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UNIVERSITY OF SALFORD

ABSTRACT

COLLEGE OF SCIENCE AND TECHNOLOGY

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Doctor of Philosophy

ACTIVE NOISE CONTROL IN A LUXURY VEHICLE

by Nikos Zafeiropoulos

Structure-borne road noise is a critical sound attribute for the overall Noise Vi-

bration & Harshness (NVH) performance of modern luxury vehicles. Current

passive NVH solutions require structural design modifications, in order to con-

trol low frequency sources that cause structure-borne noise. Active Road Noise

Control (ARNC) has been demonstrated to several commercial vehicles as an

alternative solution that does not compromise other performances of the car,

especially vehicle dynamics. Automotive manufacturers of luxury vehicles, such

as Bentley Motors Limited, are expected to build cars that meet high standards

of driving performance and refinement levels. This thesis focuses on the de-

velopment of an active sound technology for road noise with the use of NVH

analysis methods, which are a common practice in the vehicle development pro-

cess. Modern NVH methods of road noise analysis reveal the locations of the

most predominant structure-borne noise sources. There are significant advan-

tages in using NVH analysis techniques for the design of ARNC systems, since

they offer integrated solutions to the automotive industry in terms of time and

cost reduction. A method for defining the accelerometer sensors number and

their locations on the axles has been developed as an alternative to existing

methodologies, which are applied from the early stages of the NVH develop-

ment. A physical road noise simulator was developed for replicating road noise.

Four random uncorrelated forces were applied on the tyres for analysing and

evaluating ARNC systems. In terms of feedforward control, a computer model

of a causal adaptive feedforward system was used to investigate the relationship

between the locations, DoF and the performance of the control system.
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An adaptive system was installed on a Bentley vehicle for conducting the ARNC

measurements. The adaptive ARNC system was tested on the physical road noise

simulator. The vehicle’s tyres were excited by broadband random forces and

maximum 10 dB(A) reduction at the centre frequency of the tyre cavity resonance

was achieved. When the control was focused on the road rumble, then overall

3 dB(A) up to 500 Hz were removed from the noise levels measured at the rear

headrests. In terms of road noise testing, a portable multichannel controller was

integrated with the vehicle electrical system for road noise data acquisition and

real-time ARNC. Finally, the performance of the portable controller is predicted

based on data acquired by the same multichannel system and therefore highlight

the potential use of this system as an ARNC controller.
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Chapter 1

Introduction

1.1 Noise vibration and harshness attributes

Modern vehicles are required to achieve specific targets in terms of acoustic per-

formance, in order to become more attractive products, by improving sound

quality and vehicle refinement. The sound character has become a crucial ele-

ment of the development process of the vehicle. Several mechanical parts of the

vehicle are designed and tuned in order to meet the targeted Noise Vibration &

Harsheness (NVH) specifications. Apart from the sound character, vehicle re-

finement, which includes the noise and vibration levels, is also key to the overall

NVH performance. The levels of interior noise depend on various mechanical

sources that act on the vehicle structure and couple with the sound field in the

compartment. Interior noise can also be generated due to the poor sound in-

sulation of the cabin. All the previously mentioned sound and vibration issues

belong to the interior NVH area and they are categorised in table (1.1) according

to their frequency range and their sources.

NVH term Frequency range [Hz] Source

Powertrain noise 20 Hz - 3 kHz engine, driveline, exhaust

Road noise (structure-borne) 20 Hz - 800 Hz tyre cavity noise, structure

Road noise (airborne) 20 Hz - 2.5 kHz tyre noise, air leaks,

Wind noise 50 Hz - 5kHz exterior design, styling

Table 1.1: Interior NVH attributes.

The overall noise spectra in the vehicle’s compartment can be decomposed

to the three major sound attributes: powertrain, road and wind noise (figure

1
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1.1). Powertrain noise covers the areas of the vehicle’s engine, transmission and

exhaust systems. The mechanical noises from the powertain sources vary in

a broad frequency range as a function the engine speed and throttle loading

conditions. In particular, engine noise is of harmonic nature since it is defined

as the sum of the fundamental frequency plus its harmonics. Air conditioning

systems and other ancillaries impact also to the total noise levels depending on

the driving condition and their settings. In a luxury vehicle these disturbances

are kept at a very low noise level as they can strongly influence the customer’s

perception in terms of the overall sound quality of the vehicle.

Figure 1.1: Interior NVH sound attributes. Taken from [Williams (2014)].

The primary noise sources such as the engine and the vehicle’s structure are

mostly concerntrated at low frequencies, typically below 500 Hz. In many modern

vehicles dominant cavity booms (single frequency) can be created from the engine

calibration settings or from the transmission systems, which can excite higher

order acoustic modes of the cabin. In the case of road noise is caused by the

tyre-road surface interaction that dominates mostly at low-mid frequencies. On

the other hand, wind noise is broadband and it starts to be strongly perceivable

at speeds above 100 km/h as it dominates the interior sound pressure levels.

1.2 Interior road noise

Tyre/road noise can be characterised as a band-limited random signal that is

strongly influenced by the road surface. Road noise is generated by the interac-

tion between the tyres and the road surface. The road roughness increases the

applied forces on the tire contract patch and creates a large global displacements

at low frequencies. The contact patch delivers strong vibration levels into the

wheel hub. As a result, vibrations propagate through weak structural parts of

the vehicle into the cabin, where the received floor panel vibrations couple with

the sound field of the cabin.
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At high speeds the cavities at the tread patent of the rolling tyres are excited

by their interaction with the road surface and road noise is radiated that can be

transmitted through airborne paths into the vehicle compartment. Figure 1.2

presents the two transmission mechanisms, airborne and structureborne of road

noise inside the vehicle.

Figure 1.2: Structure-borne and airborne paths into the vehicle’s cabin.
Taken from [Cerrato (2009)].

Advanced NVH methods are used to analyse the road noise data and iden-

tify the various noise transmission paths that contribute to the interior road

noise. Figure 1.3 illustrates an example of the airborne and structure-borne

contributions from the front and rear part of the vehicle with data that were

acquired with microphones close to the four wheels and accelerometers mounted

at the front and rear axle.The structure-borne contributions of the front part are

very close to the total noise level at driver’s headrests 100-300 Hz, whereas at

frequencies above 700 Hz airborne road noise starts to dominate.

Figure 1.3: Structure-borne (SB) and airborne (AB) contributions to the
interior noise spectrum at the driver’s headrest at 90 km/h. −: Total noise
level, −: Structure-borne road noise contribution, −: Airborne road noise

contribution. Taken from [Williams (2014)].
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The airborne paths in the vehicle body can be identified with advanced

NVH measurement technique in order to apply sound insulation treatment. In

the case of structure-borne road noise the transmission emerges from the tire

through the suspension and body structure into the cabin. As a consequently,

acoustic treatments are not so effective on this type of noise. Detailed analysis of

the vehicle structural-acoustic interaction is required at a simulation and mea-

surement level before applying any NVH solutions on the vehicle. Identification

and ranking of the structural sources can be performed with the use of TPA

(Transfer Path Analysis) [Plunt (1999)], [Elliott et al. (2013), Yoo and Chang

(2005)]. The main assumption of TPA is that the vehicle is modelled as a Mul-

tiple Input Multiple Output (MIMO) vibro-acoustic system with several inputs

are acting on the vehicle and cause interior road noise as output. TPA highlights

also the most sensitive structural or airborne paths for various road input condi-

tions, this type of analysis is referred as contribution analysis. Multiple coherence

analysis can be alternatively used to find the total road noise contributions and

also the incoherent road noise contributors as figure 1.4 demonstrates [Williams

(2014)]. Additionally, the incoherent noise components that are not referenced

Figure 1.4: Interior road noise at 90 km/h. −: Measured interior road noise
at the driver’s headrest. −: Sum of airborne and structure-borne road noise

contributions. −: Sum of other unreferenced noise contributions.

with accelerometers and microphones at the chassis and around the wheels can

be separated with the use of multiple coherence method [Williams (2014)]. These

components are generated from other noise sources such as wind noise that are

incoherent with the road noise components. Wind noise some effects the interior

noise spectrum at very low frequencies and also above 1 kHz [Cerrato (2009)].

