P. anguillae (gi: 13810563) and P. 

bini (gi: 14717824) highlighting the one nucleotide difference at position 1523 bp that allows 

the P. anguillae sequence to be restricted with Xag I (5’-CCTNNNNNAGG-3’). The regions 

highlighted in yellow show the positions of the two PCR primers designed to allow the 

molecular diagnostic approach to pseudodactylid species identification.  

2.4.4 Genomic DNA extraction from pseudodactylid samples 

DNA extraction was performed on 35% (217/619) of the pseudodactylids isolated from 9 

different catchment sites across England and Wales (Table 2.10). The only catchment site not 

examined was the River Bela.         

Table 2.10 Summary of pseudodactylid genomic DNA extractions by catchment site. 

River catchment  

Sites 

Total number of 

pseudodactylids 

number of  DNA 

extractions 

% of DNA 

extractions  

Leven: England 232 48 20.7 

Crouch: England 141 80 56.7 

Crane: England 74 32  43.2 

Hether Burn: England 33 14 42.4 

Petteril: England 3 2 66.7 

Cadoxton: Wales 60 20 33.3 

Rhymney: Wales 53 10 18.9 

Clwyd-Elwy: Wales 17 10 58.8 

Taff: Wales 1 1 100 

Total 619 217 35.3% 
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2.4.5 PCR-based diagnostics 

In total, 172 pseudodactylid 18S rRNA PCR products of the expected size (514bp) were 

generated (Figure 2.7).  

   

Figure 2.7 A representative agarose gel (1% w/v) showing PCR amplification of the 514bp 

fragment of the Pseudodactylogyrus spp. 18S rRNA gene. M: 100 bp Hyperladder (Bioline); 

lanes 1-14: PCR products derived from individual pseudodactylids isolated from eel sampled 

from the River Crane; –ve: negative control. 

 

Seventy eight (45.3%) of the 172 PCR products subjected to Xag1 digestion showed clear 

restriction to produce the expected fragments of 350bp and 150bp. As such, these PCR 

products must have been derived from P. anguillae genomic DNA (Figure 2.8). The 

remaining 94 PCR products (54.7%) were not restricted with Xag1 and hence these must 

have been derived from P. bini genomic DNA. In all these cases, the control λ DNA was 

successfully restricted with Xag1. DNA sequence analysis of a small number of these PCR 

products confirmed interpretation of the restriction digests (Figure 2.9). 
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Figure 2.8 A representative agarose gel (1% w/v) showing Xag1 digestion of 18 S rRNA 

PCR products derived from pseudodactylids sampled from the River Leven. M: 100 by 

Hyperladder (Bioline); lanes 1-13 and 15-18 pseudodactylid 18S rRNA PCR products 

digested with Xag1 (= P. anguillae); lane 14: pseudodactylid 18S rRNA PCR products that is 

undigested with Xag1 (= P. bini); +ve: λ DNA digested with Xag1.    

 

Analysis of the Xag1 digestions by catchment site indicated that 3 rivers were infected with 

only P. bini and 3 rivers were infected with only P. anguillae (Table 2.11). These single 

infections were present in English and Welsh river systems. In the remaining three catchment 

sites, the data showed the presence of mixed pseudodactylid infections. Moreover, the river 

Leven had approximately equal numbers of P. anguillae and P. bini.  In contrast, P. bini was 

the predominant species (92%) sampled from the River Crouch and P. anguillae was the 

predominant species (78%) from the River Cadoxton. In total, 55% of the pseudodactylids 

were confirmed as P. bini and 45% were P. anguillae. This is the first published report of P. 

bini existing in European eel in UK waters. 
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Table 2.11 Summary of the pseudodactylid molecular species confirmation approach.   

Catchment Site Number of PCR 

products analysed 

Number of PCR 

products restricted by 

Xag1 (= P. anguillae) 

Number of PCR 

products unrestricted by 

Xag1 (= P. bini) 

Crouch; England 60  5  55  

Leven; England 43  19  24  

Crane; England 25  25  0 

Hether Burn; England 14  14  0 

Petteril; England 2  0 2  

Clwyd-Elwy; Wales  10  0 10 

Rhymney; Wales 8  8 0 

Cadoxton; Wales 9  7  2  

Taff; Wales 1 0 1 

 172 78 94 
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418204401_Pb1_F_A06              -------------------------GTCTGGTTAATTCCGATAACGAACG 25 

418204401_Pb2_F_C06              -------------------------------------------------- 

gi|14717824|dbj|AB065113.1|      CCGTTCTTAGTTGGTGGTACGAACTGTCTGGTTAATTCCGATAACGAACG 1450 

gi|13810563|dbj|AB060591.1|      CCGTTCTTAGTTGGTGGTACGAACTGTCTGGTTAATTCCGATAACGAACG 1450 

417794001_pa3_F_E06              -----------------ACCAAACTGTCTGGTTAATTCCGATAACGAACG 33 

417794001_pa4_F_G06              ------------------------TGTCTGGTTAATTCCGATAACGAACG 26 

                                                                                    

 

418204401_Pb1_F_A06              AGACTCTAACCTGCTAAATAGTATGGTTGCAAAATATTACGTGGCCCCCT 75 

418204401_Pb2_F_C06              --ACTCTAACCTGCTAAATAGTATGGTTGCAAAATATTACGTGGCCCCCT 48 

gi|14717824|dbj|AB065113.1|      AGACTCTAACCTGCTAAATAGTATGGTTGCAAAATATTACGTGGCCCCCT 1500 

gi|13810563|dbj|AB060591.1|      AGACTCTAACCTGCTAAATAGTATGGTTGCAAAATATTACGTGGCCCCCT 1500 

417794001_pa3_F_E06              AGACTCTAACCTGCTAAATAGTATGGTTGCAAAATATTACGTGGCCCCCT 83 

417794001_pa4_F_G06              AGACTCTAACCTGCTAAATAGTATGGTTGCAAAATATTACGTGGCCCCCT 76 

                                   ************************************************ 

 

418204401_Pb1_F_A06              GTGCTGGCGCCTTCCCTCGGGCGGGTGGTCGGGACAGGACCTCGTAAGCA 125 

418204401_Pb2_F_C06              GTGCTGGCGCCTTCCCTCGGGCGGGTGGTCGGGACAGGACCTCGTAAGCA 98 

gi|14717824|dbj|AB065113.1|      GTGCTGGCGCCTTCCCTCGGGCGGGTGGTCGGGACAGGACCTCGTAAGCA 1550 

gi|13810563|dbj|AB060591.1|      GTGCTGGCGCCTTCCCTCGGGCAGGTGGTCGGGACAGGACCTCGTAAGCA 1550 

417794001_pa3_F_E06              GTGCTGGCGCCTTCCCTCGGGCAGGTGGTCGGGACAGGACCTCGTAAGCA 133 

417794001_pa4_F_G06              GTGCTGGCGCCTTCCCTCGGGCAGGTGGTCGGGACAGGACCTCGTAAGCA 126 

                                 ********************** *************************** 

 

418204401_Pb1_F_A06              GGTCAAACTTCTTAGAGGAACAGGCGCCAAAAAGGCGTACGAAAGAGAGC 175 

418204401_Pb2_F_C06              GGTCAAACTTCTTAGAGGAACAGGCGCCAAAAAGGCGTACGAAAGAGAGC 148 

gi|14717824|dbj|AB065113.1|      GGTCAAACTTCTTAGAGGAACAGGCGCCAAAAAGGCGTACGAAAGAGAGC 1600 

gi|13810563|dbj|AB060591.1|      GGTCAAACTTCTTAGAGGAACAGGCGCCAAAAAGGCGTACGAAAGAGAGC 1600 

417794001_pa3_F_E06              GGTCAAACTTCTTAGAGGAACAGGCGCCAAAAAGGCGTACGAAAGAGAGC 183 

417794001_pa4_F_G06              GGTCAAACTTCTTAGAGGAACAGGCGCCAAAAAGGCGTACGAAAGAGAGC 176 

                                 ************************************************** 

 

418204401_Pb1_F_A06              AATAACAGGTCTGTGATGCCCTAAGATGTCCGGGGCCGCACGCGTGCTAC 225 

418204401_Pb2_F_C06              AATAACAGGTCTGTGATGCCCTAAGATGTCCGGGGCCGCACGCGTGCTAC 198 

gi|14717824|dbj|AB065113.1|      AATAACAGGTCTGTGATGCCCTAAGATGTCCGGGGCCGCACGCGTGCTAC 1650 

gi|13810563|dbj|AB060591.1|      AATAACAGGTCTGTGATGCCCTAAGATGTCCGGGGCCGCACGCGTGCTAC 1650 

417794001_pa3_F_E06              AATAACAGGTCTGTGATGCCCTAAGATGTCCGGGGCCGCACGCGTGCTAC 233 

417794001_pa4_F_G06              AATAACAGGTCTGTGATGCCCTAAGATGTCCGGGGCCGCACGCGTGCTAC 226 

                                 ************************************************** 

 

418204401_Pb1_F_A06              AATGACGATGCTAGTGAGGATGATTCACTGGTCCGAAAGGATCGGTAAAA 275 

418204401_Pb2_F_C06              AATGACGATGCTAGTGAGGATGATTCACTGGTCCGAAAGGATCGGTAAAA 248 

gi|14717824|dbj|AB065113.1|      AATGACGATGCTAGTGAGGATGATTCACTGGTCCGAAAGGATCGGTAAAA 1700 

gi|13810563|dbj|AB060591.1|      AATGACGATGCTAGTGAGGATGATTCACTGGTCCGAAAGGATCGGTAAAA 1700 

417794001_pa3_F_E06              AATGACGATGCTAGTGAGGATGATTCACTGGTCCGAAAGGATCGGTAAAA 283 

417794001_pa4_F_G06              AATGACGATGCTAGTGAGGATGATTCACTGGTCCGAAAGGATCGGTAAAA 276 

                                 ************************************************** 

 

418204401_Pb1_F_A06              CTTTTCAATCATCGTCGTGCCTGGGATTGGGGTTTGCAATTGTCCCCCAT 325 

418204401_Pb2_F_C06              CTTTTCAATCATCGTCGTGCCTGGGATTGGGGTTTGCAATTGTCCCCCAT 298 

gi|14717824|dbj|AB065113.1|      CTTTTCAATCATCGTCGTGCCTGGGATTGGGGTTTGCAATTGTCCCCCAT 1750 

gi|13810563|dbj|AB060591.1|      CTTTTCAATCATCGTCGTGCCTGGGATTGGGGTTTGCAATTGTCCCCCAT 1750 

417794001_pa3_F_E06              CTTTTCAATCATCGTCGTGCCTGGGATTGGGGTTTGCAATTGTCCCCCAT 333 

417794001_pa4_F_G06              CTTTTCAATCATCGTCGTGCCTGGGATTGGGGTTTGCAATTGTCCCCCAT 326 

                                 ************************************************** 

 

418204401_Pb1_F_A06              GAACCAGGAATTCCTAGTAAGCACAAGTCATCACCTTGTGCTGATTACGT 375 

418204401_Pb2_F_C06              GAACCAGGAATTCCTAGTAAGCACAAGTCATCACCTTGTGCTGATTACGT 348 

gi|14717824|dbj|AB065113.1|      GAACCAGGAATTCCTAGTAAGCACAAGTCATCACCTTGTGCTGATTACGT 1800 

gi|13810563|dbj|AB060591.1|      GAACCAGGAATTCCTAGTAAGCACAAGTCATCACCTTGTGCTGATTACGT 1800 

417794001_pa3_F_E06              GAACCAGGAATTCCTAGTAAGCACAAGTCATCACCTTGTGCTGATTACGT 383 

417794001_pa4_F_G06              GAACCAGGAATTCCTAGTAAGCACAAGTCATCACCTTGTGCTG------- 369 

                                 *******************************************        

 

Figure 2.9 Sequence alignment of four 18S rRNA gene fragments derived from PCR 

amplification of individual pseudodactylids: Pb1 and Pb2 (from eel specimen C107), Pa3 

(from eel specimen R8) and Pa4 (from eel specimen CD10).  The data confirms the 

restriction analysis with Xag I: Pb1 and Pb2 = P. bini and Pa3 and Pa4 = P. anguillae.  The 

18S rRNA sequences for P. bini (gi: 14717824) and P. anguillae (gi: 13810563) are also 

shown.   
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2.5 Gill pathology 

Prior to dissection, a number of the European eel specimens showed a clear mucosal 

secretion from the gill opening (Figure 2.10).   

 

 

 

 

 

 

Figure 2.10 A representative image of the mucosal secretion observed from the gill opening 

(eel specimen R3 which was subsequently shown upon dissection to harbour 22 

pseudodactylids).  E: external gill opening with exudate.  

Upon examination of the gill surface of each European eel it was difficult to ascertain the 

tissue damage and pathology caused directly by pseudodactylids since the hosts were subject 

to long-term storage and repeated freeze-thaw cycles which had contributed to some tissue 

deterioration. Consequently, the presence of exudate was utilised as the clear pathological 

indicator of parasite infection. Excessive exudate was clearly present on European eel 

examined from the Rivers Cadoxton, Rhymney and Clwyd-Elwy in Wales and the Rivers 

Leven and Petteril in England. However, in a small number of eel specimens from the Rivers 

Cadoxton and Rhymney exudate was present without subsequent detection of 

pseudodactylids. When present, the exudate covered the external surface of gills and also, it 

was present between the gill filaments (Figure 2.11). The exudate contained most of the 

pseudodactylids and hence it was not possible to associate any specific area of the gill with 

parasite preference.     

E 
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Figure 2.11 An image of the gross pathology of a pseudodactylid infected gill (eel RL2 

subsequently shown to be infected with 125 pseudodactylids). E: excessive amounts of 

exudate covering the gill surface.  
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2.6 Discussion 

Prior to initiation of this study, the only reports of pseudodactylid infection in UK eel showed 

that P. anguillae was present in specimens of A. anguilla sampled from three locations in 

Devon (Nie & Kennedy, 1991d; Kennedy, Nie, Kaspers, et al., 1992). In the intervening 

years, there has been no further scientific study published that addresses the extent of 

pseudodactylid infection in UK eel. As such, the work presented in the chapter was aimed at 

establishing a more coherent and robust set of data that reports current levels of 

pseudodactylid infection in UK eel that were sampled from different regions of the United 

Kingdom. To this end, pseudodactylid infection was observed in eel specimens sampled from 

the majority of catchment sites in England and Wales.   

The mode of acquisition of the eel specimens unfortunately did not permit a clear 

morphological characterisation of the two common pseudodactylid species reported in A. 

anguilla. Indeed, even when fresh parasite specimens are obtained, morphological distinction 

between P. anguillae and P. bini is often difficult; moreover, differences have even been 

reported for the same species at different geographical regions (Zolovs et al., 2016). As such, 

a molecular-based diagnostic approach was developed that involved amplification of the 18S 

rRNA gene of pseudodactylids and then restriction of the resulting PCR product with the Xag 

I endonuclease. This novel approach allowed confirmation, as reported elsewhere (Copley & 

McCarthy, 2001; Kennedy, 2007b), that P. bini is indeed present in UK eel populations. 

Indeed, by screening 28% of the recovered pseudodactylids, it was apparent that P. bini was 

more prevalent that P. anguillae. There also appeared to be some catchment sites that 

contained eel harbouring single species infections whereas at other sites the hosts carried 

mixed infections. However, some of the single species infection data should be treated with 

caution; for example, only P. bini was characterised from eel present in the rivers Petteril and 

Taff but the analysis was based upon low numbers of parasites.   
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Overall, pseudodactylids were more prevalent in English rivers than Welsh rivers.  However, 

given that the actual eel sampling dates are unknown, a degree of caution is necessary when 

interpreting the infection data. A similar pattern of the higher prevalence of the swim bladder 

nematode infection in the European eels in English rivers than Welsh rivers was reported 

(Ab-Aziz, 2012). Nonetheless, assuming that the sampling dates were within the same season, 

the data within this thesis shows that there were statistically significant differences in 

prevalence between most of the geographic regions. A similar profile of statistically 

significant differences was also observed for the regional parasite abundance data. As such, it 

is reasonable to conclude that pseudodactylids may have adapted to the different 

environmental conditions within these regions with varying levels of success.  Interestingly, 

eel from the two most northern regions examined had the lowest prevalences of infection 

whereas eel from the most southern region had the greatest prevalence, and also abundance, 

of pseudodactylid infection. One possible explanation for this might be that the parasites are 

less well adapted to surviving in rivers that have a lower water temperature. Indeed, 

pseudodactylid eggs are reported as not able to hatch when the water temperature is below 

10
o
C (Buchmann, 1987).  Interestingly, the most comprehensive data on water temperatures 

in UK rivers discusses the reasons for water temperature variation and notes that there are on 

average 153 days a year when water temperatures are <10
o
C in the South of England whereas 

in the North West this increases to 181 days (Orr et al., 2010). To this end, the parasite 

dynamics are likely to vary between the regions with the more southern rivers supporting 

enhanced parasite development and hence greater overall infection rates.  

In terms of host factors, the data presented in this chapter highlights that when eel are less 

than 20cm in length the prevalence of infection with pseudodactylids is significantly less than 

occurs with larger eel. Moreover, the intensity of infection is also significantly less in the eel 

that are less than 20cm in length. Since body length is a reasonably good pseudomeasure of 
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age then this data most probably indicates that the smallest and hence youngest eel have 

incurred less exposure to the parasite (Buchmann, 1989b). A similar statistically significant 

infection profile is also observed when the data is analysed with respect to body weight.  As 

the larger bodied fish will have an increased surface area of gill compared to the smaller eel 

then it is perhaps unsurprising that the bigger animals generally have a larger intensity of 

infection. Indeed, the intensity range increased as the overall size of the eel increased 

(Buchmann, 1988a; Mayo-Hernandez, Serrano, Penaver, et al., 2015).   

The condition factor is a useful measure of fish health and hence the infection data was also 

analysed with respect to the eel condition factor. No statistically significant data emerged 

from the analysis and hence it can be concluded that the overall health of the eel in this study 

was not directly impacted by pseudodactylid infection. In contrast to this data, a recent study 

documented that pseudodactylid infection decreased eel body condition in relation when the 

intensity of parasite infection increased (Gérard et al., 2013). One reason for this anomaly 

might be that the Gerard et al., (2013) study was based upon analysis of migrating silver eel; 

none of the specimens in this thesis were migrating and only a few eel from the river Crane 

were likely to be at the silvering stage of development. 

At the level of the individual host, it was evident that eel with a higher parasite burden often 

displayed a pathology that was characterised by the presence of exudate. This is indicative of 

the parasite causing damage to the gill as it penetrates the gill tissue with the hook in order to 

attach and feed. Indeed, as reported elsewhere, the parasite causes erosion and ulceration of 

the gill and the host defence is characterised by secretion of excessive amounts of exudate 

(Abdelmonem et al., 2010). In this thesis, exudate was observed on the eel sampled from 

rivers shown to have hosts that were infected with only P. bini (rivers Clwyd-Elwy and 

Petteril), only P. anguillae (river Rhymney) and mixed species infections (rivers Cadoxton 

and Leven). As such, it is not possible to comment upon the relative pathological impact of 
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one species of pseudodactylid relative to the other. Moreover, this study was not focussed 

upon pathology and given the nature of specimen acquisition, it would be difficult to 

speculate further. However, other reports on pseudodactylid infections in A. anguilla 

conclude that P. bini is more pathogenic to eel than P. anguillae and this is a consequence of 

differences in the anatomy of their respective hooks (Arafa & Reda, 2012).   

In summary, this chapter highlights that P. anguillae and also, P. bini, are present in 

European eel populations in the UK. Indeed, these parasites are present in the majority of 

rivers (10/14) from which eel were examined across England and Wales. Based upon analysis 

of the 140 eel in this thesis, the overall prevalence of pseudodactylids was 36% and the mean 

abundance and mean intensity data was 4.42 ±13.94 and 12.38 ±21.12 respectively. The data 

also show that infection differences occur between the geographic regions of the UK and that 

host factors may influence the infection.     
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CHAPTER THREE 

Gastrointestinal Nematodes 

3.1 Introduction  

The presence of nematodes in fish hosts was recognized as early as the thirteenth century 

(Myers, 1976). In the last 50 years extensive evidence has accumulated recognizing the 

importance of fish nematodes; not least, that anisakid larvae on the viscera of many 

economically important fish species can impact the fish processing industry and cause public 

health concerns (Abollo et al., 2001). In the past decade there has been a great increase in the 

number of non-native fish helminths introduced into western European waters as a result of 

uncontrolled movements of commercial fishes. A particularly pertinent example of a 

significant ‘alien invader’ nematode is Anguillicoloides crassus which was introduced into 

Western Europe as a result of uncontrolled intercontinental transfer of live eels for 

consumption and it is responsible for a significant pathology of the host swim bladder (Køie, 

1991). 
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3.1.1                                   Spinitectus inermis (Zeder, 1800) 

3.1.1.1 Introduction 

The genus Spinitectus (Fourment, 1883) includes numerous species of medium sized 

nematodes parasitic within the digestive tract of fresh water and marine fishes, amphibians 

and mammal (Moravec, 2007). In Europe, two species of Spinitectus occur in fresh water 

fishes, S. inermis (Zeder, 1800) a parasite specific to the European eel and S. gordoni, a 

parasite of salmonids (Saraiva, Moravec, et al., 2002). 

Spinitectus inermis (Zeder, 1800) is a specific, widespread gastrointestinal nematode of  A. 

anguilla. The parasite is widely distributed throughout the range of the European eel with 

widely varying prevalence data reported (eg. 1.8% to 43.3%) (Moravec, 1977; Kennedy, 

1997a; Saraiva, Pereira, et al., 2002; Norton, Rollinson, et al., 2004; Kennedy, 2012; 

Moravec & Scholz, 2015). As such, it can be considered rare in some localities but in a few 

habitats the nematode may be common and occasionally it may be the dominant species in 

the host gut community (Kennedy, 2012). 

3.1.1.2 Morphology 

The body of the adult S. inermis is long (range, 6.7-7.9 mm) and slender (Rahman, 1964) and 

females are larger than males. The body of both sexes tapers slightly at the head. The female 

tail has a pointed spine that is present within a laterally serrated knob- like structure whereas 

male tail is spirally coiled. A characteristic feature of the male tail is the presence of eight 

pairs of papillae and one pair of spicules (Rahman, 1964). The cuticle is ringed transversely 

and bears 8-10 transverse rows of spines which are also characteristic of the genus (Rahman, 

1964). The spines are very distinct anteriorly and become less prominent posteriorly; indeed, 

they are not visible posterior to the junction of the oesophagus and the intestine. The mouth 
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leads into a funnel vestibule and the oesophagus is long and is clearly marked into muscular 

and glandular regions (Sahay & Prasad, 1965).  

 3.1.1.3 Life Cycle 

The definitive host A. anguilla acquires infection by feeding on the infected intermediate 

host; mayfly nymphs. The mayfly nymph ingests nematode eggs and the resulting first stage 

larvae penetrate the body cavity of the intermediate host. First stage larvae moult twice (on 

day 4 and 6 post infection at water temperatures of 20-25
o
C (Saraiva, Moravec, et al., 2002), 

to generate the infective third stage. In the infected eel, development to adulthood completes 

28 post infection at 20
o
C. The pre-patent period of S. inermis is estimated to be about two 

months (Saraiva, Moravec, et al., 2002).  
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3.1.2 Paraquimperia tenerrima (Linstow, 1878) 

3.1.2.1 Introduction 

Paraquimperia tenerrima (Linstow) is a specific freshwater parasite of the European eel. P. 

tenerrima is a common specialist small nematode infecting the gut of eel from rivers of 

several European countries (Conneely & McCarthy, 1986; Kennedy, Nie, Kaspers, et al., 

1992; Norton et al., 2003; Norton, Rollinson, et al., 2004; Shears & Kennedy, 2005; Moravec 

& Scholz, 2015). In some localities it is reported as common and occasionally as the 

dominant parasite of the gastrointestinal parasitic community of the European eel (Nie & 

Kennedy, 1991e).   

3.1.2.2 Morphology 

P. tenerrima is a small to medium size (range 3.8-7.7 mm) gastrointestinal nematode. The 

cuticle is thin and the lateral alae originate near the anterior extremity where they are broad 

and they become progressively narrow in the poster direction. The male and female tail is 

conical in shape and possesses a sharp cuticular tip (Moravec et al., 2000).      

3.1.2.3 Life Cycle 

The life cycle of the gut nematode P. tenerrima is indirect and the intermediate host is the 

minnow Phoxinus phoxinus (Shears & Kennedy, 2005). Egg hatching is dependent upon 

water temperature; eggs fail to hatch below 10 
0
C and hatching occurs only at temperatures 

between 11 and 30 
0
C (Moravec, 1974). Survival of the free-living second stage larvae (L2) 

is also temperature dependent and maximal survival is reported between 10 and 20 
0
C (Shears 

& Kennedy, 2005). Survival of the eggs and the free-living L2 is unlikely to exceed a month 

at normal summer water temperatures. Free-living L2s are unable to infect eels directly.  
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P. tenerrima L2s infect minnows following ingestion and then exit the gut and migrate to the 

swimbladder. Following a moult, the L3 stage nematodes remain coiled within the 

swimbladder wall. Eel become infected by feeding on these minnows and completion of 

development to adulthood occurs in the eel gastrointestinal within about one month (Shears 

& Kennedy, 2005).  

P. tenerrima prevalence and abundance within the European eel exhibit clear seasonality.  

Studies of the seasonal dynamics of P. tenerrima in European eel from three sites in Devon, 

southwest England, showed that infections occur in late winter to early spring, egg 

production proceeds throughout summer and then infection levels decline in autumn and 

early winter (Nie & Kennedy, 1991e). 

3.1.3   Raphidascaris acus (Bloch, 1779)  

3.1.3.1 Introduction 

Raphidascaris acus (Bloch, 1779) is a common and widely distributed parasite of the 

digestive tract of various predatory fishes in Europe, Asia and North America (Kennedy, Nie, 

Kaspers, et al., 1992; Norton et al., 2003; Moravec, 2004b; Moravec & Scholz, 2015). The 

most frequent definitive hosts of the small gut nematode are pike (Esox lucius) and brown 

trout (Salmo troutta fario), though the parasite is also commonly reported in salmonids and 

the European eel (Moravec, 1970). R. acus has recently been considered as a species complex 

since nematodes sampled from the Caspian Sea were morphologically identical to Czech and 

Canadian samples but genetically identical to Polish samples (Jahantab et al., 2014). 
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3.1.3.2 Morphology 

R. acus is a small to medium sized white coloured gastrointestinal nematode and the male is 

smaller 19.5-36 mm) than the female (20.2-44.6 mm). The cuticle has transverse striations 

and at the anterior end forms three lips with prominent lateral flanges. Lateral alae are 

distinct, starting from the lips and extending posteriorly to the mid part of tail. The tail is 

conical in both sexes and curves ventrally in the male (Jahantab et al., 2014). 

3.1.3.3 Life cycle 

The life cycle of R. acus is indirect and involves obligate intermediate hosts. The L2 stage 

within the egg is ingested by a wide range of fish, or cyclostomes, that act as paratenic hosts 

(Smith, 1984; Moravec, 2004b). Development to the infective L3 stage occurs within the 

intermediate host and the European eel becomes infected via predation of the infected fish  

(Valtonen et al., 1994). Completion of development occurs in the eel gut; however, some 

larvae become encapsulated within, or on, the liver, mesenteries, intestinal wall or other 

organs (Kennedy, 1974).  
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3.2 Objective 

The main objective of this chapter is to perform a parasitological survey of the 

gastrointestinal nematode communities present in European eel sampled from rivers in 

England and Wales. To assist this analysis, molecular tools will be utilised to allow PCR 

amplification and DNA sequencing of the 18S rRNA gene of nematode samples.   
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3.3 Materials and Methods 

3.3.1 Classical Morphological Examination 

3.3.1.1 Sampling 

Eel samples were acquired according to Chapter 1 (1.3). 

3.3.1.2 Processing 

Eel specimens were thawed and necropsies performed using a dissection kit, allowing the 

gastrointestinal tract to be removed and opened longitudinally. The gastrointestinal tract was 

dissected in a Petri dish containing distilled water under x 100 and x 160 magnification using 

a Wild Heerbrugg, M3B (Switzerland) dissecting microscope. A microscopic examination of 

the gut contents for the presence of nematodes was performed. In addition, the external 

surface of the gut was examined for pathological lesions or encapsulated larvae.  

3.3.2. Prevalence and intensity 

Any gastrointestinal nematodes were placed in a Petri dish containing distilled water.  The 

total number of parasites was determined for each animal in order to allow a description of 

the primary infection data.  

3.3.3 Imaging  

Representative gastrointestinal nematodes were fixed in 10% (v/v) formalin and placed onto 

microscopic slides and covered with cover slide. A Leica Dulb M26 microscope was utilized 

in conjunction with the Leica Application suite, version 3.5 and digital camera DFC31FX to 

capture images of the parasites to assist in identification. 

3.3.4 Molecular parasitological analysis 

Given the difficulty in morphological identification of some of the small size gastrointestinal 

nematodes a molecular identification was carried out based on the DNA sequence of the 18S 

rRNA gene. To accomplish this, a selection of gastrointestinal nematodes were stored in 
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tubes containing 70% (v/v) ethanol and maintained at -20
o
C until required.  In addition, there 

were cysts present in the gastrointestinal tract of some large eels (river Crane).  Some cysts 

were removed from the gut wall of these eels and they were cut using sterile scissors into 

small pieces for storage in 70% (v/v) ethanol at -20
o
C until required for DNA extraction.      

3.3.4.1 DNA Extraction from gastrointestinal nematodes 

DNA was extracted from an isolated gastrointestinal nematode, and also from cyst fragments, 

using the PureLink Genomic DNA Kit (Invitrogen by Life Technologies) as described by the 

manufacturer. Briefly, a gut nematode was placed in a 1.5 ml eppendorf tube and 180 µl 

PureLink Genomic Digestion Buffer and 20 µl Proteinase K (20 mg / ml) was added for each 

sample. The sample was then processed according to section 2.3.4.1.   

3.3.4.2 DNA quality control  

For quantification of DNA recovery and purity assessment aliquots were analysed using the 

NanoDrop Lite Instrument (ThermoFisher Scientific) (2.3.4.2). 

3.3.5 Polymerase chain reaction  

3.3.5.1 Spinitectus inermis  

Inspection of the NCBI GenBank database revealed limited molecular information for 

Spinitectus species as 18S rRNA sequences were only available for S. tabascoensis 

(JF803922.1), S. petterae (DQ813447.1) and S. carolini (DQ503464.1). PCR primers were 

designed using Primer 3 software (Untergrasser et al., 2012) to amplify a predicted 435 bp 

fragment of the 18S rRNA gene of S. inermis. The primer sequences were as follows: SpiniF, 

5’- GAAAGTCAGAGGTTCGAAGGC -3’ and SpiniR: 5’- 

ACAACATGCGGCTTAACACC -3’. Oligonucleotides were synthesized by Eurofins MWG 
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Operon and re-suspended in PCR-grade H2O to a stock concentration of 10 pM and stored at 

-20
o
C until required. 

3.3.5.2 Paraquimperia tenerrima  

Inspection of the NCBI GenBank database revealed a single 18S rRNA gene sequence 

available for the eel parasite Paraquimperia africana (JF803925.1). PCR primers were 

designed using Primer 3 to amplify a predicted 662 bp fragment of the 18S rRNA gene of 

Paraquimperia tenerrima. The primer sequences were as follows: ParaqF, 5’- 

CGCCCTAGTTCTGACCGTAA -3’ and ParaqR, 5’- GGACTGAGCCGTTTCGAGAA -3’. 

Oligonucleotides were synthesized by Eurofins MWG Operon and resuspended in PCR-grade 

H2O to a stock concentration of 10 pM and stored at -20
o
C until required. 

3.3.5.3 Cyst nematodes 

It was not possible to morphologically determine the likely identification of the encysted 

larvae nematode species within the large eels.  Consequently, PCR was attempted using the 

ParaqF and ParaqR primers (see above) in an attempt to amplify a nematode 18S rRNA PCR 

product that could be subjected to DNA sequencing.     

3.3.6 PCR Profile  

The PCR was carried out according to section 2.3.5.1; however, 2 µl of gastrointestinal 

nematode genomic DNA and nematode primers were utilised in place of the pseudodactylid 

equivalents. The PCR cycling profile for isolated nematodes consisted of an initial 

denaturation step at 94
o
C for 5 minutes, followed by denaturation of 94

o
C for 30 seconds, 

annealing at 57
o
C for 30s and extension at 72

o
C for 30s. This cycle profile was repeated a 

total of 36 times, followed by a final extension of 10 minutes at 72
o
C.  The PCR profile for 

the encysted larvae was the same, except the annealing temperature was reduced to 55
o
C. All 
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PCR reactions were performed on a MultiGene machine (Labnet International. Inc.) 

3.3.7 Agarose gel electrophoresis 

PCR products were analysed by agarose gel electrophoresis (2.3.6). 

3.3.8 PCR product purification 

PCR products were purified from the agarose gel using the Isolate II PCR and Gel 

Purification Kit (BioLine) as described by the manufacturer (2.3.7).  

3.3.9 DNA sequencing  

Recovery of purified PCR products was assessed using the NanoDrop Lite Instrument 

(ThermoFisher Scientific) (2.3.4.2). PCR products were then prepared for sequencing as 

stated in section 2.3.7. All data was analysed according to section 2.3.7. In addition, a 

phylogenetic analysis was conducted for novel sequences using ClustalW2 (Larkin et al., 

2007) and MEGA 6.0 (Tamura et al., 2013). 

3.3.10 Statistical analyses 

The Fisher’s exact test was used to compare differences in prevalence between geographic 

regions and also between host factors (length, weight and condition factor). The Mann-

Whitney test was used to assess the significance of differences in intensity of infection 

between the different geographic regions and also between host factors (length, weight and 

condition factor). All tests were conducted using Minitab 16 (licensed to the University of 

Salford).  
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3.4 Results 

 

3.4.1    Primary infection data: the environment 

 

In total, 47 of the 140 (33.57%) European eel examined contained gastrointestinal nematodes.  

The infected eel were sampled from 12 out of the 14 (85.7%) river systems surveyed across 

England and Wales (Table 3.1). No gastrointestinal nematodes were recovered from eel 

sampled from the River Crouch in England and the River Rhymney from Wales.  At sites 

positive for gastrointestinal nematodes, the prevalence ranged from 10 to 80%.  The River 

Leven showed the highest prevalence of infection (80%), while the lowest prevalence (10%) 

was observed in the Rivers Gowy, Taff and Cadoxton.   

Table 3.1 Summary of the primary infection data for gastrointestinal nematodes isolated from 

European eel sampled across England and Wales. Ten eels were examined from each site. 

Eel catchment sites Prevalence 

rate (%) 

Total number 

of parasites 

Mean parasitic 

abundance (± sd) 

Mean infection 

intensity (± sd) 

Leven RL: England 80 35 3.5±4.97 4.37±5.23 

Petteril RP: England 70 75 7.5±7.94 10.71±7.38 

Bela B: England 70 40 4.0±5.73 5.73±6.15 

Crane CN: England 40 26 2.6±6.53 6.5±9.71 

Hether Burn HB: England 20 16 1.6±3.40 8.0±1.43 

Gowy RG: England 10 5 0.5±1.58 5.0±0 

Crouch C: England 0 0 0 0 

Clwyd-Meirchion MC: Wales 60 14 1.4±1.7 2.3±1.6 

Clwyd-Elwy CE: Wales 40 7 0.7±1.05 1.75±0.95 

Dee-Eitha D: Wales 40 29 2.9±7.17 7.25±10.59 

Mawddach-eden M; Wales 20 10 0.7±1.88 4.7±3.53 

Taff TB: Wales 10 1 0.1±0.31 1.0±0 

Cadoxton CD: Wales 10 5 0.5±1.58 5.0±0 

Rhymney R: Wales 0 0 0 0 

 33.57±27.63 263 1.88±4.46 5.60±6.23 
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Overall, 263 gastrointestinal nematodes were collected from the eel (mean abundance = 1.9 

±4.5; mean intensity = 5.6 ±6.2). The number of gastrointestinal nematodes extracted from 

individual eel ranged between 1 and 23; the latter being isolated from a fish sampled from the 

Dee-Eitha (specimen D5). A single gastrointestinal nematode was extracted from 34.0% of 

infected animals (16/47). Moreover, the majority 83.0% (39/47) of the infected hosts carried 

less than 10 gastrointestinal nematodes and hence only 17.0% (8/47) of the infected eels 

harboured 11+ gastrointestinal nematodes (Tables 3.2 & 3.3). With respect to the sampling 

sites, the River Petteril yielded most gastrointestinal nematodes (n = 75) and the lowest 

number was recovered from the River Taff (n = 1).   

Table 3.2 Eel morphometric data for animals with gastrointestinal nematode infections 

sampled from sites across England. Ten eels were examined from each site.  
 

Catchment sites         

location 

Infected 

eel codes 

Eel body 

length 

(cm) 

Eel body 

weight (g) 

Condition 

factor 

Number of 

gastrointestinal 

Nematodes 

Leven: RL RL1 

RL2 

RL3 

RL4 

RL6 

RL8 

RL9 

RL10 

21.0 

52.0 

27.0 

22.5 

35.0 

29.5 

30.0 

26.0 

13.9 

187.0 

35.8 

21.3 

71.3 

29.5 

38.1 

22.3 

0.16 

0.13 

0.18 

0.19 

0.17 

0.11 

0.14 

0.13 

8 

1 

16 

2 

3 

3 

1 

1 

Petteril: RP RP1 

RL2 

RL4 

RL6 

RL8 

RL9 

RL10 

36.0 

31.5 

28.0 

27.5 

43.0 

33.0 

26.0 

110.7 

82.8 

35.3 

38.2 

101.1 

98.3 

29.7 

0.24 

0.28 

0.16 

0.18 

0.07 

0.27 

0.17 

22 

17 

4 

4 

11 

14 

3 

Bela: B B1 

B2 

B3 

B4 

B7 

B8 

B10 

30.0 

32.0 

27.0 

19.5 

24.0 

28.0 

49.0 

42.0 

49.1 

33.0 

11.9 

22.2 

24.5 

209.0 

0.16 

0.15 

0.17 

0.16 

0.16 

0.18 

0.18 

5 

4 

1 

1 

6 

19 

4 

Crane: CN CN5 

CN6 

CN8 

CN10 

70.0 

74.0 

77.0 

74.0 

668.6 

839.7 

661.9 

743.4 

0.19 

0.21 

0.14 

0.18 

21 

1 

1 

3 

Hether Burn: HB HB5 

HB10 

25.0 

16.5 

18.6 

11.1 

0.12 

0.25 

9 

7 

Gowy: RG RG8 33.0 62.2 0.17 5 
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Table 3.3 Eel morphometric data for animals with gastrointestinal nematode infections sampled from 

sites across Wales. Ten eels were examined from each site. 

 

The mean intensity of gastrointestinal nematode infection in eels examined from different 

catchment sites ranged from 1 to 10.7±7.4 parasites per eel; the former from the river Taff in 

Wales and the latter from the river Petteril in England. The mean parasitic abundance in 

infected eels from different river sites surveyed ranged from 0.1±0.3 to 7.5±7.9 nematode per 

eel; the former from the river Taff and the latter from the river Petteril (Table.3.1).  Overall, 

the parasites were over-dispersed (dispersion index = 11.1) (Figure 3.1) 

 

Figure 3.1 Summary of the dispersion of gastrointestinal nematodes within the sampled eel 

populations. 

0

20

40

60

80

0 1-5 6-10 11-15 16-20 21-23%
 o

f 
in

fe
ct

e
d

 e
e

l 

Number of gastrointestinal nematode per eel 

Catchment sites         

location 

Infected eel 

codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Number of 

gastrointestinal  

nematodes 

Clwyd-Meirchion: MC MC2 

MC3 

MC5 

MC6 

MC7 

MC8 

30.0 

35.0 

19.5 

18.5 

22.0 

15.5 

38.8 

54.6 

21.8 

9.0 

12.0 

5.3 

0.14 

0.13 

0.29 

0.14 

0.11 

0.14 

5 

1 

3 

1 

3 

1 

Clwyd-Elwy: CE CE1 

CE3 

CE5 

CE9 

39.0 

31.0 

29.0 

20.0 

72.9 

46.0 

39.3 

10.9 

0.12 

0.15 

0.16 

0.14 

1 

1 

2 

3 

Dee-Eitha: D D1 

D5 

D9 

D10 

28.5 

14.0 

14.5 

25.5 

27.6 

2.4 

1.2 

21.6 

0.13 

0.09 

0.04 

0.13 

1 

23 

4 

1 

Mawddach-eden: M M6 

M9 

28.0 

23.0 

36.9 

15.5 

0.17 

0.13 

1 

9 

Taff: TB TB4 22.0 15.6 0.15 1 

Cadoxton: CD CD3 28.5 21.4 0.06 5 



81 

 

Upon analysis of the infection data at a regional level it was evident that all examined rivers 

in North West England and North Wales contained eel infected with gastrointestinal 

nematodes (Table 3.4). The rivers Crouch (South East England) and Rhymney (South Wales) 

appeared to contain eel completely lacking gastrointestinal nematode infections. Overall, eel 

sampled from North West England had the greatest prevalence, and also greatest mean 

abundance and mean intensity of gastrointestinal nematode infection. In contrast, the lowest 

prevalence and mean abundance was observed in eel sampled from South Wales.  

Table 3.4 Regional infection data for gastrointestinal nematodes isolated from European eel 

sampled across England and Wales.  

 

Regions Number of 

examined 

river sites 

Number of 

gut 

nematode- 

positive 

river sites 

Number 

of 

examined 

eel  

Number 

of 

infected 

eel 

Nematode 

Prevalence 

rate (%) 

Number 

of gut 

nematode 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

North 

West 

England 

5 5 50 25 50% 171 3.42±5.54 6.84±6.3 1 - 22 

South 

East 

England 

2 1 20 4 20% 26 1.3±4.69 6.5±9.71 1 - 21 

North 

Wales 

4 4 40 16 40% 60 1.5±3.92 3.75±5.57 1 - 23 

South 

Wales 

3 2 30 2 6.7% 6 0.28±0.92 3±2.8 1 - 5 

Total 14 12 140 47 33.57% 263 1.88±4.46 5.6±6.23 1 - 23 

 

Overall, the regional prevalence data was significantly different between North West England 

and South East England (p = 0.031) and North Wales and South Wales (p = 0.001). Also, the 

prevalence data was significant differently between North West England and South Wales (p 

< 10
-4

). There were no significant differences observed in the gastrointestinal nematode 

prevalence data between eels from South East England and North (p = 0.153) and South 

Wales (p = 0.201), and also, between North West England and North Wales (p = 0.397).  
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On analysis of gastrointestinal nematode intensity of infection data there was a significant 

difference between North West England and North Wales (p = 0.0396). There were no 

significant differences observed in intensity of infection between any of the other geographic 

regions (p: 0.4474 – 1.0). With respect to the abundance data, there was a significant 

difference between North West England and South East England (p = 0.036), North West 

England and South Wales (p = 0.0003), and also between North and South Wales (p = 0.002). 

There were no significant differences in abundance between North West England and North 

Wales (p = 0.204), South East England and North Wales (p = 0.1435), and South East 

England and South Wales (p = 0.166).  

3.4.1.1 Primary Infection data: the host 

For the gastrointestinal nematode infected eels, body length ranged from 14 to 77 cm (mean 

= 32.2 ±15.3 cm) and body weight ranged from 1.2 to 839.7 g (mean = 105.0±199.2 g). For 

uninfected eels, body length ranged from 10 to 86 cm (mean = 29.9±14.7 cm) and body 

weight ranged from 1.2g to 1380g (mean = 90.0±219.6 g).  For the gastrointestinal nematode 

infected eels the condition factor ranged from 0.04 to 0.29 (mean = 0.16±0.05). For 

uninfected eels, the condition factor ranged from 0.05 to 0.23 (mean = 0.14±0.03)   (Table 3.2 

and 3.3). 

Upon analysis of the different categories of eel body length it was apparent that the lowest 

prevalence was found in the smallest length category and the highest prevalence in the 25.5-

30 cm category (Table 3.5). However, there were no statistically significant differences 

between the respective length categories (p: 0.2724 – 1). In addition, there were no 

significant differences in mean intensity of infection between the different eel body length 

categories (p: 0.0953 – 1.000) (Table 3.5).   
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Table 3.5 Gastrointestinal nematode infection data with respect to eel body length category.  