Very low frequency interior noise can be a wind noise component that is referred

as buffeting noise and it is caused by a small leakage path around the door or

windows. If we compare the summation of the road noise contributions in figure

1.4 with the total sum of all the contributors (road and wind) of figure 1.5, then

it can be noticed that the later accurately synthesises the measured spectrum

at the driver’s headrest. This indicates that there several noise sources acting

at the same time, but still the main dominant noise component is related to
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structural vibrations of front axles (1.3). Therefore at speeds from 50 km/h up

to 100 km/h road noise reduction is important as it can improve significantly the

refinement of the vehicle, since noise resonances can become annoying at these

speeds and degrade the subjective NVH performance of a luxury vehicle.

Figure 1.5: Interior road noise at 90 km/h. −: Measured interior road noise
at the driver’s headrest. −: Sum of airborne, structure-borne and other noise

contributions.

1.3 Passive control of structure-borne road noise

The application of passive NVH control techniques on structure-borne road noise

is not a trivial task, since design changes on the vehicle’s structure are difficult

to apply and most of the time not cost effective . Usually structure-borne road

noise is treated by tuning the global and local dynamic stiffnesses of the vehi-

cle structure during the design stage of the body structure [Kim et al. (2014)],

[Duncan et al. (2011)]. Modern vehicle design techniques focus on the optimisa-

tion of the structural behaviour of the most sensitive structural parts in terms

of road noise. The performance of the passive damping that is applied on the

floor panel is estimated with numerical methods [Subramanian et al. (2003)],

[Mohanty et al. (2000)]. Other local vibrations that are related to road noise

cam be controlled by tuned mass dampers [Aubert and Howle (2007)] that block

the road noise forces on sensitive vibro-acoustic paths. At the same time ad-

vanced NVH measurement techniques such as in-situ TPA [Elliott et al. (2013)]

methods can identify these weaknesses within the structure and can allow to

perform structural changes on the dynamic properties of chassis components in

order to improve the levels of refinement in terms of road noise [Dohm et al.

(2013)]. In practice though all the design changes and NVH control techniques

treat structure-borne noise up to certain extent, typically 3- 5 dB(A) at frequen-

cies below 300 Hz [Yoo and Chang (2005)]. As previously mentioned they can

start compromising other vehicle performances. For example, if the suspension
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mass and compliance need to be increased for reducing the road noise levels,

then the steering performance can be potentially effected. Another example of

the influence of road noise NVH solutions on the vehicle’s performance metrics

is the mass increase usually below 150 Hz for the control of global vibration lev-

els of the whole vehicle structure. This type of solution can have serious effect

on the fuel consumption and thus on CO2 emissions. As a result, active noise

control technologies have the potential to offer useful NVH solutions in cases,

in which the standardised NVH solutions begin to compromise other important

characteristics of the vehicle.

1.4 Characteristics of structure-borne road noise

Structure-borne road noise is the outcome of different mechanisms that are ex-

cited from high levels of road-force inputs. Road noise is mostly perceivable

while drving over rough asphalts, where the friction between the tire and the

asphalt is high. Another issue is that road-forces are able to provide enough

energy to the vehicle structure that can excite global and local vibrations that

couple with the acoustic field of the cabin. The perceived sound can be analysed

in terms of the various sources that contribute to the sound pressure response in

the cabin. Previous studies have characterised road noise in terms of subjective

perception [Gauterin (1994b)]. The outcome of [Gauterin (1994b)] has resulted

in a metric that ranks the NVH performance of the vehicle and at the same time

charecterises a vehicle in terms of the road noise perception [Gauterin (1994a)].

Similar assessments are currently used in the automotive industry for the sub-

jective evaluation of road noise and vary between manufacturers according to

the sound character of the vehicle. In table 1.2 the frequency bands of each road

noise component with their corresponding structural source are presented.

Name Frequency range [Hz] Structural source

Boom/drum 10-70 Global vibrations

Rumble 70-170 Body, axle vibrations

Tyre Cavity 180-230 Tyre resonances

Midfrequency 230-500 Local body vibrations

Table 1.2: Structureborne road noise frequency bands and their structural
source.



Chapter 1 Introduction 7

1.5 Variability of structureborne road noise

An important parameter of structure-borne road noise is that it has shown a va-

riety of different levels and frequencies in the same vehicle model due to compo-

nent tolerances and vehicle assembly. Kompella [Kompella and Bernhard (1993)]

found that the manufacturing variability strongly affects the low frequency vibro-

acoustic behaviour of the vehicle. As a consequence, vehicles are highly sensitive

to changes or small variations in the assembly of the vehicle. The following figure

presents the same vibro-acoustic system that is measured across 100 vehicles of

the same model, typically sharp resonances in this frequency response function

result to audible road noise components as we will discuss later in chapter 2.

Figure 1.6: Variability in a vibro-acoustic path at measured at the driver’s
headrest for 100 vehicles. Taken from [Kompella and Bernhard (1993)].

Modern vehicle numerical modelling techniques [Durand et al. (2005)] take

into account the statistical variations in the vibro-acoustic paths with the use

of stochastic models as suggested by [Rustighi et al. (2008)] and [Durand et al.

(2008)]. As a result these modern prediction tools can provide a guidance to

the NVH design at the early stage of the vehicle. However, still accurate CAE

methods that can correlate well with measured road noise data are not so far

available at least in the literature.

It is also worth highlighting that passive NVH control techniques are not

able to control changes in the road noise spectrum or any other uncertainties

in the vibro-acoustic behavior of the vehicle over time. On the other hand

active control techniques can potentially compensate for all these changes and

uncertainties, since the adaptive algorithms are able to adapt to variations in the

vehicle’s structure-borne NVH performance. Previous work by Lotus [Mackay

and Kenchington (2004)] and from other researchers in the field [Park et al.

(2004)] applied the active road noise control/cancellation (ARNC) technology in

a number of vehicles by using the use of the same hardware control platform. This
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fact demonstrates the improvements that adaptive noise control solutions can

offer to a wide range of vehicles in terms of noise reduction without constraining

the mechanical design of the vehicle. The cost depends on the volumes and the

accelerometer sensor pricing as modern DSP are already integrated in the audio

systems. In terms of reliability of the controller this depends on the hardware

platform, as currently adaptive ANC system are already implemented in several

vehicle for powertrain noise reduction. The only thing that needs to be addressed

is the fault detection of the accelerometer sensor that provides the input signals

of the controller.

1.6 Active control of structure-borne road noise

During the last 30 years, several research groups as well automotive manufactur-

ers have investigated whether active noise control (ANC) can offer an alternative

to existing passive noise control techniques. This is mainly due to the fact that

ANC does not require any changes in the structural design of the vehicle only

access to the loudspeaker system and some sensors at specific locations of the

vehicle. In addition to this active systems are very effective in the modal area

of small cavity similar to the one of an automotive vehicle. In the early 90s,

Nissan Motors managed to integrate noise cancellation systems for engine noise

reduction into a production vehicle [Hasegawa et al. (1992)]. In Europe, Lo-

tus Engineering has demonstrated ARNC and engine order control/cancellation

(EOC) in a wide range of vehicles for different automotive manufacturers, but

none of these vehicles have yet been released in the market with ANC. Up until

now, ARNC technology has not been applied to any production vehicle, mainly

due to cost requirements. However, recent advances in digital signal processoring

DSP processors and sensor technologies offer ANC systems the possibility to be

implemented in vehicles with a controllable cost. Besides the cost, there are

also technical challenges that still need to be addressed. In particular, the high

number of vibration sensors required for feedforward ARNC systems is another

obstacle for the implementation and integration of the controller with the rest

of the vehicle electronics.
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1.7 The evolution of active road noise control

1.7.1 Principles of active noise control

The concept of active noise control is based on the destructive interference of

two sound waves: the first is the primary noise field whereas the second is gen-

erated by the loudspeaker system in the cavity. Active noise control or active

noise cancellation is a noise control technique that is mostly effective at low fre-

quencies. A loudspeaker is used for emitting the canceling sound, also referred as

”antinoise”, whereas a microphone sensor measures the sound pressure at the lo-

cation where the noise is to be minimised. An electronic controller that contains

the ANC filters generates the appropriate control signals that drive the loud-

speaker units. This technique has a limited frequency range mainly due to the

latency in the control loop and also the sound field becoming diffused at higher

frequencies. Active noise control was first introduced as a concept by Paul Lueg

in [Lueg (1936)], who presented a system that controlled sinusoidal sounds. Fig-

ure (1.7) present the configuration of Lueg’s apparatus, where a microphone for

measuring the noise source, an amplifier and a loudspeaker are usedto generate

the secondary sound field.

Figure 1.7: Drawings of Paul Lueg’s apparatus.
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An array of sensors and loudspeakers is used for reducing either to total

acoustic potential energy in the sound field, global control meaning the average

mean-square pressure across the space of an enclosure or only at specific locations

in the field, local control [Nelson and Elliott (1991)]. The same principles of

control can be also used for vibrational system in order to reduce the vibration

levels across a structure, this type of technology is referred as active vibration

control. The type of control depends on the number of microphone sensors that

are measuring the sound pressure in the enclosed cavity and also the number of

modes that contribute to the sound field at low frequencies. If the system is based

on a large number of microphones, then a good approximation of the acoustic

energy in the cavity at low frequencies can be achieved. As a consequence, global

control of the sound is generally possible if there is low modal density in the cavity

at low frequencies and the control sources couple directly with acoustic modes.

For vehicles it has been demonstrated that the acoustic modes of the cabin can

be partially controlled up to 150 Hz and above 200 Hz only zones of quiet are

resulted by the presence of the canceling sound field.

One of the conditions for effectively reducing the noise is that the sound field

at the loudspeaker position must be coherent with the primary noise source. This

implies that the loudspeakers need to be placed at a location in the sound field

where they can couple well with the primary noise disturbance. In addition to

this the sensors that are measuring the variations of the noise source need to be

placed at a point in the sound field or in the structure. In the case of vibro-

acoustic noise transmission, where they can provide a signal that is coherent

enough with the noise in the cavity.

The selection of the reference sensors for structure-borne road reduction is a

difficult task, since various structural sources act on the vehicle. The coherence

between the measured vibrational signals can be low due to the cross-coupling

of the sources. As a result, the coherence between the accelerometers and the

microphones in the cabin might be poor. To avoid that, a set of accelerometer

sensors is used to tackle this problem, in order to capture all the structural road

noise sources that contribute to the sound pressure in the compartment. The

discussion regarding the coherence issue will be expanded in section (1.7.4) and

in chapter 4.

1.7.2 Introduction to feedback active road noise controllers

Noise reduction in cars through active controllers has been an active research

area since 1984 [Oswald (1984)], when the first control system to cancel engine
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order harmonics was presented. In this thesis we mainly focus on active con-

trollers of road noise, a challenging research topic in terms of vibro-acoustics,

signal processing and control systems engineering. To that purpose, this sec-

tion provides a detailed account of basic principal control strategies, which are

used for the creation of the appropriate secondary sound field through the audio

system of the vehicle. Figures 1.8 and 1.9 present a feedback control system.

Figure 1.8: Block diagram of a single channel feedback ARNC system. E(ω):
error input signal typically from a sensor at the cancelling point. H(ω): control
filter. Y (ω): control signal that drive the transducer. D(ω): primary noise

disturbance. D̂(ω): estimated noise from the controller.

Multichannel feedback ARNC is recently developed and published by [Cheer

and Elliott (2013)]. In this section we only introduce single channel feedback

ARNC systems for the sake of simplicity. In figure 1.8, the signal D(jω) is the

main road noise disturbance and the signal D̂(jω) is the ”antinoise” generated

by the audio system. The superposition of D(jω) with D̂(jω) results to E(jω)

that is the measured error signal by a microphone inside the vehicle’s cabin. The

output Y (jω) of the controller H(jω) can be expressed as

Y (jω) = −H(jω)E(jω), (1.1)

whereas the noise canceling sound D̂(jω) that reaches the cancellation point

through the electro-acoustic path between the audio system and the microphone

C(jω) is equal to

D̂(jω) = C(jω)Y (jω). (1.2)

The error signal that is measured by the microphone can be calculated as

E(jω) = D(jω)− C(jω)H(jω)E(jω). (1.3)

The attenuation at the microphone’s location depends on the control filter design

H(jω). The tuning of the control filter is very important for feedback control
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since the poles of the filter must be negative real valued numbers to avoid insta-

bilities [Nelson and Elliott (1991)]. A stronger stability condition is the Nyquist

criterion as it takes into account the FRF of the acoustic plant C(jω). According

to Nyquist, the open loop FRF C(jω)H(jω) must not contain the point (-1,0)

in the complex plane [Elliott (2000a)]. The following function that is referred as

sensitivity function defines the objective of the control filter design

E(jω)

D(jω)
=

1

1 + C(jω)H(jω)
= S(jω). (1.4)

Advanced feedback control design techniques such as H∞ control and IMC (In-

ternal Model Control) are used for optimising the sensitivity function S(jω)

[Adachi and Sano (1996), Adachi et al. (2001), Elliott (2000a)]. H∞ control is

a mathematical method for design stable optimal controllers and IMC is a feed-

back control strategy for generating a virtual reference signal instead of using an

actual reference signal directly from the noise source. Sano [Sano et al. (2001)]

applied feedback ARNC on a Honda vehicle based on H∞ design. The system

controlled the first acoustic mode of the cabin at 40 Hz at the driver’s seat. The

setup of the Honda feedback system is presented in figure 1.9, where the ARNC

setup on a Honda Accord is presented.

Figure 1.9: Feedback ARNC system of Honda Motors. Taken from [Sano
et al. (2001)].

Sano’s [Sano et al. (2000)] feedback controller caused enhancements at the

rear seats as the system was only focusing on the driver’s headrest without taking

into account the sound pressure levels at the rear seats. As a result, he introduced

an extra feedforward control system, in order to equalise the sound pressure levels

at back seats. This side effect of the controller may be expected in sound field

control, since suppressing the sound at one location in the cabin’s sound field

without observing the other locations could potentially cause enhancements at

other areas in the cabin. The phenomenon of reducing the noise levels at the

frequencies where the controller is phase leading the physical plant and increasing

the noise levels outside of the frequencies, where it is phase is lagging the plant

is referred as the ”waterbed” effect [Sano et al. (2001)].