Body length 

range (cm) 

Mean body 

length (±sd) 

(cm)  

Number of 

examined 

eel 

Number 

of infected 

eel 

Gastrointestinal 

nematode 

prevalence rate (%) 

Number of   

gastrointestinal 

nematode 

Mean 

intensity 

(±sd) 

Intensity 

range 

10-20 16.9±3.0 26 7 26.9% 40 5.7±7.9 1 - 23 

20.5-25 22.4±1.4 32 9 28.1% 46 5.1±3.1 1 - 9 

25.5-30 27.9±1.4 32 14 43.8% 48 3.4±3.9 1 - 16 

30.5-35 32.6±1.3 22 7 31.7% 45 6.4±6.4 1 - 17 

35.5-86 53.9±17.4 28 10 35.7% 84 8.4±9 1 - 21 

 

Upon analysis of the different categories of eel condition factor it was apparent that the 

highest prevalence of gastrointestinal nematode infection was in the highest category whilst 

the lowest prevalence was found in the smallest condition factor category (Table 3.6). 

However, no significant differences in prevalence were found between the different condition 

factor categories (p: 0.0518 – 1). The lowest mean intensity of infection was found in the 

second smallest category whilst the highest mean intensity occurred in the largest condition 

factor category and this difference was significant (p = 0.002). In addition, there was a 

significant difference in mean intensity of infection between the two smallest condition factor 

categories (p = 0.007). There were no significant differences in mean intensity of infection 

between all other combinations of condition factor category (p: 0.0681 – 0.8886).    

Table 3.6 Gastrointestinal nematode infection data with respect to eel condition factor 

category. # 
Statistically significant difference (p<0.05) in mean intensity with respect to the data 

observed for the condition factor category 0.13-0.14. 

Condition 

factor 

range 

Length 

range 

(cm)  

Mean 

length (±sd) 

(cm)   

Eel 

examined 

Infected 

eel 

Prevalence 

rate (%) 

Number of 

nematodes 

Intensity 

range 

Mean 

intensity(±sd)  

0.04-0.12 10-43 23.59±8.24 34 8 23.5% 59 1 - 23 7.38±7.13# 

0.13-0.14 11 - 86 29.89±14.67 38 12 31.6% 26 1 - 9 2.17±2.48 

0.15-0.16 19 - 35 27.18±4.38 28 9 32.1% 32 1 - 8 3.56±2.50 

0.17-0.29 14.5-86 40.03±19.33 40 19 47.5% 146 1 - 22 8.11±7.64# 
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3.4.2 Spinitectus inermis (Zeder, 1800) 

3.4.2.1 Morphological examination 

The S. inermis parasites were identified based upon characteristic morphological features, as 

highlighted in the images below (Figures 3.2 – 3.4).   

 

Figure 3.2 Representative images of the anterior end of S. inermis, showing the characteristic 

funnel shaped buccal capsule (BC) and the ringed transverse rows of spines (RS) on the 

lateral margins of the body (parasite extracted from eel D5 sampled from the River Dee-

Eitha). 

 

Figure 3.3 Representative images of the posterior end of a male S. inermis showing the 

characteristic caudal papillae (CP) and the spicules (S) (parasite extracted from eel D5 

sampled from the River Dee-Eitha). 

B

C 
RS 

CP 

S 



85 

 

 

Figure 3.4 Representative image of the posterior end of a female S. inermis showing the 

characteristic pointed knob (PK) (parasite extracted from eel D5 sampled from the River 

Dee-Eitha).  

3.4.2 Primary infection data: the environment 

Examination of eel gastrointestinal tracts confirmed the presence of S. inermis nematodes in 9 

of the 140 (6.4%) European eel specimens. The positive infections were observed in eel 

sampled from only two English rivers and two Welsh rivers (Table 3.7). There was no 

statistical significance between the prevalence of S. inermis at the four positive catchment 

sites (p > 0.30).  

The total number of S. inermis collected was 61 parasites (mean intensity = 6.8 ±7.6 [61/9]; 

mean abundance = 0.44 ± 2.47 [61/140]). Overall, the parasites were over-dispersed 

(dispersion index =13.8); the number of nematodes per eel ranged from 1 (specimen RL2) to 

23 (specimen D5) and the majority (77.8%) of the infected eels harboured less than 8 

nematodes (Table 3.7). There was no significant difference in the mean intensity of S. inermis 

PK 
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between eel from the four catchment sites (p: 0.31 – 0.91). S. inermis was always isolated 

from European eel as a mixed infection with other small gastrointestinal nematodes (Table 

3.7).   

Table 3.7 S. inermis abundance and intensity data at the infected catchment sites.  Table also 

includes data for total gastrointestinal nematode infections. Ten eels were examined from 

each site.   

 

3.4.2.1 Primary infection data: the host 

For S. inermis infected eels, the body length ranged from 14.0 to 52.0 cm (mean = 25±11.74 

cm) and body weight ranged from 1.2 to 187.0g (mean = 37.73±57.68 g). For uninfected eels, 

the body length ranged from 10 to 86 cm (mean = 31.10±14.10 cm) and body weight ranged 

from 1.2g to 1380g (mean = 98.55±217.90 g). The mean condition factor for infected eel was 

0.14±0.06, whilst the mean condition factor for the uninfected eel was 0.15±0.04 (Table 3.8). 

Upon statistical analysis there was a marginal significant difference (p = 0.0497) between the 

body length of infected and non-infected eels. No significant differences in body weight (p = 

0.173) and condition factor (p = 0.085) were observed between the S. inermis infected and 

uninfected eels.    

Location Prevalence of 

gastrointestinal 

nematodes (%) 

Total number of 

gastrointestinal 

nematodes 

Spinitectus 

prevalence 

(%) 

Total 

number of 

Spinitectus 

Spinitectus 

mean abundance 

±(sd) 

Spinitectus 

mean 

intensity 

±(sd) 

Dee-Eitha:         

Wales 

40 29 20 27 2.7 ± 7.24 13.5 ± 13.43 

Clwyd-Elwy: 

Wales 

40 7 20 5 0.5 ± 1.08 2.5 ± 0.70 

Hether Burn: 

England 

20 16 10 7 0.7 ± 2.21 7  

Leven:             

England 

80 35 40 22 2.2 ± 4.96 5.5 ± 7.04 

 45%         87  22.5%     61 1.53 ±4.48   6.8 ±7.61   
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 Table 3.8 Eel morphometric data for animals with Spinitectus inermis infections sampled from 

sites across England and Wales. Ten eels were examined from each site. 

3.4.3 Molecular confirmation of Spinitectus inermis infection 

Genomic DNA was extracted and purified from three parasites (isolated from eel specimens 

D5, CE5 and RL2) suspected to be S. inermis. The 18S rRNA was PCR amplified and the 

resulting 435 bp products subjected to DNA sequencing. The BlastN analysis showed that the 

three sequences were identical and novel and that the most similar sequence was the 18S 

rRNA gene of S. carolini (Table 3.9). The novelty of the sequence is a consequence of there 

being a ‘C’ at position 286 bp (Figure 3.5) that distinguishes it from the published 18S rRNA 

sequences of other Spinitectus spp.; there is an absence of published data for the 18S rRNA 

gene data of S. inermis. In addition, there is a ‘G’ at position 309 bp of the sequenced sample 

which contrasts with the ‘A’ at this position in the 18S rRNA sequences deposited for S. 

carolini and S. tabascoensis. As such, the molecular analysis complements the morphological 

interpretation that the eel infection was indeed due to S. inermis. 

Table 3.9 BlastN anaylsis of the 18S RNA gene fragment derived from a nematode isolated 

from eel specimen D5 (equivalent data was generated for PCR products derived from 

nematodes sampled from eels CE5 and RL2).    

Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

Spinitectus carolini 18S ribosomal RNA 

gene, partial sequence 
686 686 99% 0.0 99% DQ503464.1 

Spinitectus tabascoensis voucher IPCAS 

N-928 small subunit ribosomal RNA gene, 

partial sequence    

677 677 99% 0.0 98% JF803922.1 

Spinitectus petterae isolate LV29 18S 

ribosomal RNA gene, partial sequence  
652 652 99% 0.0 97% DQ813447.1 

Catchment sites         

location 

Infected 

eel codes 

Eel body 

length 

(cm) 

Eel body 

weight (g) 

Condition 

factor 

Number of 

Spinitectus /eel 

Dee-Eitha: Wales D5 

D9 

14.0 

14.5 

2.4 

1.4 

0.09 

0.04 

23 

4 

Clwyd-Elwy: England CE5 

CE9 

29.0 

20.0 

39.3 

10.9 

0.16 

0.14 

2 

3 

Hether Burn: England HB10 16.5 11.1 0.25 7 

Leven: England RL2 

RL3 

RL4 

RL8 

52.0 

27.0 

22.5 

29.5 

187.0 

35.8 

21.3 

29.5 

0.13 

0.18 

0.19 

0.11 

1 

16 

2 

3 
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420125701_SP1_F_A06              -------------------TACGCCTTGACGGGCAGCTTCCCGGAAACGA 31 

gi|339787469|gb|JF803922.1|      GCGTTCCGTCGGTGGTAAATACGCCTTGACGGGCAGCTTCCCGGAAACGA 1012 

gi|95116612|gb|DQ503464.1|       GCGTTCCGTCGGTGGTAAATACGCCTTGACGGGCAGCTTCCCGGAAACGA 1047 

gi|459650384|gb|KC291616.1|      GCGTTCCGT-GGTGGTAAATACGCCTTGACGGGCAGCTTCCCGGAAACGA 168 

                                                    ******************************* 

 

420125701_SP1_F_A06              AAGTCTTTCGGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGA 81 

gi|339787469|gb|JF803922.1|      AAGTCTTTCGGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGA 1062 

gi|95116612|gb|DQ503464.1|       AAGTCTTTCGGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGA 1097 

gi|459650384|gb|KC291616.1|      AAGTCTTTCGGTTCCGGGGGAAGTATGGAAGCAAAGCTGAAACTTAAAGA 218 

                                 ****************************  ******************** 

 

420125701_SP1_F_A06              AATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACT 131 

gi|339787469|gb|JF803922.1|      AATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACT 1112 

gi|95116612|gb|DQ503464.1|       AATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACT 1147 

gi|459650384|gb|KC291616.1|      AATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACT 268 

                                 ************************************************** 

 

420125701_SP1_F_A06              CAACACGGGAAAACTCACCTGGCCCGGACACCGTGAGGATTGACAGATTG 181 

gi|339787469|gb|JF803922.1|      CAACACGGGAAAACTCACCTGGCCCGGACACCGTGAGGATTGACAGATTG 1162 

gi|95116612|gb|DQ503464.1|       CAACACGGGAAAACTCACCTGGCCCGGACACCGTGAGGATTGACAGATTG 1197 

gi|459650384|gb|KC291616.1|      CAACACGGGAAAACTCACCTGGCCCGGACACCGTGAGGATTGACAGATTG 318 

                                 ************************************************** 

 

420125701_SP1_F_A06              AGAGCTCTTTCTTGATTCGGTGGTTGGTGGTGCATGGCCGTTCTTAGTTG 231 

gi|339787469|gb|JF803922.1|      AGAGCTCTTTCTTGATTCGGTGGTTGGTGGTGCATGGCCGTTCTTAGTTG 1212 

gi|95116612|gb|DQ503464.1|       AGAGCTCTTTCTTGATTCGGTGGTTGGTGGTGCATGGCCGTTCTTAGTTG 1247 

gi|459650384|gb|KC291616.1|      AGAGCTCAAACTTGATTCGGTGGTTGGTGGTGCATGGCCGTTCTTAGTTG 368 

                                 *******   **************************************** 

 

420125701_SP1_F_A06              GTGGAGTGATTTGTCTGGTTTATTCCGATAACGAGCGAGACTCTAGCCTA 281 

gi|339787469|gb|JF803922.1|      GTGGAGTGATTTGTCTGGTTTATTCCGATAACGAGCGAGACTCTAGCCTA 1262 

gi|95116612|gb|DQ503464.1|       GTGGAGTGATTTGTCTGGTTTATTCCGATAACGAGCGAGACTCTAGCCTA 1297 

gi|459650384|gb|KC291616.1|      GTGGAGTGATTTGTCTGGTTTATTCCGATAACGAGCGAGACTCTAGCCTA 418 

                                 ************************************************** 

 

420125701_SP1_F_A06              CTAACTAGTCACCGGATGATTGCGTCCGGTGAGACTTCTTAGAGGGACAA 331 

gi|339787469|gb|JF803922.1|      CTAAATAGACACTGGATGATTGCGTCCAGTGAGACTTCTTAAAGGGACAA 1312 

gi|95116612|gb|DQ503464.1|       CTAAATAGTCACTGGATGATTGGGTCCAGTGAGACTTCTTAGAGGGACAA 1347 

gi|459650384|gb|KC291616.1|      CTAAATAGTCATCGGATGAAGAAGGTCGTGGAGACTTCTTAGAGGGACAA 468 

                                 **** *** **  ******    *  *   *********** ******** 

 

420125701_SP1_F_A06              GCGGTGCTTAGCCGCATGAAGTTGAGCAATAACAGGTCTGTGATGCCCTT 381 

gi|339787469|gb|JF803922.1|      GCGGTGCTTAGCCGCATGAAGTTGAGCAATAACAGGTCTGTGATGCCCTC 1362 

gi|95116612|gb|DQ503464.1|       GCGGTGCTTAGCCGCATGAAGTTGAGCAATAACAGGTCTGTGATGCCCTT 1397 

gi|459650384|gb|KC291616.1|      GCGGTGTTAAGCCGCATGTTGTTGAGCAATAACAGGTCTGTGATGCCCTT 518 

                                 ****** * *********  *****************************  

 

420125701_SP1_F_A06              AGATGTCCAA---------------------------------------- 391 

gi|339787469|gb|JF803922.1|      AGATGTCCAGGGCTGCACGCGCGCTACACTGGAGGAATCAGCGTGCATTA 1412 

gi|95116612|gb|DQ503464.1|       AGATGTCCAGGGCTGCACGCGCGCTACACTGGAGGAATCAGCGTGCATTA 1447 

gi|459650384|gb|KC291616.1|      AGATGTCCAGG--------------------------------------- 529 

                                 *********                                          

 

Figure 3.5 The 391 bp 18S rRNA DNA sequence (420125701_SP1_F_A06) from the 

nematode isolated from eel sample D5 aligned with Spinitectus spp. 18S rRNA sequences 

deposited in GenBank: S. carolini  (gi: 95116612), S. tabascoensis (gi: 339787469) and S. 

petterae (gi: 459650384).  
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A phylogenetic analysis of the 18S rRNA gene fragments for Spinitectus spp. and the novel 

sequence characterised from nematode D5/2010/03 shows that the latter is indeed most 

related to S. tabascoensis and S. carolini (Figure 3.6).       

 

 

 

Figure 3.6 Phylogram constructed using MEGA 6.0 of the genus Spinitectus derived using 

the S. inermis 18S rRNA gene fragment (420125701_SP1_F_A06) and the published 

Spinitectus spp. 18S rRNA gene fragments:  S. carolini (gi: 95116612), S. tabascoensis (gi: 

339787469) and S. petterae (gi: 459650384).  The 18S rRNA gene fragment from 

Paraquimperia africana (gi: 339787472) was utilized as the outgroup. 
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3.4.4 Paraquimperia tenerrima and Raphidascaris acus 

3.4.4.1 Morphological examinations 

The small gastrointestinal nematode Paraquimperia tenerrima was identified based upon 

characteristic morphological features, as highlighted in the images below (Figure 3.7).   

 
 
Figure 3.7   Representative images of P. tenerrima showing the characteristic cuticular alae 

(CA) at the anterior end and the sharp tail tip (ST) at the posterior (parasite extracted from eel 

RP1 sampled from the River Petteril).    
 

The other small gastrointestinal nematode frequently observed was Raphidascaris acus and 

this was identified based upon the characteristic morphological features highlighted in the 

images below (Figure 3.8).   

 

 

C A 
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Figure 3.8   Representative images of the anterior and posterior ends of Raphidascaris acus  

showing the characteristic features of the head end (HE) and the tail ending (TE) (parasite 

extracted from eel B8 sampled from the River Bela).  

 

3.4.4.2 Primary infection data: the environment 

Examination of the eel gastrointestinal tracts confirmed the presence of small size nematodes 

in 38 out of 140 European eel specimens (27.1%) (Tables 3.10 and 3.11). Moreover, these 

parasites were present in eel sampled from 12 of the 14 sites (Table 3.12). The greatest 

prevalence of small gastrointestinal nematodes was observed in eel sampled from the Rivers 

Bela and Petteril. In contrast, no small gastrointestinal nematodes were observed in eel 

sampled from the rivers Rhymney and Crouch. 

Eel sampled from the majority (8/12) of the catchment sites positive for gastrointestinal 

nematodes were not co-infected with S. inermis. In the remaining sites harbouring eel 

positive for gastrointestinal nematode infection (4/12), the small gastrointestinal nematodes 

were present as a co-infection with S. inermis.  

   

TE 

HE 
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Table 3.10 Host and small gastrointestinal nematode data for the 6 positive catchment sites in 

England. Ten eels were examined from each site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.11 Host and small gastrointestinal nematode data for the 6 positive catchment sites 

from Wales. Ten eels were examined from each site. 

 

 

 

 

 

Catchment Sites         

Location 

Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

small nematode 

Leven: RL RL1 

RL6 

RL9 

RL10 

21.0 

35.0 

30.0 

26.0 

13.9 

71.3 

38.1 

22.3 

0.16 

0.17 

0.14 

0.13 

8 

3 

1 

1 

Petteril: RP RP1 

RP2 

RP4 

RP6 

RP8 

RP9 

RP10 

36.0 

31.5 

28.0 

27.5 

43.0 

33.0 

26.0 

110.7 

82.8 

35.3 

38.2 

101.1 

98.3 

29.7 

0.24 

0.28 

0.16 

0.18 

0.07 

0.27 

0.17 

22 

17 

4 

4 

11 

14 

3 

Bela: B B1 

B2 

B3 

B4 

B7 

B8 

B10 

30.0 

32.0 

27.0 

19.5 

24.0 

28.0 

49.0 

42.0 

49.1 

33.0 

11.9 

22.2 

24.5 

209.0 

0.16 

0.15 

0.17 

0.16 

0.16 

0.18 

0.18 

5 

4 

1 

1 

6 

19 

4 

Crane: CN CN5 

CN6 

CN8 

CN10 

70.0 

74.0 

77.0 

74.0 

668.6 

839.7 

661.9 

743.4 

0.19 

0.21 

0.14 

0.18 

21 

1 

1 

3 

Hether Burn: HB HB5 25.0 18.6 0.12 9 

Gowy: RG RG8 33.0 62.2 0.17 5 

Catchment sites         

location 

Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

small nematode 

Clwyd-Meirchion: MC MC2 

MC3 

MC5 

MC6 

MC7 

MC8 

30.0 

35.0 

19.5 

18.5 

22.0 

15.5 

38.8 

54.6 

21.8 

9.0 

12.0 

5.3 

0.14 

0.13 

0.29 

0.14 

0.11 

0.14 

5 

1 

3 

1 

3 

1 

Clwyd-Elwy: CE CE1 

CE3 

39.0 

31.0 

72.9 

46.0 

0.12 

0.15 

1 

1 

Dee-Eitha: D D1 

D10 

28.5 

25.5 

27.6 

21.6 

0.13 

0.13 

1 

1 

Mawddach-eden: M M6 

M9 

28.0 

23.0 

36.9 

15.5 

0.17 

0.13 

1 

9 

Taff: TB TB4 22.0 15.6 0.18 1 

Cadoxton: CD CD3 28.5 21.4 0.06 5 
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Table 3.12 Primary infection data for small gastrointestinal nematode infection in  

European eel samples from English and Welsh rivers. Ten eels were examined at each 

catchment site. 

 
Eel Catchment Sites Prevalence 

Rate (%) 

Total number 

of parasite 

Mean Parasitic 

Abundance ±(sd) 

Mean Infection 

Intensity ±(sd) 

Leven RL: England 40 13 1.3 ± 2.54 3.25 ± 3.30 

Petteril RP: England 70 75 7.5±7.94 10.71±7.38 

Bela B: England 70 40 4.0±5.73 5.73±6.15 

Crane CN: England 40 26 2.6±6.53 6.5±9.71 

Hether Burn HB: England 10 9 0.9 ± 2.84 9.0 

Gowy RG: England 10 5 0.5±1.58 5.0 

Crouch  C: England 0 0 0 0 

Clwyd-Meirchion MC: Wales 60 14 1.4±1.7 2.3±1.6 

Clwyd-Elwy CE: Wales 20 2 0.2 ± o.42 1 ± 0.0 

Dee-Eitha D: Wales 20 2 0.2 ± 0.42 1.0 

Mawddach-eden M; Wales 20 10 0.7±1.88 4.7±3.53 

Taff TB: Wales 10 1 0.1±0.31 1.0 

Cadoxton CD: Wales 10 5 0.5±1.58 5.0 

Rhymney R: Wales 0 0 0 0 

 27.14% 202 1.44± 3.87 5.31±5.93 

The total, 202 small gastrointestinal nematodes were collected from the eels surveyed in this 

study (mean intensity of infection = 5.31 ±5.93 [202/38]; mean abundance = 1.44 ± 3.87 

[202/140]). Eel sampled from the River Petteril had the greatest mean intensity of infection 

(10.71±7.38). The number of nematodes isolated from individual eel ranged from 1 

(specimen TB4) to 22 (specimen RP1) per eel. The majority (32/38, 84.21%) of the small 

gastrointestinal nematode infected eels harboured less than 10 parasites. Moreover, almost 

40% (15/38) of the infected eels harboured a single small gastrointestinal nematode. In 

contrast, 15.79% (6/38) of the infected hosts harboured greater than 10 small gastrointestinal 
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nematodes.  The small gastrointestinal nematodes were therefore over-dispersed in the eel 

population (dispersion index = 39.5). 

At the regional level, all the geographic areas contained eel with small gastrointestinal 

nematode infections (Table 3.13). Interestingly, comparing the South of England with the 

North West of England, and also, South Wales with North Wales, the more northerly of these 

sites showed a higher prevalence of small gastrointestinal infections in eel. Indeed, this 

difference was statistically significant for the Welsh comparison (p = 0.018), though not for 

the English comparison (p = 0.16). There was also a statistically significant difference in 

prevalence of small gastrointestinal nematodes between eels sampled from North West 

England and South Wales (p = 0.0015). 

With respect to small gastrointestinal abundance, there was a statistically significant 

difference between North West England and South Wales (p = 0.0013) and also, between 

North West England and South East England (p = 0.0417). All other comparisons of small 

gastrointestinal nematode abundance were not statistically significant (p > 0.05).    
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Table 3.13 Regional infection data for small gastrointestinal nematodes isolated from 

European eel sampled across England and Wales. # 
Statistically significant difference in prevalence 

(p<0.05) with respect to South Wales. * Statistically significant difference in mean abundance (p<0.05) with 

respect to South Wales. 
a 

Statistically significant difference in mean abundance (p<0.05) with respect to North 

West England.  

 

Regions Number 

of 

examined 

river sites 

Number 

of 

examined 

eel  

Number 

of 

infected 

eel 

Small 

nematodes 

prevalence 

(%) 

Number of 

small 

nematodes 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

North 

West 

England 

5 50 20 40%# 142 2.84±5.28* 7.1±6.32 1 - 22 

South East 

England 

2 20 4 20% 26 1.3±4.69a 6.5±9.71 1 - 21 

North 

Wales 

4 40 12 30%# 28 0.7±1.69 2.33±1.46 1 – 9  

South 

Wales 

3 30 2 6.7% 6 0.2±0.92 3±2.83 1 - 5 

Total 14 140 38 27.1% 202 1.44 ± 3.87 5.31 ±5.93 1 - 22 

 

3.4.4.3 Primary infection data: the host 

For the small gastrointestinal nematode infected eels, the body length ranged from 15.5 to 

86.0 cm (mean = 35.21±17.53 cm) and body weight ranged from 5.3 to 839.7g (mean = 

138±240.87 g). For uninfected eels, the body length ranged from 10 to 86 cm (mean = 

28.97±13.44 cm) and body weight ranged from 1.2g to 1380g (mean = 78.28±199.07 g). The 

mean condition factor for infected eel was 0.16±0.05, whilst the mean condition factor for the 

uninfected eel was 0.14±0.04 (Tables 3.11 and 3.12). 

Upon analysing the prevalence data with respect to body length category (Table 3.14) there 

were no statistically significant differences observed (p>0.05). With respect to mean intensity 

of infection, the only significant difference was between the two categories of eel body length 

between 20 and 30 cm (p = 0.0301).   
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Table 3.14 Small gastrointestinal nematode infection data with respect to eel body length 

category.  

Body 

length 

range (cm) 

Number of 

examined 

eel 

Number 

of 

infected 

eel 

Small nematodes 

prevalence rate 

(%) 

Number of  

small 

nematodes 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

10-20 26 3 11.5 3 0.12±0.33 1 1 

20.5-25 32 8 25 44 1.38±2.81 5.5±3.02 1-9 

25.5-30 32 11 34.4 27 0.84±1.55 2.75 1-5 

30.5-35 22 7 31.8 45 2.05±4.6 6.43±6.43 1-17 

35.5-86 28 9 31.1 83 2.96±6.64 9.22±9.15 1-21 

 

With respect to condition factor, there was a significant difference in prevalence data between 

the smallest and largest categories of condition factor (p = 0.036) (Table 3.15). Comparisons 

of all other categories of condition factor showed no statistical significance in prevalence data 

(p: 0.22 – 1.0). The mean intensity of infection for the smallest category of condition factor 

was significantly different to the data for the two categories of eel with eel condition factors 

between 0.13 and 0.16. In addition, the eel within the greatest category of condition factor 

had a significantly greater mean intensity of small gastrointestinal nematodes compared to the 

eel within the condition factor category 0.13-0.14.   
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Table 3.15 Small gastrointestinal nematode infection with respect to eel condition factor 

category. # Statistically significant difference in prevalence (p<0.05) relative to the lowest 

condition factor. * Statistically significant difference in mean intensity (p<0.05) relative to 

the lowest condition factor. 
a 

Statistically significant difference in mean intensity (p<0.05) 

relative to the condition factor category 0.13-0.14.   

Condition 

factor 

range 

Length 

range 

(cm)  

Mean 

length (±sd) 

(cm)   

Eel 

examined 

Infected 

eel 

Prevalence 

rate (%) 

Number of 

small 

nematodes 

Intensity 

range 

Mean 

intensity(±sd)  

0.04-0.12 10-43 23.6±8.2 34 5 17.7 29 1-11 5.8±4.1 

0.13-0.14 11-86 29.9±14.7 38 10 36.3 22 1-9 2.2±2.7* 

0.15-0.16 19-35 27.2±4.4 28 8 28.6 30 1-8 3.8±2.6* 

0.17-0.29 14.5-86 40.0±19.3 40 15 37.5# 121 1-22 15.1±7.9a 

3.4.5 Molecular identification of the small nematodes 

Genomic DNA was extracted and purified from 12 randomly selected small gastrointestinal 

nematodes (isolated from eel specimens across four sites: CD3, B2, B3, CN5, RP2 and RP9).  

The 18S rRNA was PCR amplified and the resulting 662 bp products subjected to DNA 

sequencing. The BlastN analysis showed that 50% (6/12) of the sequences were identical to 

the 18S rRNA gene of Raphidascaris acus (Figure 3.9). The other 6 sequences generated 

were identical and novel and most similar to the 18S rRNA DNA sequence for 

Paraquimperia africana (Table 3.16 and Figure 3.10). The novelty of these sequences is a 

consequence of there being a ‘A’ at position 240 bp (Figure 3.10) that distinguishes it from 

the 18S rRNA sequence of P. africana.  As such, the molecular analysis complements the 

morphological approach and the R. ascus and P. tennerima nematodes were likely to be 

present in approximately equal proportions in the sampled eel. Not surprisingly, examples of 

mixed R. ascus and P. tennerima were evident in individual eel (Table 3.17).    
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421377801_9_PaF_A06             ---------------------------------------GTATGGTTGCA 11 

gi|95116608|gb|DQ503460.1|      CAGCTTCCCGGAAACGAAAGTCTTTCGGTTCCGGGGGAAGTATGGTTGCA 1100 

                                                                       *********** 

 

421377801_9_PaF_A06             AAGCTGAAACTTAAAGAAATTGACGGAAGGGCACCACCAGGAGTGGAGCC 61 

gi|95116608|gb|DQ503460.1|      AAGCTGAAACTTAAAGAAATTGACGGAAGGGCACCACCAGGAGTGGAGCC 1150 

                                ************************************************** 

 

421377801_9_PaF_A06             TGCGGCTTAATTTGACTCAACACGGGAAAACTCACCTGGCCCGGACACCG 111 

gi|95116608|gb|DQ503460.1|      TGCGGCTTAATTTGACTCAACACGGGAAAACTCACCTGGCCCGGACACCG 1200 

                                ************************************************** 

 

421377801_9_PaF_A06             TGAGGATTGACAGATTGATAGCTCTTTCTTGATTCGGTGGTTGGTGGTGC 161 

gi|95116608|gb|DQ503460.1|      TGAGGATTGACAGATTGATAGCTCTTTCTTGATTCGGTGGTTGGTGGTGC 1250 

                                ************************************************** 

 

421377801_9_PaF_A06             ATGGCCGTTCTTAGTTGGTGGAGTGATTTGTCTGGTTTATTCCGATAACG 211 

gi|95116608|gb|DQ503460.1|      ATGGCCGTTCTTAGTTGGTGGAGTGATTTGTCTGGTTTATTCCGATAACG 1300 

                                ************************************************** 

 

421377801_9_PaF_A06             AGCGAGACTCTAGCCTACTAAATAGTCATCGGATAAATACGTCTGGAAGA 261 

gi|95116608|gb|DQ503460.1|      AGCGAGACTCTAGCCTACTAAATAGTCATCGGATAAATACGTCTGGAAGA 1350 

                                ************************************************** 

 

421377801_9_PaF_A06             CTTCTTAGAGGGACAAGCGGTGTTCAGCCGCATGAAGTTGAGCAATAACA 311 

gi|95116608|gb|DQ503460.1|      CTTCTTAGAGGGACAAGCGGTGTTCAGCCGCATGAAGTTGAGCAATAACA 1400 

                                ************************************************** 

 

421377801_9_PaF_A06             GGTCTGTGATGCCCTTAGATGTCCAGGGCTGCACGCGCGCTACACTGGAG 361 

gi|95116608|gb|DQ503460.1|      GGTCTGTGATGCCCTTAGATGTCCAGGGCTGCACGCGCGCTACACTGGAG 1450 

                                ************************************************** 

 

421377801_9_PaF_A06             GAATCAGCGTGCTGTAACCATTGCCGAAAGGTATTGGTAACCCCTTGAAA 411 

gi|95116608|gb|DQ503460.1|      GAATCAGCGTGCTGTAACCATTGCCGAAAGGTATTGGTAACCCCTTGAAA 1500 

                                ************************************************** 

 

421377801_9_PaF_A06             ATCCTCCGTGATCGGGATCGGGAATTGCAATTATTTCCCTTGAACGAGGA 461 

gi|95116608|gb|DQ503460.1|      ATCCTCCGTGATCGGGATCGGGAATTGCAATTATTTCCCTTGAACGAGGA 1550 

                                ************************************************** 

 

421377801_9_PaF_A06             ATTCCTAGTAAGTGTGAGTCATCAGCTCACGTTGATTACGTCCCTGCCCT 511 

gi|95116608|gb|DQ503460.1|      ATTCCTAGTAAGTGTGAGTCATCAGCTCACGTTGATTACGTCCCTGCCCT 1600 

                                ************************************************** 

 

421377801_9_PaF_A06             TTGTACACACCGCCCGTCGCTGCCCGGGACTGAGCCGTTTT--------- 552 

gi|95116608|gb|DQ503460.1|      TTGTACACACCGCCCGTCGCTGCCCGGGACTGAGCCGTTTCGAGAAAAGC 1650 

                                ****************************************           

 

Figure 3.9 The 18S rRNA DNA sequence (421377801_9_PaF_A06) derived from a small 

gastrointestinal nematode (CN5 (2)) isolated from eel sample CN5 aligned with the 

Raphidascaris acus 18S rRNA sequence deposited in GenBank (gi: 95116608). 

 

Table 3.16 BlastN analysis of the 18S RNA gene fragment derived from a nematode isolated 

from eel specimen CD3 (equivalent data was generated for 5 other PCR products derived 

from nematodes sampled from eels B2, B3 and CN5).    

worm 

I.D 

  

Sequence I.D Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

CD3.3 421377801_1_PaF_A05 Paraquimperia africana  small 

subunit ribosomal RNA gene, 

partial sequence 

1009 1009 100% 0.0 99% JF803925 
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421377801_1_PaF_A05              ----------------------------CAAAGCTGAAACTTAAAGGAAT 22 

gi|339787472|gb|JF803925.1|      TCTTCCGGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAAT 1050 

                                                             ********************** 

 

421377801_1_PaF_A05              TGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAA 72 

gi|339787472|gb|JF803925.1|      TGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAA 1100 

                                 ************************************************** 

 

421377801_1_PaF_A05              CACGGGAAAACTCACCCGGCCCGGACACCGTGAGGATTGACAGATTGAGA 122 

gi|339787472|gb|JF803925.1|      CACGGGAAAACTCACCCGGCCCGGACACCGTGAGGATTGACAGATTGAGA 1150 

                                 ************************************************** 

 

421377801_1_PaF_A05              GCTCTTTCTTGATTCGGTGGTTGGTGGTGCATGGCCGTTCTTAGTTGGTG 172 

gi|339787472|gb|JF803925.1|      GCTCTTTCTTGATTCGGTGGTTGGTGGTGCATGGCCGTTCTTAGTTGGTG 1200 

                                 ************************************************** 

 

421377801_1_PaF_A05              GAGTGATTTGTCTGGTTTATTCCGATAACGAGCGAGACTCTAGCCTACTA 222 

gi|339787472|gb|JF803925.1|      GAGTGATTTGTCTGGTTTATTCCGATAACGAGCGAGACTCTAGCCTACTA 1250 

                                 ************************************************** 

 

421377801_1_PaF_A05              AATAGTGACTGGATACTTAAGTCCAGAATACTTCTTAGAGGGACAAGCGG 272 

gi|339787472|gb|JF803925.1|      AATAGTGACTGGATACTTGAGTCCAGAATACTTCTTAGAGGGACAAGCGG 1300 

                                 ****************** ******************************* 

 

421377801_1_PaF_A05              TGTTCAGCCGCACGAAATTGAGCAATAACAGGTCTGTGATGCCCTTAGAT 322 

gi|339787472|gb|JF803925.1|      TGTTCAGCCGCACGAAATTGAGCAATAACAGGTCTGTGATGCCCTTAGAT 1350 

                                 ************************************************** 

 

421377801_1_PaF_A05              GTCCGGGGCTGCACGCGCGCTACACTGGAGGAATCAGCGTGCTGTAACCA 372 

gi|339787472|gb|JF803925.1|      GTCCGGGGCTGCACGCGCGCTACACTGGAGGAATCAGCGTGCTGTAACCA 1400 

                                 ************************************************** 

 

421377801_1_PaF_A05              TTGCCGAAAGGCATTGGTAACCCCTTGAAAATCCTCCGTGATCGGGATCG 422 

gi|339787472|gb|JF803925.1|      TTGCCGAAAGGCATTGGTAACCCCTTGAAAATCCTCCGTGATCGGGATCG 1450 

                                 ************************************************** 

 

421377801_1_PaF_A05              GGAATTGCAATTATTTCCCTTGAACGAGGAATTCCCAGTAAGTGTGAGTC 472 

gi|339787472|gb|JF803925.1|      GGAATTGCAATTATTTCCCTTGAACGAGGAATTCCCAGTAAGTGTGAGTC 1500 

                                 ************************************************** 

 

421377801_1_PaF_A05              ATCAGCTCACGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGC 522 

gi|339787472|gb|JF803925.1|      ATCAGCTCACGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGC 1550 

                                 ************************************************** 

 

421377801_1_PaF_A05              TGCCCGGGACTGAGCCGTTTCGAGAAA----------------------- 549 

gi|339787472|gb|JF803925.1|      TGCCCGGGACTGAGCCGTTTCGAGAAAAGCGGGGACTGCTGATTTGAGGC 1600 

                                 ***************************                        

 

                                                                                   

 

Figure 3.10 The 549 bp 18S rRNA DNA sequence (421377801_1_PaF_A05) from a small 

gastrointestinal nematode (CD3 (1)) isolated from eel sample CD3 aligned with the 

Paraquimperia africana 18S rRNA sequence deposited in GenBank (gi: 339787472). 
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Table 3.17 Molecular identification of 12 individual small gastrointestinal nematodes based 

upon BlastN analysis of the 18S RNA gene fragment.   

Eel catchment sites Individual eel code and 

total number of small 

gastrointestinal 

nematodes in parenthesis 

Small 

gastrointestinal 

nematode code 

Most similar, 

or identical, 

BlastN output 

Petteril RP: England RP2 (17) 

 

RP9 (14) 

 

RP2 (1) 

RP2 (2) 

RP9 (2) 

RP9 (3) 

RP9 (5) 

RP9 (8) 

R. acus 

R. acus 

P. africana 

P. africana 

R. acus 

R. acus 

Bela B: England B2 (4) 

B3 (1) 

B2 (2) 

B3 (1) 

P. africana 

P. africana 

Crane CN: England CN5(21) CN5 (1) 

CN5(2) 

P. africana 

R. acus 

Cadoxton CD: Wales CD3(5) CD3 (1) 

CD3 (3) 

P. africana 

P. africana 
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3.4.6 Gut pathological response to nematode infection 

Upon dissection and analysis of the gut of eels sampled from the River Crane it was 

apparent that the majority (70%) exhibited an encystment response to nematode infection 

(Figure 3.11). The number of encysted nematodes ranged from 1 to 8 per eel. No gut 

encystment response was observed in any of the eel specimens from the remaining 

sampling sites. 

 

 

 

Figure 3.11 Representative images of (A) the encystment of nematodes with the eel gut wall 

(CN4), (B) a partially encysted nematode and (C) a nematode upon extraction from the gut 

wall that morphologically resembles an L3 stage A. crassus. 

 

Morphological analysis of the extracted nematodes indicated that they were of two distinct 

species and these were suspected to be R. acus and the swim bladder nematode A. crassus.   

A 
B 

C 
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3.4.6.1 Molecular identification of the gut encysted nematodes 

Genomic DNA was extracted from 6 encapsulated worms randomly removed from the gut 

wall of eel specimens CN4 (n=2), CN5 (n=2) and CN10 (n=2). A fragment of the 18S rRNA 

gene was PCR amplified from the genomic DNA and the resulting 662 bp products were 

subjected to DNA sequence analysis. The BlastN analysis showed that the sequence was 

99.7% identical to the A. crassus 18S rRNA gene (Table 3.18) and hence one of the encysted 

nematodes was, as suspected from the earlier morphological analysis, most likely to be A. 

crassus.  

Table 3.18 BlastN analysis of the 18S RNA gene fragment derived from encapsulated larvae 

isolated from eel specimen CN10.     

Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

Anguillicola crassus from Czech Republic 

small subunit ribosomal RNA gene, partial 

sequence 

551 551 99% 0.0 99% DQ490223.1  

Anguillicola crassus small subunit 

ribosomal RNA gene, partial sequence 
551 551 99% 0.0 99% DQ118535.1  

The remaining 5 sequences were all identical; BlastN analysis and sequence alignment (Table 

3.19, Figure 3.12) confirmed that these nematodes were either R. acus, or Hysterothylacium 

deardorffoverstreetorum. The latter is a nematode currently only reported from cutlass fish 

(Trichiurus lepturus) (Knoff et al., 2012), stripped weakfish (Cynoscion guatucupa) 

(Fontenelle et al., 2013) and Paralichthys isosceles (Knoff et al., 2012); all captured off the 

coast of Brazil.  Moreover, the species of Hysterothylacium known to infect eel is H. 

aduncum (Køie, 1993; Alves et al., 2002) and the 18S rRNA sequence of this nematode is 

dissimilar to that of H. deardorffoverstreetorum and hence the samples derived from this 

study. Consequently, the 5 encysted nematodes examined by PCR and sequencing can be 

confidently predicted to be R. acus.  
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Table 3.19 BlastN analysis of the 18S RNA gene fragment derived from encapsulated larvae isolated from eel 

specimen CN10 (equivalent data was generated for 4 other PCR products derived from encysted nematodes 

removed from the gut wall of eel specimens CN4 (n=2) and CN5 (n=2). 

Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

Hysterothylacium deardorffoverstreetorum  
18S ribosomal RNA gene, partial sequence 

1035 1035 100% 0.0 100% JF718550.1 

Raphidascaris acus 18S ribosomal RNA 

gene, partial sequence 
1035 1035 100% 0.0 100% DQ503460.1  

                                     

 

gi|380084914|gb|JF718550.1|      ACCAAAGCTCCGAATTTTTGACGAGCGCATCTATTAGATTAAAACCAATC 170 

gi|95116608|gb|DQ503460.1|       ACCAAAGCTCCGAATTTTTGACGAGCGCATCTATTAGATTAAAACCAATC 200 

420573301_An4_F_C01              ---------------------------------TTAGATTAAAACCAATC 17 

                                                                  ***************** 

 

gi|380084914|gb|JF718550.1|      GGGTTTCGGCCCGTTTGTTGGTGACTCTGAATAACTATAGCTGATCGCAT 220 

gi|95116608|gb|DQ503460.1|       GGGTTTCGGCCCGTTTGTTGGTGACTCTGAATAACTATAGCTGATCGCAT 250 

420573301_An4_F_C01              GGGTTTCGGCCCGTTTGTTGGTGACTCTGAATAACTATAGCTGATCGCAT 67 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      GGTCTAGAACCGGCGACGTGTCTATCAAGTGTCTGCCTTATCAACTGTCG 270 

gi|95116608|gb|DQ503460.1|       GGTCTAGAACCGGCGACGTGTCTATCAAGTGTCTGCCTTATCAACTGTCG 300 

420573301_An4_F_C01              GGTCTAGAACCGGCGACGTGTCTATCAAGTGTCTGCCTTATCAACTGTCG 117 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      ATGGTAGTTTATGTGCCTACCATGGTTGTAACGGGTAACGGAGAATAAGG 320 

gi|95116608|gb|DQ503460.1|       ATGGTAGTTTATGTGCCTACCATGGTTGTAACGGGTAACGGAGAATAAGG 350 

420573301_An4_F_C01              ATGGTAGTTTATGTGCCTACCATGGTTGTAACGGGTAACGGAGAATAAGG 167 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      GTTCGACTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAG 370 

gi|95116608|gb|DQ503460.1|       GTTCGACTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAG 400 

420573301_An4_F_C01              GTTCGACTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAG 217 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      GCAGCAGGCGCGCAAATTACCCACTCTCGGCATGAGGAGGTAGTGACGAA 420 

gi|95116608|gb|DQ503460.1|       GCAGCAGGCGCGCAAATTACCCACTCTCGGCATGAGGAGGTAGTGACGAA 450 

420573301_An4_F_C01              GCAGCAGGCGCGCAAATTACCCACTCTCGGCATGAGGAGGTAGTGACGAA 267 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      AAATAACGAGACCGTTCTCTATGAGGCCGGTTATCGGAATGGGTACAATT 470 

gi|95116608|gb|DQ503460.1|       AAATAACGAGACCGTTCTCTATGAGGCCGGTTATCGGAATGGGTACAATT 500 

420573301_An4_F_C01              AAATAACGAGACCGTTCTCTATGAGGCCGGTTATCGGAATGGGTACAATT 317 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      TAAACCCGTTAACGAGGATCTATGAGAGGGCAAGTCTGGTGCCAGCAGCC 520 

gi|95116608|gb|DQ503460.1|       TAAACCCGTTAACGAGGATCTATGAGAGGGCAAGTCTGGTGCCAGCAGCC 550 

420573301_An4_F_C01              TAAACCCGTTAACGAGGATCTATGAGAGGGCAAGTCTGGTGCCAGCAGCC 367 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      GCGGTAATTCCAGCTCTCAAAGTGTATATCGTCATTGCTGCGGTTAAAAA 570 

gi|95116608|gb|DQ503460.1|       GCGGTAATTCCAGCTCTCAAAGTGTATATCGTCATTGCTGCGGTTAAAAA 600 

420573301_An4_F_C01              GCGGTAATTCCAGCTCTCAAAGTGTATATCGTCATTGCTGCGGTTAAAAA 417 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      GCTCGTAGTTGGATCTGCGCCTCAGGACTTGGTCCGCCCACTGGGTGAGA 620 

gi|95116608|gb|DQ503460.1|       GCTCGTAGTTGGATCTGCGCCTCAGGACTTGGTCCGCCCACTGGGTGAGA 650 

420573301_An4_F_C01              GCTCGTAGTTGGATCTGCGCCTCAGGACTTGGTCCGCCCACTGGGTGAGA 467 

                                 ************************************************** 

 

gi|380084914|gb|JF718550.1|      ACTGGGCTCCTGGGCTAGTTCTGCTGGTTTTCCCTACGTTGCCTTCATCG 670 

gi|95116608|gb|DQ503460.1|       ACTGGGCTCCTGGGCTAGTTCTGCTGGTTTTCCCTACGTTGCCTTCATCG 700 

420573301_An4_F_C01              ACTGGGCTCCTGGGCTAGTTCTGCTGGTTTTCCCTACGTTGC-------- 509 

                                 ******************************************         

Figure 3.12 The 509 bp 18S rRNA DNA sequence (420573301_An4_F_C01) derived from 

an encapsulated nematode removed from the gut wall from eel sample CN10 aligned with the 

Hysterothylacium deardorffoverstreetorum (gi: 380084914) and Raphidascaris acus (gi: 

95116608) 18S rRNA gene sequences deposited in GenBank.                                                            
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3.5 Discussion 

Gastrointestinal nematodes are common infections in most animals and in mammals, there is 

increasing evidence to suggest that there is a health benefit to harbouring such parasites 

(Wills-Karp et al., 2001; Okada et al., 2010). However, in fish, there is much less known 

about the interactions that occur between different species of gastrointestinal nematodes and 

also, between these parasites and the host immune system. As such, the work carried out in 

this chapter attempted to describe some baseline data on gastrointestinal nematode infections 

in European eel sampled from river systems in the United Kingdom. As highlighted in 

previous chapters, the mode of acquisition of the eel was not ideal and hence caution is 

necessary when interpreting the significance of some of the primary infection data. 