Chapter 1 Introduction 13

Apart from the stability and enhancement issues, the mixing between the

audio and control signals of the loudspeakers needs to be carefully performed.

Another significant feature of feedback systems is that the limitation of the dis-

tance between the loudspeaker and microphone must be kept as small as possible,

since the acoustic propagation delay can significantly limit the performance of a

feedback system [Elliott and Sutton (1996)]. For example, [Adachi et al. (2001)]

proved experimentally (under free field conditions) that 0.1 m distance between

the actuator and the sensor is necessary in order to achieve good control at 150

Hz.

In terms of the integration with the audio system, the microphone signal that

is fed to the feedback controller needs to be separated from the audio signals that

drive the loudspeakers before the control and audio signals. This way the road

noise disturbance and the audio spectra are separated, since both are embedded

in the measured microphone signal of the cabin. Otherwise if the microphone

signals are directly fed to the controller, then the control might have an effect the

performance of the audio system. Sano presented a solution for the integration

of feedback controllers with the vehicle’s audio system implemented in Honda

vehicles [Sano et al. (2000)].

1.7.3 Review of feedback active road noise controllers

The first study of road noise cancellers is dated back in 1989, when a digital

feedback controller was designed for reducing impact road noise [Costin and

Elzinga (1989)]. The system was based on a headphone system mounted at the

headrest of the driver. The feedback controller was designed with a proportional

integral (PI) control theory that achieved 5-10 dB reduction between 20-60 Hz.

Also a version of the controller with genelarised minimum variance theory was

implemented that managed to cancel up to 20 dB in the same low frequency

range. Another very interesting study in terms of control theory is found in

[Brown (1995)], where a state space was used for developing a linear quadratic

gaussian (LQG) optimal control for road noise cancellation with a single micro-

phone mearusing the sound field in the cabin. Poor performance was reported

in this study and the need for multiple input multiple output (MIMO) feedback

design techniques was highlighted. As previously mentioned single channel feed-

back controller for ARNC with fixed filter coefficients has only been developed

by Honda Motors in a production line vehicle [Sano et al. (2000), Sano et al.

(2001)]. Yet, its effectiveness was limited to a single frequency of a road noise

drum frequency at around 40 Hz. The main reason for the limited performance

of feedback road noise controllers is the delay that is introduced by the physical
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path between the loudspeaker and the microphone in the cabin that feeds back

the sound signal to the controller.

A simulation study for road noise cancellation [Elliott and Sutton (1996)]

showed that feedback systems are extremely sensitive to the acoustic plant delays,

especially as the distance between the loudspeaker and the microphone increases.

Adachi presented a more detailed design and analysis of feedback ANC [Adachi

et al. (2001), Adachi (2003)]. The effect of the latency that is introduced by

the acoustic plant is demonstrated under an ANC experiment with simulated

road noise through loudspeakers in free field and varying distances between the

control source and the cancellation position in the field.

In Elliott’s study was suggested that the maximum distance should not be

more than 0.3 m [Elliott and Sutton (1996)], whereas Adachi proved within an

experiment that 0.1 m is required in order to attenuate 10 dB(A) at 150 Hz. The

successful demonstration of Adachi was also based on the use of an extremely low

order system for modeling the acoustic plant of the free field thus a simple control

filter. In practice however, as the distance from the loudspeaker to microphone

increases in the vehicle’s cabin the complexity of the acoustic system between the

transducer and the sensor increases. As a consequence, a high order control filter

that compensates for the phase changes in the response of the physical system is

usually required [Adachi (2003)]. As a solution to this problem, Cheer suggested

a method that weights the control filtering according to the spatial distribution

of the acoustic modes in the vehicle cabin [Cheer and Elliott (2012)]. However,

the simulation findings were not particularly successful as the phase character-

istics of the electro-acoustic path between the loudspeaker and microphone are

always limiting factors for feedback strategies. As a further improvement of the

suggested method, Cheer proposed an optimisation technique that calculates an

finite impulse response (FIR) filter matrix for a multichannel feedback ANC with

the use of operational data [Cheer and Elliott (2013)]. A comparison study based

on simulations of road noise was published recently demostrated that the MIMO

feedback controller was effective from 80 Hz to 180 Hz, but with the trade-off of

small enhancements at frequencies above the range [Cheer and Elliott (2014)].

As a continuation of Cheer’s work for multichannel feedback road noise control,

the author performed a comparison between feedforward control with reference

microphones inside the vehicle’s cabin and feedback control [Cheer and Elliott

(2015)], where good performance is obtained at the road rumble range, but above

this band it has noticed that the coherence between the microphones is poor,

due to other NVH attributes contributing to the sound field.

An interesting study in terms of hardware selection for feedback ANC sys-

tems for vehicles was presented by Howard [Howard and Leclercq (2006)]. The
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control system was based on a single channel feedback ANC implemented in a

field programmable analog array (FPAA) platform. The system was designed

to cancel a very low frequency boom at 35 Hz, which created very high sound

pressure levels in the cabin of a Holden Commodore station-wagon. Limited per-

formance was reported as there were no attempts to optimise the loudspeaker

and microphone placement.

Up until the point of writing this thesis, there have been no implementations

of broadband feedback ANC for interior road noise in vehicles for the whole

structureborne noise frequency range. Simulation results of new MIMO feedback

ARNC design techniques have shown promising results up to 200 Hz [Cheer

and Elliott (2013), Cheer and Elliott (2014)]. Recently, Honda demonstrated

an interesting feedback technique of generating narrowband reference signals

instead of using actual accelerometer sensors for removing some low frequencies

road booms [Sakamoto and Inoue (2015)]. This method allowed Honda to use the

active controller that is already integrated in their vehicles that is also capable

of engine order cancellation.

1.7.4 Introduction to feedforward active road noise controllers

Modern control engineering control systems are augmented with a reference sen-

sor that supplies a signal from the source. In the case of active road noise control

the reference sensors are accelerometers that are positioned on the vehicle struc-

ture, suspension or subframe. The feedforward topology is presented in figure

1.10.

Figure 1.10: Block diagram of a single channel feedforward ARNC system.
X(ω): reference input signals typically from a sensor at the noise source. H(ω):
control filter. Y (ω): control signal that drive the transducer. D(ω): primary

noise disturbance. D̂(ω): estimated noise from the controller.

If the reference signal from an accelerometer demoted as X(jω), then the

output Y (jω) of the control filter H(jω) can be calculated as

Y (jω) = H(jω)X(jω) (1.5)

and the error microphone signal can now be expressed as
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E(jω) = D̂(jω) + C(jω)Y (jω) (1.6)

In order to find the controller’s FRF the order of the H(jω) and C(jω) can be

changed as in figure 2.1.

Figure 1.11: Alternative block diagram of a single channel feedforward ARNC
system.

Feedforward controllers are usually developed based on adaptive algorithms,

meaning that the control filter coefficients are adjustable. Figure 2.2(a) presents

the general adaptive feedforward control strategy with the use of filtered reference

LMS algorithm, also known as FxLMS.