Perhaps not surprisingly, the data showed that gastrointestinal infections in the European eel 

are common and widespread in UK rivers and as observed in other studies, the parasites are 

over-dispersed amongst the population (Nie & Kennedy, 1991c). Interestingly, there 

appeared to be a significant difference in the prevalence of gastrointestinal nematode 

infections between the regions; the more northern sampling areas of England and Wales had 

the greater percentage of infection relative to the respective southern regions. This is in 

contrast to the trend observed with the gill monogenean parasite (Chapter 2) and is most 

likely explained by life-cycle differences since the pseudodactylid has a direct life-cycle 

whereas the gastrointestinal nematodes have obligatory intermediate host stages. Moreover, 

the gastrointestinal nematode abundance data was significantly greater for eel sampled from 

rivers in North West England compared to two of the three other regions; the exception being 

North Wales. The reason for this is probably due to the relatively high prevalence of 

gastrointestinal nematode infection observed in eel from North Wales which indicates an 

environment conducive to transmission of the parasites to the definitive host and hence 

enhanced burden. Upon examination of the parasite infection data with respect to host 
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factors, there was no significant impact upon prevalence, or intensity, with respect to eel 

body length. However, significance was established when the data was examined with respect 

to host condition factor. Indeed, perhaps most convincingly, the greatest intensity of infection 

was observed in eel with the greatest category of condition factor (0.17-0.29) and this 

contrasted with a significantly lower infection intensity observed in eel that comprised a 

relatively low condition factor category (0.13-0.14). As such, one conclusion from this would 

be that gastrointestinal nematodes appear not to affect the overall body condition of eel 

(Kennedy, 2007a; Marcogliese & Pietrock, 2011; Mayo-Hernaez et al., 2015).   

An examination of the gastrointestinal nematode community that infected the eels showed 

that it comprised of three species; S. inermis and the relatively small nematodes P. tenerrima 

and R. acus. These species have been reported to infect the European eel elsewhere 

(Kennedy, 1974; Esch et al., 1988; Kennedy, 1993b; Kennedy, 2012) and hence their 

identification in UK eel specimens is not surprising. S. inermis was the least common 

gastrointestinal nematode in the sampled population since it was only recovered from two 

catchment sites in England and two in Wales. Moreover, this parasite was never recovered 

exclusively from the eel gastrointestinal tracts since the smaller nematodes were also always 

present. Perhaps worthy of further investigation was the finding that there appeared to be a 

significant difference in body length between S. inermis infected and uninfected eels; albeit, 

this was only marginally significant. The 18S rRNA sequence derived from samples of S. 

inermis was novel and hence provides useful molecular assistance to identifying this parasite.  

Moreover, the sequence data has assisted a phylogenetic analysis of the genus since S. 

inermis separates the clade formed by S. carolini and S. tabascoensis from S. petterae.     

A regional analysis of the infection data for the small gastrointestinal nematodes P. tenerrima 

and R. acus reinforced the earlier more general finding that the more northerly sites have a 

higher prevalence of infection. Indeed, the eel sampled from North Wales and North West 
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England had a significantly greater prevalence of these small gastrointestinal nematodes 

compared to South Wales. Further corroboration for a regional difference was provided by 

significant differences in the abundance data between North West England and South Wales 

and also, North West England and South East England. As commented above, these 

differences are most likely reflecting regional variations in the physical and biological 

properties of the rivers and how these factors interact to support the intermediate and 

paratenic hosts and the transmission of the parasite to the eel.        

Interestingly, there appeared to be a significant difference in intensity of infection with P. 

tennerima and R. acus between two relatively similar categories of eel body size; 20.5-25cm 

and 25.5-30cm.  This result was somewhat surprising and most probably reflects for some 

unknown reason that the 25.5-30 cm body length category of eel harboured fewer parasites 

than expected since the overall trend was for the larger fish to contain more gastrointestinal 

nematodes.   

Interestingly, the eel with the lowest condition factor category had the second greatest 

intensity of infection with small gastrointestinal nematodes and as a result, the data was 

significantly different to categories of eel with greater condition factors. As such, this lends 

itself to the intriguing proposal that the greater numbers of P. tennerima and R. acus may 

have contributed to the lowered condition factor in these hosts. The alternative and perhaps 

stronger argument given that the greatest intensity data is observed in the highest category of 

condition factor, is that the eel with the lowest condition factor are simply more susceptible to 

increased numbers of these parasites in their gastrointestinal tracts.    

In characterising the P. tennerima infections novel 18S rRNA sequence data was generated.  

Firstly, this facilitated an overall comparison of the relative contributions of P. tenerrima and 

R. acus to the overall gastrointestinal nematode community; based on a random sample of 12 

nematodes extracted from six hosts across 4 catchment sites, these species were present in 
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equal numbers. Secondly, the DNA sequence data should assist a phylogenetic analysis of the 

genus Paraquimperia.   

In body length and body weight, eel from the River Crane were the largest (Chapter 1).  

Interestingly, the majority of eel from this catchment site contained encysted nematodes 

within their gastrointestinal tracts whereas this pathological feature was absent in all the other 

eel specimens.  The identity of the encysted nematodes was confirmed following PCR 

amplification and DNA sequencing of the 18S rRNA gene of a random sample of parasites 

extracted from the cysts. The greatest proportion of encysted nematodes were identified as R. 

acus and the other parasite identified was A. crassus. Interpretation of this observation is that 

the largest and hence oldest eel have developed a degree of immunity to infection with both 

of these parasites. Indeed, this type of immunity to A. crassus has previously been reported 

(Knopf et al., 2000). 

In summary, data in this Chapter has shown that three species of gastrointestinal nematode; S. 

inermis, P. tennerima and R. acus, are commonly found in A. anguilla present in rivers across 

England and Wales. Some interesting regional data was observed that would be worthy of 

further exploration given that the precise sampling dates are unknown. Moreover, certain host 

factors are also worthy of further investigation given the observed infection profiles. The 

encystment observed in the largest eel certainly corroborates other reports that these hosts are 

able to mount an immune response to certain gastrointestinal nematode infections and in 

particular, a limited response to A. crassus. The precise details of this immune response and 

indeed, how gastrointestinal nematodes may influence the immune status of the European eel 

more generally, remain topics worthy of considerable more study.       
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CHAPTER FOUR 

Other Gastrointestinal Helminths 

4.1 INTRODUCTION  

4.1.1 Acanthocephalan parasites 

Acanthocephala, the thorny-headed worms, is a phylum of gastrointestinal parasites of 

vertebrates that utilise arthropods as intermediate hosts (Crompton & Nickol, 1985). The 

phylum includes approximately 1298 described species, and it is divided into four classes: 

Archiacanthocephala, Palaeacanthocephala, Eoacanthocephala and Polyaacanthocephala 

(Amin, 2013). In addition to the species of intermediate and final host, these classes are 

distinguished by morphological characteristics that include the location of lacunar canals, the 

persistence of ligament sacs in females, the number and type of cement glands in males and 

the number and size of proboscis hooks (Bullock & Schmidt, 1969; Amin, 1987; García-

Varela et al., 2000; Wayland, 2010). The name of the phylum refers to the thorny retractable 

proboscis that anchors the adult worm to the intestine of the final host. Superficially, the 

acanthocephalan body consists of the anterior proboscis, a neck and a trunk (Figure 4.1). The 

proboscis size, shape and number of hooks are important taxonomic characters(Wayland, 

2010). The trunk, or metasoma, contains the reproductive system and also functions in 

absorbing and distributing nutrients from the host’s intestinal content. The proboscis and 

trunk are separated by the neck (Roberts & Janovy, 2005). 

 

 

 

Figure 4.1 An annotated image of a male A. clavula (Brown et al., 1986). 
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4.1.1.1. Fish acanthocephalans 

Six species of acanthocephalan, Pomphorhvnchus laevis (Miller, 1776), Neoechinorhynchus 

rutili (Miller, 1780), Acanthocephulus anguillae (Muller, 1780), A. lucii (Muller, 1780), A. 

clavula (Dujardin, 1845), and Echinorhynchus truttae (Schrank, 1788), representing four 

genera, are recorded as parasitic of British freshwater fishes, including the European eel 

(Kennedy, 1974; Brown et al., 1986; Lyndon & Kennedy, 2001). One of these species, P. 

laevis, is noted as a category 2 parasite and movement of fish infected with this parasite is 

stringently regulated by the Salmon and Freshwater Fisheries Act 1975 and the Diseases of 

Fish Act 1983 (Environment Agency UK, 2014). Another species, E. salmonis, is believed to 

have been incorrectly identified in the past, as its intermediate host, Pontoporeia afinis, does 

not occur in the British Isles (Brown et al., 1986). 

None of these acanthocephalan species is rare in the UK; however, any may be rare locally.  

Due primarily to the utilization of migratory fish hosts and also, common and widespread 

crustaceans as intermediate hosts, these parasites are considered successful colonizers. As the 

six species appear to exhibit partial resource partitioning within the hosts, at either, or both, 

the larval and adult stages, the potential for competition is reduced and hence colonization 

and parasite survival is facilitated. (Kennedy, 1985; Lyndon & Kennedy, 2001). 

Mixed species infections are very rarely encountered in the UK since most freshwater 

localities contain, or are almost completely dominated by, only a single species of 

acanthocephalan (Kennedy, 1985). In addition, studies carried out on eels in Ireland have 

shown that although A. lucii was the dominant acanthocephalan and most commonly found as 

a single-species infection, mixed infections were observed with A. anguillae. Within the eel 

intestine, the distribution of these two species overlapped considerably, though there was no 

evidence to indicate competitive displacement of one species by the other  (Kennedy & 

Moriarty, 1987; Bates & Kennedy, 1991). 
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4.1.1.2 General life cycle of acanthocephalan parasites 

Acanthocephalans have indirect life cycles since the parasite must develop via intermediate 

arthropod hosts, including amphipods, isopods, ostracods, copepods, insects, and myriapods,   

and then mature within the vertebrate definitive host (Figure 4.2). Gravid females release 

eggs that exit the fish host via the faecal route and these are ingested by an arthropod 

intermediate host. The eggs hatch and the larvae enter the haemocoel and develop into the 

infective cystacanth. There is also field and lab-based evidence to suggest that some gravid 

female A. dirus may exit the fish host with the faeces and that their eggs may hatch within a 

sediment-dwelling intermediate host following ingestion of the worm; this alternative may 

occur with other acanthcephalan species (Kopp et al., 2011). 

Completion of the life cycle occurs when the vertebrate definitive host ingests the infected 

arthropod intermediate host, allowing the cystacanth to complete maturation to the adult 

within the fish intestine. Larval acanthocephalans that share the same intermediate host may, 

or may not, also share the same definitive hosts. Moreover, associations among 

acanthocephalan species in the intermediate hosts are not random, and are likely to have 

occurred due to selection favouring certain pathways of transmission (Dezfuli et al., 2000).  

The life cycle of some acanthocephalans may involve paratenic hosts since some vertebrate 

fish are prey for larger fish species that may be definitive hosts (Médoc et al., 2011). In such 

paratenic hosts, the larvae of some acanthocephalans migrate from the gut lumen to encyst in 

the peritoneal cavity and viscera, where they remain as immature worms until ingested by the 

final host (Crompton & Nickol, 1985). Post-cyclic transmission has also been described for 

some species of acanthocephalans since an infected definitive host may be ingested by a 

predator and the worm may survive and parasitize the larger fish (Nickol & Crompton, 1985). 

Indeed, Lassiere and Crompton (1988) transmitted N. rutili from Gasterosteus aculeatus to 

rainbow trout (Lassiere & Crompton, 1988) and Kennedy (1999)  demonstrated that post-
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cyclic transmission of P. laevis occurred when rainbow trout predated infected Cottus gobio, 

Noemacheilus barbatulus, Phoxinus phoxinus and Leuciscus cephalus (Kennedy, 1999). 

 

Figure 4.2 The life cycle of Acanthocephalus lucii. (A) The European eel is often a definitive 

fish host. The adult worms reproduce in the intestine of the eel and (B) shelled acanthor 

larvae called “eggs” are shed into the water with the fish faeces. Isopods (Asellus aquaticus) 

serve as intermediate hosts and while foraging they ingest the eggs. In the intestine of the 

isopod the acanthor larva hatches and penetrates into the haemocoel, whereupon it starts to 

grow and (C) develop to the cystacanth stage, which is infective to the fish host. When a 

cystacanth-infected isopod is predated by a fish, the cycle is completed. In the picture above 

(C) two larvae can be seen in the haemocoel from the abdominal side of the isopod host.  

Image modified from ((Hasu, 2013). 

Many parasites with complex life cycles increase the chances of reaching a final host by 

adapting strategies to manipulate their intermediate host’s appearance, condition or behaviour 

(Bakker et al., 1997; Bollache et al., 2002). Indeed, acanthocephalans, including P. laevis, 

increase their chance of transmission to a final host using olfactory-triggered manipulation of 

the anti-predator behaviour of the arthropod (Baldauf et al., 2007). In addition, 

acanthocephalan parasites may also induce physiological changes in the intermediate host 

that may be favourable to the parasite; for example, influencing the re-allocation of resources 

such as lipids and glycogen (Bauer et al., 2000; Plaistow et al., 2001; Tain et al., 2007). 
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4.1.1.3 Morphology of recognised acanthocephalans of A. anguilla 

Anatomical variation occurs and certain characters show considerable variation between 

individuals.  For example, acanthocephalans of the same species may vary greatly in size 

even within an individual fish (Brown et al., 1986; Brown, 1987). One of the most useful 

characters in species identification is the arrangement of the proboscis armature, in 

combination with the size, shape and arrangement of other anatomical parts including the 

proboscis, neck and testes (Brown et al., 1986; O'Mahony, Kennedy, et al., 2004). 

The identification of the intermediate host species is often a useful characteristic to aid 

parasite identification; however, it is possible for two, or more species of acanthocephalan to 

use the same arthropod host (Dezfuli et al., 2000). The species of fish host is often of little 

value for identification of the parasites since acanthocephalans infect a variety of fish species 

(Médoc et al., 2011); albeit they grow to maturity and reproduce in a narrower range of host 

species (Hine & Kennedy, 1974b; Brown et al., 1986). Historically, mixed species infections 

are very rarely encountered in the UK since most freshwater localities are dominated by only 

a single species of acanthocephalan  (Kennedy, 1985). Site specificity and distribution of 

acanthocephalans within the intestines of A. anguilla is also not informative with respect to 

identification of the worm since any preference tends to be masked by a general distribution 

(Kennedy, 1985).  

4.1.1.3.1 Pomphorhvnchus laevis (Muller, 1776) 

Species of the genus Pomphorhynchus (Monticelli, 1905) are largely parasites of freshwater 

fishes; 23 species are recognized of which one species, P. dubious (Kaw 1941), occurs in 

amphibians and four species occur in marine or coastal waters (Amin et al., 2003). 

Of concern, given that P. laevis is a category 2 parasite, is that this worm species is one of the 

most abundant and widely distributed acanthocephalan parasites of freshwater fishes in 

Europe (Kennedy et al., 1989; Moravec & Scholz, 1991; Perrot-Minnot, 2004). P. laevis is 
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able to develop in a variety of amphipod crustacean species (eg. Gammarus pulex and G. 

roeseli), which act as intermediate hosts (Kennedy et al., 1989). A recent study of P. laevis 

intermediate hosts in France has shown that G. fossarum is likely to be the preferred 

intermediate host (Bauer & Rigaud, 2015).    

The worms are usually orange in colour and body size may vary between 4 and 25 mm in 

length which is an indicator of age (Brown et al., 1986). The neck is long and the proboscis 

bulb is localized to the base of the proboscis (Figure 4.3). The elaborate proboscis consists of 

13 to 20 longitudinal rows of hooks and within each row there can be between 11 and 13 

hooks (Brown, 1987; O'Mahony, Kennedy, et al., 2004). There are 7 anterior hooks that are 

large, with well-developed posteriorly split roots, whereas the posterior hooks are smaller, 

with poorly-developed roots (Amin et al., 2003). 

 

Figure 4.3 Scanning electron micrograph of the proboscis and the proboscis bulb of P. laevis 

(- - - Markers = 100 µm) (modified from Brown et al., 1986). 
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P. laevis is a common endoparasite of freshwater fish and it has the ability to survive, though 

not necessarily mature, in virtually every species of freshwater fish (Hine & Kennedy, 1974a; 

Kennedy et al., 1978). As such, post-cyclic transmission of the parasite is most likely 

important (Kennedy, 1999). 

Three biologically distinct strains of P. laevis have been recognized within the UK (Kennedy 

et al., 1978; Kennedy, 1984b; Brown, 1987). The so-called British strain was shown to 

dominate three river systems: the Thames, the Severn and the Hampshire Avon and Stour. 

Within these rivers, the preferred definitive hosts were shown to be chub (Leuciscus 

cephalus) and barbel (Barbus barbus) and the preferred intermediate host was identified as G. 

pulex.  In addition, P. laevis was also confirmed to infect chub, bullhead (Cottus gobio) and 

minnow (Phoxinus phoxinus) sampled from the river Lugg (Kennedy et al., 1989). The 

marine strain of P. laevis is known to occur in the Baltic and North Seas and in the lower 

reaches of estuaries opening into them (Kennedy, 1984b). The intermediate hosts utilized are 

G. locusta and G. zaddachi, and the preferred definitive host is flounder, (Platichthys flesus), 

although it can also mature in plaice (Pleuronectes platessa) (Kennedy et al., 1989). The 

marine strain of P. laevis has been recorded in the UK and the parasite has been sampled 

from migratory fish, or fish able to survive periods in estuarine and marine waters; these 

include A. anguilla, salmon and flounder (Kennedy et al., 1989). The Irish strain of P. laevis 

is thought to have originated from the introduction of infected cyprinids in the 17
th

 century 

and it is now widely distributed throughout the south of the country; prevalences of 22.6% 

and 100% have been recorded in A. anguilla and brown trout (S. trutta) respectively  

(Kennedy et al., 1989; Kennedy, 1996). The definitive host of the Irish strain of P. laevis is 

recognized as S. trutta and the preferred intermediate host as G. duebeni. (Brown et al., 1986; 

Kennedy et al., 1989; Evans et al., 2001).  A more recent analyses, based upon 

morphological and molecular data, confirmed the strain variation and suggested that the 
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differences were based upon host species preferences as opposed to geographic distribution 

(O'mahony, Bradley, et al., 2004; O'Mahony, Kennedy, et al., 2004).  

P. laevis causes local damage to the intestinal wall of fish, the extent of which can vary 

between different host species (Hine & Kennedy, 1974a). Cystacanths and adults of P. laevis 

release proteolytic enzymes and trypsin-like proteases and these have been shown to be 

necessary for the complete and rapid perforation of the fish intestinal wall (Polzer & 

Taraschewski, 1994). Studies have shown that P. laevis infection stimulates a localized 

cellular response involving mucosal cells and mast cells, which form a barrier to protect the 

intestinal mucosa (Dezfuli et al., 2002; Dezfuli et al., 2011; Bosi & Dezfuli, 2015). The mast 

cells are the dominant immune cells that respond to P. laevis infection and recent analysis in 

the three-spined stickleback (Gasterosteus aculeatus) has shown the worm becomes 

encapsulated by fibres containing epitheloid cells and mast cells and that some of the latter 

are able to penetrate the parasite tegument (Dezfuli et al., 2015). 

4.1.1.3.2 Neoechinorhynchus rutili (Muller, 1780) 

Members of the genus Neoechinorhynchus (Stiles and Hassail, 1905), are primarily parasites 

of freshwater fishes but some also infect reptiles and amphibians (Amin & Heckmann, 1992). 

N. rutili is a widely distributed acanthocephalan worm that parasitizes the small intestine of 

many freshwater fish species of the Northern hemisphere; it has been recorded from a wide 

range of definitive hosts throughout Europe, Asia and North America (Walkey, 1967; 

Moravec & Scholz, 1994; Lyndon & Kennedy, 2001).  

In the UK, N. rutili is common and widespread, and it utilizes the ostracods Cypria 

ophthalmica and Candona candida as intermediate hosts (Walkey, 1967; Bibby, 1972; 

Brown et al., 1986). The parasite is usually white in colour and the body ranges from 2 to 20 

mm in length (Figure 4.4). The neck is short and the proboscis is small with six longitudinal 

rows of hooks, each of which contain two large and one small hook (Brown et al., 1986).  
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Figure 4.4 Scanning electron micrograph of the proboscides of N. rutili collected from an 

alder fly larva (Sialis lularia) (modified from (Lassiere, 1988). 

N. rutili not only has the capacity to transmit via the ostracod route (Walkey, 1967; Valtonen, 

1979), since as observed for other acanthocephalans, a post transmission life cycle from prey 

to predator fish is also possible (Lassiere & Crompton, 1988). Moreover, a further life-cycle 

variation is reported to occur with N. rutili since field and laboratory investigations have 

confirmed that the parasite may infect the alder fly, Sialis lutaria, and then subsequently 

complete its life-cycle in a final host (Lassiere, 1988). 

4.1.1.3.3 Acanthocephalus anguillae (Muller, 1780) 

A. anguillae occurs in the intestine of a variety of European fish including members of the 

families Anguillidae, Salmonidae and Cyprinidae (Kennedy, 1985; Tarachewski, 1988; 

Taraschewski, 1989). In the UK, the definitive hosts are known to include chub and eels, 

although mature specimens have also been recorded from roach (Rutilus rutilus) and stone 

loach (Barbatula barbatula) whilst in Ireland, where chub are absent, mature specimens have 

been reported solely from eels (Kennedy et al., 1989). The intermediate hosts are species of 

freshwater crustacean such as Asellus aquaticus (Kennedy et al., 1989; Dezfuli et al., 1994).  

A. anguillae is usually white in colour, the body size may be up to 30 mm in length and the 

hooks on the proboscis are long and prominent (Brown et al., 1986). In total, there are 10 

longitudinal rows of proboscis hooks with between five and seven hooks in each row (Figure 
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4.5).  The anterior and posterior hooks are reported to be 120 µm and 64 µm long 

respectively and the roots of the hooks possess well developed lateral processes (Brown et 

al., 1986; Amin et al., 2008).  

 

Figure 4.5 Scanning electron micrograph of the lateral view of the proboscis of A. anguilla 

showing the longitudinal rows of proboscis hooks (- - - Markers = 63 µm).  Modified from 

(Brown et al., 1986).  

Previous studies suggest that the distribution of A. anguillae is localized and restricted in both 

the UK and Ireland (Kennedy & Moriarty, 1987; Kennedy et al., 1989).  Indeed, the parasite 

was only reported in fish sampled from rivers flowing eastwards into the North Sea, 

including the rivers Trent and Thames, whereas in Ireland, records indicate that it is mostly 

confined to the river Shannon system (Kennedy & Moriarty, 1987; Kennedy et al., 1989). 

4.1.1.3.4 Acanthocephalus lucii (Muller, 1780) 

A.  lucii is one of the most widely distributed species of acanthocephalans infecting 

freshwater fishes throughout Europe (Amin et al., 2011). In the UK, A. lucii  is commonly 

found in the gastrointestinal tract of many freshwater fish species and it is widely distributed 

(Kennedy, 1985; Brown et al., 1986). The intermediate host is an isopod crustacean, most 

commonly A.  aquaticus (Lee, 1981; Brattey, 1986) and the definitive host becomes infected 

via the ingestion route (Lee, 1981; Brattey, 1988).   
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A. lucii is white in colour and up to 15 mm in length. The hooks on the proboscis are slightly 

less prominent than other species and the number range from 12 to 16 longitudinal rows; 

there are between seven and nine hooks within each row and they lack prominent lateral 

processes (Figure 4.6) (Brown et al., 1986). Hooks are uniformly slender in shape throughout 

the length of the proboscis (Amin et al., 2011). 

 

Figure 4.6 Scanning electron micrograph view of the proboscis and proboscis hooks of A. 

lucii from Perca fluviatilis (ah = apical hooks; bh = basal hooks; mh – middle hook).  

Modified from (Brázová et al., 2014). 

4.1.1.3.5 Acanthocephalus clavula (Dujardin, 1845) 

In contrast to the above acanthocephalans, the preferred definitive host of A. clavula is the 

European eel; however, the parasite is also able to grow and reproduce in other species of fish  

(Kennedy & Lord, 1982; Kennedy, 1984a). Nonetheless, in some species (eg. brown trout) 

the female A. clavula often fail to reach sexual maturity which is indicative of the fish being 

an accidental host (Byrne et al., 2004). In the UK, A. clavula is a common eel parasite that is 

reported to utilize A. meridianus as the intermediate host (Kennedy, 1984a; Brown et al., 

1986).  
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A. clavula is white in colour and relatively small in size since adults grow up to a maximum 

of 5 mm in length. There are 16 to 18 rows of longitudinal hooks on the proboscis and each 

of these has between 12 and 14 hooks (Brown et al., 1986).  

 

Figure 4.7 Scanning electron micrograph of the proboscis of A. clavula showing the 

longitudinal rows of proboscis hooks (- - - Markers 8 µm). Modified from (Brown et al., 

1986).  

4.1.1.3.6 Echinorhynchus truttae (Schrank, 1788) 

E. truttae is a acanthocephalan of fish throughout Europe and UK focused studies have 

highlighted that it is commonly associated with salmonids such as brown trout, S. trutta, and 

rainbow trout, Oncorhychus mykiss (Awachie, 1965; Dorucu & Huntingfordl, 1995) , in 

addition to infecting eels (Norton et al., 2003). Several reports however state that the 

European eel is most likely to be an accidental host of E. truttae since it is not commonly 

reported in A. anguilla (Moravec, 2004a; Thielen, Muenderle, et al., 2007).   

The most common intermediate host is reported to be the freshwater shrimp G. pulex 

(Awachie, 1965, 1966; Kennedy, 1985). E. truttae often has a pale orange/pink colouration 

and it has 20 to 22 longitudinal rows of proboscis hooks; each row has between 13 and 16 

hooks (Brown et al., 1986) (Figure 4.8). 
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Figures 4.8 Scanning electron micrograph of an adult male specimen of E. truttae from 

Kessler’s sculpin (Leocottus kesslerii), showing the anterodorsal hump. Modified from (Amin 

et al., 2015). 
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4.1.2 Tapeworms  

 

Tapeworm (Platyhelminthes, Cestoda) infections are highly prevalent worldwide (Budke et 

al., 2009).  These parasites are passively transmitted between hosts and infect virtually every 

vertebrate species (Bogitsh et al., 2013).  The zoonotic helminth infections, echinococcosis 

and cysticercosis are caused by the larval stages of the cestodes, Echinococcus spp. and  

Taenia solium; they are among the most neglected severe parasitic diseases in humans 

(Garcia et al., 2007).  Despite causing a considerable global burden of ill health in humans 

and a substantial financial burden on the livestock industry (Torgerson & Macpherson, 2011), 

tapeworm infections are often difficult to treat (Tsai et al., 2013).     

4.1.2.1 Fish tapeworms 

 

Diphyllobothriosis, a human disease caused by tapeworms of the genus Diphyllobothrium, is 

the most important fish-borne zoonosis caused by a cestode parasite and it has been estimated 

that 20 million people are affected globally (Scholz et al., 2009). Infection occurs through 

eating raw or undercooked fish harbouring plerocercoid larvae, which subsequently develop 

into adult tapeworms in the small intestine after ingestion.  

About 18 species of Diphyllobothrium have been reported to infect humans and D. latum and 

D. nihonkaiense are the most common; the definitive host is usually a pike, perch or burbot 

(Zhang et al., 2015). Diphyllobothriosis is known to occur widely across the world (Yera et 

al., 2006; Jackson et al., 2007; Lee et al., 2007; Wicht et al., 2008; Mercado et al., 2010; 

Chen et al., 2014; Zhang et al., 2015) and the disease is generally considered to be a mild 

illness, though occasionally infection can cause malignant anaemia due to the consumption of 

vitamin B12 by the tapeworm (Zhang et al., 2015).  Several outbreaks caused by 

Diphyllobothrium infection have had significant impact on public health and local economies 

(Mello Sampaio et al., 2005; Zhang et al., 2015).  
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4.1.2.2 Life Cycle 

The life cycle of D. latum starts when immature eggs are passed in the faeces of an infected 

human. The eggs mature in water within three weeks and form oncospheres which develop 

into larvae, called coracidia. After ingestion by a suitable freshwater crustacean such as a 

copepod, the coracidia develop into procercoid larvae. Following ingestion of the copepod by 

a suitable second intermediate host, typically minnows and other small freshwater fish, the 

procercoid larvae are released from the crustacean and penetrate the gut (von Bonsdorff & 

Bylund, 1981). These larvae migrate to muscle tissue whereupon they develop into 

plerocercoid larvae, known as sparganum, that are infective to humans (Kuchta et al., 2013). 

Usually, a third intermediate host is needed because humans tend not to consume raw species 

of small fish like the minnow. Consequently, human infection is most often via consumption 

of infected raw predator fish such as trout, walleyed pike or perch (Unsworth, 1944).   

The adult tapeworm attaches to the intestinal mucosa by means of the two bothria. Adults live 

for up to 20 years and can reach more than 10 m in length and contain more than 3,000 

proglottids. Up to 1 million eggs per day can be discharged from the proglottids and are 

passed in the feces (Bylund, 2003; CDC, 2012).  
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Figure 4.9 Life cycle of the tapeworm D. latum (CDC, 2012). 
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4.1.2.3 Bothriocephalus claviceps (Goeze, 1782) 

The order Bothriocephalidea is one of the major cestode groups and it consists mostly of 

parasites of marine and freshwater fish, though some genera are reported as specific to 

mammals and less frequently to birds, reptiles and amphibians (Kuchta et al., 2008; Kuchta et 

al., 2012). Bothriocephalidea are characterised mainly by the possession of two bothria on the 

scolex, which is an attachment organ formed by a longitudinal groove or depression of 

different shape and depth, on the ventral and dorsal surfaces of the scolex (Kuchta et al., 

2008). The genus Bothriocephalus consists of about 70 species most of which are intestinal 

parasites of marine fish throughout the world, though some species occur in freshwater fish 

and also, a few amphibians (Kuchta et al., 2008).  

B. claviceps is a specific eel tapeworm (Nie & Kennedy, 1992b) and infection is reported 

across Europe, including the UK, and also across North America, Africa and Japan (Chubb et 

al., 1987; Nie & Kennedy, 1992b; Scholz, 1997b; Borgsteede, Haenen, De Bree, et al., 1999; 

Norton et al., 2003; Scholz et al., 2004; Kuchta et al., 2012). B. claviceps requires the 

copepod, Cyclops vicinus, as the obligatory intermediate host in order to complete its life 

cycle (Nie & Kennedy, 1993). In the UK eel, B. claviceps reaches a maximum size and 

becomes gravid mainly during the summer months (Nie & Kennedy, 1992)  Some fish, such 

as perch (Perca fluviatilis) and guppies (Poecilia reticulate) have been described as acting as 

paratenic hosts of this tapeworm (Nie & Kennedy, 1993; Scholz, 1997a).  

4.1.2.3.1 Morphology 

B. claviceps is a large tapeworm that may measure up to 54 cm long, and the proglottides are 

wider than they are long. The scolex is elongated and is longer than it is wide and it tapers 

posteriorly (Chubb et al., 1987). Moreover, the scolex consists of a prominent terminal disc 

that is wider than the bothrial region and also, two long, wide and shallow dorsoventral 

bothria (Figure 4.10). A neck is absent and the testes are spherical to oval in shape and 
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medullary positioned, whereas the vitelline follicles are numerous and oval or spherical, 

smaller and arranged in two lateral bands (Scholz, 1997b).  

 

Figure 4.10 Scanning electron micrograph of B. claviceps showing the long scolex and the 

bi-lobed apical disc with an indentation above each bothrium (arrowed) (Chubb et al., 1987).  

4.1.2.4 Proteocephalus macrocephalus (Creplin, 1825) 

Tapeworms of the order Proteocephalidea are cosmopolitan parasites of freshwater fish, 

amphibians and reptiles (Rego et al., 1998) and the highest number of species belongs to the 

genus Proteocephalus (Kodedová et al., 2000). The morphology of the scolex is one of the 

most important characteristics used for the classification of Proteocephalidean cestodes at 

generic and family levels since some features such as the shape and size of the scolex, 

together with shape and size of the apical sucker, are stable and species specific (Scholz et 

al., 1998).   

4.1.2.4.1 Morphology  

P. macrocephalus is a specific tapeworm of the European eel in the UK and many other 

European countries (Nie & Kennedy, 1991b; Scholz et al., 1997; Borgsteede, Haenen, Bree, 

et al., 1999). P. macrocephalus is a large tapeworm with a spherical to globular short scolex 

that lacks a central glandular area. The scolex is separated from the strobila by a distinct neck 

and the suckers are relatively large (Figure 4.11). The shape, size and tegument ultrastructure 
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of adult P. macrocephalus is variable in length to width ratio but overall, the parasite is 

almost a regular oblong shape (Scholz et al., 1997; Žďárská & Nebesářová, 1999).  

 
 

 

Figure 4.11 Scanning electron micrograph of P. macrocephalus scolex (Chubb et al., 1987). 
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4.2 Objectives 

The main objective of the work presented in this chapter was to screen the gastrointestinal 

tracts of the eel specimens sampled from rivers across England and Wales in order to provide 

some baseline infection data on acanthocephalans and cestodes.  In doing so, species 

characterization was attempted based upon morphological descriptors of these parasites.  To 

assist this species identification, a molecular-based approach was attempted based upon PCR 

amplification of a fragment of the 18S rRNA gene of some of the parasites.  
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4.3 Materials and Methods 

4.3.1 Morphological Examination 

4.3.1.1. Sampling 

Eel samples were acquired according to Chapter 1 (1.3). 

4.3.1.2 Processing 

Eel specimens were thawed and necropsies performed using a dissection kit, allowing the 

gastrointestinal tract to be removed and opened longitudinally. The gastrointestinal tract was 

dissected in a Petri dish containing distilled water under x 100 and x 160 magnification using 

a Wild Heerbrugg, M3B (Switzerland) dissecting microscope (section 3.3.1.2). A 

microscopic examination of the gut contents for the presence of acanthocephalan and 

tapeworm parasites was performed.  In addition, the external surface of the gut was examined 

for pathological lesions, or protruded and attached parasites.  

4.3.2 Prevalence and intensity 

Acanthocephalan and tapeworm parasite prevalence and intensity data were determined 

according to Chapter 2 (2.3.2). 

4.3.3 Imaging 

Images of the characteristic organs of representative acanthocephalan and tapeworm parasites 

were acquired according to Chapter 2 (2.3.3). 

4.3.4 Molecular analysis of acanthocephalans  

4.3.4.1 DNA extraction from acanthocephalan and cestode parasites 

DNA was extracted from individual acanthocephalan, or cestode parasites, using the 

PureLink Genomic DNA Kit (Invitrogen by Life Technologies).  Briefly, an individual 

acanthocephalan was placed in a petri dish and cut into small pieces using a sterile scalpel.  

The cut specimen was then placed in a 1.5 ml eppendorf tube and 180 µl PureLink Genomic 
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Digestion Buffer and 20 µl Proteinase K (20 mg / ml) was added and the DNA extracted 

according to Chapter 2 (2.3.4.1). 

4.3.4.2 DNA Quality control 

Recovery of acanthocephalan and cestode DNA was assessed using the NanoDrop Lite 

Instrument (ThermoFisher Scientific) as described earlier (2.3.3.2). 

4.3.5 Polymerase chain reaction  

4.3.5.1 PCR primer design for acanthocephalan analysis 

The GenBank database was inspected for acanthocephalan DNA sequence deposits and the 

18S rRNA genes from a variety of species were extracted and aligned using ClustalW (Larkin 

et al., 2007).  PCR primers were designed to highly conserved regions of the acanthocephalan 

18S rRNA gene with the assistance of Primer 3 (Untergasser et al., 2012).  The resulting 

oligonucleotide sequences were as follows: AcanthoF, 5’-ACTGCGAAAGCATTTGCCAA-

3’ and AcanthoR, 5’-CGCGYTTACTAGGAATTCCT-3’. Oligonucleotides were synthesized 

by Eurofins MWG Operon and re-suspended in PCR-grade H2O to a stock concentration of 

10 pM and stored at -20
o
C until required. 

4.3.5.2 PCR primer design for cestode analysis 

The 18S rRNA gene sequences of B. claviceps and P. macrocephalus were extracted from 

GenBank and aligned using ClustalW (Larkin et al., 2007).  PCR primers were designed to 

amplify a 741 bp, and 786 bp, fragment respectively of the B. claviceps and P. 

macrocephalus 18S rRNA genes using Primer 3 (Untergasser et al., 2012). The 

oligonucleotide sequences were as follows (5’-3’): BothrioF, 

CATGAGCGAAAGTCAGAGGC and BothrioR, AAAGGGCAGGGACGTAATCA; 

ProteoF,CATGAGCGAAAGTCAGAGGC and ProteoR, AAAGGGCAGGGACGTAATCA. 
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The oligonucleotides were synthesized by Eurofins MWG Operon and re-suspended in PCR-

grade H2O to a stock concentration of 10 pM and stored at -20
o
C until required. 

4.3.6 PCR profiles for acanthocephalan and cestode analyses 

PCR was carried out using either purified acanthocephalan, or cestode genomic DNA, with 

the appropriate primers; reagents were added according to Chapter 2 (2.3.5.1).  For 

acanthocephalan analysis, the PCR cycling profile consisted of an initial denaturation step at 

94
o
C for 5 minutes, followed by denaturation of 94

o
C for 30 seconds, annealing at 65

o
C for 

30s and extension at 72
o
C for 30s.  This cycle profile was repeated a total of 36 times, 

followed by a final extension of 10 minutes at 72
o
C.  For cestode analysis, the PCR was as 

above except that the primer primer annealing temperature was increased to 68
o
C. All PCRs 

were performed on a MultiGene thermocycler (Labnet International. Inc). 

4.3.7 Agarose gel electrophoresis 

PCR products were analysed by agarose gel electrophoresis as described in Chapter 2 (2.3.6). 

4.3.8 PCR product purification 

PCR products were purified from the agarose gel using the Isolate II PCR and Gel 

Purification Kit (BioLine) as described in Chapter 2 (2.3.7).  

4.3.9 DNA sequencing 

Recovery of purified PCR products was assessed using the NanoDrop Lite Instrument 

(ThermoFisher Scientific) (2.3.4.2). PCR products were then prepared for sequencing as 

described earlier (2.3.7).  All data was analysed according to section 2.3.7.   

4.3.10 Statistical analyses 

The Fisher’s exact test was used to compare differences in prevalence between geographic 

regions and also between host factors (length, weight and condition factor). The Mann-

Whitney test was used to assess the significance of differences in intensity of infection 
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between the different geographic regions and also between host factors (length, weight and 

condition factor). All tests were conducted using Minitab 16 (licensed to the University of 

Salford).  
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4.4 Results 

4.4.1 Acanthocephalans: primary infection data 

In total, 42 of the 140 (30%) European eel examined contained acanthocephalan parasites 

within their gastrointestinal tracts.  These acanthocephalan infected eel were sampled from 8 

(57.1%) of the examined river systems surveyed across England and Wales (Table 4.1). 

Acanthocephalans were not recovered from eels sampled from the River Hether Burn in 

England and the Rivers Mawddach-eden, Clwyd-Meirchion, Dee-Eitha, Clwyd-Elwy and 

Cadoxton from Wales. At sites positive for acanthocephalans, the prevalence ranged from 10 

to 100%. 

Table 4.1 Primary infection data for acanthocephalan parasites in European eel sampled from 14 

catchment sites across England and Wales. Ten eels were examined from each site. 

Eel catchment sites Prevalence 

(%) 

Total number 

of parasites 

Mean parasitic 

abundance (± sd) 

Mean infection 

intensity (± sd) 

Crane: CN England 100 208 20.8±17.5 20.8±17.5 

Crouch: C England 100 177 17.7±17.2 17.7±17.2 

Petteril: RP  England 30 4 0.4±0.7 1.3±0.6 

Leven: RL England 20 4 0.4±0.9 2.0±1.4 

Gowy: RG England 20 4 0.4±0.9 3.0±2.8 

Bela: B England 10 4 0.4±1.3 4.0±0.0 

Hether Burn: HB England 0 0 0 0 

Mawddach-eden: M Wales 0 0 0 0 

Clwyd-Meirchion: MC Wales 0 0 0 0 

Dee-Eitha: D Wales 0 0 0 0 

Clwyd-Elwy: CE Wales 0 0 0 0 

Rhymney: R Wales 90 50 5.0±4.3 5.5±4.1 

Taff: TB  Wales 50 18 1.8±2.9 3.6±3.4 

Cadoxton: CD Wales 0 0 0 0 

 30±39.0 469 3.4±10.7 10.9±17.1 
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4.4.1.2 Primary infection data: the environment 

Overall, 469 acanthocephalans were collected from the eel specimens (mean abundance = 

3.4±10.7; mean intensity = 11.2±17.2) and the parasites were over-dispersed (dispersion 

index = 34) (Figure 4.12). The numbers of acanthocephalans extracted from individual eel 

ranged between 1 and 81; the latter being isolated from a fish sampled from the river Crouch 

(specimen C131). A single acanthocephalan was extracted from 26.2% (11/42) of the infected 

animals. Moreover, the majority 69% (29/42) of the infected hosts carried less than 10 

acanthocephalans and hence only 21% (13/42) of the infected eels harboured 10 or greater of 

these parasites (Tables 4.2 and 4.3). With respect to the sampling sites, the River Crane 

yielded most acanthocephalans (n = 208; mean abundance and intensity = 20.8±17.5) and the 

lowest number of parasites was recovered from the Rivers Petteril, Leven, Gowy and Bela (n 

= 4; mean abundance, 0.4±0.9 and intensity = 3.0±2.8).  

Table 4.2 Eel morphometric and associated acanthocephalan infection data for positive sampling 

sites in Wales. Ten eels were examined from each site. 