Figure 1.12: Block diagram of a single channel adaptive feedforward con-
troller. x(n): reference input signal typically from a sensor at the noise source.
w(n): control filter. y(n): control signal that drive the transducer. d(n): pri-

mary noise disturbance. d̂(n): estimated noise from the controller. c(n), ĉ(n):
secondary path impulse and its estimate. e(n): error signal.

In the case of adaptive feedforward ARNC the control filter coefficients are

continuously adjusted in the time domain according to the variations of the

sound pressure signal e(n), which is measured by a microphone in the cabin,

but also according to the variations of the filtered reference singal r(n). The

latter is the result of the convolution between the measured acceleration signal

x(n) and an estimate of the electro-acoustic plant ĉ(n). The famous filtered

reference LMS algorithm updates the control filter coefficients w(n) according to

the cross-correlation of e(n) and r(n) as follow

w(n+ 1) = w(n) + µe(n)r(n− i) (1.7)
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,where µ is the number between 0 and 1 that controls the speed of the converge

of the algorithm and r(n) is the so-called filtered reference, which is generated by

the convolution between the refererence signal x (n) and the impulse response of

ĉ(n) . We will discuss further and analyse of the filtered reference LMS algorithm

and its extension to a multichannel system in chapter 6.

As an introduction to multichannel feedforwad ARNC systems the typical

configuration on a vehicle is shown in figure 2.2(b). This type of ARNC does

not require any compensation for the audio signals since the controller cancels

the part of the road noise that is coherent with structural vibrations measured

by the accelerometers.

Figure 1.13: Feedforward ARNC system of Lotus-Harman. Taken from [Har-
man (2014b)].

In terms of hardware implementation, an ARNC controller consists of a

DSP processor and an audio amplifier that drives the loudspeaker units. Figure

2.2(b) the accelerometer locations can be noticed around various suspension and

body points, whereas the acoustic sensors are mounted on the roof lining. The

location of the accelerometers significantly varies significantly according to the

vehicle suspension setup and a structural design. Therefore an investigation is

necessary for the defining number and the locations of the vibrational sensors.

This depends on the number of structural road noise sources that act on the

vehicle structure and are received in the cabin as road noise.

1.7.5 Review of feedforward active road noise controllers

Active control of road noise is a technology that was first successfully demon-

strated on a small hatchback vehicle in the early ’90s by Institute of Sound &

Vibration (ISVR) and Lotus Engineering. In their study presented a multichan-

nel adaptive controller based on an adaptive feedforward control strategy [Sutton

et al. (1994)]. Apart from addressing the derivation of the adaptive algorithm,

they pointed out the issue of the accelerometer placement. The authors per-

formed time recordings on the road and then calculated the cross-power spectral
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density (CPSD) matrix in order to identify the most important structural reso-

nances that contribute to the road noise spectra. The also used principal compo-

nent analysis (PCA) for calculating the virtual uncorrelated power spectra of the

acceleration signals. The authors noticed two independent components in PCA.

This fact implied two dominant structural sources acting in the structure of the

vehicle. The Lotus-ISVR team used four acceleration signals for the implemen-

tation of the feedforward controller on a Citroen AX, since the combination of

the accelerometers provided 7 dB(A) active reduction in their predictions. Two

microphones were used at front headrests at the outer ear side in order to control

the noise at the front headrests for reducing the noise in the front seats.

The latency in the controller feedforward path is also discussed, since the

control filters need to be causal, meaning that the physical delay of the noise path

from the structural source to microphone in the cabin needs to be greater than the

sum of the electronic controller’s latency with the acoustic plant delay from the

loudspeaker to same microphone location in the sound field. The physical delay

can be found from measured data and in particular from the cross-correlation

between the acceleration signal and the receiving microphone in the vehicle’s

cavity. As a consequence, the distance between the vibrational and acoustic

sensors controls the time required for the DSP hardware and analog electronics

to generate the control signals that drive the loudspeakers in the interior of the

car.

The ISVR-Lotus team installed and tested the multichannel controller in the

Citroen AX on the road. Their system achieved 7dB(A) active noise reduction

on average at the road noise bands, which is in good agreement with the authors

predictions. Stother developed an improved version of the system in terms of

computational load with the time domain multireference LMS requiring a high

number of convolutions during each sample period, in order to calculate the fil-

tered reference signals [Stothers et al. (1995)]. The proposed controller performs

the adaptation stage in the frequency domain with the use of FFTs. The algo-

rithm calculates the output of the controller in the time domain with the use

of time domain convolution between the time series of the reference acceleration

signals and the updated filter coefficients. In this way the computational require-

ments are significantly reduced, as blocks of sampled data update the algorithm.

Instead in the standard multichannel filtered reference LMS algorithm [Elliott

(1998)] that was applied by [Sutton et al. (1994)] the adaptation needs to be

performed for each sample time. As a consequence, the sample based algorithm

requires a high number of MMACS (Million Multiply Accumulate Cycles per

Second). FFT based calculations allowed Lotus to develop an ANC that reduces

the number of convolutions that are necessary for the generation of the filtered

reference acceleration signals. Stothers used a constraint optimisation based on a
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simulated annealing algorithm to optimise the selection of accelerometer sensors

[Stothers et al. (1995)]. At the late ’90s Lotus demonstrated again the technol-

ogy to Mercedes. The system was integrated in a station wagon vehicle and the

locations of the acceleration sensors were found with coherence analysis of the

vehicle [Letens et al. (1999)].

A European research project that was mainly led by Katholieke Universiteit

Leuven (KUL) conducted a comparative study between two active road noise

control strategies [KUL et al. (1996), Sas and Dehandschutter (1999)]. The first

was based on vibration actuators, which were mounted at sensitive structure-

bone noise paths, whereas the second on the loudspeakers in the vehicle’s cabin.

The same algorithm was applied to both systems. The two control strategies were

tested experimentally with the car mounted on four shakers that applied random

uncorrelated forces. The researchers from KUL also explored the causality of the

real-time controller, as they found that locations close to the vehicle’s cabin did

not allow enough time for the algorithm to converge [Sas and Dehandschutter

(1999)]. The control system that was based on loudspeaker actuators performed

better than the vibration control system as the required forces levels were close

to the linearity limits of the inertia actuators.

As a continuation of the project this group of KUL developed a method

for reducing the number of accelerometers in [Dehandschutter and Sas (1998)]

based on Principal Component Analysis (PCA). The method was formulated in

the time domain in order to derive a transformation filter matrix that can de-

compose the acceleration reference signals and increase the coherence between

the vibrational and acoustic sensors. The time domain singular value decom-

position (SVD) technique of the auto, cross-correlation matrix of the reference

signals showed a dramatic reduction of the number of accelerometers without any

degradation of the active noise reduction in the vehicles. The decomposition of

the correlation matrix was extended to a recursive algorithm that is updated by

multiplying with a Givens-like rotation matrix [Dehandschutter and Sas (1998)].