 

 

 

 

 

 

 

 

 

 

 

Eel catchment sites Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

acanthocephalan 

Rhymney: R Wales R1 

R2 

R3 

R4 

R5 

R6 

R7 

R8 

R9 

R10 

32 

31 

30 

31.5 

27 

30 

29 

30 

23.5 

23.5 

48.9 

48.6 

42.3 

67.2 

29.3 

39.7 

53.5 

43.9 

12.7 

18.5 

0.15 

0.16 

0.16 

0.22 

0.15 

0.15 

0.22 

0.16 

0.10 

0.14 

1 

10 

3 

9 

2 

0 

1 

7 

12 

5 

Taff: TB  Wales TB1 

TB2 

TB3 

TB4 

TB5 

TB6 

TB7 

TB8 

TB9 

TB10 

20 

25 

28 

22 

21.5 

24 

25 

28 

19 

25 

10.2 

33.5 

33 

15.6 

15.5 

24.4 

21.6 

35.2 

10.6 

24.7 

0.13 

0.21 

0.15 

0.15 

0.16 

o.18 

0.14 

0.16 

0.15 

0.16 

9 

1 

0 

0 

0 

1 

5 

0 

2 

0 
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Table 4.3 Eel morphometric and associated acanthocephalan infection data for positive sampling 

sites in England. Ten eels were examined from each site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eel catchment sites Infected eel 

codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

acanthocephalan 

Crane: CN England CN1 

CN2 

CN3 

CN4 

CN5 

CN6 

CN7 

CN8 

CN9 

CN10 

70 

74 

86 

77 

70 

74 

86 

77 

69 

74 

682.3 

702.5 

1380.3 

1058.8 

668.6 

839.7 

805.7 

661.9 

563.5 

743.4 

0.21 

0.17 

0.22 

0.23 

0.19 

0.21 

0.13 

0.14 

0.17 

0.18 

56 

24 

19 

39 

6 

20 

30 

1 

1 

12 

Crouch: C England C157 

C107 

C117 

C59 

C74 

C116 

C71 

C131 

C40 

C48 

33 

32 

28 

32 

50 

29 

46 

39 

32 

31 

65.8 

47 

27.5 

50.1 

209.8 

36.4 

198.2 

112 

43.9 

44.7 

0.18 

0.14 

0.13 

0.15 

0.17 

0.15 

0.19 

0.19 

0.13 

0.15 

15 

2 

2 

5 

53 

1 

12 

81 

2 

4 

Petteril: RP  England RP1 

RP2 

RP3 

RP4 

RP5 

RP6 

RP7 

RP8 

RP9 

RP10 

36 

31.5 

18.5 

28 

35.5 

27.5 

14.5 

43 

33 

26 

110.7 

82.8 

8.2 

35.3 

74.9 

38.2 

5.2 

101.1 

98.3 

29.7 

0.24 

0.28 

0.13 

0.16 

0.17 

0.18 

0.17 

0.07 

0.27 

0.17 

0 

0 

0 

0 

0 

2 

0 

1 

0 

1 

Leven: RL England RL1 

RL2 

RL3 

RL4 

RL5 

RL6 

RL7 

RL8 

RL9 

RL10 

21 

52 

27 

22.5 

34 

35 

27 

29.5 

30 

26 

13.9 

18.7 

35.8 

21.3 

55.5 

71.3 

26.3 

29.5 

38.1 

22.3 

0.16 

0.13 

0.18 

0.19 

0.14 

0.17 

0.13 

0.11 

0.14 

0.13 

0 

0 

1 

0 

3 

0 

0 

0 

0 

0 

Gowy: RG England RG1 

RG2 

RG3 

RG4 

RG5 

RG6 

RG7 

RG8 

RG9 

RG10 

39 

37 

36 

36 

40 

32 

35 

33 

26 

27 

73.6 

61.7 

63.2 

58.9 

65.7 

41.8 

70.5 

62.2 

27.1 

24.4 

0.12 

0.12 

0.14 

0.13 

0.10 

0.13 

0.16 

0.17 

0.15 

0.12 

0 

0 

0 

0 

3 

0 

0 

0 

0 

1 

Bela: B England B1 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

B9 

B10 

30 

32 

27 

19.5 

21 

23 

24 

48 

24 

49 

42 

49.1 

33 

11.9 

13.2 

13.3 

22.2 

24.5 

18.3 

209.0 

0.16 

0.15 

0.17 

0.16 

0.14 

0.11 

0.16 

0.18 

0.13 

0.18 

0 

0 

0 

0 

0 

0 

0 

4 

0 

0 
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Figure 4.12 Summary of the dispersion of acanthocephalans within the eel study population. 

 

Upon analysis of the infection data at a regional level it was evident that all examined rivers 

in South East England contained eel infected with acanthocephalan parasites (Table 4.4).  

Indeed, eels sampled from South East England had the greatest prevalence, and also the 

greatest mean abundance, and intensity of acanthocephalan infection. In contrast, all sites 

examined in North Wales showed absence of acanthocephalan infection.  The majority of 

rivers in North West England and South Wales contained eel with acanthocephalan 

infections; only specimens from the Hether Burn and Cadoxton were lacking 

acanthocephalans in these respective regions.  Overall, the regional acanthocephalan 

prevalence data was significantly different (p: 10
-4

-0.0043) between the four geographic 

regions.  

With respect to the abundance data, there were highly significant differences between South 

East England and the other examined regions (p: 0.001 – 10
-4

).    There was also a highly 

significant difference between abundance of acanthocephalans in rivers from North West 

England and South Wales (p = 10
-4

).  The intensity of acanthocephalan infection was also 
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significantly different between eel specimens examined from rivers in South East England 

compared to those from North West England (p = 0.0095) and South Wales (p = 0.0428).     

Table 4.4 Regional infection data for acanthocephalans isolated from European eel sampled 

across England and Wales. 

Regions Number 
of river 

sites 

examined  

Number of 
acanthocephalan 

positive sites 

Number 
of 

examined 

eels  

Number of 
infected 

eels 

Prevalence 
(%)  

Number of 
acanthocephalans 

Mean 
abundance 

(±sd) 

Mean 
intensity 

(±sd) 

Intensity 
range 

North 

West 

England 

5 4 50 8 16 16 0.3±0.9 2±1.2 1 – 4 

South 

East 

England 

2 2 20 20 100 384 19.2±22.4 19.2±22.

4 

1 – 81 

North 

Wales 

4 0 40 0 0 0 0 0 0 

South 

Wales 

3 2 30 14 46.7 68 2.3±3.6 4.9±3.9 1- 12 

Total 14 8 140 42 30.7 470 3.4±10.7 10.9±17.

1 

1-81 

 

4.4.1.3 Primary infection data: the host 

For the acanthocephalan infected eels, the body length ranged from 19 to 86 cm (mean = 41.7 

±20.5 cm) and body weight ranged from 10.2 to 1380 g (mean = 236.9±346.7 g). For 

uninfected eels, the body length ranged from 10 to 52 cm (mean = 25.9±8.0 cm) and body 

weight ranged from 1.2g to 209g (mean = 34.3±36.9 g). These differences in body length and 

weight between the infected and uninfected eels were highly significant (p = 10
-4

). The mean 

condition factor for acanthocephalan infected eels was 0.16±0.04, whilst the mean condition 

factor for the uninfected eels was 0.14±0.04 (Tables 4.2 and 4.3); this was also highly 

significant (p = 0.0002).  

Upon analysis of different categories of eel length it was apparent that prevalence, as well as 

mean acanthocephalan abundance and intensity, generally increased as the eel body length 

category increased (Table 4.5). Indeed, the prevalence of acanthocephalan infection was 

significantly different (p: 0.0420 – 0.0005) between the largest length category of eel and the 

two smallest length categories. There were no other significant differences in prevalence of 

infection between remaining length categories (p: 0.05778 - 0.7195). With respect to intensity 
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of acanthocephalan infection, there was a significant difference (p=0.0031), between the 

largest length category of eel and the category that included the eel of median size (25.5-30 

cm). There were no other significant differences (p: 0.08 – 1.0) in the intensity of infection 

between the remaining length categories.  

Table 4.5 Acanthocephalan infection data with respect to eel body length category.   

Body 

length 

range (cm) 

Eels 

examined  

Infected 

eels 

Prevalence  

(%) 

Number of   

acanthocephalans 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

10-20 26 2 7.7 11 0.4±1.8 5.5±4.9 2-9 

20.5-25 32 5 15.6 24 0.75±2.4 4.8±4.5 1-12 

25.5-30 32 10 31.3 21 0.7±1.4 2.1±1.9 1-7 

30.5-35 22 9 40.9 51 2.3±4.1 5.7±4.7 1-15 

35.5-86 28 16 57.1 362 12.9±21.0 22.6±23.7 1-81 

With respect to eel condition factor, there was significant difference (p= 0.0015-0.0201) in 

the prevalence of acanthocephalan infection between the largest category of condition factor 

and the two smallest categories of condition factor (Table 4.6). No other significant 

differences in acanthocephalan prevalence occurred between the remaining eel condition 

factor categories (p: 0.1323 - 0.3849). There was also no significant difference in 

acanthocephalan intensity between the different categories of eel condition factor (p: 0.17 – 

0.75).   

Table 4.6 Acanthocephalan infection data with respect to eel condition factor category.  

Condition 

factor  

range 

Eels 

examined 

Infected 

eels 

Prevalence  

(%) 

Number of 

acanthocephalans 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd)  

Intensity 

range 

0.04-0.12 34 4 11.8 17 0.5±2.1 4.3±5.3 1-12 

0.13-0.14 38 9 23.7 59 1.6±5.1 6.6±9.1 1-30 

0.15-0.16 28 9 32.1 35 1.3±2.5 3.9±3.0 1-10 

0.17-0.29 40 20 50 358 8.9±18.1 17.9±22.5 1-81 
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4.4.2 Pomphorhynchus laevis (Muller, 1776) 

4.4.2.1 Morphological examination 

P. laevis parasites were identified based upon key morphological features, not least of which 

were the presence of a characteristic proboscis bulb that was localised to the base of the 

proboscis and a long neck (Figure 4.13).   

 

 

Figure 4.13 Representative images of P. laevis showing the presence of the characteristic 

proboscis bulb (PB) and the long neck (LN) (specimen number R3/2009/03) extracted from 

an eel (R3) sampled from the River Rhymney. 

4.4.2.2 Molecular characterisation 

Genomic DNA was extracted and purified from a representative acanthocephalan worm 

(specimen number C71/2009/02; extracted from eel C71) identified as P. laevis based upon 

morphology. The 18S rRNA gene was PCR amplified and the resulting 652 bp product was 

subjected to DNA sequencing. BlastN analysis of the resulting sequence data showed that it 

was identical to the 18S rRNA gene sequences of two P. laevis sequence deposits in 

GenBank and hence confirms the above morphological identification of this parasite (Table 

4.7 and Figure 4.14).  Nonetheless, the sequence was also identical to a fragment of the 18S 

rRNA gene of P. tereticollis and hence it was not possible to confirm with absolute certainty 

the identity of the parasite.     

A B 

PB LN 
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Table 4.7 BlastN analysis of the 18S RNA gene fragment derived from an acanthocephalan 

isolated from eel specimen C71 (specimen number C71/2009/02).    

Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

Pomphorhynchus laevis haplotype Hum10 

18S ribosomal RNA gene, partial sequence 
652 652 100% 0.0 100% KF559309.1 

Pomphorhynchus laevis 18S ribosomal 

RNA gene, partial sequence 
652 652 100% 0.0 100% AY423346.1 

Pomphorhynchus tereticollis 18S 

ribosomal RNA gene, partial sequence 
652 652 100% 0.0 100% AY423347.1 

  

 

                                                            

    

 

gi|540074015|gb|KF559309.1|      AGTTAGAGGATCGAAGACGATTAGATACCGTCCTAGTTCTAACTGTAAAC 950 

413754701_Acan1_For_C09          --------------------------------------CTAACTGTAAAC 12 

                                                                       ************ 

 

gi|540074015|gb|KF559309.1|      TATGCCGACTGGGGATTCGCCAGTGCAATTTAGCTTGGCGAGCACCCTCC 1000 

413754701_Acan1_For_C09          TATGCCGACTGGGGATTCGCCAGTGCAATTTAGCTTGGCGAGCACCCTCC 62 

                                 ************************************************** 

 

gi|540074015|gb|KF559309.1|      GGGAAACCAAAGTGATTGGGTTCCGGGGGGAGTATGGTTGCAAAATCGAA 1050 

413754701_Acan1_For_C09          GGGAAACCAAAGTGATTGGGTTCCGGGGGGAGTATGGTTGCAAAATCGAA 112 

                                 ************************************************** 

 

gi|540074015|gb|KF559309.1|      ACTTAAAGGAATTGACGGAGGGGCACACCAGAAGTGGAGCCTGCGGCTTA 1100 

413754701_Acan1_For_C09          ACTTAAAGGAATTGACGGAGGGGCACACCAGAAGTGGAGCCTGCGGCTTA 162 

                                 ************************************************** 

 

gi|540074015|gb|KF559309.1|      ATTTGACTCAACGCGCGAAAGCTTACCCGGTCCGAACACCGTGAGGATTG 1150 

413754701_Acan1_For_C09          ATTTGACTCAACGCGCGAAAGCTTACCCGGTCCGAACACCGTGAGGATTG 212 

                                 ************************************************** 

 

gi|540074015|gb|KF559309.1|      ACAGGTTGAAAGCTCTTTCTTGATCCGGTGGGTAGCGGTGCATGGCCGTT 1200 

413754701_Acan1_For_C09          ACAGGTTGAAAGCTCTTTCTTGATCCGGTGGGTAGCGGTGCATGGCCGTT 262 

                                 ************************************************** 

 

gi|540074015|gb|KF559309.1|      CGTAGTTGGTGAAGTGATTTGTCTGGTTTATTCCGATAACGAACGAGACT 1250 

413754701_Acan1_For_C09          CGTAGTTGGTGAAGTGATTTGTCTGGTTTATTCCGATAACGAACGAGACT 312 

                                 ************************************************** 

 

gi|540074015|gb|KF559309.1|      CTAGCCTACTAATTAGCGTAGCGATTGTTCGTCGTTACAATGCTTCTTAG 1300 

413754701_Acan1_For_C09          CTAGCCTACTAATTAGCGTAGCGATTGTTCGTCGTTACAATGCTTCTT-- 360 

                                 ************************************************   

 

gi|540074015|gb|KF559309.1|      AGGGACAGGTGTTGCTTAAGCACACGAAGTAGAGCAATAACAGGTCTGTG 1350 

413754701_Acan1_For_C09          -------------------------------------------------- 

                                                                                    

                                                    

 

Figure 4.14 The 18S rRNA DNA sequence (413754701_Acan1_For_C09) from the 

acanthocephalan (specimen number C71/2009/02; extracted from eel C71) aligned with the 

P. laevis 18S rRNA sequence deposited in GenBank (gi: 540074015).  
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4.4.2.3 Primary infection data for P. laevis 

Examination of eel gastrointestinal tracts confirmed the presence of P. laevis in 23 of the 140 

European eel specimens (16.4%). The positive infections were observed in eels sampled from 

the following four English and two Welsh rivers (prevalence in parenthesis):  Crouch (50%), 

Petteril (20%), Leven (10%), Bela (10%), Rhymney (90%) and Taff (50%) (Table 4.8). 

Table 4.8 Primary infection data for P. laevis parasites in European eels sampled from the six 

positive catchment sites across England and Wales. Ten eels were examined at each site. 

 

 

 

 

 

 

 

 

 

 

4.4.2.3.1 Primary infection data: the environment  

At these six positive catchment sites, the total number of P. laevis collected was 215 parasites 

(mean intensity of infection = 9.3±17.7 and mean abundance = 1.5±7.8) (Table 4.8). The 

number of P. laevis isolated from individual hosts ranged from 1 (eel specimens RP8, RL5, 

R1, R8, TB2 and TB6) to 81 (eel specimen C131) (Table 4.9). The majority (18/23, 78%) of 

the infected eels harboured less than 10 P. laevis; indeed, 26% (6/23) of the hosts were 

infected with just a single parasite (Table 4.9). Overall, the parasites were over-dispersed 

(dispersion index = 41) (Figure 4.15). 

 

Catchment site  Prevalence (%) Total number of  

P. laevis 

Mean 

abundance (±sd) 

 Mean 

intensity (±sd) 

Taff, TB: Wales 50 18 1.8±2.9 3.6±3.4 

Rhymney: Wales 90 50 5±4.3 5.5±4.1 

Bela: England 10 4 0.4±1.3 4 

Petteril: England 20 3 0.3±0.7 1.5±0.7 

Leven: England 10 1 0.1±0.3 1 

Crouch: England 50 139 13.9±26.7 27.8±33.4 

 38.3% (23/60) 215 1.5±7.8  9.3±17.7  
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Table 4.9 Eel morphometric and associated P. laevis infection data for the six positive 

catchment sites in England and Wales. Ten eels were examined from each site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 4.15 Summary of the dispersion of P. laevis within the sampled eel population. 
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Crouch: C 

England 

C157 

C74 

C71 

C131 

C48 

33 

50 

46 

39 

31 

65.8 

209.8 

198.2 

112 

44.7 

0.18 

0.17 

0.19 

0.19 

0.15 

2 

40 

12 

81 

4 

Petteril: RP  

England 

RP6 

RP8 

27.5 

43 

38.2 

101.1 

0.18 

0.07 

2 

1 

Leven: RL 

England 

RL5 34 55.5 0.14 1 

Bela: B England B8 48 24.5 0.18 4 

Rhymney: R 

Wales 

R1 

R2 

R3 

R4 

R5 

R7 

R8 

R9 

R10 

32 

31 

30 

31.5 

27 

29 

30 

23.5 

23.5 

48.9 

48.6 

42.3 

67.2 

29.3 

53.5 

43.9 

12.7 

18.5 

0.15 

0.16 

0.16 
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0.15 
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1 

10 
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12 
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TB7 
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20 

25 

24 

25 

19 
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24.4 
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0.13 

0.21 

o.18 

0.14 

0.15 

9 

1 

1 

5 
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P. laevis was isolated as the only acanthocephalan species present in European eel at 3 

catchment sites: the River Bela in England and the Rivers Taff and Rhymney in Wales. At 

the other three catchment sites (Petteril, Leven and Crouch), P. laevis was isolated as a mixed 

infection with other non-bulb acanthocephalans.   

At the regional level, eel specimens from rivers in North Wales were found to be free of P. 

laevis and this contrasted sharply with data from South Wales as eel from this region had the 

greatest prevalence of P. laevis. Indeed, there was a significant difference in the P. laevis 

prevalence data between South Wales and the other examined regions with the exception of 

South East England (p: 0.001 - 10
-4

).  

With respect to abundance data, there were significant differences between rivers in North 

West England and both South East England (p = 0.039) and South Wales (p = 10
-4

). There 

were no significant differences in intensity of infection in eels sampled from the different 

regions that were positive for P. laevis (p: 0.063 – 0.212).    

Table 4.10 Regional infection data for P. laevis isolated from European eel sampled across 

England and Wales. 

Regions Number 
of 

examined 

river sites 

Number 
of           

P. 

laevis 
positive 

sites 

Number 
of 

examined 

eel 

Number 
of 

infected 

eel 

Prevalence 
(%) 

Number 
of 

P. laevis 

Mean 
abundance 

(±sd) 

Mean 
intensity 

(±sd) 

Intensity 
range 

North West 

England 

5 3 50 4 8 8 0.2±0.7 2±1.4 1-4 

South East 

England 

2 1 20 5 25 139 6.9±19.7 27.9±33.4 2-81 

North 

Wales 

4 0 40 0 0 0 0 0 0 

South 

Wales 

3 2 30 14 46.7 68 2.3±3.6 4.9±3.9 1-12 

Total 14 6 140 23 16.4 215 1.5±7.8 9.3±17.7 1-81 
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4.4.2.3.2 Primary infection data: the host 

For the P. laevis infected eels, host body length ranged from 19 to 50 cm (mean = 31.4 ±8.7 

cm) and body weight ranged from 10.2 to 204.5 g (mean = 50.8±51.8 g). For the uninfected 

eels, the body length ranged from 10 to 86 cm (mean = 30.9±15.9 cm) and body weight 

ranged from 1.2g to 1380 g (mean = 103.8±230.4 g).  These differences between the infected 

and uninfected hosts were not statistically significant (p = 0.60 and 0.36 respectively). The 

mean condition factor for P. laevis infected eels was 0.16±0.04, whilst the mean condition 

factor for the uninfected eels was 0.15±0.04 (Table 4.8) and this was a statistically significant 

difference (p = 0.012).   

 

Upon analysis of the different categories of eel length it was apparent that there were no 

significant differences in P. laevis prevalence (p: 0.12 – 1.0), mean abundance (p: 0.25 – 

0.71) or mean intensity (p: 0.17 – 0.56) (Table 4.11).    

 

Table 4.11 P. laevis infection data with respect to eel body length category.  

Body 

length 

range 

(cm) 

Eels 

examined  

Infected 

eels 

Prevalence 

(%)  

Number of      

P. laevis 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

10-20 26 2 7.7 11 0.4±1.8 5.5±4.9 2 – 9  

20.5-25 32 5 15.6 24 0.8±2.4 4.8±4.5 1 - 12 

25.5-30 32 5 15.6 15 0.5±1.4 3±2.3 1 - 7 

30.5-35 22 6 27.3 27 1.2±2.8 4.5±4.0 1 - 10 

35.5-86 28 5 17.9 138 4.9±16.8 27.6±33.6 1 - 81 

 

With respect to eel condition factor, there was a significant difference (p = 0.0307) in the 

prevalence of P. laevis infection between the largest category of condition factor and the 

smallest category of condition factor (Table 4.12). No other significant differences in P. 

laevis prevalence occurred between the remaining eel condition factor categories (p: 0.14 - 
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1.0). There was a significant difference (p= 0.0274) in the abundance of P. laevis between the 

largest and smallest categories of condition factor; there were no other significant differences 

in abundance between the remaining categories of condition factor (p: 0.10 - 0.98). There 

were also no significant differences in P. laevis intensity between the different categories of 

eel condition factor (p: 0.88 – 1.0).   

Table 4.12 P. laevis infection data with respect to eel condition factor category.  

Condition 

factor 

range 

Eels 

examined 

Infected 

eels 

Prevalence 

 (%) 

Number of      

P. laevis 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd)  

Intensity 

range 

0.04-0.12 34 2 5.9 13 0.4±2.1 6.5±7.8 1 - 12 

0.13-0.14 38 4 10.5 20 0.5±1.8 5±3.3 1 - 9 

0.15-0.16 28 7 25 29 1.0±2.4 4.1±3.2 1 - 10 

0.17-0.29 40 10 25 153 3.8±14.2 15.3±25.9 1 - 81 
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4.4.3 Non-bulb acanthocephalans  

4.4.3.1 Morphological examination 

The non-bulb acanthocephalans were characterised by the absence of a proboscis bulb as 

shown in the images below (Figures 4.16 and 4.17).   

 

Figure 4.16 Representative image of an acanthocephalan (specimen number CN10/2012/05)  

without a proboscis bulb (extracted from eel CN10) that highlights the small proboscis (*) 

with few rows of hooks. A = anterior; P = posterior. 

 

 

Figure 4.17 Representative images of the different types of proboscis associated with the 

non-bulb acanthocephalans observed in the samples.  A: small proboscis with few rows of 

hooks (specimen number CN10/2012/05; extracted from eel CN10), B: long proboscis with 

three rows of prominent hooks (specimen number C16/2009/01; extracted from eel C116), C: 

long proboscis with multiple rows of discrete hooks (specimen number C17/2009/02; 

extracted from eel C117). 

 

A P 

A B 

 

C 

* 
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4.4.3.2 Primary infection data for acanthocephalans without a proboscis bulb 

Examination of eel gastrointestinal tracts confirmed the presence of acanthocephalans lacking 

a proboscis bulb in 22 of the 140 (15.7%) European eel specimens. The positive infections 

were observed in eel sampled from five English rivers (prevalence in parenthesis):  Crane 

(100%), Crouch (70%), Gowy (20%), Leven (20%) and Petteril (10%) (Table 4.13). There 

were no non-bulb acanthocephalans infecting eels sampled from Welsh rivers.  

Table 4.13 Primary infection data for acanthocephalans without a proboscis bulb in European eels 

sampled from 7 catchment sites across England. Ten eels were examined from each site. 

 

4.4.3.2.1 Primary infection data: the environment 

At the positive catchment sites, the total number of acanthocephalans without a proboscis 

bulb was 254 parasites (mean intensity of infection = 11.5±14.7 and mean abundance = 

1.8±7.1) (Table 4.13). The number of acanthocephalans per eel ranged from 1 (specimens 

CN8, CN9, C116, RP10, RL3 and RG10) to 56 (specimen CN1) (Table 4.14). The majority 

(13/22, 59%) of the infected eels harboured less than 10 acanthocephalans; indeed, 27.3% 

(6/22) of the hosts harboured a single acanthocephalan (Table 4.14). Overall, the 

acanthocephalans lacking a proboscis bulb were over-dispersed (dispersion index = 28) 

(Figure 4.18). 

Eel catchment sites Prevalence 

(%) 

Number of non-bulb 

acanthocephalans 

Mean parasitic 

abundance (± sd) 

Mean infection 

intensity (± sd) 

Crane: CN England 100 208 20.8±17.5 20.8±17.5 

Crouch: C England 70 38 3.8±5.1 5.4±5.3 

Petteril: RP  England 10 1 0.1±0.3 1 

Leven: RL England 20 3 0.3±0.9 3 

Gowy: RG England 20 4 0.4±0.9 2.0±1.4 

Bela: B England 0 0 0 0 

Hether Burn: HB England 0 0 0 0 

 15.7 254 1.8±7.1 11.6±14.7 
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 Acanthocephalans without a proboscis bulb were isolated as the only acanthocephalan type 

present in European eel at 2 catchment sites: the Rivers Crane and Gowy. At the other three 

catchment sites (Petteril, Leven and Crouch), the non-bulb acanthocephalans were isolated as 

a mixed infection with P. laevis.   

Table 4.14 Eel morphometric and associated non-bulb acanthocephalan infection data for sampling 

sites across England. Ten eels were examined from each site. 

 

 

Figure 4.18 Summary of the dispersion of non-bulb acanthocephalans within the sampled eel 

population. 
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0.14 
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As stated above, at the regional level, there were no non-bulb acanthocephalan infections 

detected in eels examined from Welsh rivers. In contrast, both rivers sampled from South 

East England and the majority from North West England harboured eels with non-bulb 

acanthocephalan infections (Table 4.15). Indeed, there was a significant difference in non-

bulb acanthocephalan prevalence data between eels sampled from South East England and 

North West England (p = 10
-4

). The mean abundance and mean intensity data for non-bulb 

acanthocephalan infections was also significantly different between eels sampled from South 

East England and North West England (p = 10
-4

 and p = 0.032 respectively).  

Table 4.15 Regional infection data for non-bulb acanthocephalans isolated from European 

eel sampled across England and Wales. 

Regions Number of 

examined 

river sites 

Number of           

non-bulb 

acanthocephalan 

positive sites 

Number of 

examined eel 

Number of 

infected eel 

Prevalence 

(%) 

Number of 

non-bulb 

acanthocephalan 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

North 

West 

England 

5 3 50 5 10 8 0.2±0.5 1.6±0.9 1 - 3 

South 

East 

England 

2 2 20 17 85 246 12.3±15.3 14.5±15.6 1 - 56 

North 

Wales 

4 0 40 0 0 0 0 0 0 

South 

Wales 

3 0 30 0 0 0 0 0 0 

Total 14 5 140 22 15.7 254 1.8±7.1 11.5±14.7 1 - 56 

4.4.3.2.2 Primary infection data: the host 

For the non-bulb acanthocephalan infected eels, host body length ranged from 26 to 86 cm 

(mean = 52.1 ±22.9 cm) and body weight ranged from 22.4 to 1380 g (mean = 399.9±416.5 

g). For the uninfected eels, the body length ranged from 10 to 52 cm (mean = 26.7±8.2 cm) 

and body weight ranged from 1.2g to 208 g (mean = 38.2±41.5 g). These differences in 

length and weight between the infected and uninfected eels were highly significant (p = 10
-4

). 

The mean condition factor for infected eels was 0.16±0.03, whilst the mean condition factor 



149 

 

for the uninfected eel was 0.15±0.04 (Table 4.16); this difference was also statistically 

significant (p = 0.015).   

Upon analysis of different categories of eel length it was apparent that non-bulb 

acanthocephalan infections were not found in eels less than 25.5 cm body length (Table 

4.16). It was also apparent that non-bulb acanthocephalan prevalence, as well as mean 

intensity, generally increased as the eel body length category increased.  

With respect to prevalence of non-bulb acanthocephalans, there were significant differences 

in the data between the largest length category and three smallest length categories (p: 0.024 

– 10
-4

).  The intensity and abundance data were also significantly different between the 

largest length category of eel and the smallest infected category of eel (25.5- 30 cm) (p= 

0.0113 and p = 0.0066 respectively).     

Table 4.16 Non-bulb acanthocephalan infection data with respect to eel body length category  

Body length 

range (cm) 

Eels 

examined  

Infected 

eels 

Prevalence 

(%)  

Number of      

Non-bulb 
acanthocephalans 

Mean 

abundance 
(±sd) 

Mean 

intensity 
(±sd) 

Intensity 

range 

10-20 26 0 0 0 0 0 0 

20.5-25 32 0 0 0 0 0 0 

25.5-30 32 5 15.6 6 1.9±0.5 1.2±0.4 1 – 2  

30.5-35 22 5 22.7 24 1.1±2.9 4.8±4.8 1 - 13 

35.5-86 28 12 42.9 224 8±14.2 18.7±16.7 1 - 56 

 

Upon analysis of the different categories of eel condition factor it was apparent that the 

greatest non-bulb acanthocephalan prevalence, as well as mean abundance and intensity, 

were found in the largest category of eel condition factor (Table 4.17). In general, non-bulb 

acanthocephalan infection prevalence, mean abundance and mean intensity increased as the 

eel condition factor category increased.  
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With respect to non-bulb acanthocephalan prevalence, there were significant differences in 

the data between the largest category of condition factor and both the smallest (p = 0.015) 

and second largest (k= 0.15-0.16) (p = 0.0317) categories of condition factor. 

There was also a significant difference in abundance of the non-bulb acanthocephalans 

between the largest category of condition factor and both the smallest (p= 0.0150) and second 

largest (p= 0.0374) categories of condition factor.   

No significant differences in non-bulb acanthocephalan intensity data were observed between 

the different categories of eel condition factor (p: 0.20 – 1.0).   

Table 4.17 Non-bulb acanthocephalan infection data with respect to eel condition factor 

category.  

Condition 

factor range 

Eels 

examined 

Infected 

eels 

Prevalence 

(%) 

Number of      

 Non-bulb 

acanthocephalan 

Mean 

abundance 

(±sd) 

Mean 

intensity 

 (±sd)  

Intensity 

range 

0.04-0.12 34 2 5.9 4 0.1±0.5 2±1.4 1 - 3 

0.13-0.14 38 6 15.8 39 1.0±4.9 6.5±11.5 1 - 30 

0.15-0.16 28 2 7.1 6 0.2±0.9 3±2.8 1 - 5 

0.17-0.29 40 12 30 205 5.1±11.8 17.1±16.5 1 - 56 

 

 

4.4.3.3 Molecular characterisation of the non-bulb acanthocephalans 

Genomic DNA was extracted and purified from 4 non-bulb acanthocephalan worms; all 

isolated from eel specimen CN1and including the different morphological types shown in 

Figure 4.6. The acanthocephalan 18S rRNA gene was PCR amplified and the resulting 652 

bp products were subjected to DNA sequencing.  BlastN analysis of the data showed that one 

sequence was identical to the 18S rRNA gene of A. lucii (Table 4.18), as confirmed by 

sequence alignment (Figure 4.19).  
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Table 4.18 BlastN analysis of the 18S RNA gene fragment derived from an acanthocephalan 

isolated from eel specimen (specimen number CN1/2012/06). 

Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

Acanthocephalus lucii 18S ribosomal RNA 

gene, complete sequence 
706 706 100% 0.0 100% AY830152.1 

Acanthocephalus dirus 18S ribosomal 

RNA gene, complete sequence 
695 695 100% 0.0 99% AY830151.1 

Acanthocephalus anguillae 18S ribosomal 

RNA gene, partial sequence 
689 689 100% 0.0 99% Af469413.1 

 

                                                 

 

414629901_Acantho6_For_C04      ---------------------------------------AGTTAGAGGAT 11 

gi|61200890|gb|AY830152.1|      AAGCATTTGCCAAGAATGTTTTCATTAATCAAGAACGAAAGTTAGAGGAT 950 

                                                                       *********** 

 

414629901_Acantho6_For_C04      CGAAGACGATTAGATACCGTCCTAGTTCTAACTGTAAACTATGCCGACTG 61 

gi|61200890|gb|AY830152.1|      CGAAGACGATTAGATACCGTCCTAGTTCTAACTGTAAACTATGCCGACTG 1000 

                                ************************************************** 

 

414629901_Acantho6_For_C04      GGGATTCGCCAGTGTCAACAAACTTGGCGAGCACCCTCCGGGAAACCAAA 111 

gi|61200890|gb|AY830152.1|      GGGATTCGCCAGTGTCAACAAACTTGGCGAGCACCCTCCGGGAAACCAAA 1050 

                                ************************************************** 

 

414629901_Acantho6_For_C04      GTGATTGGGTTCCGGGGGGAGTATGGTTGCAAAATCGAAACTTAAAGGAA 161 

gi|61200890|gb|AY830152.1|      GTGATTGGGTTCCGGGGGGAGTATGGTTGCAAAATCGAAACTTAAAGGAA 1100 

                                ************************************************** 

 

414629901_Acantho6_For_C04      TTGACGGAGGGGCACACCAGAAGTGGAGCCTGCGGCTCAATTTGACTCAA 211 

gi|61200890|gb|AY830152.1|      TTGACGGAGGGGCACACCAGAAGTGGAGCCTGCGGCTCAATTTGACTCAA 1150 

                                ************************************************** 

 

414629901_Acantho6_For_C04      CGCACGAAAGCTTACTCGGTCCGAACACCGTGAGGATTGACAGGTTGAAA 261 

gi|61200890|gb|AY830152.1|      CGCACGAAAGCTTACTCGGTCCGAACACCGTGAGGATTGACAGGTTGAAA 1200 

                                ************************************************** 

 

414629901_Acantho6_For_C04      GCTCTTTCTTGATCCGGTGGGTAGCGGTGCATGGCCGTTCGTAGTTGGTG 311 

gi|61200890|gb|AY830152.1|      GCTCTTTCTTGATCCGGTGGGTAGCGGTGCATGGCCGTTCGTAGTTGGTG 1250 

                                ************************************************** 

 

414629901_Acantho6_For_C04      AAGTGATTTGTCTGGTTTATTCCGATAACGAACGAGACTCTGGCCTACTA 361 

gi|61200890|gb|AY830152.1|      AAGTGATTTGTCTGGTTTATTCCGATAACGAACGAGACTCTGGCCTACTA 1300 

                                ************************************************** 

 

414629901_Acantho6_For_C04      ATTAGCGTAGTGATCTCATGTCGCTATAATGCTTCTTAGAGGGACAGGCG 411 

gi|61200890|gb|AY830152.1|      ATTAGCGTAGTGATCTCATGTCGCTATAATGCTTCTTAGAGGGACAGGCG 1350 

                                ************************************************** 

 

414629901_Acantho6_For_C04      CAATGAAAGGCGCACGAAGTA----------------------------- 432 

gi|61200890|gb|AY830152.1|      CAATGAAAGGCGCACGAAGTAGAGCAATAACAGGTCTGTGATGCCCTTCG 1400 

                                *********************                              

 

Figure 4.19 The sequence of the 18S rRNA gene fragment from one acanthocephalan 

(414629901_Acantho6_For_C04) isolated from eel sample CN1 (specimen number 

CN1/2012/06), aligned with the A. lucii (gi|61200890) 18S rRNA gene sequence.  
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The remaining 3 sequences were identical to each other; however, there was not an exact 

match to any sequence deposited in the GenBank database (Table 4.19). The two highest 

scoring matches (99% identity) were to the 18S rRNA gene sequences from A. anguillae (gi: 

23307641) and A. dirus (gi: 61200887) (Figure 4.20).  

 

Table 4.19 BlastN analysis of the 18S RNA gene fragment derived from an acanthocephalan 

isolated from eel specimen CN1 (specimen number CN1/2012/01). 

 

Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

Acanthocephalus anguillae 18S ribosomal 

RNA gene, partial sequence 
1029 1029 98% 0.0 99% AF469413.1 

Acanthocephalus dirus 18S ribosomal 

RNA gene, complete sequence 
1029 1029 98% 0.0 99% AY830151.1 

Acanthocephalus lucii 18S ribosomal RNA 

gene, complete sequence 
1024 1024 98% 0.0 99% AY830152.1 
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gi|23307641|gb|AF469413.1|      TCGAAGACGATTAGATACCGTCCTAGTTCTAACTGTAAACTATGCCGACT 412 

gi|61200887|gb|AY830151.1|      TCGAAGACGATTAGATACCGTCCTAGTTCTAACTGTAAACTATGCCGACT 998 

414629901_Acantho1_For_A03      ----------TTAGATACCGTCCTAGTTCTAACTGTAAACTATGCCGACT 40 

gi|61200890|gb|AY830152.1|      TCGAAGACGATTAGATACCGTCCTAGTTCTAACTGTAAACTATGCCGACT 999 

                                          **************************************** 

 

gi|23307641|gb|AF469413.1|      GGGGATTCGCCAGTGTCAACAAACTTGGCGAGCCCCCTCCGGGAAACCAA 462 

gi|61200887|gb|AY830151.1|      GGGGATTCGCCAGTGTCAACAAACTTGGCGAGCACCCTCCGGGAAACCAA 1048 

414629901_Acantho1_For_A03      GGGGATTCGCCAGTGTCAACAAACTTGGCGAGCACCCTCCGGGAAACCAA 90 

gi|61200890|gb|AY830152.1|      GGGGATTCGCCAGTGTCAACAAACTTGGCGAGCACCCTCCGGGAAACCAA 1049 

                                ********************************* **************** 

 

gi|23307641|gb|AF469413.1|      AGTGATTGGGTTCCGGGGGGAGTATGGTTGCAAAATCGAAACTTAAAGGA 512 

gi|61200887|gb|AY830151.1|      AGTGATTGGGTTCCGGGGGGAGTATGGTTGCAAAATCGAAACTTAAAGGA 1098 

414629901_Acantho1_For_A03      AGTGATTGGGTTCCGGGGGGAGTATGGTTGCAAAATCGAAACTTAAAGGA 140 

gi|61200890|gb|AY830152.1|      AGTGATTGGGTTCCGGGGGGAGTATGGTTGCAAAATCGAAACTTAAAGGA 1099 

                                ************************************************** 

 

gi|23307641|gb|AF469413.1|      ATTGACGGAGGGGCACACCAGAAGTGGAGCCTGCGGCTCAATTTGACTCA 562 

gi|61200887|gb|AY830151.1|      ATTGACGGAGGGGCACACCAGAAGTGGAGCCTGCGGCTCAATTTGACTCA 1148 

414629901_Acantho1_For_A03      ATTGACGGAGGGGCACACCAGAAGTGGAGCCTGCGGCTCAATTTGACTCA 190 

gi|61200890|gb|AY830152.1|      ATTGACGGAGGGGCACACCAGAAGTGGAGCCTGCGGCTCAATTTGACTCA 1149 

                                ************************************************** 

 

gi|23307641|gb|AF469413.1|      ACGCACGAAAGCTTACTCGGTCCGAACACCGTGAGGATTGACAGGTTGAA 612 

gi|61200887|gb|AY830151.1|      ACGCACGAAAGCTTACTCGGTCCGAACACCGTGAGGATTGACAGGTTGAA 1198 

414629901_Acantho1_For_A03      ACGCACGAAAGCTTACTCGGTCCGAACACCGTGAGGATTGACAGGTTGAA 240 

gi|61200890|gb|AY830152.1|      ACGCACGAAAGCTTACTCGGTCCGAACACCGTGAGGATTGACAGGTTGAA 1199 

                                ************************************************** 

 

gi|23307641|gb|AF469413.1|      AGCTCTTTCTTGATCCGGTGGGTAGTGGTGCATGGCCGTTCGTAGTTGGT 662 

gi|61200887|gb|AY830151.1|      AGCTCTTTCTTGATCCGGTGGGTAGTGGTGCATGGCCGTTCGTAGTTGGT 1248 

414629901_Acantho1_For_A03      AGCTCTTTCTTGATCCGGTGGGTAGTGGTGCATGGCCGTTCGTAGTTGGT 290 

gi|61200890|gb|AY830152.1|      AGCTCTTTCTTGATCCGGTGGGTAGCGGTGCATGGCCGTTCGTAGTTGGT 1249 

                                ************************* ************************ 

 

gi|23307641|gb|AF469413.1|      GAAGTGATTTGTCTGGTTTATTCCGATAACGAACGAGACTCTAGCCTACT 712 

gi|61200887|gb|AY830151.1|      GAAGTGATTTGTCTGGTTTATTCCGATAACGAACGAGACTCTAGCCTACT 1298 

414629901_Acantho1_For_A03      GAAGTGATTTGTCTGGTTTATTCCGATAACGAACGAGACTCTAGCCTACT 340 

gi|61200890|gb|AY830152.1|      GAAGTGATTTGTCTGGTTTATTCCGATAACGAACGAGACTCTGGCCTACT 1299 

                                ****************************************** ******* 

 

gi|23307641|gb|AF469413.1|      AATTAGCGTAGTGATCTCATGTCGCTATAATGCTTCTTAGAGGGACAGGC 762 

gi|61200887|gb|AY830151.1|      AATTAGCGTAGTGATCTCATGTCGCTATAATGCTTCTTAGAGGGACAGGC 1348 

414629901_Acantho1_For_A03      AATTAGCGTAGTGATCTCATGTCGCTATAATGCTTCTTAGAGGGACAGGC 390 

gi|61200890|gb|AY830152.1|      AATTAGCGTAGTGATCTCATGTCGCTATAATGCTTCTTAGAGGGACAGGC 1349 

                                ************************************************** 

 

gi|23307641|gb|AF469413.1|      GCAATGAAAGGCGCACGAAGTAGAGCAATAACAGGTCTGTGATGCCCTTC 812 

gi|61200887|gb|AY830151.1|      GCAATGAAAGGCGCACGAAGTAGAGCAATAACAGGTCTGTGATGCCCTTC 1398 

414629901_Acantho1_For_A03      GCAATGAAAGGCGCACGAAGTAGAGCAATAACAGGTCTGTGATGCCCTTC 440 

gi|61200890|gb|AY830152.1|      GCAATGAAAGGCGCACGAAGTAGAGCAATAACAGGTCTGTGATGCCCTTC 1399 

                                ************************************************** 

 

gi|23307641|gb|AF469413.1|      GATGTTCGAGGCTGCACGCGCGCTACAATGGAGGGCGCAAAGCGCATGTT 862 

gi|61200887|gb|AY830151.1|      GATGTTCGAGGCTGCACGCGCGCTACAATGGAGGGCGCAAAGCGCATGTT 1448 

414629901_Acantho1_For_A03      GATGTTCGAGGCTGCACGCGCGCTACAATGGAGGGCGCAAAGCGCATGTT 490 

gi|61200890|gb|AY830152.1|      GATGTTCGAGGCTGCACGCGCGCTACAATGGAGGGCGCAAAGCGCATGTT 1449 

                                ************************************************** 

 

gi|23307641|gb|AF469413.1|      GCCTCTTGAAAGAGAGTTGCAGAATCGTAAATAGCCTTCATGACTGGGAT 912 

gi|61200887|gb|AY830151.1|      GCCTCTTGAAAGAGAGTTGCAGAATCGTAAATAGCCCTCATGACTGGGAT 1498 

414629901_Acantho1_For_A03      GCCTCTTGAAAGAGAGTTGCAGAATCGTAAATAGCCTTCATGACTGGGAT 540 

gi|61200890|gb|AY830152.1|      GCCTCTTGAAAGAGAGTTGCAGAATCGTAAATAGCCTTCATGACTGGGAT 1499 

                                ************************************ ************* 

 

gi|23307641|gb|AF469413.1|      CGGAGATTGAAATTATTCTTCGTGAACGAGGAATTCCTAGTAAGCGCGAA 962 

gi|61200887|gb|AY830151.1|      CGGAGATTGAAATTATTCTTCGTGAACGAGGAATTCCTAGTAAGCGCGAA 1548 

414629901_Acantho1_For_A03      CGGAGATTGAAATTATTCTTC----------------------------- 561 

gi|61200890|gb|AY830152.1|      CGGAGATTGAAATTATTCTTCGTGAACGAGGAATTCCTAGTAAGCGCGAA 1549 

                                *********************                              

 

Figure 4.20 The sequence of the 18S rRNA gene fragment (414629901_Acantho1_For_A03) from one 

acanthocephalan (specimen CN1/2012/01) isolated from eel sample CN1 aligned with A. anguillae 

(gi|23307641), A. lucii (gi|61200890) and A. dirus (gi|61200887) 18S rRNA gene sequences.  
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The novel sequence was further analysed phylogenetically (Figure 4.21).  The 18S rRNA 

gene sequence from the acanthocephalan specimen CN1/2012/01 was positioned in the 

phylogram within the Acanthocephalus spp. group and it appeared most related to A. 

anguillae.  Consequently, it is reasonable to propose that the novel 18S rRNA sequence 

derived from the acanthocephalan CN1/2012/01 was representative of A. clavula.  However, 

this remains questionable on the basis that currently there is no 18S rRNA sequence 

deposited in GenBank for A. clavula.   