The author highlight that the adaptation of this covariance matrix of the refer-

ence acceleration signals under real-time conditions requires extremely high com-

putations and only simulations were demonstrated. Therefore it is in question

if such a complex algorithm is worth implementing as its real-time performance

is unknown. Similar decomposition techniques techniques for multichannel feed-

forward active noise control have been also proposed by Elliott. A set of FIR

filters are found from SVD methods and are used in the algorithm that help to

decompose the references before they are fed into the adaptive controller, thus

this type of algorithms are referred as preconditioned LMS algorithms [Elliott

and Cook (2000), Elliott (2000b), Bai and Elliott (2004)].
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A team of researchers from Centre of Noise and Vibration Control (NOVIC)

in the Korean Advanced Institute of Science and Technology (KAIST) developed

a multichannel ARNC system and applied their system on Hyundai Sonata [Kim

et al. (1996)]. In their study a modified version of the filtered reference LMS was

evaluated that converges faster than the standard algorithm. Four accelerometers

were placed at the two front wheels and the active road noise reduction was

limited. The authors presented a further improvement of the algorithm with

the same sensor configuration on the Hyundai vehicle in [Oh et al. (2002)]. The

proposed adaptive algorithm achieved better cancellation at a specific road noise

band that was centered at 250 Hz. The key of the successful demonstration of

this ARNC system was that it could focus the control effort at specific frequencies

bands of road noise. In particular stable bandpass IIR filters may resolve specific

road noise bands. The control focuses on certain frequency areas of road noise

and also the convergence speed of the algorithm can be enhanced as the signal

is band-limited. [Oh and Park (2000)] presented the full formulation of adaptive

algorithm with IIR base filters.

Virginia Tech developed a broadband multichannel controller for active road

noise cancellation up to 400 Hz [Couche (1999)]. The system was applied on a

Ford Explorer and high levels of noise reduction were obtained for both ARNC

and EOC at the dyno. Still, when the ARNC system was tested on the road, it

achieved less reduction than on the dyno. This highlights the fact that the road

conditions are strongly effecting the optimal performance of the ARNC system.

Additionally, the Virginia Tech team developed a novel piezoelectric loudspeaker

system for improving the phase response of the control sources and extending

the frequency range of cancellation up to 400 Hz. These loudspeakers extended

the ANC performance in the range of 200 Hz-500 Hz, which is the mid to high

frequency range of structure-borne road noise.

The Virginia Tech group continued their research with Ford Motors and

managed to apply ARNC into two different vehicles [Park et al. (2004), Park

et al. (2002)]. The feedforward system was first developed for one vehicle and

then it was installed in a second vehicle without any changes in the ARNC

configuration. Additionally, the passive treatment at floor panels of the vehicles

was removed, in order to investigate the NVH improvements from the active

controller above 300 Hz, where the treatment started to be efficient. However,

no information regarding the accelerometers placement and their number was

published. For both vehicles, maximum 3.6 dB(A) active noise reduction was

obtained at the driver’s ear position, which was measurement location that was

used to observe the performance of the controller far from the cancellation points

where the maximum attenuation is achieved. It is also worth mentioning that

the system was able to achieve global active control up to 350 Hz and and local
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reduction at the cancellation points up to 475 Hz.

Lotus updated their ARNC system with more active sound technologies

[Mackay and Kenchington (2004)]. The controller was integrated with engine or-

der cancellation and engine sound synthesis. The updated Lotus controller was

installed on a luxury diesel saloon with poor road noise performance. In partic-

ular the new system reduced by 10 dB(A) of road noise at headrest positions.

Still, twelve accelerometers were necessary to capture all the road dynamics and

achieve good active noise reduction in the demonstrator.

The decomposition of the acceleration signal matrix has not only been pro-

posed for the optimisation of the sensor placement, but also for finding a set

of filters that can decorrelate the vibrational signals that are recording on the

chassis [Akiho (1995)]. In this way a reduced set of virtual reference signals

can be used that increases the multiple coherence between the accelerometer

output signals and microphone signals [Dehandschutter and Sas (1998)]. This

method can potentially reduce the number of accelerometers as long as the vir-

tual acceleration signals still contain all the spectral information of the actual

road noise sources. The spatial position of the accelerometers is more important

than making the signal uncorrelated and therefore in practice it has been sug-

gested to use three locations per wheel for ensuring high multiple coherence in

the structure-borne road noise range [Sutton et al. (1994)]. Mackay has high-

lighted the trade-off between the active road noise reduction and the number of

reference accelerometers, where significant amount of reduction can be obtained

with 6-12 accelerometers [Mackay and Kenchington (2004)]. However, there is

no technique that locates the structural road noise sources on the vehicle as the

majority of the proposed methods directly calculate the multiple coherence. It is

therefore in question if a high number of sensing is signals is always necessary, as

this depends on the complexity of each of the structure-borne road noise sources.

This complexity is related with the number of locations that are coherent with

the interior road noise and also the directions that the structure is vibrating at

these locations.

A recent study presented another feedforward Active Vibration Control for

road noise on a static shaker rig [Belgacem et al. (2012)]. The authors tried

to optimise the actuators location around the suspension. An extensive and

time consuming study on a separate test rig for the suspension is required in

order to identify the most important vibration paths from the tire to the end of

each suspension arm [Douville et al. (2006)]. Several shakers are also required

at the suspension arms in order to control difference degrees of freedom that

are important for road noise. Equivalent passive NVH refinement techniques

[Aubert and Howle (2007)] that can control structural resonances are already
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well-known in the automotive industry with tuned mass-dampers. Passive mass-

damper isolators are easier to design and integrate on the suspension compared

to miniature shakers with sensitivity output, as robust ways of mounting the

actuators on the suspension will be necessary. This also explains the fact that

all studies in active vibration control of road noise only static test rigs perform

without the wheels. Yet, this technology can become feasible. If miniature

vibration actuators can be mounted on critical road noise paths on the suspension

system and they can also deliver high force levels under driving conditions, then

active vibration control (AVC) could be potential applied in road noise reduction.

Currently the cost of the available minishakers with embedded controllers for

automotive applications is extremely high and they still do not deliver enough

force for reducing the vibration level under operational conditions across the

whole frequency range of road noise. This kind of AVC are used as powertrain

mounts for the reduction of vibration transmission into the cabin. As a result,

this thesis explores feedforward active sound systems as previous findings in the

area of active control of road noise have been rather successful in delivering high

levels of reduction with the use of in-car loudspeaker setup.

As we discussed in this section several feedforward ARNC technologies have

been demonstrated in vehicles for several automotive manufacturers, but none so

far has been integrated into a production line vehicle. The main reasons are cost

and complexity of the technology as for the time been the NVH development of

the vehicle is not integrated with ARNC and the two sectors are treated as a

separate piece of work. In reality, an ARNC development is necessary to come

at early stages of the vehicle development in order to define sensor locations

that can be latter used for a product. As once the vehicle is out from the

production line the wiring that is necessary for the accelerometer sensors is not

a simple task. In addition to that fault diagnostics of the sensors is necessary

to be integrated with vehicle’s electronics. All these limiting factors from the

accelerometer side are can be highlighted once the vehicle is understood in terms

of road noise performance, where candidate sensor locations are found. From the

research point of view up until now there is no concrete method for the selection

acceleration signals that relate to the main structural sources that cause road

noise. Therefore we will investigate a more solid way of defining the necessary

reference signals of the controller by analysing the vehicle with several NVH and

signal analysis techniques that are widely used in the automotive industry for

structure-borne road noise analysis.
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1.8 Active control of engine noise and commercially

available systems

Active sound controllers that can attenuate engine order harmonics (or amplify

them) are already installed in vehicles that are available in the market. The

technology that reduces engine order is referred as engine order cancellation

(EOC) and recently it is modified in such a way that some order that are causing

booming noise are attenuated and others are enhanced so that a specific engine

order profile can be achieved. The concept of EOC started in 1984, where an

analog controller was tuned to reduce the engine orders of a diesel motor truck

[Oswald (1984)]. The controller achieved high noise reduction up to 200 Hz, but it

was not capable to react fast to changes in the engine spectrum due to limitations

of the analogue hardware. ISVR and Lotus developed a DSP based feedforward

adaptive engine order controller in the ’80s [Elliott and Stothers (1986), Elliott

et al. (1988)]. Their system achieved maximum 10 dB noise reduction from

3000rpm-4000rpm. A filtered reference LMS algorithm with second order FIR

filters was implemented as an adaptive controller [Elliott and Nelson (1988)].

The reference signal of the feedforward system was extracted from the rotational

speed of the engine with the use of the output signal of the tachometer. In

the early 90s Nissan Motors successfully developed and integrated an adaptive

controller in a Nissan Bluebird [Kinoshita and Nakaji (1994)]. Their system did

not significantly differ from the previous proposed systems in terms of algorithm

development and system implementation. On the other hand, Honda Motors

introduced a more efficient in terms of computational requirements adaptive

controller that was implemented in a low cost microcontroller for production

vehicles [Inoue et al. (2003)].

The latest EOC system is the Active Sound Management (ASM) system by

Bose Corporation, which is integrated with audio system of Bose. The ASM of

Bose can perform cancellation or enhancement of specific engine harmonics [Bose

(2014), Ahrens and Feng (2014)]. The system has already been implemented in

American vehicles: Buick, Cadillac, GMC and Acura and in Europe in Audi

S-series vehicles. Recently, Ford Motors has already also introduced the EOC

technology in Ford Fusion Hybrid and Ford C-Max Energi. The Bose system

is actually an embedded software solution, which is integrated in audio DSP

processor by NXP semiconductors [Bose and NXP (2014)]. Another software

solution that can be downloaded to the DSP unit of the audio amplifier is pro-

vided QNX [QNX (2014)]. Although these type of systems are very attractive

for production. However they are not complete NVH solutions as they do not

take into account all the low frequency NVH attributes.
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Lotus and Harman have presented so far the most complete ANC solution for

commercial vehicles [Harman (2014a), Doyle (2014)]. Their system integrates all

the active sound technologies in one unit [Halosonic (2014)]. Recently, Müeller

Active Sound Technologies entered the market of ANC by introducing a soft-

ware tool and a hardware control unit for ANC development in vehicles [Müeller

(2014), Schirmacher (2010)]. The Müeller system is already integrated into an

Audi s-series that has strong engine booming noise due to cylinder deactivation

at some specific driving conditions [Schirmacher et al. (2012)].

To summarise most of the commercially available systems are limited to

EOC and many of them cannot be used for road noise cancellation, since systems

with high processing power and low hardware latency are required. In terms of

integration to production line vehicles the main challenge is to define a generic

low cost DSP architecture that could be used in different vehicles. However the

vehicle physics related to NVH are always important and generic methods for

design and integration of ANC are necessary.

1.9 Research objectives and contributions

This study aims to design and develop an ARNC system for a luxury vehicle

by combining advanced NVH methods that reveal the main dynamics of road

noise and adaptive DSP technologies. The main objective of the research is to

provide a control strategy that is based on the structural dynamics of the vehicle

that are related to the structure-borne road noise. As an outcome a low number

of acceleration sensors and reference signals that are necessary for feedforward

ARNC may potentially be used for feedforward ARNC systems.

Usually, the loudspeakers positions inside the vehicle’s cabin is another el-

ement that effects the performance of the ANC system. However, in this case

a technical requirement from Bentley Motors Ltd was set that the controller

should make use of the existing loudspeaker arrangement of the vehicle. This

way the controller could be applied to existing or future Bentley models without

any modifications of the loudspeaker installation.

Alternative methods for the identification of the most important structural

vibrations that are related to the interior noise are also another area of inves-

tigation. This also links to feedforward ARNC operation and performance as

they depend on the observability of the structural resonances that are coherent

with road noise resonances that are audible inside the cabin. As a consequence

this is the main driving point of this thesis to enhance the link between ARNC



Chapter 1 Introduction 25

and structure-borne NVH analysis in order to create an integrated solution for

future vehicle with enhanced structure-borne road noise performance.

The main objective of this PhD thesis are:

• The development of a method for reducing the number of acceleration

sensors for feedforward ARNC systems.

• The development and the implementation a prototype ARNC system on

a Bentley vehicle that can reduce the main road noise resonances.

1.10 Thesis structure

Chapter 1

In this first chapter a literature review of the application of Active Noise

Control in commercial vehicle is presented. The evolution of feedback and feed-

forward Active Road Noise Control is also included in the literature review. At

the last part of the review commercially available technologies of Engine Order

Control are also discussed as this technology is currently available in several

vehicles.

Chapter 2

In the second chapter the structure-borne noise field of the vehicle is de-

scribed for three different cases: tyre-road interaction, hammer excitation and

monopole source in the cabin. Before, measuring road and vibration data on

the road it was necessary to find the acoustic and structural resonances of the

vehicle, as they should highlight some of the sensitive structural inputs of the

chassis that can cause structure-borne sound. As a starting point, experimen-

tal testing with the hammer and the monopole source are presented that allow

to investigate structural and acoustical resonances separately. The operational

data that were obtained from testing on the vehicle over a coarse chip road are

shown as an introduction to the road noise field that is created under various

speeds. Experimental data obtained by hammer testing the vehicle are used

to calculate point and transfer mobilities of the suspension and subframe. The

corresponding noise transfer functions are also shown for identifying significant

paths of structure-borne noise. The investigation of monopole source measure-

ments shows the dominant standing waves of the sound field below 500 Hz and

their contribution to the sound pressure responses at the headrest locations.

Chapter 3
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In the third chapter the development of a road noise simulator is discussed

and the development of the experimental test bench is presented. The analysis

of the vehicle’s sound field is formed according to excitation that was applied at

the front or rear tyres. Hence, the contributions and the control from front and

rear axle were found and are presented in this chapter.

Chapter 4

In the fourth chapter, a methodology for identifying the location of the main

structure-borne road noise sources based on coherence functions at each transfer

path is developed. Multiple coherence analysis is usually applied to road noise

data that are obtained on driving conditions in order to calculate the maximum

reduction of feedforward ARNC system for a specific sensor arrangement. In

this case coherence analysis is used for identifying the relative location of a road

noise source on the vehicle structure and how much it contributes to the each of

the structure-borne road noise bands. A low number of reference accelerometers

was obtained and their combination resulted to high multiple coherence at the

main road noise bands of the vehicle. The ARNC performance was calculated for

the optimised set of the acceleration signals are presented and compared with a

combination of high number of acceleration signals coming from important noise

transfer paths.

Chapter 5

In the fifth chapter the multireference LMS algorithm is introduced for the

identification of the impulse responses between the acceleration and sound pres-

sure signals that were obtained from the road noise measurements. The sensor

locations are evaluated with the use multireference adaptive filtering techniques.

The scope of this study was to synthesise the interior road noise with the pre-

viously selected acceleration signals from chapter 4. The selected acceleration

signals are highly correlated with the noise and they can allow to the algorithm

to converge to a causal filter solution. The error signals of the adaptive algorithm

simulation are compared with the predicted active noise reduction that was esti-

mated previously from the multiple coherence function in order to evaluate the

validity of the estimated impulse responses of the algorithm.

Chapter 6

In the sixth chapter, the multichannel filtered reference LMS algorithm is

derived and used for predicting the performance of an adaptive noise controller

for road noise data. The measured impulse response between the audio system

and the headrest locations are first modelled with multirate signal processing and

then truncated with an adaptive algorithm for system identification, in order to
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include these estimated secondary paths of a small FIR length in the ARNC

algorithm. A comparative study between various combinations and numbers of

accelerometer signals is performed and the results of this study are discussed in

this chapter.