 

 

 

 

 

Figure 4.21 A phylogram constructed using MEGA 6.0 of 18S rRNA gene fragments from 

acanthocephalans and including the worm extracted from eel CN1 (specimen number 

CN1/2012/01).  The sequences extracted from GenBank are as follows: A. lucii 

(gi|61200890), P. laevis (gi|540074015), E. truttae (gi|23307640), A. dirus (gi|61200887) and 

A. anguillae (gi|23307641). 
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4.4.4 Gastrointestinal pathology 

Prior to dissection of the gastrointestinal tract, a number of the European eel specimens 

showed protrusions of acanthocephalan proboscis bulbs through the wall of the 

gastrointestinal tract (Figure 4.22). Consequently, this observation was utilised as a 

pathological indicator of acanthocephalan infection. In addition, upon dissection, it was noted 

that a large proportion of the acanthocephalans were found attached to, and penetrating 

through, the gut wall.  For example, the gut of eel specimens C71and C74 had 33% (4/12) 

and 26% (14/53) respectively of their acanthocephalans penetrating the gut wall (Figure 

4.23). Given the large numbers of acanthocephalans isolated from some European eel 

specimens (eg. C131=81, C74=53, CN1=56) then it may be possible for these parasites to 

cause severe pathological impact on the integrity of the gut wall and also, potential blockage 

of the gastrointestinal tract.  

 

 
Figure 4.22 Representative images of P. laevis showing (A) the proboscis bulb (pb) 

protruding through the gut wall (eel R3) and (B) the pathological damage to the gut wall 

caused by penetration of the proboscis bulb (eel TB1).   

A B 

pb 

pb 
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Figure 4.23 Representative images of P. laevis showing (A) large number of 

acanthocephalans occupying the gut lumen (eel C74) and (B) multiple gut penetration by the 

acanthocephalans (eel C131).   
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4.4.4.1 Tapeworms: Primary infection data 

In total, 13 of the 140 (9.3%) European eel specimens contained tapeworms within their 

gastrointestinal tracts. The infected eels were sampled from 8 out of the 14 (57.1%) river 

systems surveyed across England and Wales (Table 4.20). No tapeworms were recovered 

from eels sampled from the River Leven in England and the Rivers Dee-Eitha, Mawddach-

eden, Taff, Cadoxton and Rhymney from Wales. At sites positive for tapeworms, the 

prevalence ranged from 10 to 30%. The Rivers Crane and Clwyd-Meirchion showed the 

highest prevalence of infection (30%), while the lowest prevalence (10%) was observed in 5 

of the remaining 6 infected catchment sites.   

Table 4.20 Summary of the primary infection data for tapeworms isolated from European eel 

sampled across England and Wales. Ten eels were examined from each site. 

Eel catchment sites Prevalence 

(%) 

Number of 

tapeworms 

Mean parasitic 

abundance ±(sd) 

Mean infection 

intensity ±(sd) 

Leven RL: England 0 0 0 0 

Petteril RP: England 20 3 0.3±0. 7 1.5±0.7 

Bela B: England 10 1 0.1±0.3 1 

Crane CN: England 30 6 0.6±1.3 2±1.7 

Hether Burn HB: England 10 2 0.2±0.6 2 

Gowy RG: England 10 1 0.1±0.3 1 

Crouch  C: England 10 1 0.1±0.3 1 

Clwyd-Meirchion MC: Wales 30 3 0.3±0.5 1 

Clwyd-Elwy CE: Wales 10 1 0.1±0.3 1 

Dee-Eitha D: Wales 0 0 0 0 

Mawddach-eden M: Wales 0 0 0 0 

Taff TB: Wales 0 0 0 0 

Cadoxton CD: Wales 0 0 0 0 

Rhymney R: Wales 0 0 0 0 

 8.6% 18 0.1±0.5  1.4 ±0.9  
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4.4.4.1.1 Primary infection data: the environment  

Overall, 18 tapeworms were collected from the eel specimens (mean abundance = 0.1±0.5; 

mean intensity = 1.4 ±0.9). The number of tapeworms extracted from individual eel ranged 

between 1 and 4; the latter being isolated from a fish sampled from the River Crane 

(specimen CN5). A single tapeworm was extracted from 76.9% of infected animals (10/13), 

(Table 4.21). With respect to the sampling sites, the River Crane yielded most tapeworm 

specimens (n =6). Overall, the parasites were over-dispersed (dispersion index = 2.5) (Figure 

4.24). 

Table 4.21 Eel morphometric and associated tapeworm infection data for the positive 

infections. Ten eels were examined from each site. 

 

 

 

 

Eel catchment sites Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Number of 

tapeworms 

Clwyd-Meirchion: Wales 

 

MC1 

MC3 

MC4 

42 

35 

25 

104.4 

54.6 

6.8 

0.14 

0.13 

0.17 

1 

1 

1 

Clwyd-Elwy: Wales CE9 20 10.9 0.14 1 

Gowy: RG England RG6 32 41.8 0.13 1 

Bela: B England B8 48 204.5 0.18 1 

Petteril: RP  England RP2 

RP5 

31.5 

35.5 

82.8 

74.9 

0.28 

0.17 

1 

2 

Hether Burn HB: England HB3 23 14.7 

 

0.12 

 

2 

Crane: CN England CN3 

CN5 

CN8 

86 

70 

77 

1380.3 

668.6 

661.9 

0.22 

0.19 

0.14 

1 

4 

1 

Crouch: C England C157 33 65.8 0.18 1 
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Figure 4.24 Summary of the dispersion of tape worms within the sampled eel population. 

Upon analysis of the infection data at a regional level it was evident that all examined rivers 

in South East England contained eel infected with tapeworms (Table 4.22). This region also 

generated the greatest tapeworm mean abundance and mean intensity of infection data. In 

North West England, only the River Leven appeared to contain eels lacking a tapeworm 

infection. In South Wales the eels from all the examined rivers were lacking a tapeworm 

infection. The majority of rivers examined from North Wales also contained eels lacking a 

tapeworm infection.   

Overall, there were no significant differences observed in the tapeworm prevalence between 

the different geographic regions (p: 0.151-1) with the exception of data observed between 

South East England and South Wales (p: 0.021).     

Table 4.22 Regional infection data for tapeworms isolated from European eels sampled 

across England and Wales. 

Regions Number 

of 

examined 

river sites 

Number of           

tapeworm 

positive 

sites 

Number 

of 

examined 

eel  

Number 

of 

infected 

eel 

Prevalence 

(%) 

Number of  

tapeworms 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

North West 

England 

5 4 50 5 10 6 0.1±0.4 1.2±0.4 1 - 2 

South East 

England 

2 2 20 4 20 7 0.4±0.9 1.8±1.5 1 - 4 

North 

Wales 

4 2 40 4 10 4 0.1±0.3 1.0±0 1 – 1  

South 

Wales 

3 0 30 0 0 0 0 0 0 

Total 14 8 140 13 9.3 17 1.4 ±0.9 0.1±0.5 1 – 4  
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4.4.4.1.2 Primary infection data: the host                                                     

For tapeworm infected eels, host body length ranged from 19 to 86 cm (mean = 42.5±21.9 

cm) and body weight ranged from 6.8 to 1380.3 g (mean = 259.4±407.2 g). For uninfected 

eels, host body length ranged from 10 to 86 cm (mean = 29.5±13.6 cm) and body weight 

ranged from 1.2 g to 1058.8 g (mean = 78.3±175.8 g). These differences in length and weight 

between the infected and uninfected eels were statistically significant (p = 0.012 and 0.013 

respectively). The mean condition factor for tapeworm infected eels was 0.17±0.04, whilst 

the mean condition factor for the uninfected eels was 0.15±0.04 and this difference was not 

statistically significant (p = 0.07).    

Upon analysis of different categories of eel length it was found that the greatest tapeworm 

prevalence and intensity data were associated with the two largest length categories of eel 

(Table 4.23). Indeed, there were significant differences in the prevalence of tapeworm 

infection between the largest length category of eel and the two length categories between 

20.5 cm and 30 cm (p: 0.0429 and 0.0075 respectively). There was also a significant 

difference in prevalence between the second largest length category of eel and the 25.5-30 cm 

length category (p = 0.023). There were no further significant differences between the eel 

length categories and tapeworm prevalence (p > 0.15). With respect to the tapeworm 

abundance data, the only significant difference occurred between the largest and the second 

smallest categories of eel length (p= 0.0412).   

Table 4.23 Tapeworm infection data with respect to eel body length category.  

Body length 

range (cm) 

Number of 

examined 

eels 

Number 

of infected 

eels 

Prevalence 

 (%) 

Number of   

tapeworms 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

10-20 26 2 7.7 2 0.1±0.3 1 0-1 

20.5-25 32 1 3.1 2 0.1±0.4 2 0-2 

25.5-30 32 0 0 0 0 0 0 

30.5-35 22 4 18.2 4 0.2±0.4 1 0-1 

35.5-86 28 6  21.4 10 0.4±0.9 1.7±1.2 1-4 
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Table 4.24 Tapeworm infection data with respect to eel condition factor category.  

Condition 

factor 

range 

Number 

of eels 

examined 

Number of 

infected 

eels 

Prevalence 

(%) 

Number of 

tapeworms 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

0.02 - 0.12 34 1 2.9 2 0.1±0.3 2 1 - 2 

0.13-0.14 38 5 13.2 5 0.1±0.3 1 1 – 1  

0.15-0.16 28 0 0 0 0 0 0 

0.17-0.32 40 7 17.5 11 0.3±0.7 1.6±0.8 1 - 4 

 

There was a general trend since as the eel condition factor category increased there was also 

an increase in tapeworm prevalence and abundance (Table 4.24). Interestingly, eels with a 

condition factor between 0.15 and 0.16 had no tapeworm infection. Indeed, there was a 

significant difference in tapeworm prevalence between the highest and second highest 

condition factor categories (p= 0.0359).   

With respect to the tapeworm intensity data, there were significant differences between the 

smallest and both the second smallest and the largest condition factors (p = 0.0006 and 0.03 

respectively). However, there were no significant abundance differences between the eel 

condition factor categories (p > 0.052).       

4.4.4.2 Tapeworm morphology 

Morphological examination of the extracted tapeworms showed that there were two distinct 

species infecting the eel; B. claviceps and P. macrocephalus (Figure 4.25). The carmine 

staining pattern was a distinctive feature that enabled species identification based upon 

morphology. Specifically, the staining for one parasite (specimen number B8/2009/01), 

showed the testes in the centre of proglottides (Figure 4.26). 
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Figure 4.25 Representative images of the tapeworms recovered from European eel 

specimens.  (A) Unstained large (length = 13 cm) P. macrocephalus (specimen number 

B8/2009/01) recovered from an eel sampled from the River Bela (B8). (B) Unstained small 

(length = 5cm) B. claviceps (specimen number RP2/2009/01) recovered from an eel sampled 

from the River Petteril (RP2).  

 

 

 
 

 

Figure 4.26 Representative image of B. claviceps recovered from the European eel 

specimens. The tapeworm (specimen number B8/2009/01) was stained with Carmine 

following isolation from an eel sampled from the River Bela (B8) and the image shows the 

testes in the centre of proglottides. 

4.4.4.3 Molecular characterisation of tapeworms 

Confirmation of the morphological identification of tapeworm species was provided by PCR 

amplification and DNA sequencing of the parasite 18S rRNA genes from representative 

samples. The resulting sequence data for tapeworms extracted from eel specimens B8, CN3 

and HB3 showed that the PCR products were identical to each other and to the 18S rRNA 

A B 
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gene of B. claviceps (Table 4.25 and Figure 4.27). These parasites were indeed all classified 

as B. claviceps based upon their morphology (Figure 4.26).  

Table 4.25 BlastN analysis of the 18S rRNA gene fragment derived from a tapeworm 

isolated from eel specimen CN3 (specimen number CN3/2012/01). 

Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

Bothriocephalus claviceps isolate PBI_526 

18S ribosomal RNA gene, partial sequence  
883 883 100% 0.0 100% KR780957.1 

Bothriocephalus claviceps 18S ribosomal 

RNA gene, complete sequence  
878 878 100% 0.0 99% AF267288.1   

 

 

420688201_TW4_F_G04                 ----------------------TGACGATCCGTGATGGTAGCATTTAAAC 28 

gi|10312154|gb|AF267288.1|AF26      TCTGACCATAAACGATGCCAACTGACGATCCGTGATGGTAGCATTTAAAC 1200 

                                                          **************************** 

 

420688201_TW4_F_G04                 CTTCCTCACGGGCAGTCCCCGGGAAACCATTAAGTCTATGGGTTCCGGGG 78 

gi|10312154|gb|AF267288.1|AF26      CTTCCTCACGGGCAGTCCCCGGGAAACCATTAAGTCTATGGGTTCCGGGG 1250 

                                    ************************************************** 

 

420688201_TW4_F_G04                 GAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCA 128 

gi|10312154|gb|AF267288.1|AF26      GAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCA 1300 

                                    ************************************************** 

 

420688201_TW4_F_G04                 CCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAACTCACC 178 

gi|10312154|gb|AF267288.1|AF26      CCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAACTCACC 1350 

                                    ************************************************** 

 

420688201_TW4_F_G04                 CGGGCCGGACACTATGAGGATTGACAGATTGAAAGCTCTTTCTTGATTTG 228 

gi|10312154|gb|AF267288.1|AF26      CGGGCCGGACACTATGAGGATTGACAGATTGAAAGCTCTTTCTTGATTTG 1400 

                                    ************************************************** 

 

420688201_TW4_F_G04                 GTGGTTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGT 278 

gi|10312154|gb|AF267288.1|AF26      GTGGTTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGT 1450 

                                    ************************************************** 

 

420688201_TW4_F_G04                 TAATTCCGATAACGAACGAGACTCCAGCCTGCTAATTAGTTCTCCTGTCC 328 

gi|10312154|gb|AF267288.1|AF26      TAATTCCGATAACGAACGAGACTCCAGCCTGCTAATTAGTTCTCCTGTCC 1500 

                                    ************************************************** 

 

420688201_TW4_F_G04                 ACTGTACTTGTGCAGGCGGGCGCTTGCCAAATCTGCTCTTCGCGGTTGAC 378 

gi|10312154|gb|AF267288.1|AF26      ACTGTACTTGTGCAGGCGGGCGCTTGCCAAATCTGCTCTTCGCGGTTGAC 1550 

                                    ************************************************** 

 

420688201_TW4_F_G04                 CATCTGGTGGCGTTGTTGGTTGCCTAAAGTGCCGGCCGCAATGCTGGTGC 428 

gi|10312154|gb|AF267288.1|AF26      CATCTGGTGGCGTTGTTGGTTGCCTAAAGTGCCGGCCGCAATGCTGGTGC 1600 

                                    ************************************************** 

 

420688201_TW4_F_G04                 TTTT---------------------------------------------- 432 

gi|10312154|gb|AF267288.1|AF26      TTTTTGTGTACTCGTGATGCATGTCCGGTGGGATGACTTGGGCGGATAGA 1650 

                                    ****                                               

 

Figure 4.27 The 18S rRNA DNA sequence (420688201_TW4_F_G04) from a tapeworm 

(specimen number CN3/2012/01), isolated from an eel sampled from the River Crane (CN3)          

aligned with a fragment of the B. claviceps 18S rRNA gene deposited in GenBank (gi: 

10312154).  
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The 18S rRNA sequence data for the representative other tapeworms showed that the PCR 

product was identical to a fragment of the 18S rRNA gene from P. macrocephalus (Table 

4.26 and Figure 4.28). This representative was a typical example of the tapeworm classified 

as P. macrocephalus based upon morphology.  

Table 4.26 BlastN analysis of the 18S rRNA gene fragment derived from a tapeworm 

isolated from eel specimen RG6 (specimen number R/2010/01). 

Description Max 

score 

Total 

score 

Query 

cover 

E 

value 

Ident Accession 

Proteocephalus macrocephalus 18S small 

subunit ribosomal RNA gene, complete 

sequence  

904 904 100% 0.0 100% EF095247.1 

Proteocephalus sp. JDC-2005 18S 

ribosomal RNA gene, partial sequence  

 

887 887 100% 0.0 100% DQ181940.1 

 

 

420976301_TW1_FBo_A03            -------------ACTGACGATCCGTGGTGGTAGTCCATCAACCTTCCCC 37 

gi|126513420|gb|EF095247.1|      ATAAACGATGCCAACTGACGATCCGTGGTGGTAGTCCATCAACCTTCCCC 1150 

                                              ************************************* 

 

420976301_TW1_FBo_A03            ACGGGCAGTCCCCGGGAAACCTTTAAGTCTTTGGGTTCCGGGGGAAGTAT 87 

gi|126513420|gb|EF095247.1|      ACGGGCAGTCCCCGGGAAACCTTTAAGTCTTTGGGTTCCGGGGGAAGTAT 1200 

                                 ************************************************** 

 

420976301_TW1_FBo_A03            GGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAG 137 

gi|126513420|gb|EF095247.1|      GGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAG 1250 

                                 ************************************************** 

 

420976301_TW1_FBo_A03            TGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAACTCACCCGGCCCG 187 

gi|126513420|gb|EF095247.1|      TGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAACTCACCCGGCCCG 1300 

                                 ************************************************** 

 

420976301_TW1_FBo_A03            GACACTATGAGGATTGACAGATTGATAGCTCTTTCTTGATTTGGTGGTTG 237 

gi|126513420|gb|EF095247.1|      GACACTATGAGGATTGACAGATTGATAGCTCTTTCTTGATTTGGTGGTTG 1350 

                                 ************************************************** 

 

420976301_TW1_FBo_A03            GTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTAATTCC 287 

gi|126513420|gb|EF095247.1|      GTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTAATTCC 1400 

                                 ************************************************** 

 

420976301_TW1_FBo_A03            GATAACGAACGAGACTCCTGCCTGCTAATTAGTGCATCTGTCTACTGTAC 337 

gi|126513420|gb|EF095247.1|      GATAACGAACGAGACTCCTGCCTGCTAATTAGTGCATCTGTCTACTGTAC 1450 

                                 ************************************************** 

 

420976301_TW1_FBo_A03            CTGCGTAGGCGGTGTTTGGCGAGG-------------------------- 361 

gi|126513420|gb|EF095247.1|      CTGCGTAGGCGGTGTTTGGCGAGGTTGCTCCCGTACGCTGCCCTGGTGGC 1500 

                                 ************************                           

 

 

Figure 4.28 The 18S rRNA sequence (420976301_TW1_FBo_A03) from a tapeworm 

(specimen number RG6/2010/01), isolated from an eel sampled from the River Gowy (RG6), 

aligned with a fragment of the P. macrocephalus 18S rRNA gene deposited in GenBank (gi: 

126513420).  
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4.4.4.4 Primary infection data for B. claviceps 

In total, 12 of the 140 (8.6%) European eels examined contained the tapeworm B. claviceps 

within their gastrointestinal tracts. These infected eels were sampled from 4 out of the 14 

(28.6%) river systems surveyed across England and Wales (Table 4.27). At sites positive for 

B.claviceps, the prevalence ranged from 10 to 30%. The Rivers Crane and Clwyd-Meirchion 

showed the highest prevalence of infection (30%), while the lowest prevalence (10%) was 

observed in the two remaining infected catchment sites. No mixed tapeworm infections were 

characterised in these eel specimens.  

Table 4.27 Summary of the primary infection data for B. claviceps isolated from European 

eels sampled across England and Wales. Ten eels were examined from each site. 

Eel catchment sites Prevalence 

(%) 

Number of 

tapeworms 

Mean parasitic 

abundance ±(sd) 

Mean infection 

intensity ±(sd) 

Bela B: England 10 1 0.1±0.3 1 

Crane CN: England 30 6 0.6±1.3 2±1.7 

Hether Burn HB: England 10 2 0.2±0.6 2 

Clwyd-Meirchion MC: Wales 30 3 0.3±0.5 1 

 8.6% 12 0.1±0.5  1.4 ±0.9  

4.4.4.4.1 Primary infection data: the environment  

Overall, 12 B. claviceps were collected from the eel specimens (mean abundance = 0.1±0.4; 

mean intensity = 1.5 ±1.1). The number of B. claviceps extracted from individual eels ranged 

between 1 and 4; the latter being isolated from a fish sampled from the River Crane 

(specimen CN5). A single tapeworm was extracted from 75% of the infected eels (6/8) (Table 

4.28). With respect to the sampling sites, the River Crane yielded most tapeworm specimens 

(n =6).  Overall, the parasites were over-dispersed (dispersion index = 2.5) (Figure 4.29). 
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Figure 4.29 Summary of the dispersion of B. claviceps within the sampled eel population. 

Table 4.28 Eel morphometric and associated B. claviceps infection data for the positive 

infections. Ten eels were sampled at each catchment site.  

 

 

 

 

 

 

Upon analysis of the B. claviceps infection data at a regional level it was evident that eels 

sampled from South Wales lacked this tapeworm. In contrast, eels sampled from South East 

England showed the greatest prevalence and mean intensity of B. claviceps infection (Table 

4.29). Overall, there were no significant differences in prevalence (p: 0.058 - 0.65), 

abundance (p: 0.1188 – 0.4961) and intensity of infection (p > 1.0) between the different 

sampling regions.     
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Eel body 

weight (g) 

Condition 

factor 

Numbers of 

tapeworm 

Clwyd-Meirchion: 

MC Wales 

 

MC1 

MC3 

MC4 

42 

35 

25 

104.4 

54.6 

6.8 

0.14 

0.13 

0.17 

1 

1 

1 

Bela: B England B8 48 24.5 0.11 1 

Hether Burn:         

HB England 

HB3 

 

23 

 

14.7 

 

0.12 

 

2 

 

Crane:                   

CN England 

CN3 

CN5 

CN8 

86 

70 

77 

1380.3 

668.6 

661.9 

0.22 

0.19 

0.14 

1 

4 

1 
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Table 4.29 Regional infection data for B. claviceps isolated from European eels sampled 

across England and Wales. 

Regions Number 

of 

examined 

river sites 

Number of           

B. 

claviceps 

positive 
sites 

Number 

of 

examined 

eel  

Number of 

infected 

eel 

Prevalence 

(%) 

Number of  

B. claviceps 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

North West 

England 

5 2 50 2 4 3 0.1±0.3 1.5±0.7 1 - 2 

South East 

England 

2 1 20 3 15 6 0.3±0.9 2±1.7 1 - 4 

North Wales 4 1 40 3 7.5 3 0.1±0.3 1 1 

South Wales 3 0 30 0 0 0 0 0 0 

Total 14 4 140 8 5.7 12 0.1±0.4 1.5±1.1 1 - 4 

 

 

4.4.4.4.2 Primary infection data: the host  

 

For B. claviceps infected eels, host body length ranged from 19 to 86 cm (mean = 50±25.1 

cm) and body weight ranged from 6.8 to 1380 g (mean = 386.9±485.2 g). For uninfected eels, 

host body length ranged from 10 to 86 cm (mean = 29.5±13.3 cm) and body weight ranged 

from 1.2 g to 1058.8 g (mean = 77.4±172.5 g). These differences in eel length and weight 

were significantly different between the infected and uninfected eels (p = 0.017 and 0.031 

respectively). The mean condition factor for B. claviceps infected eels was 0.16±0.03, whilst 

the mean condition factor for the uninfected eels was 0.15±0.04 and this was not statistically 

significant (p = 0.26). 

Upon analysis of different categories of eel length it was found that the greatest B. claviceps 

prevalence and abundance data were associated with the largest length category of eel (Table 

4.30). The only statistically significant data though was for the prevalence difference between 

the largest and the 25.5-30cm length categories (p = 0.018).             
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Table 4.30 B. claviceps infection data with respect to eel body length category.   

Body length 

range (cm) 

Number of 

examined 

eels 

Number 

of infected 

eels 

Prevalence 

(%) 

Number of   

B. 

claviceps 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

10-20 26 1 3.8 1 0.04±0.2 1 1 

20.5-25 32 1 3.1 2 0.1±0.4 2 2 

25.5-30 32 0 0 0 0 0 0 

30.5-35 22 1 4.5 1 0.05±0.2 1 1 

35.5-86 28 5 17.9 8 0.3±0.8 1.6±1.3 1 - 4 

With respect to eel condition factor, the highest B. claviceps prevalence and mean abundance 

data were observed for eels with the greatest condition factor category (Table 4.31).  

However, there were no statistically significant differences between the condition factor 

categories and the B. claviceps infection data (p > 0.14).     

Table 4.31 B. claviceps infection data with respect to eel condition factor category  

Condition 

factor range 

Number of 

eels 

examined 

Number 

of 

infected 
eels 

Prevalence 

(%) 

Number of   

B. claviceps 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

0.02 - 0.12 34 1 2.9 2 0.1±0.3 2 2 

0.13-0.14 38 3 7.9 3 0.1±0.3 1 1 

0.15-0.16 28 0 0 0 0 0 0 

0.17-0.32 40 4 10 7 0.2±0.7 1.8±1.5 1 - 4 

 

4.4.4.5 Primary infection data: P. macrocephalus  

In total, 5 of the 140 (3.6%) European eel examined contained the tapeworm P. 

macrocephalus within their gastrointestinal tracts. The infected eels were sampled from 4 out 

of the 14 (28.6%) river systems surveyed across England and Wales (Table 4.32); these were 

different sites relative to the B. claviceps positive infection sites. At sites positive for P. 

macrocephalus, the prevalence ranged from 10 to 20%. The River Petteril showed the highest 

prevalence of infection (20%), while the lowest prevalence (10%) was observed in the 3 

remaining infected catchment sites.   
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Table 4.32 Summary of the primary infection data for P. macrocephalus isolated from 

European eels sampled across England and Wales. Ten eels were examined from each site. 

Eel catchment sites Prevalence 

(%) 

Number of 

tapeworms 

Mean parasitic 

abundance ±(sd) 

Mean infection 

intensity ±(sd) 

Petteril RP: England 20 3 0.3±0. 7 1.5±0.7 

Gowy RG: England 10 1 0.1±0.3 1 

Crouch  C: England 10 1 0.1±0.3 1 

Clwyd-Elwy CE: Wales 10 1 0.1±0.3 1 

 3.6% 6 0.04±0.2  1.2 ±0.4  

 

4.4.4.5.1 Primary infection data: the environment  

Overall, 6 P. macrocephalus were collected from the eel specimens (mean abundance = 

0.04±0.2; mean intensity = 1.2 ±0.4). The number of P. macrocephalus extracted from 

individual eel was either 1, or 2; the latter being isolated from a fish sampled from the River 

Petteril (specimen RP5). A single P. macrocephalus was extracted from the remaining 4 

infected animals (Table 4.33). With respect to the sampling sites, the River Petteril yielded 

most tapeworm specimens (n =3). Overall, the parasites were over-dispersed (dispersion 

index = 2.5). 

Table 4.33 Eel morphometric and associated P. macrocephalus infection data for the positive 

infections.  Ten eel were sampled at each catchment site.  

 

Eel catchment sites Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

tapeworm 

Clwyd-Elwy: Wales CE9 20 10.9 0.14 1 

Gowy: RG England RG6 32 41.8 0.13 1 

Petteril: RP  England RP2 

RP5 

31.5 

35.5 

82.8 

74.9 

0.28 

0.17 

1 

2 

Crouch: C England C157 33 65.8 0.18 1 
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Upon analysis of the infection data at a regional level, it was evident that eels sampled from 

rivers in South Wales were lacking a P. macrocephalus infection (Table 4.34). Two rivers in 

North West England contained eel infected with P. macrocephalus; this region generated the 

greatest P. macrocephalus prevalence and mean intensity of infection data. However, overall 

there were no significant differences observed in the P. macrocephalus prevalence data 

between the different geographic regions (p: 0.2879 - 1). There was also no significant 

differences in the abundance data between the different regions (p: 0.426 – 0.871).   

Table 4.34 Regional infection data for P. macrocephalus isolated from European eels 

sampled across England and Wales. 

Regions Number 

of 
examined 

river sites 

Number of           

P. 
macrocephalus 

positive sites 

Number 

of 
examined 

eel  

Number 

of 
infected 

eel 

Prevalence 

(%) 

Number of  

P. macrocephalus 

Mean 

abundance 
(±sd) 

Mean 

intensity 
(±sd) 

Intensity 

range 

North 

West 

England 

5 2 50 3 6 4 0.1±0.3 1.3±0.6 1 - 2 

South 

East 

England 

2 1 20 1 5 1 0.1±0.2 1 1 

North 

Wales 

4 1 40 1 2.5 1 0.03±0.2 1 1 

South 

Wales 

3 0 30 0 0 0 0 0 0 

Total 14 4 140 5 3.6 6 0.03±0.2 1.2 ±0.2 1-2 

 

4.4.4.5.2 Primary infection data: the host   

For P. macrocephalus infected eels, host body length ranged from 20 to 35.5 cm (mean = 

30.4±6.0 cm) and body weight ranged from 10.9 to 82.8 g (mean = 55.2±29.2 g). For 

uninfected eels, host body length ranged from 10 to 86 cm (mean = 30.7±15.1 cm) and body 

weight ranged from 1.2 g to 1380 g (mean = 95.5±216.1 g). The mean condition factor for 

tapeworm infected eels was 0.18±0.1, whilst the mean condition factor for the uninfected eels 

was 0.15±0.04. There were no statistically significant differences between body length (p = 

0.35), weight (p = 0.24), or condition factor (p = 0.16), for the P. macrocephalus infected and 

uninfected eels. 
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Upon analysis of different categories of eel length it was found that the greatest P. 

macrocephalus prevalence and abundance data were associated with the largest length 

categories of eel (Table 4.35). No P. macrocephalus infection was detected in eels from the 

median size length category (25.5-30 cm) and this was significant when compared to the 

largest category of eel length (p = 0.018). There were no further significant differences 

between the different length categories of eel with respect to prevalence (p: 0.19-1.0), or 

abundance (p: 0.07-0.93).   

Table 4.35 P. macrocephalus infection data with respect to eel body length category   

Body length 

range  

(cm) 

Number  

of eels 

examined  

Number of 

infected 

eels 

Prevalence 

(%) 

Number of            

P. macrocephalus 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

10-20 26 1 3.8 1 0.03±0.2 1 1 

20.5-25 32 1 3.1 2 0.1±0.4 2 2 

25.5-30 32 0 0 0 0 0 0 

30.5-35 22 1 4.5 1 0.05±0.2 1 1 

35.5-86 28 5 17.9 8 0.3 1.6±1.3 1 - 4 

With respect to condition factor, the highest P. macrocephalus prevalence and mean intensity 

data were associated with eels from the greatest condition factor category (Table 4.36). Eels 

with a condition factor between 0.02-0.12 and also, 0.15-0.16, had no P. macrocephalus 

infection.  However, there were no significant differences in P. macrocephalus prevalence (p: 

0.244 - 1) or abundance (p = 0.680) between the different condition factor categories.   

Table 4.36 P. macrocephalus infection data with respect to eel condition factor category  

Condition 
factor range 

Number 
of eels 

examined 

Number of 
infected 

eels 

Prevalence 
(%) 

Number of 
 P. macrocephalus 

Mean 
abundance 

(±sd) 

Mean 
intensity 

(±sd) 

Intensity 
range 

0.02 - 0.12 34 0 0 0 0 0 0 

0.13-0.14 38 2 5.3 2 0.1±0.2 1 1 

0.15-0.16 28 0 0 0 0 0 0 

0.17-0.32 40 3 7.5 4 0.1±0.4 1.3±0.6 1 – 2  
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4.5 Discussion 

Work described in this chapter is focussed upon describing infection of European eels 

sampled from sites across England and Wales with acanthocephalans and tapeworms. To this 

end, the data produced adds knowledge to the infection status of A. anguilla stocks in UK 

rivers.     

4.5.1 Acanthocephalans 

The primary infection data generated for acanthocephalans in this Chapter shows that these 

worms were present in eels sampled from multiple sites across England and Wales. Indeed, as 

the sampling sites have not been recorded in previous studies examining acanthocephalans in 

European eels, the data informs with respect to the geographic spread of these parasites. As 

expected, the parasites were over-dispersed since most of the eels lacked acanthocephalans 

whereas a small number of the hosts carried large numbers of these worms.      

A number of the sampling sites appeared to be free of acanthocephalan infections.  However, 

there remains the possibility that the prevalence of infection at these sites may be very low 

and hence sampling of further eel specimens may in fact confirm the presence of 

acanthocephalans. For example, an extensive survey carried out on a small trout stream, the 

Afon Terrig, in North Wales, confirmed the presence of E. truttae (Awachie, 1965).  

Nonetheless, at the regional level, a total of 40 eels were examined in this study from North 

Wales and none of these were infected with acanthocephalans. In contrast, every eel 

examined from the sampling sites in South East England were infected with 

acanthocephalans. This regional difference was highly significant and is possibly reflective of 

a contrast in the distribution of intermediate hosts. Indeed, changes in the composition of the 

crustacean fauna have been documented to correlate with changes to the eel intestinal parasite 

fauna (Thielen, Münderle, et al., 2007). Given that the appearance of acanthocephalans in the 
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amphipods has been shown to be seasonal (Awachie, 1965; Brattey, 1986), it is also possible 

that the regional infection differences observed may be partly explained by different sampling 

times. However, perhaps a more plausible explanation of the observed regional differences 

may be due to the age of the hosts; eels sampled from rivers in South East England were the 

largest in the study and hence most likely to encounter and prey upon the infected 

intermediate hosts. Of course, a combination of the above explanations may account for the 

observed regional differences.   

With respect to the category 2 pathogen, P. laevis, the data in this chapter confirms that eels 

in England and Wales are exposed to infection risk. Interestingly, it appears that the sampling 

sites in South Wales were more likely than elsewhere to harbour P. laevis infected eels. Since 

eels from South Wales were of average size then one explanation for this data is that the 

availability of infected intermediate hosts is greater than in other areas of the country. In 

addition, the absence, or presence, of preferred definitive hosts, such as trout, chub and 

barbel, are likely to influence the P. laevis infection data (Kennedy et al., 1989). Some of the 

eels were infected with relatively large numbers of P. laevis, particularly specimens from the 

river Crouch. It was apparent that eels infected with P. laevis exhibited a pathology 

associated with gut penetration by the proboscis, as has been noted elsewhere (Hine & 

Kennedy, 1974a; Dezfuli et al., 2002). The immune response to P. laevis has been studied in 

barbel (B. barbus), sheat fish (S. glanis) and chub (S. cephalus), and in three-spined 

sticklebacks, (G. aculeatus); (Dezfuli et al., 2011; Bosi & Dezfuli, 2015; Dezfuli et al., 

2015). As such, the immediate and broader impacts of P. laevis upon the European eel are 

areas worthy of further investigation.      

The molecular analysis of representative P. laevis specimens in this study showed that they 

were identical to a haplotype of the parasite, Hum 10, isolated from chub sampled from a 

Croatian river (unpublished data) and also to a specimen extracted from the intermediate host 
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G. pulex, sampled in the vicinity of Dijon, France (Perrot-Minnot, 2004). However, as the 

sequences were also identical to a deposit of the 18S rRNA gene from P. tereticollis, again 

isolated from G. pulex sampled in eastern France (Perrot-Minnot, 2004), then it remains a 

possibility that one, or more of the parasites collected in this study were P. tereticollis.  

Indeed, there has been much debate about the taxonomy of these two species (Perrot-Minnot, 

2004; Emde et al., 2012); however, as more recently argued Emde et al. (2012), the validity 

of the classification is justified. Indeed, Emde et al. (2012) highlight minor morphological 

differences between the larval stages of the two species and suggest that misidentification 

may have occurred in earlier studies (Emde et al., 2012). Based upon the mode of sample 

acquisition in this study, it would not be possible to morphologically examine the 

acanthocephalans in greater detail in order to assign species based upon the characteristics 

highlighted by Emde et al. (2012). As such, one alternative approach would be to PCR 

amplify a larger fragment of the 18S rRNA gene of the acanthocephalan samples and subject 

the resulting products to DNA sequencing. Should this additional data confirm the presence 

of P. tereticollis, this would be the first confirmed report of this parasite in UK fish since 

published reports document only the three strains of P. laevis (Kennedy et al., 1989; 

O'mahony, Bradley, et al., 2004; O'Mahony, Kennedy, et al., 2004; Smrzlić et al., 2015).             

With respect to the non-bulbed acanthocephalans, the data presented in this Chapter has 

confirmed the presence of these parasites in A. anguilla sampled from a number of the 

English rivers but interestingly, not from the Welsh catchment sites. Eels sampled from the 

rivers Crouch and Crane provided almost 97% of these parasites and hence not surprisingly, 

regional infection differences were noted as highly significant. Moreover, these parasites 

have also been reported to be common in several studies, most of which are focussed upon 

catchment sites in the South of the UK  (Kennedy et al., 1978; Kennedy, 1996). However, 

there remains the possibility that regional differences are less pronounced than the data 
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suggests since as noted previously, the eels studied from the river Crane are significantly 

larger than all the other specimens. As such, the age of the eels and hence the length of time 

that they have been preying upon intermediate, or paratenic hosts, is likely to be a significant 

factor in explaining the data (Smrzlić et al., 2015). 

The large number of acanthocephalans isolated from eels sampled from the river Crane was 

also notable for not including any parasites with a proboscis bulb. In contrast, three 

catchment sites, the rivers Petteril, Leven and Crouch contained eels that possessed mixed 

(non-bulbed and bulbed) types of acanthocephalan. Although stated in the literature that such 

mixed infections are rare within UK rivers (Kennedy & Moriarty, 1987), the data in this 

Chapter clearly indicates that this is no longer the case. On closer examination of the data 

from the river Crouch, it was evident that when mixed infections occurred, the number of 

parasites of one type was much greater than the other type. However, there were examples of 

both non-bulbed acanthocephalans being dominant and also, bulbed parasites being 

dominant.  However, the dataset of mixed infections described in this Chapter was small and 

hence to make firm conclusions, a greater number of hosts with mixed-type infections would 

need to be analysed. Nonetheless, it could be argued that acanthocephalans have become 

more widespread and also, that the non-bulb and bulbed species have adapted to co-exist 

within the host gastrointestinal tract of eels; albeit, the factors that may contribute to the 

relative numbers of both types remain unknown.     

Species identification of the non-bulb acanthocephalans based upon morphology was difficult 

as specimens were not freshly obtained and morphological differences were often minimal.  

As such, a representative sample of parasites was subjected to DNA extraction and PCR 

amplification of the 18S rRNA gene. This molecular data confirmed that A. lucii was present 

within the examined eel since there was an exact match to the 18S rRNA sequence deposited 

in GenBank for this parasite (García-Varela & Nadler, 2005). Confirmation of A. lucii within 
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the eel population sampled for this study is not surprising given that this parasite is 

commonly encountered within UK freshwater fish, including eels (Kennedy, 1985). In 

addition, a novel 18S rRNA sequence was generated for several acanthocephalan specimens 

that upon phylogenetic analysis was most closely related to A. anguillae. As such, it seems 

reasonable to propose that the specimens from which this novel sequence was generated were 

most likely to be A. clavula as this parasite lacks an 18S rRNA sequence deposit. Indeed, A. 

clavula is known to be commonly found within eels sampled from UK rivers (Kennedy & 

Lord, 1982). Confirmation of the species would necessitate either an attempt to characterise 

these parasites morphologically, or, given the aforementioned difficulties associated with this 

approach, an alternative molecular strategy could be utilised. Inspection of the NCBI 

GenBank database shows only one deposit for A. clavula and this corresponds to the 

sequence encoding the cytochrome oxidase gene (Benesh et al., 2006). Specific PCR primers 

could therefore be designed to amplify the suspected A. clavula cytochrome oxidase gene and 

subsequent sequence analysis would either support, or reject, the above species proposal.  

Although the molecular strategy described in this Chapter was a useful means of assisting 

species identification, a more rigorous analysis, requiring multiple specimens from different 

localities, would be needed to gain a more confident overview of the non-bulb 

acanthocephalan community composition within the eels.     

4.5.2 Cestodes 

Previous surveys have reported that the A. anguilla is infected with two tapeworm species, B. 

claviceps and P. macrocephalus, and that these parasites are distributed across Europe, 

including the UK (Nie & Kennedy, 1991b; Kennedy, Nie, Kaspers, et al., 1992; Nie & 

Kennedy, 1992b; Scholz et al., 2004; Kuchta et al., 2012).   
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Morphological and molecular data in this chapter confirms that both tapeworm species were 

present in the sampled eel population and hence it adds to the geographic knowledge of the 

spread of these parasites. Indeed, tapeworms were isolated from eels sampled from all 

regions with the exception being the catchment sites in South Wales. Given that overall 

prevalence of the tapeworms was relatively low and that a total of only 30 eels were 

examined from 3 rivers in South Wales, it remains a possibility that B. claviceps and/or P. 

macrocephalus, may be present in this region; albeit at very low prevalence. Moreover, data 

is this study corroborates earlier findings (Conneely & McCarthy, 1986), that eel length is a 

significant factor when considering the likelihood of the fish becoming infected with 

tapeworms. The most likely explanation for this finding is that the larger eels have been 

subject to a greater exposure time with regard to ingestion of infected intermediate hosts.  

Since eels sampled from South Wales are below average length it is likely that they have 

been exposed to any infected intermediate hosts for a shorter period than those eels sampled 

from other regions and hence they are less likely to become infected. 

With regard to the two tapeworm species, B. claviceps was found to be more common than P. 

macrocephalus. Both species were more commonly encountered in the English rivers than 

the Welsh rivers. Moreover, P. macrocephalus was absent from sites that were positive for B. 

claviceps and hence these tapeworm species were not found as a co-infection.   

As noted in previous studies, eel tapeworms are essentially non-pathogenic to the host 

(Abdelmonem et al., 2010). However, these parasites are likely to influence immune 

outcomes to other infections via immunosuppression and interestingly, they have recently 

been reported, along with other helminths, as being associated with red anus syndrome in the 

European eel (Tamam, 2014). Unfortunately, due to the mode of acquisition of the eel 

specimens in this study, it was impossible to comment further on whether, or not, red anus 

syndrome is an indicator of eel tapeworm infection.     



178 

 

CHAPTER FIVE 

Helminth community structure 

5.1 Introduction 

Previous Chapters have presented data on specific helminth infections in the European eels 

sampled from rivers in England and Wales. However, to fully appreciate the role(s) of 

helminths in the biology of the European eel, it is necessary to consider the individual 

parasite infection profiles as a component of an overall helminth community structure. 

In the natural environment, animals may often act as host to multiple different parasitic 

organisms and the outcomes, both for the host and the parasites, may be profound 

(Borgsteede, 1996; Pedersen & Fenton, 2007; Khan, 2012). For example, competition 

between multiple co-infecting parasites may increase the likelihood of genetic variation, 

which in turn may enhance parasite virulence and have negative health consequences for the 

host (Rigaud et al., 2010; Marcogliese & Pietrock, 2011). In contrast, an alternative outcome 

of co-infection might also be considered. For example, if parasitic infections lead to reduced 

growth and development of the host then this may limit resources for the parasite and 

ultimately, influence genetic change within the parasite so that it becomes less virulent 

(Bremermann & Pickering, 1983; Combes, 1997; Schjørring & Koella, 2003). In both cases, 

a clear impact on transmission of the parasite to the next host is apparent. 

As the individual parasite species within a community may differ from one host to another, 

outcomes for both the parasites and the host will potentially vary. At the forefront of this 

community structure are the interactions that occur between parasites and the host immune 

system and also, potential interactions between the parasites (Pedersen & Fenton, 2007). As 

such, parasite community structures are shaped by host factors (Conneely & McCarthy, 1986; 

Han et al., 2008; Schneebauer et al., 2016), parasite factors (Boon et al., 1990; Ashworth & 
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Kennedy, 1999; Nielsen, 1999; Buchmann & Lindenstrøm, 2002; Smrzlić et al., 2015) and 

environmental factors (Kennedy, 1993a; Lafferty & Kuris, 1999; Galli et al., 2001; Lefebvre 

et al., 2002; Schabuss et al., 2005; Thielen, Muenderle, et al., 2007; Jakob, Hanel, et al., 

2009a; Marcogliese & Pietrock, 2011; Filippi et al., 2013). Understanding these interplays is 

of importance; not least because it allows predictive models to be developed that assist 

further the understanding of parasite transmission and disease outcomes.  

The parasite fauna of A. anguilla have been well investigated throughout continental Europe 

and component helminth communities are described as comprising of acanthocephalans, 

cestodes, nematodes and trematodes. Within these classes, generalist fish helminths are 

commonly found in addition to dominant eel specialist parasites (Kennedy et al., 1997). 

Furthermore, it is also known that the European eel is host to accidental helminth species 

(Kennedy & Guégan, 1996; Kennedy et al., 1997; Kennedy et al., 1998; Borgsteede, Haenen, 

Bree, et al., 1999; Sures, Knopf, Wurtz, et al., 1999; Di Cave et al., 2001; Sures & Streit, 

2001; Kennedy & Moriarty, 2002; Aguilar, Alvarez, et al., 2005b; Schabuss et al., 2005; 

Kristmundsson & Helgason, 2007; Sasal et al., 2008; Moravec & Scholz, 2015). 

Within the UK, studies on European eel helminths have been conducted primarily in the 

South of England, including the river Thames at Windsor, the river Test in Hampshire and at 

several rivers (Exe, Clyst and Otter) and a lake (Shobrooke) in Devon (Kennedy, Nie, 

Kaspers, et al., 1992; Kennedy, 1993a; Norton et al., 2003; Norton, Rollinson, et al., 2004).  

These studies, as for the continental European studies, confirm that A. anguilla is host to 

multiple different classes of helminths.  Indeed, eel helminth fauna similarities have been 

reported between the UK and continental Europe (Kennedy et al., 1997; Kennedy et al., 

1998; Kennedy & Moriarty, 2002; Schabuss et al., 2005); albeit the component community 

structure within UK eels has also been documented as generally being less diverse than that 

observed for eels from mainland Europe (Norton et al., 2003). The format of data publication 
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for the aforementioned UK studies generally describes the eel parasite species catalogued to 

the study location. To this end, it is unfortunately not possible to discern precise information 

about the important helminth coinfections within individual eel specimens from UK 

localities.   

More recently, a study of eels from a Spanish saltwater lagoon examined individual eel 

physiology and fitness and concluded that the European eel may be able to tolerate co-

infecting parasites (Mayo-Hernandez, Serrano, Penalver, et al., 2015). The major influences 

upon the health of the individual eel appeared to be infections with an anisakid, 

Contracaecum sp. and a digenean, Bucephalus anguillae (Mayo-Hernandez, Serrano, 

Penalver, et al., 2015). Also considered potential influences upon the health of these eels 

were overall parasite richness and infections with the digenean Deropristis inflata (Mayo-

Hernandez, Serrano, Penalver, et al., 2015). However, this study highlighted that A. crassus 

was present in the eels at very low prevalence and there was also no indication of any 

pseudodactylid, or Pomphorhynchus laevis infections within the population (Mayo-

Hernandez, Serrano, Penalver, et al., 2015). As such, it remains untested as to exactly how 

helminth coinfections, particularly those of known pathogenic impact, influence the overall 

health of eel populations and importantly, the ability of these infected fish to successfully 

migrate to the spawning grounds in the Sargasso Sea (Kirk, 2003; Schneebauer et al., 2016).            
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5.2 Objectives 

The primary aim of this Chapter was to analyse the infection data presented in earlier sections 

of the thesis in order to establish an overview of helminth community structure in the 

European eel across the sampling sites in England and Wales. In addition, data on the 

pathogenic swim bladder nematode A. crassus will be presented and analysed with respect to 

other co-infecting helminths.  
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5.3 Materials & methods 

5.3.1. Sampling 

Eel samples were acquired according to Chapter 1 (1.3). For A. crassus analysis, thirty 

European eels were examined from the rivers Leven, Crane and Petteril and this data was 

analysed in conjunction with A. crassus infections determined from the remaining 11 

catchment sites (Ab Aziz, 2012).  

5.3.2 Processing 

Eel specimens were thawed and using a dissection kit a longitudinal incision was made along 

the ventral surface, allowing removal of the swim bladder. Following excision, the swim 

bladder was placed into a petri dish that contained distilled water and using a Wild 

Heerbrugg, M3B (Switzerland) dissecting microscope (x 100), it was opened with scissors 

and forceps and any A. crassus removed into an eppendorf tube. The number of A. crassus in 

each eel swim bladder was recorded. For longer term storage at -20C
o
, the nematodes were 

preserved within eppendorf tubes containing 70% (v/v) ethanol and labelled with sampling 

details.   

5.3.3 Imaging 

Images of the A. crassus were acquired according to Chapter 2 (2.3.3). 

5.3.4 Statistical analyses 

Statistical analyses were carried out according to Chapter 2 (2.3.10).   
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5.4 Results 

5.4.1 A. crassus infection analysis 

For most of the catchment sites examined in this thesis, infection data for A. crassus within 

European eels was produced in an earlier study (Ab Aziz, 2012). However, additional A. 

crassus infection data has been independently produced in this thesis work at three of the 

catchment sites, the rivers Leven, Crane and Petteril, thereby now allowing a complete swim 

bladder nematode data analysis within the European eel at all of the 14 sites. As such, the A. 

crassus data will be presented below as a single infection analysis. Subsequently, a more 

comprehensive helminth community structure analysis, that includes the A. crassus data, will 

be presented.   

5.4.1.1 A. crassus primary infection data: the environment 

In total, 35 of the 140 (25%) European eels examined contained the pathogenic nematode A. 

crassus within their swim bladder. Infections involving relatively large numbers of A. crassus 

resulted in alterations to the swim bladder appearance as it became distinctly red-brown in 

colour due to haemorrhaging caused by the nematodes (Figure 5.1). These A. crassus infected 

eels were sampled from 7 (50%) of the river sites surveyed across England and Wales (Table 

5.1). At sites positive for A. crassus, the prevalence ranged from 10 to 70%.  Eels sampled 

from the rivers Leven and Cadoxton showed the highest prevalence of infection (70%), while 

the lowest prevalence (10%) was observed in specimens from the river Taff.   
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Figure 5.1 A swim bladder infected with A. crassus isolated from an eel (specimen CN6) 

collected from the river Crane (A). Adult and larval stage A. crassus nematodes following 

removal from the swim bladder (B).  

Table 5.1 Primary infection data for A. crassus nematodes in European eels sampled from 14 

catchment sites across England and Wales. Ten eels were examined from each site. * = data 

extracted from Ab Aziz (2012). 

 

Eel catchment sites Prevalence 

(%) 

Total number 

of A. crassus 

Mean abundance 

(± sd) 

Mean infection 

intensity (± sd) 

Intensity 

range  

Leven: RL England 70 34 3.4±3.4 4.9±3.1 1 - 9 

Crouch: C England* 60 29 2.9±3.7 4.8±3.7 1 - 10 

Crane: CN England 40 15 1.5±3.4 3.8±4.9 1 - 11 

Gowy: RG England* 40 16 1.6±2.2 4±1.2 3 - 5 

Bela: B England* 0 0 0 0 0 

Petteril: RP England 0 0 0 0 0 

Hether Burn: HB England* 0 0 0 0 0 

Cadoxton: CD Wales* 70 18 1.8±1.8 2.6±1.5 1 - 5 

Rhymney: R Wales* 60 21 2.1±2.1 3.5±1.5 2 - 6 

Taff: TB Wales* 10 2 0.2±0.6 2 2 

Clwyd-Meirchion: MC 

Wales* 

0 0 0 0 0 

Dee-Eitha: D Wales* 0 0 0 0 0 

Clwyd-Elwy: CE Wales* 0 0 0 0 0 

Mawddach-eden: M Wales* 0 0 0 0 0 

 25% 135 0.96±2.2 3.9±2.7 1 - 11 

A B 

D 
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Overall, 135 A. crassus were collected from the sampled population of eels (mean abundance 

= 0.96 sd±2.2; mean intensity =3.9 sd±2.7) and the parasites were over-dispersed (dispersion 

index = 4.6) (Figure 5.2). The number of A. crassus extracted from individual eels ranged 

between 1 and 11; the latter being isolated from a fish sampled from the river Crane 

(specimen CN6). A single A. crassus was extracted from 17.1% (6/35) of the infected eels.  

The majority, 94.3% (33/35), of the infected eels carried less than 10 A. crassus and hence 

only 5.7% (2/35) of the hosts harboured 10+ swim bladder nematodes (Table 5.2). With 

respect to the sampling sites, the River Leven yielded most A. crassus (n = 34) and the lowest 

number was recovered from the River Taff (n = 2). 

   

 

Figure 5.2 Dispersion of A. crassus within the sampled eel population. 
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Table 5.2 Eel morphometric and associated A. crassus infection data for positive sampling sites in 

England and Wales. Ten eels were examined from each site. 

Upon analysis of the A. crassus infection data at the regional level, it was apparent that all the 

catchment sites in North Wales appeared to contain European eels that were free of the swim 

bladder nematode (Table 5.3). In contrast, the greatest prevalence, and also the greatest mean 

abundance, and intensity of A. crassus infection, was observed in eels sampled from rivers in 

South East England. In addition, all catchment sites in South Wales were positive for A. 

crassus infections. In contrast, the majority of the catchment sites in North West England 

(rivers Bela, Petteril and Hether Burn) contained eels that appeared to be free of A. crassus 

infections. 

Eel catchment sites Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

A. crassus 

Leven: RL England RL1 

RL2 

RL3 

RL6 

RL7 

RL9 

RL10 

21 

52 

27 

35 

27 

30 

26 

13.9 

18.7 

35.8 

71.3 

26.3 

38.1 

22.3 

0.16 

0.13 

0.18 

0.17 

0.13 

0.14 

0.13 

4 

9 

7 

1 

7 

1 

5 

Crouch: C England C157 

C107 

C117 

C59 

C71 

C48 

33 

32 

28 

32 

46 

31 

65.8 

47 

27.5 

50.1 

198.2 

44.7 

0.18 

0.14 

0.13 

0.15 

0.19 

0.15 

7 

7 

1 

10 

2 

2 

Crane: CN England CN5 

CN6 

CN9 

CN10 

70 

74 

69 

74 

668.6 

839.7 

563.5 

743.4 

0.19 

0.21 

0.17 

0.18 

1 

11 

2 

1 

Gowy: RG England RG1 

RG2 

RG6 

RG8 

39 

37 

32 

33 

73.6 

61.7 

41.8 

62.2 

0.12 

0.12 

0.13 

0.17 

3 

3 

5 

5 

River Cadoxton: CD Wales        

 

CD1 

CD2 

CD3 

CD4 

CD5 

CD8 

CD9 

33 

27 

24 

28 

28.5 

20 

21 

59.9 

30.4 

21.4 

28.3 

32.6 

11 

8.8 

0.17 

0.15 

0.06 

0.13 

0.05 

0.27 

0.09 

4 

1 

3 

5 

2 

2 

1 

River Rhymney: R   Wales          R1 

R3 

R4 

R6 

R8 

R10 

32 

30 

31.5 

30 

30 

23.5 

48.9 

42.3 

67.2 

39.7 

43.9 

18.5 

0.15 

0.16 

0.22 

0.15 

0.16 

0.14 

4 

6 

3 

2 

4 

2 

River Taff: TB Wales TB1 20 10.2 0.13 2 
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Statistically, there was a significant difference in the A. crassus prevalence data between all 

the examined regions with the exception of South East England and South Wales (p: 10
-7

-

0.0141). The A. crassus abundance data was also significantly different between North West 

England and South East England (p = 0.032). However, there was no significant difference 

between the A. crassus abundance data from South Wales and either region in England (p: 

0.06 – 0.8). With respect to mean intensity, there was no significant difference between any 

of the regional data (p > 0.09).  

Table 5.3 Regional infection data for A. crassus isolated from European eel sampled across 

England and Wales. 

 

5.4.1.2 A. crassus primary infection data: the host 

For the A. crassus infected eels, the body length ranged from 20 to 74 cm (mean = 35.1 ±14.9 

cm) and body weight ranged from 8.8 to 839.9 g (mean = 124.1±217.8 g). For uninfected 

eels, the body length ranged from 10 to 86 cm (mean = 29.3±14.7 cm) and body weight 

ranged from 1.2g to 1380.3 g (mean = 84.0±210.4 g). These differences in body length and 

weight between the infected and uninfected eels were highly significant (p = 0.003 and p = 

0.004 respectively). The mean condition factor for A. crassus infected eels was 0.14±0.04, 

whilst the mean condition factor for the uninfected eels was 0.15±0.04; this was not 

significant (p = 0.81).  

 

Regions Number of 

river sites 
examined 

Number of  

A. crassus 
positive sites 

Number 

of 
examined 

eels 

Number 

of 
infected 

eels 

Prevalence 

(%) 

Number of 

A. crassus 

Mean 

abundance 
(±sd) 

Mean 

intensity 
(±sd) 

Intensity 

range 

North 

West 
England 

5 2 50 11 22% 50 1±2.2 4.5±2.5 1 - 9 

South 

East 
England 

2 2 20 10 50% 44 2.2±3.5 4.4±3.9 1 - 11 

North 

Wales 

4 0 40 0 0 0 0 0 0 

South 
Wales 

3 3 30 14 46.7% 41 1.4±1.8 2.9±1.5 1 - 6 

Total 14 7 140 35 25% 135 0.9±2.2 3.9±2.7 1 - 11 
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Upon analysis of different categories of eel length it was apparent that prevalence, as well as 

mean A. crassus abundance and intensity, generally increased as the eel body length category 

increased; however, this trend was not observed with the largest length category of eel (Table 

5.4). Indeed, the second largest length category of eel had a significant difference in 

prevalence of A. crassus when compared to the two smallest length categories (p: 0.006-

0.011). There was also a significant difference in A. crassus prevalence between eels of 

length category 25.5-30 cm and the smallest length category (p = 0.025).    

Table 5.4 A. crassus infection data with respect to eel body length category.   

Body length 

range (cm) 

Eels 

examined  

Infected 

eels 

Prevalence  

(%) 

Number of   

A. crassus 

Mean abundance 

(±sd) 

Mean intensity 

(±sd) 

Intensity 

range 

10-20 26 2 7.7 4 0.2±10.5 2±0 2 

20.5-25 32 4 12.5 10 0.3±0.9 2.5±1.3 1-4 

25.5-30 32 11 34.4 41 1.3±2.3 3.7±2.4 1-7 

30.5-35 22 10 45.5 48 2.2±3.0 4.8±2.7 1-10 

35.5-86 28 8 28.6 32 1.1±2.7 4.0±3.8 1-11 

With respect to intensity of A. crassus infection, there was no significant difference (p: 0.12 – 

0.93), between any of the different length categories of eel.  

Upon analysis of different categories of eel condition factor it was apparent that prevalence, 

as well as mean A. crassus abundance and intensity, generally increased as the eel condition 

factor increased (Table 5.5). However, there was no significant differences in either the 

prevalence data (p: 0.53 - 1), or the intensity data (p: 0.19 – 0.86), between the different 

condition factor categories.   
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Table 5.5 A. crassus infection data with respect to eel condition factor category.  

Condition 

factor  

range 

Eels 

examined 

Infected 

eels 

Prevalence  

(%) 

Number of 

A. crassus 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd)  

Intensity 

range 

0.04-0.12 33 7 21.2 20 0.6±1.3 2.9±0.9 2-5 

0.13-0.14 37 9 24.3 39 1.1±2.3 4.3±2.8 1-9 

0.15-0.16 27 7 25.9 32 1.2±2.4 4.6±2.6 2-10 

0.17-0.29 43 12 27.9 44 1.0±2.3 3.7±3.1 1-7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



190 

 

5.4.2 Primary helminth infection data 

All 14 catchment sites were positive for helminth infections and in total, 101 of the 140 

(72.1%) European eels examined contained helminths (Table 5.6). As such, helminth 

parasites were not recovered from 39 (27.9%) eels and this subset was sampled from 4 

English and 6 Welsh river systems (Table 5.7). As such, this uninfected group of eels only 

lacked specimens from South East England (rivers Crane and Crouch), one catchment site 

from North West England (river Leven) and 1 site from South Wales (river Rhymney). The 

mean body length and body weight of the uninfected eels was 23.6±7.9 cm and 25.5±30.2 g 

respectively. These morphometric parameters were significantly different to the mean eel 

length and weight measurements (33.6±16.0 cm and 120.8±244.2 g) for the 101 eels positive 

for helminth infections (p = 10
-4

). In addition, there was a significant difference (p = 0.009) in 

the mean condition factor of the uninfected eels (0.14±0.02) compared to the helminth 

infected group (0.15±0.05).  

At sites positive for helminth infections, the prevalence ranged from 20 to 100%. The rivers 

Crouch, Crane, Leven and Rhymney showed the highest prevalence of infection (100%), 

whereas the lowest prevalence (20%) was observed in the river Mawddach-eden. These sites 

with maximal helminth prevalence, and also the site with the lowest helminth prevalence, 

were statistically significantly different to the mean prevalence (72.9%) of the eel population 

(p = 10
-7

 and p = 0.002 respectively).   
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Table 5.6 Primary infection data for helminth parasites in European eels sampled from 14 

catchment sites across England and Wales. Ten eels were examined from each site and the 

full infection profiles are within the Appendix. Mean helminth intensity, or abundance, 

assessed as significantly different (p < 0.05) as follows: * relative to the river Crouch, # 

relative to the river Crane, ^ relative to the river Leven, 
+
 relative to the river Rhymney. 

 

 

 

Eel catchment sites Prevalence 

(%) 

Total number 

of helminths 

Mean helminth 

abundance (± sd) 

Mean helminth 

intensity (± sd) 

Crouch: C England 100 352 35.2±29.5 35.2±29.5 

Crane: CN England 100 329 32.9±19.4 32.9±19.4 

Leven: RL England 100 305 30.5±43.1 30.5±43.1 

Petteril: RP England  90 85 8.6±7.5*# 10.8±6.8*# 

Bela: B England 70 50 4.9±7.4*#^
+
 7±8.0*#^ 

Gowy: RG England 60 26 2.6±3.3*#^
+
 4.3±3.2*#

+
 

Hether Burn: HB England 50 51 5.1±11.1*#^
+
 10.2±14.6 

Rhymney: R Wales 100 124 12.4±8.5# 12.4±8.5# 

Cadoxton: CD Wales 80 83 8.3±9.5*# 10.4±9.5*# 

Clwyd-Meirchion: MC Wales 80 17 1.7±1.6*#^
+
 2.1±1.5*#^

+
 

Taff: TB Wales 60 22 2.2±3.4*#^
+
 3.1±3.8*#^

+
 

Clwyd-Elwy: CE Wales 60 25 2.5±3.5*#^
+
 4.2±3.7*#^

+
 

Dee-Eitha: D Wales 40 29 2.9±7.2*#^
+
 7.3±10.6*# 

Mawddach-eden: M Wales 20 10 1±2.8*#^
+
 5±5.7 

 72.1 1504 10.7±19.2 14.9±21.3 
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Table 5.7 Eel morphometric data for non-helminth infected eels.  These specimens were 

sampled from 10 of the 14 catchment sites in England and Wales. 

Eel catchment sites Eel codes Body length (cm) Body weight (g) Condition factor  

Mawddach-eden: M Wales M1 45 154.6 0.17 

Mawddach-eden: M Wales M2 41 91.9 0.13 

Mawddach-eden: M Wales M3 25 21.8 0.14 

Mawddach-eden: M Wales M4 22 14.4 0.14 

Mawddach-eden: M Wales M5 26.5 25.4 0.14 

Mawddach-eden: M Wales M7 21 14.1 0.15 

Mawddach-eden: M Wales M8 18 7.5 0.13 

Mawddach-eden: M Wales M10 11 1.7 0.13 

Dee-Eitha: D Wales D2 32.5 60.2 0.17 

Dee-Eitha: D Wales D3 25.5 17.7 0.11 

Dee-Eitha: D Wales D4 32 55.6 0.17 

Dee-Eitha: D Wales D6 12 1.5 0.09 

Dee-Eitha: D Wales D7 15 3.1 0.09 

Dee-Eitha: D Wales D8 18 7.1 0.12 

Clwyd-Elwy: CE Wales CE2 24 17.5 0.13 

Clwyd-Elwy: CE Wales CE6 20.5 11.6 0.13 

Clwyd-Elwy: CE Wales CE7 10 1.2 0.12 

Clwyd-Elwy: CE Wales CE10 19.5 8 0.13 

Clwyd-Meirchion: MC Wales MC9 18 10.5 0.18 

Clwyd-Meirchion: MC Wales MC10 13.5 2.8 0.11 

Taff: TB Wales TB3 28 33 0.15 

Taff: TB Wales TB5 21.5 15.5 0.16 

Taff: TB Wales TB8 28 35.2 0.16 

Taff: TB Wales TB10 25 24.7 0.16 

Cadoxton: CD Wales CD7 25 17.1 0.19 

Cadoxton: CD Wales CD10 20 7.9 0.09 

Hether Burn: HB England HB1 21 12.2 0.13 

Hether Burn: HB England HB2 27 23.6 0.12 

Hether Burn: HB England HB6 16 4.8 0.12 

Hether Burn: HB England HB8 19 8.1 0.12 

Hether Burn: HB England HB9 22.5 13.3 0.12 

Bela: B England B5 21 13.2 0.14 

Bela: B England B6 23 13.3 0.11 

Bela: B England B9 24 18.3 0.13 

Gowy: RG England RG3 36 63.2 0.14 

Gowy: RG England RG4 36 58.9 0.13 

Gowy: RG England RG7 35 70.5 0.16 

Gowy: RG England RG9 26 27.1 0.15 

Petteril: RP England RP7 14.5 5.2 0.17 

Mean  23.6±7.9 25.5±30.2 0.14±0.02 
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5.4.2.1 Primary helminth infection data: the environment 

Overall, 1504 helminths were collected from the infected eels (mean abundance = 10.7 ± 

19.3; mean intensity =14.9 ± 21.3) (Table 5.6). The number of helminths extracted from 

individual eel specimens ranged between 1 and 135; the latter being isolated from a fish 

(RL2) sampled from the river Leven (Table 5.9). The mean intensity of helminth infection at 

the different sites, ranged from 2.1±1.5 to 35.2±29.5 parasites; the former in eels from the 

river Clwyd-Meirchion in Wales and the latter from the river Crouch in England.  Indeed, the 

rivers with the two highest (Crouch and Crane) and two lowest (Clwyd-Meirchion and Taff) 

mean intensity data were significantly different to the mean helminth intensity data for the eel 

population (p: 0.0018 – 0.018). The mean helminth abundance at the catchment sites ranged 

from 1±2.8 (river Mawddach-eden) to 35.2±29.5 (river Crouch). Overall, the mean helminth 

abundance for the eel population (10.7 ± 19.3) differed significantly to the mean helminth 

abundance at all catchment sites with 100% prevalence (p: 0.0002 - 0.027) and also, to the 

two rivers with the lowest prevalence data (p: 0.002 – 0.02). 

With respect to mean helminth intensity, there were statistically significant differences 

between the data for eels sampled from the rivers Crouch, Crane, Leven and Rhymney and a 

number of the other catchment sites (p: 0.003 – 0.041) (Table 5.6).   

With respect to mean helminth abundance, there were also statistically significant differences 

between the data for eels sampled from the rivers Crouch, Crane, Leven and Rhymney and a 

number of the other catchment sites (p: 0.0002 – 0.017) (Table 5.6).   

A single helminth was extracted from 17.8% (18/101) of the infected eels. Moreover, the 

majority (61/101; 60.4%) of the infected hosts carried less than 10 helminths whereas 39.6% 

(40/101) of the infected eels harboured 10, or more helminths (Tables 5.8 and 5.9). With 

respect to the sampling sites, the river Crouch yielded most helminths (n = 352) whereas the 
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lowest number was recovered from the river Mawddach-eden (n = 10). Overall, the helminths 

were over-dispersed (dispersion index = 34.8) (Figure 5.3).   

Table 5.8 Eel morphometric data for animals with helminth infections sampled from sites 

across Wales. Ten eels were examined from each site. 

 

 

Catchment sites         

location 

Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Conditio

n factor 

Numbers of 

helminths 

Number of 

helminth taxa 

Mawddach-eden M6 

M9 

28 

23 

36.9 

15.5 

0.17 

0.13 

1 

9 

1 

1 

Clwyd-Meirchion MC1 

MC2 

MC3 

MC4 

MC5 

MC6 

MC7 

MC8 

42 

30 

35 

25 

19.5 

18.5 

22 

15.5 

104.4 

38.8 

54.6 

26.8 

21.8 

9.0 

12.0 

5.3 

0.14 

0.14 

0.13 

0.17 

0.29 

0.14 

0.11 

0.14 

1 

5 

2 

1 

3 

1 

3 

1 

1 

1 

2 

1 

1 

1 

1 

1 

Dee-Eitha D1 

D5 

D9 

D10 

28 

14 

14.5 

25.5 

27.6 

2.4 

1.2 

21.6 

0.13 

0.09 

0.04 

0.13 

1 

23 

4 

1 

1 

1 

1 

1 

Cadoxton 

 

CD1 

CD2 

CD3 

CD4 

CD5 

CD6 

CD8 

CD9 

33 

27 

24 

28 

28.5 

22 

20 

21 

59.9 

30.4 

21.4 

28.3 

32.6 

11.0 

9.2 

8.8 

0.17 

0.15 

0.06 

0.13 

0.05 

0.10 

012 

0.09 

18 

6 

12 

7 

6 

2 

2 

30 

2 

2 

3 

2 

2 

1 

1 

2 

Rhymney R1 

R2 

R3 

R4 

R5 

R6 

R7 

R8 

R9 

R10 

32 

31 

30 

31.5 

27 

30 

29 

30 

23.5 

23.5 

48.9 

48.6 

42.3 

67.2 

29.3 

39.7 

53.5 

43.9 

12.7 

18.5 

0.15 

0.16 

0.16 

0.22 

0.15 

0.15 

0.22 

0.16 

0.10 

0.14 

10 

10 

31 

21 

13 

5 

1 

11 

15 

7 

3 

1 

3 

3 

2 

2 

1 

2 

2 

2 

Clwyd-Elwy CE1 

CE3 

CE4 

CE5 

CE8 

CE9 

39 

31 

34 

29 

22 

20 

72.9 

46 

70.1 

39.3 

16.8 

10.9 

0.12 

0.15 

0.18 

0.16 

0.16 

0.14 

5 

1 

11 

3 

1 

4 

2 

1 

1 

2 

1 

2 

Taff TB1 

TB2 

TB4 

TB6 

TB7 

TB9 

20 

25 

22 

24 

25 

19 

10.2 

33.5 

15.6 

24.4 

21.6 

24.7 

0.13 

0.21 

0.15 

0.18 

0.16 

0.15 

11 

1 

2 

1 

5 

2 

2 

1 

2 

1 

1 

1 
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Table 5.9 Eel morphometric data for animals with helminth infections sampled from sites 

across England. Ten eels were examined from each site. 

Catchment sites         

location 

Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of 

helminths 

Number of 

helminth taxa 

 Crouch C157 

C107 

C117 

C59 

C74 

C116 

C71 

C131 

C40 

C48 

33 

32 

28 

32 

50 

29 

47 

39 

32 

31 

65.8 

47 

27.5 

50.1 

209.2 

36.4 

198.2 

112 

43.9 

44.7 

0.18 

0.14 

0.13 

0.15 

0.17 

0.15 

0.19 

0.19 

0.13 

0.15 

79 

28 

37 

27 

55 

4 

21 

83 

7 

7 

4 

3 

3 

3 

2 

2 

3 

2 

2 

3 

 Leven RL1 

RL2 

RL3 

RL4 

RL5 

RL6 

RL7 

RL8 

RL9 

RL10 

21 

52 

27 

22.5 

34 

35 

27 

29.5 

30 

26 

13.9 

187.0 

35.8 

21.3 

55.9 

71.3 

26.3 

30.3 

38.1 

22.3 

0.16 

0.13 

0.18 

0.19 

0.14 

0.17 

0.13 

0.11 

0.14 

0.13 

17 

135 

75 

2 

13 

6 

7 

8 

3 

39 

3 

3 

4 

1 

2 

3 

1 

2 

3 

3 

 Crane CN1 

CN2 

CN3 

CN4 

CN5 

CN6 

CN7 

CN8 

CN9 

CN10 

70 

74 

86 

77 

70 

74 

86 

77 

69 

74 

682.3 

702.5 

1380.3 

1058.8 

668.6 

839.7 

805.7 

661.9 

563.5 

743.4 

0.21 

0.17 

0.22 

0.23 

0.19 

0.21 

0.13 

0.14 

0.17 

0.18 

56 

24 

32 

39 

34 

33 

32 

6 

5 

68 

1 

1 

3 

1 

5 

4 

2 

4 

3 

4 

Hether Burn HB3 

HB4 

HB5 

HB7 

GB10 

23 

24 

25 

20 

16.5 

14.7 

16 

18.6 

7.8 

11.1 

0.12 

0.12 

0.12 

0.09 

0.15 

5 

2 

36 

1 

7 

2 

1 

2 

1 

1 

 Petteril RP1 

RP2 

RP4 

RP5 

RP6 

RP8 

RP9 

RP10 

36 

31.5 

28 

35.5 

27.5 

43 

33 

26 

110.7 

82.8 

35.3 

74.9 

38.2 

101.1 

98.3 

29.7 

0.24 

0.28 

0.13 

0.17 

0.18 

0.07 

0.27 

0.17 

22 

18 

4 

6 

5 

12 

14 

4 

1 

2 

1 

3 

2 

2 

1 

2 

 Bela B1 

B2 

B3 

B4 

B7 

B8 

B10 

30 

32 

27 

19.5 

24 

48 

49 

42.0 

49.1 

33.0 

11.9 

22.2 

204.5 

209.0 

0.16 

0.15 

0.17 

0.16 

0.16 

0.18 

0.18 

5 

9 

1 

1 

6 

24 

4 

1 

2 

1 

1 

1 

3 

1 

 Gowy RG1 

RG2 

RG5 

RG6 

RG8 

RG10 

39 

37 

40 

32 

33 

27 

73.6 

61.7 

65.7 

41.8 

62.2 

24.4 

0.12 

0.12 

0.10 

0.13 

0.17 

0.12 

3 

3 

3 

6 

10 

1 

1 

1 

1 

2 

2 

1 
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Figure 5.3 Dispersion of helminths within the sampled eel population. 

Overall, the helminth prevalence data showed that infection was much more common in the 

eel population than non-infection (Table 5.10). Moreover, the pseudodactylids were the most 

prevalent helminth observed (35.7%) and also, the most dominant parasite within the eel 

population (n = 619; 41.2%). The pathogenic A. crassus also had relatively high prevalence 

and parasite numbers within the eel population (Table 5.10). The gastrointestinal nematodes 

and acanthocephalans were also highly prevalent and they were recovered from the eel 

population in large numbers. The least prevalent and least represented helminth class in terms 

of numbers isolated from the eel population was the tapeworms.       

On examination of the helminth infection profile at the level of different helminth class, it 

was apparent that multiple different taxa were present in the majority of the river systems 

(Table 5.10). Indeed, the river Crane harboured eels with the most diverse array of helminth 

taxa (n = 5); pseudodactylids, A. crassus, GI tract nematodes, tapeworms and 

acanthocephalans. Four helminth taxa were commonly observed in the English catchment 

sites but in only one Welsh river, the Taff, in South Wales. The most common number of 
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helminth taxa observed at the Welsh catchment sites was 3; as exemplified by the river 

Clwyd-Elwy in North Wales and the rivers Rhymney and Cadoxton in South Wales.  Only 

two different helminth taxa, the GI tract nematodes and tapeworms, were observed in eels 

sampled from the Clwyd-Meirchion in North Wales. Single taxa infections, both being of GI 

tract nematodes, were observed in one river in North Wales, and a further river in South 

Wales. 

In total, 1504 helminths were recovered from the examined eels and pseudodactylids were the 

most common (n = 619).  Indeed, pseudodactylids were the dominant class recovered from 

eels at 5 of the catchment sites; 3 Welsh rivers and 2 English rivers.  Significant numbers of 

acanthocephalans (n = 469) and gastrointestinal nematodes (n = 263) were also extracted 

from the eels. The gastrointestinal nematodes were the dominant helminth class recovered 

from eels at 5 catchment sites; 3 Welsh rivers and 2 English rivers. Indeed at two of these 

Welsh sites, gastrointestinal nematodes were the only helminth recovered from eels.  

Acanthocephalans were the dominant helminth class recovered from eels at 3 catchment sites.  

Indeed, two of these sites, the rivers Crouch and Crane, provided 82.1% of all the 

acanthocephalans extracted from the eel population.  The pathogenic A. crassus was the 

dominant helminth recovered from eels at one catchment site, the river Gowy, in North West 

England. 
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Table 5.10 Summary of the helminth infection data at the sampling sites across England and 

Wales.  In total, 140 eels were analysed. 

Eel Catchment 

Site 

  

Number of 

eel without 

helminth 

infection 

Number of eel 

infected with  

helminths 

Number of 

pseudodactylids   

Number of          

A. crassus 

Number of 

GI 

nematodes 

Number of 

tapeworms 

Number of  

acanthocephalans 

Number 

of 

helminths 

Number 

of 

helminth 

taxa 

Crouch: C 

England 

0 10 141 29 0 1 177 348 4 

Leven: RL  

England  

0 10 232 34 35 0 4 305 4 

Crane: CN 

England 

0 10 74 15 26 6 208 329 5 

Petteril: RP 

England 

2 8 3 0 75 3 4 85 4 

Bela: B England 3 7 5 0 40 1 4 50 4 

Gowy: RG 

England 

4 6 0 16 5 1 4 26 4 

Hether Burn: HB 

England 

5 5 33 0 16 2 0 51 3 

Rhymney: R 

Wales 

0 10 53 21 0 0 50 124 3 

Cadoxton: CD 

Wales 

2 8 60 18 5 0 0 83 3 

Clwyd-Meirchion: 

MC Wales 

2 8 0 0 14 3 0 17 2 

Taff: TB Wales 3 7 1 2 1 0 18 22 4 

Clwyd-Elwy: CE 

Wales 

4 6 17 0 7 1 0 25 3 

Dee-Eitha: D 

Wales 

6 4 0 0 29 0 0 29 1 

Mawddach-eden: 

M Wales 

8 2 0 0 10 0 0 10 1 

Prevalence 27.9%    72.1%  35.7%    25%  33.6% 9.3%     30%            

Total 39 101 619 135 263 18 469 1504 5 

Upon analysis of the complete helminth infection data at the regional level, it was apparent 

that all examined eels in the two South East England catchment sites were positive for 

helminth infection (Table 5.11). As such, the greatest prevalence, and also the greatest mean 

abundance, and intensity of helminth infection, was observed in eels sampled from the rivers 

in South East England. At the remaining regions, prevalence of helminth infection varied 

between 50% and 83%. Overall, the regional helminth prevalence data was significantly 

different between North Wales and the other three geographic regions (p: 10
-4

-0.048). There 
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was also a highly significant difference between prevalence data for South East England and 

both North West England and North Wales (p = 10
-4

).  

The region of North Wales had the lowest helminth abundance and intensity data; however, 

this data was only significantly different to that for South East England (p = 10
-4

). Indeed, the 

abundance and intensity data observed for South East England was also significantly different 

compared to that for South Wales and North West England (p =10
-4

).  

Table 5.11 Regional infection data for helminths isolated from European eel sampled across 

England and Wales. 

Regions Number of 

river sites 

examined  

Number of 

helminth 

positive sites 

Number of 

examined 

eel  

Number of 

infected eel 

Helminth 

prevalence 

(%) 

Number of 

helminths 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

North 

West 

England 

5 5 50 36 72% 517 10.3±22.2 14.4±25.1 1 - 135 

South 

East 

England 

2 2 20 20 100% 677 33.9±23.9 33.9±23.9 4 - 83 

North 

Wales 

4 4 40 20 50% 81 2.1±4.2 4.2±5.3 1 - 23 

South 

Wales 

3 3 30 25 83.3% 229 7.6±8.5 9.2±8.5 1 - 30 

Total 14 14 140 101 72.1% 1504 10.7±19.3 14.9±21.3 1- 135 

 

5.4.2.2 Primary helminth infection data: the host 

For the helminth infected eels, the body length ranged from 14 to 86 cm (mean = 33.5 ±16.0 

cm), body weight ranged from 1.2 to 1380.3 g (mean = 120±244.3 g) and the mean eel 

condition factor was 0.15±0.05. These length and weight parameters were significantly 

different to the 39 eels lacking a helminth infection (Table 5.7) (p = 10
-4

). In addition, the 

mean condition factor for the uninfected eels (Table 5.7) was also significantly different to 

that of the helminth infected specimens (p = 0.011).  
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Upon analysis of different categories of eel length it was apparent that prevalence, as well as 

mean helminth abundance and intensity, generally increased as the eel body length category 

increased (Table 5.12). Indeed, the prevalence of helminth infection was significantly 

different between the two largest length category of eels and the two smallest length 

categories (p: 0.0364 – 0.0034). With respect to intensity of helminth infection, there were 

significant differences between the largest length category of eel and the two smallest length 

categories of eel (p: 0.0010 – 0.0039).  

Table 5.12 Helminth infection data with respect to eel body length category.   

Body 

length 

range (cm) 

Eels 

examined  

Infected 

eels 

Prevalence  

(%) 

Number 

of   

helminths 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd) 

Intensity 

range 

10-20 26 12 46.2 60 2.3±4.9 5±6.4 1 - 23 

20.5-25 32 19 59.4 156 4.9±8.7 8.2±10.0 1 - 36 

25.5-30 32 27 84.4 285 8.9±15.7 10.6±16.6 1 - 75 

30.5-35 22 19 86.4 297 13.5±16.7 15.6±17.1 1 - 79 

35.5-86 28 24 85.7 706 25.2±31.2 29.4±31.9 1 - 135 

Upon analysis of different categories of eel condition factor it was apparent that prevalence, 

as well as mean helminth abundance and intensity, generally increased as the eel condition 

factor category increased (Table 5.13). There were significant differences (p: 0.01-0.03) in 

the prevalence of helminth infection between eels with the greatest condition factor category 

and the two smallest condition factor categories. There was no significant differences (p: 

0.065 – 0.62) in the intensity of helminth infection between the different eel condition factor 

categories. 
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Table 5.13 Helminth infection data with respect to eel condition factor category.  

Condition 

factor  

range 

Eels 

examined 

Infected 

eels 

Prevalence  

(%) 

Number of 

helminths 

Mean 

abundance 

(±sd) 

Mean 

intensity 

(±sd)  

Intensity 

range 

0.04-0.12 33 21 56.6 196 5.9±8.8 9.3±9.5 1 - 36 

0.13-0.14 37 22 59.5 354 9.6±23.7 16.1±29.2 1 - 135 

0.15-0.16 27 21 77.8 169 6.3±8.0 8.0±8.3 1 – 31 

0.17-0.29 43 37 86.0 785 18.3±23.8 21.2±24.4 1 - 83 
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5.4.3 Helminth community structure analysis 

Overall, the majority of eels examined were either infected with one class of helminth, or 

they were not infected (Table 5.14). Helminth co-infections occurred less frequently (n = 55; 

39.5%) and not surprisingly, there was a negative correlation between the number of classes 

of helminth contributing to the co-infection and the proportion of eels harbouring these 

multiple classes of parasite.  

Table 5.14 Summary of the helminth infection profile within the population of eels sampled 

across England and Wales. In total, 140 eels were analysed. 

Number of helminth taxa Number of eels % of eel population 

0 39 27.9% 

1 46 32.9% 

2 31 22.1% 

3 18 12.9% 

4 5 3.8% 

5 1 0.7% 

The known pathogens, A. crassus, and the monogenean pseudodactylids, were infrequently 

present as single taxon helminth infections (2.9% and 3.8 % respectively) (Table 5.15). The 

most commonly observed group of parasites responsible for single taxon helminth infection 

was the gastrointestinal nematodes (24/140, 17.1%) and this was followed by the 

acanthocephalans (7.9%). The least commonly encountered single helminth taxon infection 

was not surprisingly attributed to tapeworms (1.4%).  

Table 5.15 Summary of the single taxon helminth infection profiles within the population of 

eels sampled across England and Wales. In total, 46 of the 140 analysed eels contained a 

single helminth taxon.  

Helminth taxa Number of  

infected eels 

% of total eel 

population 

Mean intensity 

(±sd) 

Intensity 

range 

Gastrointestinal nematodes 24 17.1% 5.7±6.6 1-23 

Acanthocephalans 11 7.9% 13±18.8 1-56 

Pseudodactylids 5 3.8% 3.4±4.3 1-11 

A. crassus 4 2.9% 6±5.4 2-7 

Tapeworms 2 1.4% 1 1 

Total  46 32.9%   
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With respect to parasite intensity for single helminth taxa, the range observed was highly 

variable and was greatest for the acanthocephalan infections (Table 5.15). Although the 

gastrointestinal nematode infections also exhibited a variable intensity range, a substantial 

number (9/24; 37.5%) were observed as single worm infections (mean intensity = 5.7±6.6).   

5.4.3.1 Helminth community structure analysis: the host 

For the 46 eels that were infected with one helminth taxon the body length ranged from 14 to 

77 cm (mean = 29.3±14.0 cm), body weight ranged from 1.2g to 1058.8 g (mean = 

87.1±202.7 g) and the mean condition factor was 0.16±0.05. The differences in mean body 

length and weight and also, mean condition factor, between the uninfected eels (Table 5.7) 

and eels infected eels with one helminth taxon were significant (p = 0.0398, p = 0.0147 and p 

= 0.0172 respectively). 

On closer inspection of these single helminth taxon infections, it was apparent that in 17 eels, 

these infections comprised a single parasite (2 pseudodactylids, 9 gastrointestinal nematodes, 

4 acanthocephalans and 2 tapeworms) and there were no significant differences (p > 0.09) in 

eel morphometric parameters relative to the uninfected group (Table 5.7). The remaining 29 

eels with single taxon helminth infections harboured between 2 and 56 worms. The mean 

length and mean weight of these infected eels was 31.7±16.7 cm and 121.0±250.0 g 

respectively and these measurements were significantly different (p = 0.038 and p = 0.018) to 

the group of uninfected eels (Table 5.7). 

For the 5 eels that were infected with just pseudodactylids the body length ranged from 20 to 

34 cm (mean = 24.4±5.5 cm), body weight ranged from 7.8g to 70.1 g (mean = 24.3±25.8 g) 

and the mean condition factor was 0.16±0.07 (Table 5.16). The differences in mean body 

length and weight and also, mean condition factor, between the uninfected eels (Table 5.7) 



204 

 

and eels infected eels with just pseudodactylids were not significant (p = 0.78, p = 0.94 and p 

= 0.46 respectively). 

Table 5.16 Summary of the eel morphometric data for fish infected with just 

pseudodactylids. 

 

 

 

  

 

 

For the 4 eels that were infected with just A. crassus the body length ranged from 20 to 39 cm 

(mean = 30.8±8.9 cm), body weight ranged from 9.2 g to 73.6 g (mean = 42.7±30.0 g) and 

the mean condition factor was 0.12±0.005 (Table 5.17). The differences in mean body length 

and weight and also, mean condition factor, between the uninfected eels (Table 5.7) and eels 

infected just A. crassus were not significant (p = 0.12, p = 0.15 and p = 0.15 respectively). 

Table 5.17 Summary of the eel morphometric data for fish infected with just A. crassus. 

  

 

 

 

 

 

 

 

 

Catchment sites location Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of  
pseudodactylids 

Clwyd-Elwy: CE Wales CE4 34 70.1 0.18 11 

Clwyd-Elwy: CE Wales CE8 22 16.8 0.16 1 

Cadoxton: CD Wales CD6 22 11 0.27 2 

Hether Burn: HB England HB4 24 16 0.12 2 

Hether Burn: HB England HB7 20 7.8 0.09 1 

Mean  24.4±5.5 24.3±25.8 0.16±4.3 3.4±4.3 

Catchment sites 

location 

Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of   

A. crassus 

Leven: RL  England RL7 27 26.3 0.13 7 

Gowy: RG England RG1 39 73.6 0.12 3 

Gowy: RG England RG2 37 61.7 0.12 3 

Cadoxton: CD Wales CD8 20 9.2 0.12 2 

Mean  30.8±8.9 42.7±30.0 0.12±0.005 3.8±2.2 
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For the 2 eels infected with just tapeworms the body length ranged from 25 to 42 cm (mean = 

33.5±12.0 cm), body weight ranged from 26.8 g to 104.4 g (mean = 65.6±54.9 g) and the 

mean condition factor was 0.16±0.02. The differences in mean body length and weight and 

also, mean condition factor,  between the uninfected eels (Table 5.7) and eels infected with 

just tapeworms were not significant (p = 0.16, p = 0.10 and p = 0.25 respectively). 

For the 24 eels that were infected with just gastrointestinal nematodes the body length ranged 

from 14.5 to 49 cm (mean = 24.8±7.9 cm), body weight ranged from 1.2 g to 209 g (mean = 

35.7±45.6 g) and the mean condition factor was 0.16±0.06 (Table 5.18). The differences in 

mean body length and weight between the uninfected eels (Table 5.7) and eels infected with 

just gastrointestinal nematodes were not significant (p = 0.49 and p = 0.23 respectively).  

However, there was a significant difference in the mean condition factor between the 

uninfected eels and those with just gastrointestinal nematode infections (p = 0.027). 
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Table 5.18 Summary of the eel morphometric data for fish infected with just gastrointestinal 

nematodes.    

Catchment sites location Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of     

Gut nematodes   

Mawddach-eden: M Wales M6 28 36.9 0.17 1 

Mawddach-eden: M Wales M9 23 15.5 0.13 9 

Clwyd-Meirchion: MC Wales MC2 30 38.8 0.14 5 

Clwyd-Meirchion: MC Wales MC5 19.5 21.8 0.29 3 

Clwyd-Meirchion: MC Wales MC6 18.5 9 0.14 1 

Clwyd-Meirchion: MC Wales MC7 22 12 0.11 3 

Clwyd-Meirchion: MC Wales MC8 15.5 5.3 0.14 1 

Clwyd-Elwy: CE Wales CE3 31 46 0.15 1 

Dee-Eitha: D Wales D1 28 27.6 0.13 1 

Dee-Eitha: D Wales D5 14 2.4 0.09 23 

Dee-Eitha: D Wales D9 14.5 1.2 0.04 4 

Dee-Eitha: D Wales D10 25.5 21.6 0.13 1 

Taff: TB Wales TB4 22 15.6 0.15 1 

Petteril: RP England RP1 36 110.7 0.24 22 

Petteril: RP England RP3 18.5 8.2 0.13 16 

Petteril: RP England RP4 28 35.3 0.16 4 

Petteril: RP England RP9 33 98.3 0.27 14 

Hether Burn: HB England HB10 16.5 11.1 0.25 7 

Leven: RL  England RL4 22.5 21.3 0.19 2 

Bela: B England B1 30 42 0.16 5 

Bela: B England B3 27 33 0.17 1 

Bela: B England B4 19.5 11.9 0.16 1 

Bela: B England B7 24 22.2 0.16 6 

Bela: B England B10 49 209 0.18 4 

Mean  24.8±7.9 35.7±45.6 0.16±0.06 5.7±6.6 
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For the 11 eels that were infected with just acanthocephalans the body length ranged from 19 

to 77 cm (mean = 40.1±22.2 cm), body weight ranged from 10.6 g to 1058.8 g (mean = 

247.8±376.4 g) and the mean condition factor was 0.17±0.04 (Table 5.19). Interestingly, the 

differences in mean body length and weight and also, mean condition factor, between the 

uninfected eels (Table 5.7) and eels infected with just acanthocephalans were  significant (p = 

0.0075, p = 0.0034 and p = 0.0113 respectively). 

Table 5.19 Summary of the eel morphometric data for fish infected with just 

acanthocephalans.   

Catchment sites 

location 

Infected 

eel codes 

Eel body 

length (cm) 

Eel body 

weight (g) 

Condition 

factor 

Numbers of     

acanthocephalans   

Taff: TB Wales TB2 25 33.5 0.21 1 

Taff: TB Wales TB6 24 24.4 0.18 1 

Taff: TB Wales TB7 25 21.6 0.14 5 

Taff: TB Wales TB9 19 10.6 0.15 2 

Rhymney: R Wales R2 31 48.6 0.16 10 

Rhymney: R Wales R7 29 53.5 0.22 1 

Gowy: RG England RG5 40 65.7 0.1 3 

Gowy: RG England RG10 27 24.4 0.12 1 

Crane: CN England CN1 70 682.3 0.21 56 

Crane: CN England CN2 74 702.5 0.17 24 

Crane: CN England CN4 77 1058.8 0.23 39 

Mean  40.1±22.2 247.8±376 0.17±0.04 13±18.8 

 

For the 31 eels that were co-infected with two helminth taxa, the dominant class observed 

was the pseudodactylids (n = 21) and these were most commonly present with 

acanthocephalans (n = 8) (Table 5.20). Indeed, this pairing was also the most commonly 

observed co-infection for the acanthocephalans. A. crassus was observed as a component of a 

double co-infection in 11 eels and it was most commonly present with the pseudodactylids (n 

= 6). Tapeworms were most commonly present as a double co-infection with the 

gastrointestinal nematodes (n = 3). For each of the aforementioned taxa, their occurrence as a 
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component of co-infection involving two helminth taxa was greater than observed for a single 

taxa infection. Contrary to that, the occurrence of the gastrointestinal nematodes as a 

component of double co-infection was reduced relative to their observed occurrence as a 

single taxa helminth infection. Indeed, the gastrointestinal nematodes were present as a 

double taxa co-infection in only 12 eels and they were most commonly present with the 

pseudodactylids (n = 6).  

For these 31 eels that were co-infected with two helminth taxa, the body length ranged from 

20 to 86 cm (mean = 32.1 ±12.0 cm), body weight ranged from 8.8 to 805.7 g (mean = 

71.8±141.8 g) and the mean eel condition factor was 0.15±0.05. The length and weight 

parameters of these double taxa co-infections were significantly different (p = 0.0002) to the 

39 eels lacking a helminth infection (Table 5.7). However, there was no significant difference 

in the mean condition factor for the uninfected (Table 5.7) and double helminth taxa infected 

eels (p = 0.20).  

For the 6 eels that were co-infected with A. crassus and pseudodactylids, the body length 

ranged from 21 to 33 cm (mean = 27.9±3.9 cm), the body weight ranged from 8.8g to 59.9 g 

(mean = 33.3±30.2 g) and the mean condition factor was 0.14±0.05. There were no 

significant differences between these host parameters for the A. crassus/pseudodactylid co-

infection group and the 39 uninfected eels (Table 5.7); however, the lack of significance for 

body length difference between the two groups of eels was marginal (p = 0.059).    

For the 8 eels that were co-infected with acanthocephalans and pseudodactylids, the body 

length ranged from 25 to 39 cm (mean = 30.3±4.8 cm), body weight ranged from 18.6 g to 

72.9 g (mean = 41.4±18.5.2 g) and the mean condition factor was 0.14±0.03. Interestingly, 

there was a significant difference (p = 0.019) in body length and also body weight between 

these acanthocephalan/pseudodactylid co-infected eels and the uninfected group (Table 5.7).   
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Table 5.20 Summary of the double helminth taxa co-infection profiles within the 

population of European eels sampled across England and Wales.   

Eel 

code 

Body 

length 

(cm) 

Body 

weight 

(g) 

Condition 

factor 
Pseudodactylids A. crassus 

Gut 

nematodes 
Acanthocephalans Tapeworms 

Total number 

of helminths 

MC3 35 54.6 0.13 
  

1 
 

1 6 

RG6 32 41.8 0.13 
 

5 
  

1 
 

RG8 33 62.2 0.17 
 

5 5 
  

6 

B2 32 49.1 0.15 5 
 

4 
  

9 

TB1 20 10.2 0.13 
 

2 
 

9 
 

11 

RP2 31.5 82.8 0.28 
  

17 
 

1 18 

RP6 27.5 38.2 0.18 1 
 

4 
  

5 

RP8 43 101.1 0.07 
  

11 1 
 

12 

RP10 26 29.7 0.17 
  

3 1 
 

4 

CE1 39 72.9 0.12 4 
 

1 
  

5 

CE5 29 39.3 0.16 1 
 

2 
  

3 

CE9 20 10.9 0.14 
  

3 
 

1 4 

HB3 23 14.7 0.12 3 
   

2 4 

HB5 25 18.6 0.12 27 
 

9 
  

36 

R5 27 29.3 0.15 11 
  

2 
 

13 

R6 30 39.7 0.15 3 2 
   

5 

R8 30 43.9 0.16 
 

4 
 

7 
 

11 

R9 23.5 12.7 0.1 3 
  

12 
 

15 

R10 23.5 18.5 0.14 
 

2 
 

5 
 

7 

CD 1 33 59.9 0.17 14 4 
   

18 

CD2 27 30.4 0.17 5 1 
   

6 

CD4 28 28.3 0.1 2 5 
   

7 

CD5 28.5 32.6 0.05 4 2 
   

6 

CD9 21 8.8 0.18 29 1 
   

30 

CN7 86 805.7 0.13 2 
  

30 
 

32 

C74 50 209.8 0.17 2 
  

53 
 

55 

C116 29 36.4 0.15 3 
  

1 
 

4 

C131 39 112 0.19 2 
  

81 
 

83 

C40 32 43.9 0.32 5 
  

2 
 

7 

RL5 34 55.9 0.14 10 
  

3 
 

13 

RL8 29.5 30.5 0.11 5 
 

3 
  

8 
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For the 6 eels that were co-infected with gastrointestinal nematodes and pseudodactylids, the 

body length ranged from 23.5 to 86 cm (mean = 40.1±20.3 cm), body weight ranged from 

12.7g to 805.7.9 g (mean = 163.2±267.3 g) and the mean condition factor was 0.16±0.07.  

Again, interestingly, there was a significant difference in body length (p = 0.002) and also 

body weight (p < 10
-4

) between these gut nematode/pseudodactylid co-infected eels and the 

uninfected group (Table 5.7).   

For the 3 eels that were co-infected with A. crassus and acanthocephalans, the body length 

ranged from 20 to 30 cm (mean = 24.5±4.1 cm), body weight ranged from 10.2g to 43.9 g 

(mean = 24.2±14.3 g) and the mean condition factor was 0.14±0.01. There were no 

significant differences in body length (p = 0.75), body weight (p = 0.63) and condition factor 

(p = 0.55) between these A. crassus /acanthocephalans co-infected eels and the uninfected 

group (Table 5.7).  

For the 3 eels that were co-infected with gastrointestinal nematodes and tapeworms, the body 

length ranged from 20 to 35 cm (mean = 28.8±7.8 cm), body weight ranged from 10.9 g to 

82.8 g (mean = 49.4±36.2 g) and the mean condition factor was 0.18±0.08. There was no 

significant differences in body length (p = 0.33), body weight (p = 0.26) and condition factor 

(p = 0.32) between these gastrointestinal nematodes/tapeworm co-infected eels and the 

uninfected group (Table 5.7).  

For the 2 eels that were co-infected with gastrointestinal nematodes and acanthocephalans, 

the body length ranged from 26 to 43 cm (mean = 34.5±12.0 cm), body weight ranged from 

29.7 g to 101.1 g (mean = 65.4±50.5 g) and the mean condition factor was 0.12±0.07. There 

was no significant differences in body length (p = 0.12), body weight (p = 0.08) and 

condition factor (p = 0.83) between these gastrointestinal nematodes/acanthocephalan co-

infected eels and the uninfected group (Table 5.7).  
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For the 18 eels with triple helminth taxa co-infections, the dominant class observed was the 

pseudodactylids (n = 17) (Table 5.21). The next most common taxa represented as a 

component of triple co-infections was A. crassus (n = 15) and in all instances, the swim 

bladder nematode was also present with pseudodactylids. Acanthocephalans were present in 

12 eels that harboured triple helminth taxa co-infections. Not surprisingly, the most 

commonly observed combination of taxa contributing to triple co-infections was the 

pseudodactylids, A. crassus and the acanthocephalans. Gastrointestinal nematodes were 

observed as a component of triple helminth taxa infections in 7 eels and in 6 instances, the 

other parasites observed were pseudodactylids and A. crassus. Only 1 eel harboured 

gastrointestinal nematodes with a tapeworm and acanthocephalan combination. Tapeworms 

were part of a triple taxa co-infection in 3 eels and 2 hosts harboured these parasites in 

combination with acanthocephalans and pseudodactylids.  

For the 18 eels that were co-infected with three helminth taxa, the body length ranged from 

21 to 86 cm (mean = 38.3±16.6 cm), body weight ranged from 13.9g to 1380.3 g (mean = 

162.4±330.1 g) and the mean condition factor was 0.14±0.05. The length and weight 

parameters of these triple taxa co-infections were significantly different (p = 0.0001) to the 

39 eels lacking a helminth infection (Table 5.7). However, there was no significant difference 

in the mean condition factor for the uninfected (Table 5.7) and triple helminth taxa infected 

eels (p = 0.21).  

For the 9 eels that were co-infected with pseudodactylids, A. crassus and acanthocephalans 

the body length ranged from 28 to 69 cm (mean = 36.9±13.2 cm), body weight ranged from 

27.5 to 563.5 g (mean = 121.0±173.6 g) and the mean condition factor was 0.14±0.05. 

Interestingly, there was a significant difference (p = 0.0008) in body length and also body 

weight (p = 0.0007) between these pseudodactylid / A. crassus and acanthocephalans co-
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infected eels compared to the uninfected group (Table 5.7). However, there was no 

significant difference in the condition factors between the two groups of eels (p = 0.17). 

For the 6 eels that were co-infected with pseudodactylids, A. crassus and gut nematodes, the 

body length ranged from 21 to 52 cm (mean = 31.3±11.2 cm), body weight ranged from 21.4 

g to 187 g (mean = 59±65.9 g) and the mean condition factor was 0.13±0.04. There was a 

significant difference (p = 0.047) in body weight between these pseudodactylid / A. crassus 

and gut nematode co-infected eels and the uninfected group (Table 5.7). However, there were 

no significant differences in body length (p = 0.077) and condition factor (p = 0.87) between 

these two groups of eels.   

For the 2 eels that were co-infected with pseudodactylids, acanthocephalans and tapeworms, 

the body length ranged from 35.5 to 86 cm (mean = 60.8±35.7 cm), body weight ranged from 

74.9 g to 1380.3 g (mean = 727.6±923.1 g) and the mean condition factor was 0.19±0.04. 

There was a significant difference in body length and body weight between (p = 0.037 and 

0.027 respectively) between these pseudodactylid/acanthocephalan and tapeworm co-infected 

eels and the uninfected group (Table 5.7). Interestingly, there was also a significant 

difference in the mean condition factor (p = 0.035) between these two groups of eels. 
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Table 5.21 Summary of the triple helminth taxa co-infection profiles within the population of 

European eels sampled across England and Wales. 

Eel 

code 

Body 
length 

(cm) 

Body 
weight 

(g) 

Condition 

factor 
Pseudodactylids A. crassus 

Gut 

nematodes 
Acanthocephalans Tapeworms 

Total 
number of 

helminths 

B8 48 24.5 0.02     19 4 1 24 

RP5 35.5 74.9 0.17 2     2 2 6 

R1 32 48.9 0.15 5 4   1   10 

R3 30 42.3 0.16 22 6   3   31 

R4 31.5 67.2 0.22 9 3   9   21 

CD3 24 21.4 0.06 4 3 5     12 

CN3 86 1380.3 0.22 12     19 1 32 

CN9 69 563.5 0.17 2 2   1   5 

C107 32 47 0.14 19 7   2   28 

C117 28 27.5 0.13 34 1   2   37 

C59 32 50.1 0.15 12 10   5   27 

C71 47 198.2 0.02 7 2   12   21 

C48 31 44.7 0.15 1 2   4   7 

RL1 21 13.9 0.16 5 4 8     17 

RL2 52 187 0.13 125 9 1     139 

RL6 35 71.3 0.17 2 1 3     6 

RL9 30 38.1 0.14 1 1 1     3 

RL10 26 22.3 0.13 33 5 1     39 

Only 5 eels harboured quadruple taxa helminth infections and these were all sampled from 

three different English rivers (Table 5.22). Pseudodactylids and acanthocephalans were 

present in all 5 hosts, gastrointestinal nematodes and A. crassus were present in 4, and 

tapeworms were found in 2, of these eels. Not surprisingly, the most common quadruple taxa 

helminth infections comprised of pseudodactylids, acanthocephalans, gastrointestinal 

nematodes and A. crassus (n = 3).  

For the 5 eels that were co-infected with four helminth taxa, the body length ranged from 27 

to 77 cm (mean = 57±24.8 cm), body weight ranged from 35.8 g to 839.7 g (mean = 

469.3±387.3 g) and the mean condition factor was 0.18±0.02. The length and weight 

parameters of these quadruple taxa co-infections were significantly different to the 39 eels 

lacking a helminth infection (Table 5.7) (p = 0.0023 and p = 0.0013 respectively).  
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Interestingly, there was also a significant difference in the mean condition factor for the 

uninfected (Table 5.7) and quadruple helminth taxa infected eels (p = 0.004).  

For the 3 eels that were co-infected with A. crassus, pseudodactylids, acanthocephalans and 

gastrointestinal nematodes, the body length ranged from 27 to 74 cm (mean = 58.3±27.1 cm), 

body weight ranged from 35.8 g to 839.7 g (mean = 539.6±438.9 g) and the mean condition 

factor was 0.19±0.02. The length and weight parameters of these quadruple taxa co-infections 

were significantly different to the 39 eels lacking a helminth infection (Table 5.7) (p = 0.018 

and p = 0.013 respectively). There was also a highly significant difference in the mean 

condition factor for the uninfected (Table 5.7) and quadruple helminth taxa infected eels (p = 

0.007).  

Table 5.22 Summary of the profile of quadruple taxa helminth co-infections within the 

population of eels sampled across England and Wales. 

Eel 

code 

Body 
length 

(cm) 

Body 
weight 

(g) 

Condition 

factor 
Pseudodactylids A. crassus 

Gut 

nematodes 
Acanthocephalans Tapeworms 

Total 
number of 

helminths 

CN6 74 839.7 0.21 1 11 1 20 
 

33 

CN8 77 661.9 0.14 3 
 

1 1 1 6 

CN10 74 743.4 0.18 52 1 3 12 
 

68 

C157 33 65.8 0.18 56 7 
 

15 1 79 

RL3 27 35.8 0.18 51 7 16 1 
 

75 

Only one eel (CN5) was found to be infected with all 5 helminth taxa and this specimen was 

sampled from the river Crane (Table 5.23). Since this was the only eel infected with 5 

different helminth taxa, it was not possible to statistically analyse the data with respect to the 

uninfected eel group. 

Table 5.23 Summary of the infection profile in the one eel (CN5) co-infected with five 

helminth taxa.    

Eel 
code 

Body 

length 

(cm) 

Body 
weight (g) 

Condition 
factor 

Pseudodactylids A. crassus 
Gut 
nematodes 

Acanthocephalans Tapeworms 

Total 

number of 

helminths 

CN5 70 668.6 0.19 2 1 21 6 4 34 
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5.4.3.2 Helminth community structure analysis: the environment 

In order to analyse helminth community structure with respect to the environment, the 

individual catchment sites were grouped according to their geographic region, as was carried 

out in previous Chapters. This allowed for larger numbers of eels to be analysed with respect 

to their helminth community structure profile. The resulting data (Figure 5.4) shows that the 

English river systems analysed in this study have a richer combination of eel helminths 

compared to the Welsh river systems. As highlighted earlier (Table 5.10), eels from South 

East England were found to host between 1 helminth taxon and up to 5 co-infecting helminth 

taxa.  In contrast, 50% of eels sampled from catchment sites in North Wales were not infected 

with helminths and only 10% of the surveyed fish from this region displayed a co-infection.    

 

 

Figure 5.4 Summary of the different numbers of helminth taxa observed within the eels 

sampled from the four different geographic regions. No helminths:      , One helminth taxon:                

two helminth taxa:      , three helminth taxa:      , four helminth taxa:        and five helminth 

taxa:      . 
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 With respect to eels sampled from the five rivers in North West England, there were 19 

specimens with helminth co-infections (Table 5. 24). The most common class of helminth 

observed in these co-infections was the gastrointestinal nematodes (15/19; 78.9%). The most 

common combination of parasites responsible for a double taxa infection was the 

pseudodactylids and gut nematodes (n=4). Not surprisingly, triple taxa infections were 

dominated by pseudodactylids and gut nematodes in combination with A. crassus (n=5).   

Table 5.24 Helminth co-infection profiles in the eels sampled from rivers in North West 

England.  

Eel 

code 

Body 
length 

(cm) 

Body 
weight 

(g) 

Condition 

factor 
Pseudodactylids 

A. 

crassus 

Gut 

nematodes 
Acanthocephalans Tapeworms 

Total 
number of 

helminths 

RG6 32 41.8 0.13  5   1 6 

RG8 33 62.2 0.17  5 5   10 

B2 32 49.1 0.15 5  4   9 

RP2 31.5 82.8 0.28   17  1 18 

RP6 27.5 38.2 0.18 1  4   5 

RP8 43 101.1 0.07   11 1  12 

RP10 26 29.7 0.17   3 1  4 

HB3 23 14.7 0.12 3    2 5 

HB5 25 18.6 0.12 27  9   36 

RL5 34 55.9 0.14 10   3  13 

RL8 29.5 30.5 0.11 5  3   8 

B8 48 24.5 0.02   19 4 1 24 

RP5 35.5 74.9 0.17 2   2 2 6 

RL1 21 13.9 0.16 5 4 8   17 

RL2 52 187 0.13 125 9 1   135 

RL6 35 71.3 0.17 2 1 3   6 

RL9 30 38.1 0.14 1 1 1   3 

RL10 26 22.3 0.13 33 5 1   39 

RL3 27 35.8 0.18 51 7 16 1  75 
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With respect to eels sampled from the two rivers in South East England, there were 17 

specimens with helminth co-infections (Table 5. 25). Pseudodactylids and acanthocephalans 

were present in all of these co-infected eels (100% prevalence). For triple taxa co-infections, 

the most common combination of helminths observed was the aforementioned 

pseudodactylids and acanthocephalans with A. crassus. Not surprisingly, quadruple taxa 

infections were dominated by pseudodactylids, acanthocephalans and A. crassus, in 

combination with either gastrointestinal nematodes (n = 2) or tapeworms (n = 1).   

Table 5.25 Helminth co-infection profiles in the eels sampled from rivers in South East 

England.  

Eel 
code 

Body 

length 
(cm) 

Body 

weight 
(g) 

Condition 
factor 

Pseudodactylids A. crassus 
Gut 

nematodes 
Acanthocephalans Tapeworms 

Total 

number of 
helminths 

CN7 86 805.7 0.13 2 
  

30 
 

32 

C74 50 209.8 0.17 2 
  

53 
 

55 

C116 29 36.4 0.15 3 
  

1 
 

4 

C131 39 112 0.19 2 
  

81 
 

83 

C40 32 43.9 0.32 5 
  

2 
 

7 

  CN3 86 1380.3 0.22 12     19 1 32 

CN9 69 563.5 0.17 2 2   1   5 

C107 32 47 0.14 19 7   2   28 

C117 28 27.5 0.13 34 1   2   37 

C59 32 50.1 0.15 12 10   5   27 

C71 47 198.2 0.02 7 2   12   21 

C48 31 44.7 0.15 1 2   4   7 

CN6 74 839.7 0.21 1 11 1 20 
 

33 

CN8 77 661.9 0.14 3 
 

1 1 1 6 

CN10 74 743.4 0.18 52 1 3 12 
 

68 

C157 33 65.8 0.18 56 7 
 

15 1 79 

CN5 70 668.6 0.19 2 1 21 6 4 34 
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With respect to eels sampled from the four rivers in North Wales, there were only 4 

specimens with helminth co-infections (Table 5.26). Gastrointestinal nematodes were present 

in all of these co-infected eels (100% prevalence). Only double taxa infections were observed 

and the other component of the co-infection in these specimens was either pseudodactylids 

(50% prevalence) or tapeworms (50% prevalence).   

Table 5.26 Helminth co-infection profiles in the eels sampled from rivers in North Wales. 

Eel 

code 

Body 

length 

(cm) 

Body 

weight 

(g) 

Condition 

factor 
Pseudodactylids 

Gut 

nematodes 
Tapeworms 

Total number 

of helminths 

MC3 35 54.6 0.13 
 

1 1 2 

CE1 39 72.9 0.12 4 1 
 

5 

CE5 29 39.3 0.16 1 2 
 

3 

CE9 20 10.9 0.14 
 

3 1 4 

With respect to eels sampled from the three rivers in South Wales, there were 15 specimens 

with helminth co-infections (Table 5.27). Either the pathogenic A. crassus or the 

pseudodactylids were observed as a component of all helminth co-infections. Not 

surprisingly, these two pathogenic parasites were the dominant helminths in double taxa co-

infections (6/11; 54.5%). A. crassus and pseudodactylids were also present in all triple taxa 

co-infections; most commonly in combination with acanthocephalans.  
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Table 5.27 Helminth co-infection profiles in the eels sampled from rivers in South Wales. 

Eel 

code 

Body 
length 

(cm) 

Body 
weight 

(g) 

Condition 

factor 
Pseudodactylids A. crassus 

Gut 

nematodes 
Acanthocephalans 

Total number of 

helminths 

TB1 20 10.2 0.13 
 

2 
 

9 11 

R5 27 29.3 0.15 11 
  

2 13 

R6 30 39.7 0.15 3 2 
  

5 

R8 30 43.9 0.16 
 

4 
 

7 11 

R9 23.5 12.7 0.1 3 
  

12 15 

R10 23.5 18.5 0.14 
 

2 
 

5 7 

CD 1 33 59.9 0.17 14 4 
  

18 

CD2 27 30.4 0.17 5 1 
  

6 

CD4 28 28.3 0.1 2 5 
  

7 

CD5 28.5 32.6 0.05 4 2 
  

6 

CD9 21 8.8 0.18 29 1 
  

30 

R1 32 48.9 0.15 5 4   1 10 

R3 30 42.3 0.16 22 6   3 31 

R4 31.5 67.2 0.22 9 3   9 21 

CD3 24 21.4 0.06 4 3 5   12 
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5.5  Discussion 

Work in this chapter is focussed upon describing the helminth community structure and co-

infection status of European eels sampled from sites across England and Wales. Prior to this 

analysis, a dataset of A. crassus infection was also analysed; the majority of this swim 

bladder nematode data was extracted from an earlier Ph.D study at The University of Salford 

(Ab Aziz, 2012), though eels from three additional catchment sites were surveyed for A. 

crassus infection during the course of this thesis work. To this end, the data described in this 

chapter contributes new knowledge on the helminth infection status of A. anguilla stocks in 

UK rivers. Indeed, although helminth infections were commonly found, the data also 

confirms that a sizeable minority (28%) of the eels lacked a helminth infection, as reported in 

other studies (Kennedy, 1993a; Kennedy & Guégan, 1996; Kennedy et al., 1998). These 

uninfected eels were sampled from rivers across England and Wales, though not from South 

East England. The 100% helminth infection status of eels from the two catchment sites in 

South East England may be in part influenced by the large size and hence age/time of 

exposure to helminths in one of the rivers, the Crane; however, the eels from the other river 

in this region, the Crouch, were of average size. As such, it is also likely that the river 

environment in South East England is particularly favourable to helminth transmission to 

eels, as noted in a previous survey (Ab Aziz, 2012).         

5.5.1 A. crassus 

The pathogenic swim bladder nematode A. crassus was isolated from the majority of the eels 

sampled from the river Leven in North West England.  Indeed, when combined with the 

earlier dataset (Ab Aziz, 2012), 25% of all the A. crassus were derived from just 7 eels 

sampled from the river Leven. A further 11% of the entire A. crassus individuals within the 

dataset were attributable to 4 infected eels sampled from the river Crane in South East 

England. The swim bladder of a number of these eels showed the distinct appearance of A. 
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crassus infection since they appeared discoloured due to haemorrhaging (Kirk, 2003). No A. 

crassus parasites were recovered from eels sampled from the river Petteril, the most northerly 

located sampling site in this study.  

On extrapolating the analysis to the regional level, all 4 river sites in North Wales contained 

eels that were free of A. crassus infection. Moreover, a statistical analysis of the regional 

infection data confirmed significant differences in A. crassus prevalence between most of the 

regions. The data confirms that eels sampled from catchment sites in South East England had 

the highest prevalence of A. crassus; one contributory factor to this is likely to be that the 

parasite has been present in this area of the country for the longest period of time given the 

suspected invasion route (Kennedy & Fitch, 1990). Another contributory factor however is 

most probably host dependent since one of the rivers in South East England, the Crane, 

provided specimens that were significantly larger than the rest of the study population. As 

discussed earlier (Chapter 1), these fish were likely to be at a more mature developmental 

state and older than the rest of the eels in the study and hence exposed to the risk of A. 

crassus infection for a much longer period of time. Of potential importance was the finding 

that A. crassus infection was linked to a significant increase in the eel body length and weight 

(20% and 48% respectively). This corroborates a recent study on A. crassus infections in eels 

at sampling sites along the river Rhone in Southern France in which swim bladder nematode 

infection was linked to an 11% increase in eel body length and a 41% increase in body 

weight (Lefebvre et al., 2013). Lefebvre and colleagues propose that this counter-intuitive 

finding is likely to be a consequence of eel panmixia contributing to variability in growth 

potential and infection risk as the most active foragers would not only be larger but that they 

would also have the highest probability of becoming infected. 

The A. crassus dataset shows that this pathogenic parasite is present in 50% of the catchment 

sites analysed within this study. As there appears to be no published literature on A. crassus 
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infections in European eel from these catchment sites, this dataset contributes new 

information on the spread of A. crassus in the UK.  Indeed, the finding that 70% of eels from 

the river Leven were infected with A. crassus may have implications for the spread of the 

parasite to Scotland; a region of the UK for which there exists very limited data on A. crassus 

(Barry et al., 2014). Overall, A. crassus was found to be present in 35 eel specimens and in 

only 4 of this subset was the swim bladder nematode found to be the only helminth infection. 

As such, A. crassus was most commonly found as a component of a helminth co-infection.   
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5.5.2 Helminth community structure 

In total, 1504 individual helminths were isolated from the eel population and analysis of the 

infection profiles at the 14 catchment sites showed that multiple different classes of helminth 

were present within the majority of the rivers. Indeed, 4 different helminth taxa were 

commonly found in eels sampled from the English rivers and 3 different helminth taxa were 

routinely isolated from eels recovered from the Welsh rivers. Moreover, the river containing 

eels with the most numerous helminth taxa (n = 5) was the Crane in South East England; in 

contrast, only gastrointestinal nematodes were recovered from eels sampled from two 

catchment sites in North Wales. Indeed, not only did the catchment sites in North Wales 

appear to support eels with a limited number of helminth taxon, acanthocephalans were 

absent from this subset of eels, in addition to A. crassus, as discussed above (5.2.1). 

With respect to the numbers of helminths recovered from the eels, approximately 2/3 were 

isolated from 3 rivers; the Crouch, Crane and Leven in England. Not surprisingly therefore, 

the primary infection data at these sites was significantly different to the data obtained from 

eels sampled from the majority of the remaining catchment sites. Moreover, 1198 helminths 

(79.7%) were recovered from eels from the English rivers, including 135 from just one host 

(eel code: RL2), and hence these sites could be classed as being potentially richer in 

biodiversity than the Welsh rivers.   

Indeed, one important factor contributing to eel helminth diversity is the habitat supporting 

the eels, the intermediate hosts and any paratenic hosts (Conneely & McCarthy, 1986; 

Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993b; Thielen, Muenderle, et al., 2007). To 

this end, scrutiny of the Biodiversity Action Plan (Morgan et al., 2011) may offer some 

insight with respect to the helminth community structure at the different catchment sites. The 

river Petteril appears to have the greatest number of qualifying criteria (n = 5) contributing 
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towards the BAP and eels sampled from this river harboured 4 different helminth taxa; as 

discussed above (5.2.1), A. crassus appeared to be absent from these fish. In contrast, the 

river Crouch in South East England is probably the least attractive catchment site in terms of 

qualifying criteria towards the BAP since it is categorised as only containing one category B 

species (A. anguilla). Despite this low categorisation, eels from the river Crouch were host to 

4 different helminth taxa; no gastrointestinal nematodes were recovered. The two other rivers 

considered to have low qualifying criteria (n = 1) towards the BAP, the rivers Cadoxton and 

Gowy, supported eels with 3 and 4 different helminth taxa respectively. Furthermore, the eels 

sampled from the river Crane harboured the maximum number of helminth taxa observed in 

this study (n = 5) and yet according to the BAP, it has only 2 qualifying criteria. As such, it is 

not possible to draw any conclusions about how, taken in isolation, the overall environmental 

quality at the respective catchment sites may affect the observed helminth community 

structure within the European eel. Nonetheless, other environmental factors, such as 

differences in the physio-chemical properties of the water (Køie, 1988; Jakob, Hanel, et al., 

2009b; Mayo-Hernández et al., 2015) and also, climate/seasonal variation across the UK, 

may contribute to the observed data, as has been reported in other studies (Kennedy, 1997a; 

Thielen, Muenderle, et al., 2007; Filippi et al., 2013).      

Another important factor contributing towards eel helminth diversity is the characteristics of 

the host itself (Schneebauer et al., 2016). Indeed, it is likely that the age and condition of an 

eel may influence the likelihood of it acquiring a helminth infection. To this end, it is 

interesting to note that the data produced in this study confirms that helminth infected eels are 

significantly larger and have a greater condition factor than the uninfected group of eels. 

Indeed, the helminth infected eels had mean length and weight measurements that were 42% 

and 371% greater respectively than the uninfected group of eels. Again, as reported above for 

A. crassus (5.5.1) (Lefebvre et al., 2013), this may indicate that these larger eels are more 
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actively feeding and hence have an increased risk of exposure to helminth infected 

intermediate and paratenic hosts.  

The river environment and host factors together influence whether, or not, the eel becomes 

infected with a helminth. Furthermore, these major influences are also crucial with regard to 

the type, if any, of co-infection that eels may harbour. To obtain a thorough understanding of 

any co-infection requires knowledge not only of the different parasitic taxa/species but also, 

the respective numbers of parasites. This may be further influenced by competition between 

the parasites themselves if they are localised to the same niche within the host (Holmes, 

1973). The result may be different outcomes for both the parasites and the host (Mayo-

Hernaez et al., 2015). With regard to A. anguilla, there has been limited published 

information on helminth co-infections as most of the data is presented as a catalogue of 

parasites surveyed from specific locations (Kennedy, 1993a; Sures, Knopf, Würtz, et al., 

1999; Norton et al., 2003; Norton, Rollinson, et al., 2004; Aguilar, Álvarez, et al., 2005; 

Mayo-Hernández et al., 2015; Moravec & Scholz, 2015). However, there is some published 

co-infection data that describes helminth co-infections that can be found within a particular 

eel niche such as the gastrointestinal tract (Kennedy & Moriarty, 1987; Kennedy et al., 1989), 

or, the gill (Buchmann, 1988b). 

This study has already confirmed that the eel gill can be co-infected with P. anguillae and P. 

bini (Chapter 2) and that the gastrointestinal tract can be co-infected with P. laevis and non-

bulb acanthocephalans (Chapter 4). Data within this chapter now extends knowledge on the 

occurrence of other co-infections with the European eel. In total, there were 55 eels with 

helminth co-infections and only 25% of these (n = 14) were localised to the gastrointestinal 

tract. This may indicate a resource limitation (Petney & Andrews, 1998; Rigaud et al., 2010; 

Knowles et al., 2013) within the eel gastrointestinal tract between the gut nematodes, 

acanthocephalans and tapeworms and hence competition between these parasites. Indeed, 
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such resource limitation has been proposed previously in the European eel following study of 

the distribution of different species of acanthocephalans within the gastrointestinal tract  

(Kennedy, 1985). Interestingly, tapeworms were encountered in combination with either gut 

nematodes and/or acanthocephalans, in 9 eels. There was no preference with regard to the 

other components of the gut helminth community in these 9 eels: in 3 eels tapeworms were 

present with acanthocephalans; in a further 3 eels tapeworms were present with gut 

nematodes and in the final 3 eels, tapeworms were in combination with both 

acanthocephalans and gut nematodes. To this end, it could be suggested that eel tapeworms 

have a neutral impact on the gut helminth community structure and this may be a 

consequence of spatial separation from other helminths within the gastrointestinal tract, as 

noted in a previous study (Schabuss et al., 1997). The overall prevalence of tapeworm 

infection was 9.3% whereas the overall prevalence of acanthocephalans and gut nematodes 

was 30% and 33.6% respectively.  As such, it is perhaps of note that 9 eel gut co-infections 

involved tapeworms, which is similar to the 11 eels that had gut co-infections involving 

acanthocephalans and the 11 eels that presented with gut co-infections involving nematodes; 

again, emphasizing that tapeworms have little, if any, influence on the gut helminth 

community of eels (Abdelmonem et al., 2010).    

The majority of the co-infections reported in this chapter (75%, n = 41) involved one, or both, 

of the pathogenic helminths A. crassus and the pseudodactylids. This is perhaps not 

surprising given that these helminths were highly prevalent and abundant; indeed together, 

they comprised 50% (n = 754) of all the helminth specimens analysed in this thesis.  

Moreover, as the swim bladder nematode and the gill monogeneans occupy distinct and 

separate organs within the host they are not in direct competition for resources either with 

each other, or with the gastrointestinal helminths. This presumably aids both A. crassus and 

the pseudodactylids establishing an infection that is then able to persist despite an immune 
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response from the host (Knopf, 2006; Knopf et al., 2008). Indeed, infection with A. crassus 

has recently been reported to influence outcomes of the eel innate immune system to the 

extent that the host is likely to become more susceptible to infection with other parasites 

(Terech-Majewska et al., 2015). Together, A. crassus and the gill monogeneans were both 

present as components of the eel helminth community in 26 (47.3%) of the co-infected hosts. 

Given the known pathogenicity of these helminths, this duel combination, either alone, or 

with one, or more, gut helminths, is potentially of concern with respect to eel health and 

capacity to successfully complete a migration to the spawning grounds  (Kirk, 2003; Lefebvre 

et al., 2013; Barry et al., 2014; Schneebauer et al., 2016).     

Analysis of the host parameters; length, weight and condition factor, with respect to the 

infection profiles offered some interesting insights. It was apparent that helminth infection 

was generally associated with larger eels; indeed, the longer and heavier eels were more 

likely to be infected with helminths and have a greater intensity of infection. Moreover, this 

pattern was observed regardless of whether the eel harboured a single helminth taxon 

infection, or, co-infections of multiple taxa. This observation is once again, most likely to be 

a consequence of the larger fish being not only exposed to infection for greater periods of 

time as they are older but also, that they have a more varied and substantial diet (Nie & 

Kennedy, 1991d; Schabuss et al., 2005; Kennedy, 2007a; Jakob, Hanel, et al., 2009b).  

With respect to the infection profile at the taxa level, infections involving acanthocephalans, 

as already noted above, were perhaps of most interest in terms of any association with the 

host length and weight parameters. Acanthocephalan infections, whether alone (11 eels), or in 

combination with pseudodactylids (8 eels), pseudodactylids/A. crassus (9 eels), 

pseudodactylids/tapeworms (2 eels), or pseudodactylids/A. crassus/gut nematodes (3 eels), 

appeared to be associated with the larger hosts. The only acanthocephalan co-infections that 

did not show any significant difference in host parameters relative to the uninfected group of 
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eels was the combination with A. crassus (3 eels) and with gastrointestinal nematodes (2 

eels).  It may seem counter-intuitive that these acanthocephalan infected eels are significantly 

larger than the uninfected specimens, particularly when the gut perforation often associated 

with these helminths is considered (Chapter 4). However, as discussed above, these hosts are 

larger/older and hence have not only been exposed to potential infections for a longer period 

of time but they are also likely to have a more varied and substantial diet (Jakob, Hanel, et 

al., 2009b; Filippi et al., 2013; Gerard et al., 2013). The only other co-infections that 

appeared to have a significant association with the measured host parameters was that of the 

pseudodactylids/gastrointestinal nematodes (6 eels) and also, this pairing in combination with 

A. crassus (6 eels). From analysis of these acanthocephalan-free helminth co-infected hosts, it 

does appear that co-infections are of crucial importance since single infections with the gill 

monogeneans (5 eels), gastrointestinal nematodes (24 eels), or A. crassus (4 eels) are not 

significantly associated with eel body length and weight measurements. 

On extrapolation of this analysis to the level of the condition factor, it was also of note that 

helminth infection (n = 101) was associated with a significantly greater eel condition factor 

(0.15±0.05) than the uninfected eels (0.14±0.02). Interestingly, this observed difference was 

noticed with single taxon infections caused by gastrointestinal nematodes (p = 0.03) and also, 

acanthocephalans (p = 0.01), though not with infections caused by either A. crassus, 

tapeworms, or the pseudodactylids. This in part may be a consequence of low numbers of 

eels harbouring a single taxon infection with the latter three, though also, the gill 

monogeneans route of infection is not linked to dietary intake. Furthermore, the mean 

intensity of the single taxon infections caused by gastrointestinal nematodes and also, 

acanthocephalans, was higher than the data observed for single taxon infections with either A. 

crassus, tapeworms or the pseudodacytlids. Not surprisingly, there is variation in the 

helminth intensity data for co-infections and this probably is reflected in the condition factor 
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not always being significantly different in the eels with helminth co-infections compared to 

the uninfected eels. For example, in the eels co-infected with gastrointestinal nematodes and 

acanthocephalans, the condition factor was not significantly different to the uninfected eels.  

However, only two eels had this specific co-infection and also, in both cases, only a single 

acanthocephalan was recovered from these eels and in one of them, only 3 nematodes were 

present.  Examining the triple helminth co-infections, there was only 1 eel with a combination 

involving gastrointestinal nematodes and acanthocephalans. However, there were two eels 

that were co-infected with acanthocephalans/pseudodactylids/tapeworms and the mean 

condition factor was significantly higher (0.19 ±0.04) than the group of uninfected eels. This 

may again reflect feeding habits since one of these two eels was from the river Crane, which 

provided the largest/oldest group of fish; indeed, the triple co-infection in this specimen 

included 19 acanthocephalans.    

Although the above helminth taxa data is of interest, a more detailed analysis of the helminth 

community structure in each co-infection, as indicated above, would require the intensity data 

to also be thoroughly scrutinised. Unfortunately, the relatively small numbers of eels with the 

different combinations of helminth taxa does not allow a more rigorous statistical analysis of 

the data with respect to the host parameters. 

At the regional level, distinct differences in the helminth community structures were 

observed.  The two rivers in South East England contained helminth co-infected eels (n = 17) 

with up to 5 helminth taxa and the number of different combinations of these taxa was 7. The 

5 rivers analysed in North West England contained similar numbers of helminth co-infected 

eel specimens (n = 19) and these were observed to have a total of 11 different taxa 

combinations. Moreover, pseudodactylids and acanthocephalans were present in all the co-

infected eels from South East England, whereas gastrointestinal nematodes were the 

dominant helminth observed in the co-infected eels sampled from North West England.  The 
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Welsh river systems contained less helminth co-infected eels and the combinations of taxa 

observed were also reduced relative to the eels sampled from English rivers. Interestingly, 

there were also differences between the data for North and South Wales. Gastrointestinal 

nematodes were present in all the co-infected eels from North Wales (n = 4) and there were 

no co-infections involving either acanthocephalans (Chapter 4) or A. crassus (5.4.1) as these 

were not found in eels sampled from this region. As such, only 2 combinations of helminth 

taxa were observed in the co-infected eels sampled from North Wales. In contrast, the co-

infected eels from South Wales (n = 15) had 5 combinations of different helminth taxa; the 

dominant taxa were A. crassus (n = 13) and the pseudodactylids (n = 12), whilst there was 

only 1 host with a co-infection involving gastrointestinal nematodes and no tapeworm co-

infections as the latter were not present in the eels sampled from this region.         
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5.6 Concluding remarks  

This study was conducted in order to contribute novel data on helminth parasites in A. 

anguilla, a species classified as threatened, from sites across England and Wales. In order to 

achieve this overall aim, 140 European eel specimens were acquired in an ad hoc fashion 

following routine surveys conducted by the Environment Agency at 14 rivers across South 

East England, North West England, South and North Wales. Most (n = 130) of these eels 

were close to the mean specimen size for the surveyed population; however, 10 eels, all from 

the river Crane, were substantially larger and most probably at a late developmental stage.  

These eels were not obtained via the routine sampling route as they were acquired following 

death due to a major pollution event in the river Crane. 

The eel specimens were dissected and helminth analysis was conducted on the gills, the swim 

bladder and the gastrointestinal tract in order to generate data on pseudodactylids, A. crassus, 

acanthocephalans, gastrointestinal nematodes and tapeworms respectively. The resulting data 

set confirms the presence of all the aforementioned parasites and also, that no digenean 

trematodes were present in the eels. The absence of digenean infections was not unexpected 

given that previous reports indicate these helminths are generally associated with eels 

sampled from brackish waters (Køie, 1988). Overall, the catalogue of helminths produced in 

this study included 11 out of the 27 helminth species previously reported to infect A. anguilla 

in the UK (Table 5.28). Seven of these helminths; P. anguillae, P. bini, A. crassus, S. inermis, 

P. tenerrima, P. macrocephalus and B. claviceps are known eel specialist parasites. The 

remaining 4; A. clavula, A. lucii, P. laevis and R. acus, are non-specialist helminths of eels.          
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Table 5.28 Helminth species reported in A. anguilla from the UK (* reported in this study) 

Helminth class Helminth parasite Reference  

Monogenean Gyrodactylus anauillae (Kennedy, Nie, Kaspers, et al., 1992) 

Pseudodactylogyrus anguillae * (Nie & Kennedy, 1991d; Kennedy, Nie, Kaspers, et al., 1992) 

P. bini * (Kirk, 2006) 

Digenean 
Deropristis inflate (marine)

 (Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a; Norton et 

al., 2003; Norton, Lewis, et al., 2004; Norton, Rollinson, et al., 

2004) 

Nicolla gallica (Norton et al., 2003; Norton, Lewis, et al., 2004; Norton, 

Rollinson, et al., 2004) 

Crepidostomum farionis (Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a) 

Podocotyle atomon (marine) 
(Kennedy, Nie, Kaspers, et al., 1992) 

Sphaerostoma bramae 
(Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a) 

Phyllodistomum folium 
(Kennedy, Nie, Kaspers, et al., 1992) 

Acanthocephalan 
Acanthocephalus anguillae 

(Kennedy & Moriarty, 1987; Norton et al., 2003; Norton, Lewis, 

et al., 2004; Norton, Rollinson, et al., 2004) 

Acanthocephalus clavula * 
(Kennedy & Lord, 1982; Kennedy, Nie, Kaspers, et al., 1992; 

Kennedy, 1993a) 

Acanthocephalus lucii * 
(Kennedy & Moriarty, 1987; Kennedy, 1992; Norton et al., 2003; 

Norton, Lewis, et al., 2004; Norton, Rollinson, et al., 2004) 

Echinorhyncus truttae 
(Norton et al., 2003; Norton, Lewis, et al., 2004; Norton, 

Rollinson, et al., 2004) 

Neoechinorhynchus rutili 
(Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a; Norton et 

al., 2003; Norton, Lewis, et al., 2004; Norton, Rollinson, et al., 

2004) 

Pomphorhynchus laevis * 
(Kennedy et al., 1989; Kennedy, Nie, Kaspers, et al., 1992; 

Norton et al., 2003; Norton, Lewis, et al., 2004; Norton, 

Rollinson, et al., 2004) 

Nematode 
Anguillicoloides crassus *  

(Kennedy & Fitch, 1990; Kennedy, Nie, Kaspers, et al., 1992; 

Kirk, 2003) 

Camallanus lacustris 
(Nie & Kennedy, 1991a; Kennedy, Nie, Kaspers, et al., 1992; 

Norton et al., 2003; Norton, Lewis, et al., 2004; Norton, 

Rollinson, et al., 2004) 

Cucullanus truttae 
(Norton et al., 2003; Norton, Lewis, et al., 2004; Norton, 

Rollinson, et al., 2004) 

Capillaria sp. 
(Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a) 

Daniconema anguillae  
(Kennedy, Nie, Kaspers, et al., 1992) 

Goezia inermis 
(Norton et al., 2003; Norton, Lewis, et al., 2004; Norton, 

Rollinson, et al., 2004) 

Raphidascaris acus * 
(Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a; Norton et 

al., 2003; Norton, Rollinson, et al., 2004) 

Paraquimperia tenerrima * 
(Nie & Kennedy, 1991c; Kennedy, Nie, Kaspers, et al., 1992; 

Kennedy, 1993a; Norton et al., 2003; Norton, Rollinson, et al., 

2004) 

Spinitectus inermis * 
(Kennedy, Nie, Kaspers, et al., 1992; Norton et al., 2003; Norton, 

Lewis, et al., 2004; Norton, Rollinson, et al., 2004; Kennedy, 

2012) 

Streptocara sp. 
(Kennedy, 1993a) 

Tapeworm 
Bothriocephalus claviceps * 

(Kennedy, Nie, Kaspers, et al., 1992; Kennedy, 1993a; Norton et 

al., 2003; Norton, Rollinson, et al., 2004) 

Proteocephalus microcephalus*  
(Kennedy, Nie, Kaspers, et al., 1992; Kennedy, Nie, & Rostron, 

1992; Kennedy, 1993a; Norton et al., 2003; Norton, Rollinson, et 

al., 2004) 
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The gill monogeneans were the dominant helminth isolated from the eel specimens, both in 

terms of numbers recovered and prevalence of infection at the study sites. Indeed, this known 

pathogen was present in eels at all sites examined from South East England and South Wales 

and at all but 1 of the sites in North West England. However, pseudodactylids were only 

recovered from eels at one river, the Clwyd-Elwy, in North Wales. Morphological 

examination of the monogeneans was inconclusive with regard to species identification. This 

was somewhat predictable given the mode of acquisition of the eel specimens; however, even 

if fresh eel specimens had been obtained, it remains challenging to discriminate between P. 

bini and P. anguillae (Zolovs et al., 2016). Consequently, a species identification approach 

was developed that was based upon the small number of nucleotide differences that exist in 

the 18S rRNA gene of these pseudodactylids. This PCR/restriction digestion-based diagnostic 

approach allowed species characterisation of approximately 30% of the collected gill 

monogeneans and the data confirmed that P. bini was slightly more prevalent than P. 

anguillae (ratio: 55:45). Some of the catchment sites appeared to harbour just P. anguillae 

and other sites just P. bini. Additionally, there were further sites at which both of these 

parasites were detected. Interestingly, at the river site with the largest fish, the Crane, only P. 

anguillae was detected despite analysis of 25 PCR products and so this may suggest that both 

gill monogenean species are not necessarily present at all catchment sites positive for 

pseudodactylids. There may be unknown ecological reasons for this observation given that 

eels from the other river in South East England, the Crouch, produced both species of gill 

monogenean; moreover, P. bini was present at levels approximately 10-fold greater than P. 

anguillae. Given the lack of published literature on P. bini infections in European eels from 

UK rivers, this prevalence data is perhaps surprising. 

The swim bladder nematode A. crassus has presented much concern with regard to eel health.  

Data produced in this thesis, along with data from another Ph.D. student at Salford University 
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(Ab Aziz, 2012), confirms the extent of A. crassus spread amongst the UK eel population.  

As observed for pseudodactylid infections, all sites examined from South East England and 

South Wales were also positive for A. crassus infection. Interestingly, this potentially 

devastating parasite was not recovered from any eels sampled from rivers in North Wales.  

Although A. crasuss was the dominant helminth recovered from eels sampled from the river 

Gowy, most of the catchment sites in North West England appeared not to harbour eels with 

swim bladder nematode infections. This may continue to reflect the dispersal of A. crassus 

across the UK eel population from its geographic origin of introduction  (Kennedy & Fitch, 

1990).  

The gastrointestinal tracts of the 140 eel specimens yielded a total of 750 helminths (49.9% 

of all the parasites recovered). Very few tapeworms were recovered; 12 B. claviceps and 6 P. 

macrocephalus and they were present in all regions except South Wales. Moreover, half of 

the B. claviceps specimens were isolated from the catchment site containing the largest eels, 

the river Crane. As such, this suggests that tapeworm infection in eels is relatively uncommon 

compared to the other helminth infections (Nie & Kennedy, 1991b; Nie & Kennedy, 1992b).  

Gastrointestinal nematodes were the dominant helminth taxa at 5 of the catchment sites; 2 in 

North West England and 3 in North Wales. Indeed, given the relative prevalence of 

gastrointestinal nematodes, it was somewhat surprising to find that none were recovered from 

eels sampled from the rivers Rhymney in Wales and Crouch in England. The latter is of most 

intrigue given that eels from the river Crouch generated the highest number of total helminths 

recovered from any site, including a substantial number of other gut infections (eg. 

acanthocephalans). This may reflect the array and abundance of intermediate hosts specific 

for acanthocephalans to complete their life cycle relative to those required for the nematodes.  

Indeed, overall, it did appear that the eels from the more northerly sampling sites were more 

likely to be infected with gastrointestinal nematodes and again, perhaps emphasizes that the 



235 

 

ecology of these sites is more suited to these helminths completing their life cycles. The 

gastrointestinal nematodes confirmed in this study were S. inermis, P. tenerrima and R. acus.  

In confirming the presence of S. inermis and also, P. tenerrima, novel sequence data for the 

18S rRNA gene of these helminths was generated. These sequences should assist 

phylogenetic analysis of the genera Spinitectus and Paraquimperia.    

Significant numbers of acanthocephalans were recovered from the eels; indeed, these 

helminths were dominant at the 2 rivers in South East England and the river Taff in South 

Wales. In contrast, acanthocephalans were not recovered from eels at any of the rivers 

sampled in North Wales. In total, 215 P. laevis individuals, a category 2 parasite 

(Environment Agency UK, 2014), were isolated from eels at 2 sites in South Wales and 4 

sites in England. Of particular concern may be the high prevalence and also, high numbers of 

P. laevis isolated from eels sampled from the rivers Crouch and Rhymney. A large number, 

254, non-bulb acanthocephalans were also isolated from the eels. A number of these 

acanthocephalans were analysed by PCR amplification of the 18S rRNA gene and sequence 

data confirmed the presence of A. lucii. In addition, novel sequence data was generated and a 

phylogenetic analysis offered strong support for some of the acanthocephalans being A. 

clavula. All of these non-bulb acanthocephalan infections were localised to rivers in England 

and the reasons for this can only be speculated given that P. laevis, which uses similar 

intermediate hosts (Dezfuli et al., 2000), was recovered from sites in England and Wales. For 

example, other than the 2 rivers in South East England, prevalence of the non-bulb 

acanthocephalans is low. Indeed, 97% of all the non-bulb acanthocephalans were derived 

from eels sampled from the rivers Crane and Crouch and hence there may be specific 

environmental factors; and possibly also host factors, as the river Crane eel (n = 208 non-bulb 

acanthocephalans) were significantly larger than the rest, that contribute to the observed 

infection profile. 
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As a consequence of studying the individual taxa, it was possible to subsequently analyse the 

helminth community structure within the eel population. The interesting findings have been 

emphasized above (5.5) and the resulting co-infections provide new insights for helminth 

infections in A. anguilla. The data also stress how important the contribution of the river 

Crane eels was to the study. They were significantly larger than the rest of the eels and they 

not only provided almost 22% of the total helminths but also, the highest number of taxa.   

Furthermore, the Crane eels had the greatest mean condition factor which may indicate that 

prior to the pollution event; these fish were healthy and reasonably well nourished. The latter 

supports a notion that the Crane eels had access to a relatively good array of food sources and 

given their parasite infection status; this would include many of the intermediate and 

paratenic hosts (Thielen, Muenderle, et al., 2007). Interestingly, the Crane eels also displayed 

a gut immune response to helminth infection as cysts were present in the majority of these 

eels and these contained encapsulated larvae of A. crassus and also R. acus, a phenomena 

noted in other studies (Køie, 1988; Knopf & Mahnke, 2004; Heitlinger et al., 2009). Indeed, 

such a response may contribute to these eels being noted as able to tolerate multi-parasite 

infections (Mayo-Hernaez et al., 2015). As pseudodactylids were also present in the Crane 

eels at relatively high levels, this supports age and hence longevity of exposure to parasitic 

threats, as being an important factor, along with diet, in contributing to the overall helminth 

community structure (Conneely & McCarthy, 1986; Aguilar, Alvarez, et al., 2005a; Schabuss 

et al., 2005; Filippi et al., 2013).   

Finally, some of the studied helminths are known to cause pathology and disease in the 

European eel (Buchmann, 1993a; Sures et al., 2001; Kirk, 2003; Kennedy, 2007b; Sjöberg et 

al., 2009; Abdelmonem et al., 2010; Barry et al., 2014). This study also corroborated some of 

the pathological findings associated with A. crassus, pseudodactylids and acanthocephalans. 

Indeed, there were a number of examined eels that exhibited combinations of swim bladder 
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haemorrhaging, gut perforations and external disruption to the gill surface. The precise health 

outcomes for these fish can only be speculated upon; however, the literature suggests that 

such eels are likely to be compromised in their ability to migrate to the spawning grounds 

(Schneebauer et al., 2016). However, precise information concerning the health outcomes of 

the acanthocephalan infected eels are less well known and therefore worthy of further study.     
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5.7 Future directions               

Due to A. anguilla being a threatened species, it proved difficult to access specimens for this 

study and hence there was a dependence upon ad hoc acquisition through routine 

Environment Agency sampling and also, a single pollution event that killed fish in the river 

Crane. This limited the numbers of eels available from any specific site and there were also 

limitations with respect to detailed data concerning the actual dates of sampling and the 

environmental conditions at the sites. To this end, subsequent data interpretations with 

respect to these parameters have proven impossible and any future study would address these 

concerns.    

During the course of this study, a number of novel DNA sequences were generated.  These 

were argued as being derived from the gastrointestinal nematodes S. inermis and P. tenerrima 

and also from the acanthocephalan A. clavula. However, given the mode of acquisition and 

subsequent processing of the eels, a rigorous approach of confirming species through detailed 

morphological recordings was not always possible. Consequently, it would be best to dissect 

fresh eels and work with fresh parasites in order to robustly link the novel 18S rRNA 

sequences to the above helminths.    

In addition to a DNA based approach for species identification, it might prove worthwhile 

attempting to support morphological recordings with a parasite chemical signature.  This 

approach, using Fourier Transform Infrared Microspectroscopy (FTIR), allows complex 

biological materials, including single cells and multicellular organisms such as the nematode 

Caenorhabditis elegans, to be rapidly distinguished based upon a chemical footprint (Davis, 

2012). One of the advantages is the speed of the analysis and if the approach could be 

developed for some of the parasites isolated in this study it would circumvent the time 

consuming need to isolate genomic DNA, amplify the 18S rRNA gene by PCR and then 
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subject the resulting product to DNA sequencing. This might be particularly useful for 

parasites with a relatively similar morphology. 

One of the important questions about eel parasites remains whether, or not, they impact upon 

eel migration. Moreover, if it is accepted that they do impact upon eel migration, the question 

then becomes to what extent and how that ultimately affects the European eel population.  

This study has confirmed that eels from many regions in the UK are infected with helminths; 

however, it offers no hypothesis with regard to these important questions. To this end, a 

concerted effort is needed to develop non-invasive approaches that allow parasite infections 

to be determined in the European eel and then sophisticated tracking mechanisms to be 

utilised to monitor fish migration. With regard to non-invasive parasite diagnostics, scanning 

techniques have been used to determine eel swim bladder infection with A. crassus (Székely 

et al., 2004). However, other methodologies are needed for the gastrointestinal helminths.  

Options that could be developed for use on eels sampled at the silvering stage include 

helminth egg diagnosis within faecal samples (Cringoli et al., 2010), or, antibody based 

approaches (Baszler et al., 1995; Andersen et al., 2000). If these techniques could be used on 

silvering eels, in conjunction with sophisticated tracking, it might be possible to begin to 

address the important questions above. 

Finally, this thesis and the additional data produced at Salford University on eel parasites (Ab 

Aziz, 2012), has allowed a comprehensive survey of the extent of parasite infection in UK 

eels. This should support further development of Eel Management Plans in order to assist 

future management of the stocks of A. anguilla in UK waters.    
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Appendix.1 Eel morphometric and associated helminth infection data for the River Mawddach-eden; Wales. 

Eel 

code 

Body 

length(cm) 

Body 

weight(g) 

Condition 

factor 

Gill 

monogenean 

Swim bladder 

nematode # 

Gut nematode 

 
Acanthocephalan Tape worm 

Numbers of 
helminth 

classes 

Number of 

helminth 

    Total  number Total number 
Total 

number 

S. 

inermis 

small 

nematode 

Total 

number 

P. 

laevis 

Non 

Bulb 

Total 

number 
B. claviceps P. macrocephalus   

M1 45 154.6 0.17 0 0 0 
0 

0 0 
0 

0 0 0 0 
0 0 

M2 41 91.9 0.13 0 0 0 
0 

0 0 
0 

0 0 0 0 
0 0 

M3 25 21.8 0.14 0 0 0 
0 

0 0 
0 

0 
0 

0 0 
0 0 

M4 22 14.4 0.14 0 0 0 
0 

0 0 
0 

0 0 0 0 
0 0 

M5 26.5 25.4 0.14 0 0 0 
0 

0 0 
0 

0 
0 

0 0 
0 0 

M6 28 36.9 0.17 0 0 
1 0 1 

0 
0 

0 0 0 0 
1 1 

M7 21 14.1 0.15 0 0 0 
0 

0 0 
0 

0 0 0 0 
0 0 

M8 18 7.5 0.13 0 0 0 
0 

0 0 
0 

0 0 0 0 
0 0 

M9 23 15.5 0.13 0 0 
9 0 9 

0 
0 

0 0 0 0 
1 9 

M10 11 1.7 0.13 0 0 0 
0 

0 0 
0 

0 0 0 0 
0 0 

Total 26.1±10.2 38.4±48.1 0.14±0.01 0 
0 

10 
0 

10 0 
0 

0 0 0 0 
1 10 

%    0% 
0% 

20% 
 

 0% 
 

 0%   
  

 

# = Ab Aziz (2012) 

Gut nematodes were the only helminths found 100% (10/10), prevalence 20%. 
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Appendix.2 Eel morphometric and associated helminth infection data for the River Clwyd-Meirchion; Wales 

Eel 

code 

Body 

length (cm) 

Body 

weight(g) 

Condition 

factor 

Gill 

monogenean 

Swim bladder 

nematode 
# 

Gut nematode 

 
Acanthocephalan Tape worm 

Numbers of 

helminth 
classes 

Number 

of 
helminth 

    Total number Total number 
Total 

number 

S. 

inermis 

Small  

nematode 

Total 

number 

P. 

laevis 

Non 

bulb 

Total 

number 

B. 

claviceps 
P. macrocephalus   

MC1 42 104.4 0.14 0 0 0 
0 

0 0 
0 

0 
1 1 0 1 1 

MC2 30 38.8 0.14 0 0 
5 0 5 

0 
0 

0 0 0 0 
1 5 

MC3 35 54.6 0.13 0 0 
1 0 1 

0 
0 

0 
1 1 0 2 2 

MC4 25 26.8 0.17 0 0 0 
0 

0 0 
0 

0 
1 1 0 1 1 

MC5 19.5 21.8 0.29 0 0 
3 0 3 

0 
0 

0 0 0 0 
1 3 

MC6 18.5 9.0 0.14 0 0 
1 0 1 

0 
0 

0 0 0 0 
1 1 

MC7 22 12.0 0.11 0 0 
3 0 3 

0 
0 

0 0 0 0 
1 3 

MC8 15.5 5.3 0.14 0 0 
1 0 1 

0 
0 

0 0 0 0 
1 1 

MC9 18 10.5 0.18 0 0 0 
0 

0 0 
0 

0 0 0 0 
0 0 

MC10 13.5 2.8 0.11 0 0 0 
0 

0 0 
0 

0 0 0 0 
0 0 

Total 23.9± 8.7 28.6±31.22 0.16±0.05 0 0 14 
0 

14 0 
0 

0 3 3 0 
2 17 

%    0% 0% 60% 
 

 0% 
 

 30%   
  

 

# = Ab Aziz (2012) 

Gut nematodes were the dominant helminths 82.4% (14/17), prevalence 60%. And tapeworms 30% 
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Appendix.3 Eel morphometric and associated helminth infection data for the River Dee-Eitha; Wales 

Eel 
code 

Body 
length (cm) 

Body 
weight(g) 

Condition 
factor 

Gill 
monogenean 

Swim 
bladder 

nematode # 

Gut nematode 
 

Acanthocephalan Tape worm Numbers of 
helminth 

classes 

Number of 
helminth 

    Total number Total 

number 

Total 

number 

S. 

inermis 

Small  

nematode 

Total 

number 

P. 

laevis 

Non 

bulb 

Total 

number 

B. 

claviceps 

P. macrocephalus   

D1 28 27.6 0.13 0 0 1 0 1 0 0 0 0 0 0 1 1 

D2 32.5 60.2 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 

D3 25.5 17.7 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 

D4 32 55.6 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 

D5 14 2.4 0.09 0 0 23 23 0 0 0 0 0 0 0 1 23 

D6 12 1.5 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 

D7 15 3.1 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 

D8 18 7.1 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 

D9 14.5 1.2 0.04 0 0 4 4 0 0 0 0 0 0 0 1 4 

D10 25.5 21.6 0.13 0 0 1 0 1 0 0 0 0 0 0 1 1 

T0tal 21.7±7.5 19.8±22.1 0.11±0.04 0 0 29 27 2 0 0 0 0 0 0 1 29 

%    0% 0% 40%   0%   0%     

 

# = Ab Aziz (2012) 

Gut nematodes were the only helminths found 100% (29/29), prevalence 40%. 
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Appendix.4 Eel morphometric and associated helminth infection data for the River Taff; Wales 

Eel 
code 

Body 
length(cm) 

Body 
weight(g) 

Condition 
factor 

Gill 
monogenean* 

Swim bladder 
nematode 

# 

Gut nematode 
 

Acanthocephalan Tape worm Numbers 
of 

helminth 

classes 

Number 
of 

helminth 

    Total number Total number Total 
number 

S. inermis small 
nematode 

Total 
number 

P. 
laevis 

Non 
bulb 

Total 
number 

B. claviceps P. macrocephalus   

TB1 20 10.2 0.13 0 2 0 0 0 9 9 0 0 0 0 2 11 

TB2 25 33.5 0.21 0 0 0 0 0 1 1 0 0 0 0 1 1 

TB3 28 33 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 

TB4 22 15.6 0.15 1 0 1 1 0 0 0 0 0 0 0 2 2 

TB5 21.5 15.5 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 

TB6 24 24.4 0.18 0 0 0 0 0 1 1 0 0 0 0 1 1 

TB7 25 21.6 0.14 0 0 0 0 0 5 5 0 0 0 0 1 5 

TB8 28 35.2 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 

TB9 19 10.6 0.15 0 0 0 0 0 2 2 0 0 0 0 1 2 

TB10 25 24.7 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 23.8±2.9 22.4±9.4 0.16±0.02 1 2 1 1 0 18 18 0 0 0 0 4 22 

    10% 10% 10%   50%   0%     

*= P. bini = 100% (1/1) 

# = Ab Aziz (2012)  

Acanthocephalans were the dominant helminths 81.8% (18/22), prevalence 50%. 
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Appendix.5 Eel morphometric and associated helminth infection data for the River Clwyd-Elwy; Wales 

 

Eel 

code 

Body 

length 
(cm) 

Body 

weight(g) 

Condition 

factor 

Gill 

monogenean  

* 

Swim bladder 

nematode # 

Gut nematode 

 

Acanthocephalan Tape worm Numbers of 

helminth 
classes 

Number 

of 
helminth 

   Total Total  Total 

number 

S. inermis Small 

nematode 

Total 

number 

P. laevis Non 

bulb 

Total 

number 

B. claviceps P. macrocephalus   

CE1 39 72.9 0.12 4 0 1 0 1 0 0 0 0 0 0 2 5 

CE2 24 17.5 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 

CE3 31 46 0.15 0 0 1 0 1 0 0 0 0 0 0 1 1 

CE4 34 70.1 0.18 11 0 0 0 0 0 0 0 0 0 0 1 11 

CE5 29 39.3 0.16 1 0 2 2 0 0 0 0 0 0 0 2 3 

CE6 20.5 11.6 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 

CE7 10 1.2 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 

CE8 22 16.8 0.16 1 0 0 0 0 0 0 0 0 0 0 1 1 

CE9 20 10.9 0.14 0 0 3 3 0 0 0 0 1 0 1 2 4 

CE10 19.5 8.0 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 24.9±8.4 29.4±26.1 0.14±0.02 17 0 7 5 2 0 0 0 1 0 1 3 25 

%    40% 0% 40%   0%   10%     

 

*= P. bini = 100% (10/10) 
# = Ab Aziz (2012) 

Monogeneans were the dominant helminths 68% (17/25), prevalence 40%, and the gut nematodes 40% 
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Appendix.6 Eel morphometric and associated helminth infection data for the the River Rhymney; Wales 

Eel 
code 

Body 
length 

(cm) 

Body 
weight  

(g) 

Condition 
factor 

Gill 
monogenean 

* 

Swim 
bladder 

nematode # 

Gut nematode 
 

Acanthocephalan Tape worm Numbers of 
helminth 

classes 

Number of 
helminth 

    Total number   Total 

number 

S. 

inermis 

Small 

nematode 

Total 

number 

P. 

laevis 

Non bulb Total 

number 

B. claviceps P. macrocephalus   

R1 32 48.9 0.15 5 4 0 0 0 1 1 0 0 0 0 3 10 

R2 31 48.6 0.16 0 0 0 0 0 10 10 0 0 0 0 1 10 

R3 30 42.3 0.16 22 6 0 0 0 3 3 0 0 0 0 3 31 

R4 31.5 67.2 0.22 9 3 0 0 0 9 9 0 0 0 0 3 21 

R5 27 29.3 0.15 11 0 0 0 0 2 2 0 0 0 0 2 13 

R6 30 39.7 0.15 3 2 0 0 0 0 0 0 0 0 0 2 5 

R7 29 53.5 0.22 0 0 0 0 0 1 1 0 0 0 0 1 1 

R8 30 43.9 0.16 0 4 0 0 0 7 7 0 0 0 0 2 11 

R9 23.5 12.7 0.10 3 0 0 0 0 12 12 0 0 0 0 2 15 

R10 23.5 18.5 0.14 0 2 0 0 0 5 5 0 0 0 0 2 7 

Total 28.8±3.1 40.5±16.

4 

0.16±0.04 53 21 0 0 0 50 50 0 0 0 0 3 124 

%    60% 60% 0%   90%   0%     

 

*= P. anguillae = 100 (8/8)  
# = Ab Aziz (2012) 

Monogeneans were the dominant helminths 42.7% (53/124), prevalence 60%, and the acanthocephalan 90% 
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Appendix.7 Eel morphometric and associated helminth infection data for the River Cadoxton; Wales 

Eel 
code 

Body 
length 

(cm) 

Body 
weight(g) 

Condition 
factor 

Gill 
monogenean  

* 

Swim 
bladder 

nematode# 

Gut nematode 
 

Acanthocephalan Tape worm Numbers of 
helminth 

classes 

Number of 
helminth 

    Total number  Total 

number 

S. 

inermis 

Small 

nematode 

Total 

number 

P. 

laevis 

Non 

bulb 

Total 

number 

B. claviceps P. macrocephalus   

CD 1 33 59.9 0.17 14 4 0 0 0 0 0 0 0 0 0 2 18 

CD2 27 30.4 0.15 5 1 0 0 0 0 0 0 0 0 0 2 6 

CD3 24 21.4 0.06 4 3 5 0 5 0 0 0 0 0 0 3 12 

CD4 28 28.3 0.13 2 5 0 0 0 0 0 0 0 0 0 2 7 

CD5 28.5 32.6 0.05 4 2 0 0 0 0 0 0 0 0 0 2 6 

CD6 22 11.0 0.10 2 0 0 0 0 0 0 0 0 0 0 1 2 

CD7 25 17.1 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 

CD8 20 9.2 0.12 0 2 0 0 0 0 0 0 0 0 0 1 2 

CD9 21 
8.8 

0.09 29 1 0 0 0 0 0 0 0 0 0 2 30 

CD10 20 7.9 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 24.9±4.3 22.7±16.

1 

0.11±0.03 60 18 5 0 5 0 0 0 0 0 0 3 83 

%    70% 70% 10%   0%   0%     

 

*= P. anguillae = (7/9) P. bini = (2/9) 

# = Ab Aziz (2012) 

Monogeneans were the dominant helminths 72.3% (60/83), prevalence 70%, and the A. crassus 70% 
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Appendix.8 Eel morphometric and associated helminth infection data for the the River Gowy; England 

Eel 
code 

Body 
length (cm) 

Body 
weight(g) 

Condition 
factor 

Gill 
monogenean 

Swim 
bladder 

nematode 

# 

Gut nematode 
 

Acanthocephalan Tape worm Numbers of 
helminth 

classes 

Number of 
helminth 

    Total number Total 
number 

Total 
number 

S. 
inermis 

small 
nematode 

Total 
number 

P. 
laevis 

Non 
bulb 

Total 
number 

B. claviceps P. macrocephalus   

RG1 39 73.6 0.12 0 3 0 0 0 0 0 0 0 0 0 1 3 

EG2 37 61.7 0.12 0 3 0 0 0 0 0 0 0 0 0 1 3 

RG3 36 63.2 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0 

RG4 36 58.9 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 

RG5 40 65.7 0.10 0 0 0 0 0 3 0 3 0 0 0 1 3 

RG6 32 41.8 0.13 0 5 0 0 0 0 0 0 1 0 1 2 6 

RG7 35 70.5 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 

RG8 33 62.2 0.17 0 5 5 0 5 0 0 0 0 0 0 2 10 

RG9 26 27.1 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 

RG10 27 24.4 0.12 0 0 0 0 0 1 0 1 0 0 0 1 1 

Total 34.1±4.7 54.9±17.5 0.13±0.02 0 20 5 0 5 4 0 4 1 0 1 4 26 

%    0 40% 10%   20%   10%     

 

# = Ab Aziz (2012) 

A. crassus was the dominant helminths 76.9% (20/26), prevalence 40%. 
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Appendix.9 Eel morphometric and associated helminth infection data for the River Bela; England, 

Eel 
code 

Body 
length(cm) 

Body 
weight(g) 

Condition 
factor 

Gill 
monogenean 

Swim 
bladder 

nematode 

# 

Gut nematode 
 

Acanthocephalan Tape worm Numbers of 
helminth 

classes 

Number of 
helminth 

    Total number Total 
number 

Total 
number 

S. 
inermis 

Small 
nematode 

Total 
number 

P. 
laevis 

Non 
bulb 

Total 
number 

B. claviceps P. macrocephalus   

B1 30 42.0 0.16 0 0 5 0 5 0 0 0 0 0 0 1 5 

B2 32 49.1 0.15 5 n.d. 0 4 0 4 0 0 0 0 0 0 2 9 

B3 27 33.0 0.17 0 0 1 0 1 0 0 0 0 0 0 1 1 

B4 19.5 11.9 0.16 0 0 1 0 1 0 0 0 0 0 0 1 1 

B5 21 13.2 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0 

B6 23 13.3 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 

B7 24 22.2 0.16 0 0 6 0 6 0 0 0 0 0 0 1 6 

B8 48 204.5 0.18 0 0 19 0 19 4 4 0 1 1 0 3 24 

B9 24 18.3 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 

B10 49 209.0 0.18 0 0 4 0 4 0 0 0 0 0 0 1 4 

Total 29.8±10.6 43.6±59.5 0.15±0.02 5 0 40 0 40 4 4 0 1 1 0 4 50 

    10% 0% 70%   10%   10%     

n.d.  = not determined 
# = Ab Aziz (2012) 

Gut nematodes were the dominant helminths 88.4% (40/50), prevalence 70%. 

 



271 

 

Appendix.10 Eel morphometric and associated helminth infection data for the River Petteril; England 

Eel 
code 

Body 
length (cm) 

Body 
weight(g) 

Condition 
factor 

Gill 
monogenean 

* 

Swim 
bladder 

nematode 

Gut nematode 
 

Acanthocephalan Tape worm Numbers 
of 

helminth 

classes 

Number 
of 

helminth 

    Total number Total 

number 

Total 

number 

S. 

inermis 

small 

nematode 

Total 

number 

P. 

laevis 

Non 

bulb 

Total 

number 

B. claviceps P. macrocephalus   

RP1 36 110.7 0.24 0 0 22 0 22 0 0 0 0 0 0 1 22 

RP2 31.5 82.8 0.28 0 0 17 0 17 0 0 0 1 0 1 2 18 

RP3 18.5 8.2 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 

RP4 28 35.3 0.16 0 0 4 0 4 0 0 0 0 0 0 1 4 

RP5 35.5 74.9 0.17 2 0 0 0 0 2 2 0 2 0 2 3 6 

RP6 27.5 38.2 0.18 1 0 4 0 4 0 0 0 0 0 0 2 5 

RP7 14.5 5.2 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 

RP8 43 101.1 0.07 0 0 11 0 11 1 1 0 0 0 0 2 12 

RP9 33 98.3 0.27 0 0 14 0 14 0 0 0 0 0 0 1 14 

RP10 26 29.7 0.17 0 0 4 0 4 1 1 0 0 0 0 2 5 

Total 29.4±8.4 58.4±39.6 0.18±0.06 3 0 76 0 76 4 4 0 3 0 3 4 86 

    20%  70%   30%   20%     

 

*= P .bini 100% (2/2) 

Gut nematodes were the dominant helminths 88.4% (76/86), prevalence 70%, and the acanthocephalans 30% 
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Appendix.11 Eel morphometric and associated helminth infection data for the River Hether Burn; England 

Eel 
code 

Body 
length 

(cm) 

Body 
weight(g) 

Condition 
factor 

Gill 
monogenean 

* 

Swim bladder 
nematode 

# 

Gut nematode 
 

 Acanthocephalan Tape worm Numbers of 
helminth 

classes 

Number of 
helminth 

    Total  Total Total 

number 

S. 

inermis 

small 

nematode 

Total 

number 

P. 

laevis 

Non 

bulb 

Total 

numbe
r 

B. 

claviceps 

P. macrocephalus   

HB1 21 12.2 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 

HB2 27 23.6 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 

HB3 23 14.7 0.12 3 0 0 0 0 0 0 0 2 2 0 2 5 

HB4 24 16 0.12 2 0 0 0 0 0 0 0 0 0 0 1 2 

HB5 25 18.6 0.12 27 0 9 0 9 0 0 0 0 0 0 2 36 

HB6 16 4.8 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 

HB7 20 7.8 0.09 1 0 0 0 0 0 0 0 0 0 0 1 1 

HB8 19 8.1 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 

HB9 22.5 13.3 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 

HB10 16.5 11.1 0.25 0 0 7 7 0 0 0 0 0 0 0 1 7 

Total 21.4±3.6 13.0±5.6 0.13±0.04 33 0 16 7 9 0 0 0 2 2 0 3 51 

%    40% 0% 20%   0%   10%     

 

*= P. anguillae = 100% (14/14) 

# = Ab Aziz (2012) 

Monogeneans were the dominant helminths 64.7% (33/51), prevalence 40%, and the gut nematodes 20% 
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Appendix.12 Eel morphometric and associated helminth infection data for the River Crane; England 

Eel 
code 

Body 
length 

(cm) 

Body 
weight 

(g) 

Condition 
factor 

Gill 
monogenean* 

Swim bladder 
nematode 

Gut nematode 
 

Acanthocephalan Tape worm Numbers of 
helminth 

classes 

Number of 
helminth 

    Total Total number Total 
number 

S. 
inermis 

Small 
nematode 

Total 
number 

P. 
laevis 

Non 
bulb 

Total 
number 

B. 
claviceps 

P. 
macrocephalus 

  

CN1 70 682.3 0.21 0 0 0 0 0 56 0 56 0 0 0 1 56 

CN2 74 702.5 0.17 0 0 0 0 0 24 0 24 0 0 0 1 24 

CN3 86 1380.3 0.22 12 0 0 0 0 19 0 19 1 1 0 3 32 

CN4 77 1058.8 0.23 0 0 0 0 0 39 0 39 0 0 0 1 39 

CN5 70 668.6 0.19 2 1 21 0 21 6 0 6 4 4 0 5 34 

CN6 74 839.7 0.21 1 11 1 0 1 20 0 20 0 0 0 4 33 

CN7 86 805.7 0.13 2 0 0 0 0 30 0 30 0 0 0 2 32 

CN8 77 661.9 0.14 3 0 1 0 1 1 0 1 1 1 0 4 6 

CN9 69 563.5 0.17 2 2 0 0 0 1 0 1 0 0 0 3 5 

CN1

0 

74 743.4 0.18 52 1 3 0 3 12 0 12 0 0 0 4 68 

Total 75.7±6.1 810.7±

241.1 

0.19±0.03 74 15 26 0 26 208 0 208 6 6 0 5 329 

%    70% 40% 40%   100%   30%     

 

*= P. anguillae = 100% (25/25) 

Acanthocephalans were the dominant helminths 63.2% (208/329), prevalence 100%, and the monogenean 70% 
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Appendix.13 Eel morphometric and associated helminth infection data for the River Crouch; England 

Eel 
code 

Body 
length 

(cm) 

Body 
weight  

(g) 

Condition 
factor 

Gill 
monogenean 

* 

Swim 
bladder 

nematode 

# 

Gut nematode 
 

Acanthocephalan Tape worm Numbers 
of 

helminth 

classes 

Number of 
helminth 

    Total number Total 
number 

Total 
number 

S. 
inermis 

small 
nematode 

Total 
number 

P. 
laevis 

Non bulb Total 
number 

B. 
claviceps 

P. macrocephalus   

C157 33 65.8 0.18 56 7 0 0 0 15 0 15 1 0 1 4 83 

C107 32 47.0 0.14 19 7 0 0 0 2 0 2 0 0 0 3 28 

C117 28 27.5 0.13 34 1 0 0 0 2 0 2 0 0 0 3 37 

C59 32 50.1 0.15 12 10 0 0 0 5 0 5 0 0 0 3 27 

C74 50 209.8 0.17 2 0 0 0 0 53 0 53 0 0 0 2 55 

C116 29 36.4 0.15 3 0 0 0 0 1 0 1 0 0 0 2 4 

C71 47 198.2 0.19 7 2 0 0 0 12 0 12 0 0 0 3 21 

C131 39 112 0.19 2 0 0 0 0 81 0 81 0 0 0 2 83 

C40 32 43.9 0.13 5 0 0 0 0 2 0 2 0 0 0 2 7 

C48 31 44.7 0.15 1 2 0 0 0 4 0 4 0 0 0 3 7 

Total 35.3±7.

6 

83.5±6

7.6 

0.16±0.02 141 29 0 0 0 177 0 177 1 0 1 4 352 

%    100% 60% 0%   100%   10%     

 

*= P. anguillae = (5/60)    P.bini = (55/60) 

# = Ab Aziz (2012) 

Acanthocephalans were the dominant helminths 48.6% (171/352), prevalence 100%, and the monogenean 100% 
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Appendix 14 Eel morphometric and associated helminth infection data for the River Leven; England 

Eel code Body 

length 

(cm) 

Body 

weight 

(g) 

Condition 

factor 

Gill 

monogenean* 

Swim 

bladder 

nematode 

Gut nematode 

 

Acanthocephalan tape worm Numbers of 

helminth 

classes 

Number of 

helminth 

    Total number Total 

number 

Total 

number 

S. 

inermis 

small 

nematode 

Total 

number 

P. laevis Non bulb Total 

number 

B. claviceps P. macrocephalus   

RL1 21 13.9 0.16 5 4 8 0 8 0 0 0 0 0 0 3 17 

RL2 52 187.0 0.13 125 9 1 1 0 0 0 0 0 0 0 3 135 

RL3 27 35.8 0.18 51 7 16 16 0 1 1 0 0 0 0 4 75 

RL4 22.5 21.3 0.19 0 0 2 2 0 0 0 0 0 0 0 1 2 

RL5 34 55.9 0.14 10 0 0 0 0 3 0 3 0 0 0 2 13 

RL6 35 71.3 0.17 2 1 3 0 3 0 0 0 0 0 0 3 6 

RL7 27 26.3 0.13 0 7 0 0 0 0 0 0 0 0 0 1 7 

RL8 29.5 30.5 0.11 5 0 3 3 0 0 0 0 0 0 0 2 8 

RL9 30 38.1 0.14 1 1 1 0 1 0 0 0 0 0 0 3 3 

RL10 26 22.3 0.13 33 5 1 0 1 0 0 0 0 0 0 3 39 

Total 35.4±8.

8 

50.2±5

1.0 

0.15±03 232 34 35 22 13 4 1 3 0 0 0 5 305 

%    80% 70% 80%   30%   0%     

 

* = P. anguillae = 44.2% (19/43) P.bini 55.8% (24/43) 

Monogeneans were the dominant helminths 76.1% (232/305), prevalence 80%, and the gut nematodes 80% 
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Table 5.1 Summary of the primary helminth infection data and mean host morphometric parameters. Ten eels were examined from each site 

from England and Wales. 

 

Eel Catchment Site 

Code  

ML(cm) 

(±sd) 

MW(g) 

(±sd) 

MK  

(±sd) 

Number of eel 

without helminth 

infection 

Number of eel 

infected with  

helminths 

Number of 

pseudodactylids   

Number of   

A. crassus 

Number of GI 

nematodes 

Number of 

tapeworms 

Number of  

acanthocephalans 

Crouch: England; C 35.4±8.8 50.2±51.0 0.15±03 0 10 141 29 0 1 177 

Leven: England; RL 30.4±8.3 50.3±48.4 0.15±0.02 0 10 232 34 35 0 4 

Crane: England; CN 75.7±6.1 810.7±241.1 0.19±0.03 0 10 74 15 26 6 208 

Hether Burn: England; HB 21.4±3.6 13.0±5.6 0.13±0.04 5 5 33 0 16 2 0 

Petteril: England; RP 29.4±8.4 58.4±39.6 0.18±0.06 1 9 3 0 75 3 4 

Bela: England; B 29.8±10.6 43.6±59.5 0.14±0.05 3 7 5 0 40 1 4 

Gowy: England; RG 34.1±4.7 54.9±17.5 0.13±0.02 4 6 0 16 5 1 4 

Mawddach-eden: Wales; M 26.1±10.2 38.4±48.1 0.14±0.01 8 2 0 0 10 0 0 

Clwyd-Meirchion: Wales; 

MC 

23.9± 8.7 28.6±31.2265 0.16±0.05 2 8 0 0 14 3 0 

Dee-Eitha: Wales; D 21.7±7.5 19.8±22.1 0.11±0.04 6 4 0 0 29 0 0 

Cadoxton: Wales; CD 24.9±4.3 22.7±16.1 0.14±0.07 2 8 60 18 5 0 0 

Rhymney: Wales; R 28.8±3.1 40.5±16.4 0.16±0.04 0 10 53 21 0 0 50 

Clwyd-Elwy: Wales; CE 24.9±8.4 29.4±26.1 0.14±0.02 4 6 17 0 7 1 0 

Taff: Wales; TB 23.8±2.9 22.4±9.4 0.16±0.02 4 6 1 2 1 0 18 

Prevalence    27.9% (39/140) 72.1% (101/140) 35.7% (50/140) 25% (35/140) 33.6% (47/140) 9.3% (13/140) 30% (42/140) 

Total helminth    39 101 619 135 263 18 469 
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