Chapter 7

In the seventh chapter the development of the real-time ARNC experiment

on the road noise simulator is presented. The selected accelerometer locations

from chapter 4 that were evaluated in the models in chapters 5 and 6 are tested in

this chapter on the vehicle road noise simulator. The preselected accelerometer

locations are supported according to their performance for the various excitation

cases on the tires, front, rear and whole vehicle.

Chapter 8

In this last chapter the outcomes of this thesis are summarised. The outcome

of this study and the contributions to the area of structure-borne road noise and

feedforward ARNC are discussed. Suggestions for future work are also included

in this chapter since from this development many interesting case scenarios for

ARNC can be investigated in the future.





Chapter 2

The sound field inside a vehicle

2.1 Introduction

In this chapter we introduce the physical quantities that are typically measured

in a vehicle for sound and vibration analysis. We begin with the case of the

excitation sources inside the cabin. Two sources may be used in this case, a

volume velocity source and the low frequency transducers of the audio system.

The first acoustic modes that dominate the sound field of the compartment are

usually found with the assistance of a volume velocity source. For the purpose of

this research we used a monopole source to measure the acoustic FRFs between

the source and the microphones at the headrests. Additionally, the electro-

acoustic transfer functions between inputs of the loudspeaker systems to the

microphones at the headrests were measured. These systems are instrumental

in the development of active systems as they define the so-called secondary path

tranfer functions that used in the design of adaptive algorithms as we will discuss

this later in chapter 6.

With regards to the structural sources that cause structure-borne noise it is

worth clarifying the relations between the acoustical and structural quantities.

These are useful for NVH analysis methods of structure-borne road noise and in

particular in force identification methods such as TPA. In this thesis we are more

concerned with the localisation of the structural sources that relate to road noise,

thus we will mainly focus the analysis of the measured quantities that relate to

road noise. We present a vibro-acoustic analysis of the front axle based on noise

transfer functions (NTFs), which may reveal the relationship between the impact

29
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forces applied to parts of the axle, which in turn are influential for the passive

NVH design of the vehicle. Apart from experimental data obtained from vibro-

acoustic testing of the vehicle, operational road noise data are also presented, in

order to highlight the variability of road noise under driving conditions.

2.2 Chapter outline

In section 2.3 we begin by defining the acoustical quantities that are measured

in the cabin. Green’s function inside a rectangular cavity is defined in section

2.3.1, which describes the relationship between the acoustical excitation for a

point source inside a cabin and the sound pressure response at a certain point

in the sound field. In sections 2.3.3 and 2.4 we present the outcomes of the

measurements of the electro-acoustic FRFs and their impulse responses of the

audio system. In section 2.5 we introduce the vibro-acoustic theory that is

applicable to MIMO system analysis for NVH in vehicles. As an extention to

this, the TPA method is introduced in section 2.6.1 as well as the different

vibro-acoustic FRF functions such as transmissibilities that are used in NVH

analysis methods. In section 2.6.2 we introduce the problem of the incoherent

sources, which is a common problem among all TPA methods as well as ARNC

technologies. Finally, in section 2.7 we present operational road noise data as an

introduction to the actual noise control problem.

2.3 Acoustic frequency response functions

2.3.1 Acoustic frequency response functions in a vehicle

The sound field inside a small cavity, such as a vehicle’s cabin, can be modeled by

the Green’s function. More specifically, this function determines the frequency

response function between two locations inside the sound field, one placed at

the location of a point source, at r0 = (x0, y0, z0) and the other is located at

the receiver, r = (x, y, z). Green’s function for an enclosure is defined as the

summation of the contributing acoustic modes ψn(r) at the source and at the

receiver ψn(r0) [Jacobsen (2007),Hansen (2013)]

G(r, r0) =
1

V

∞∑
n=1

ψn(r)ψn(r0)

k2 − k2
n −

jk
τnc

, (2.1)
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where the time constant is τn and the losses are included in the imaginary part

of the function. The time constant of each n-mode reflects how much time is

necessary for its corresponding standing wave to decay in the cavity due to the

losses that are introduced by the wall surfaces [Jacobsen (2007)].

The Green’s function of equation 2.1 is an FRF that can be also converted

to a causal impulse response function, which is commonly used to investigate

the decay of the sound energy over time in an enclosure. In complex shaped

enclosures such as the ones in vehicles, the acoustic mode shapes are fairly com-

plicated and numerical methods such as finite element method (FEM) are used

to solve the eigenvalue problem of the mode shape functions [Beranek and Vér

(1992)]. In practice, modern transfer function identification methods are used to

determine the FRFs between two locations in the sound field. Omnidirectional

volume velocity transducers can be used for these type of measurements. In

particular, the acoustic FRFs inside a vehicle’s cabin are defined by referencing

the measured sound pressure to the volume velocity autospectra. The velocity

spectra can be found based on the assumption that the velocity specta at the

outlet of the source are the same as for a one dimensional tube [Gade et al.

(2004)]. The following section presents FRFs that were measured with this type

of technique with the purpose of exploring the low frequency acoustic resonances

that are audible by the passengers at the headrest positions.

2.3.2 Cabin acoustic responses for a volume velocity excitation

A miniature omnidirectional acoustic source by LMS Siemens was placed at

two locations on the front part of the vehicle in order to access the acoustic

modes. Since the cabin has an irregular shape, two excitation positions were

chosen. The first location s1 is at the corner of the dashboard and the second

down s2 at the footwell at the driver’s position as illustrated in figure 2.1. The

measurement configuration with the volume velocity source is demonstrated with

the microphones that were mounted at the headrests.

Figure 2.1: Microphone and volume velocity arrangement for acoustic FRF
measurement inside the cabin. s1, s2: volume velocity source locations.
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The FRFs between the two excitation source locations at the front part of

the vehicle and the microphones were measured in a semi-anechoic chamber and

the results are presented in figures 2.2(a)-2.2(d) and later in figures 2.3(a)-2.3(d)

also the coherence functions between the volume velocity source and the micro-

phones at the headrests are displayed. When the source is placed at the corner

of the vehicle at the dashboard s1, then an acoustic mode that acts between

150-300 Hz appears in all of the FRFs at microphones at the right hand side.

As for the microphones at the left hand side only two resonances at the front

headrest are noticeable at 190 Hz and 220 Hz, which they are in the tyre cavity

range. In general, the frequency band of 150-300 Hz may play a significant

role, since it is inside the structure-borne road noise range. It is likely that

road vibrations may couple with this acoustic resonances in the cabin and thus

generate audible levels of road noise. In section 2.5 we will explore this further

with the introduction of the vibro-acoustic FRFs between important parts of the

vehicle and the acoustic response inside the compartment.

(a) FRFs from left hand front (LHF) woofer to
microphones.

(b) FRFs from right hand front (RHF) woofer
to microphones.

(c) FRFs from left hand rear (LHR) woofer to
microphones.

(d) FRFs from right hand rear (RHR) woofer
to microphones.

Figure 2.2: FRFs between two volume velocity source locations and the mi-
crophones at the headrests. −: Dashboard corner. −: Driver’s pedal.

Unfortunately, the volume velocity source did not succeed in exciting low-

order modes of the sound field below 100 Hz, due to hardware limitations of the

transducer. In figures 2.3(a)-2.3(d) the coherence is relatively poor below 100 Hz

for the identification of the acoustic FRFs between the volume velocity source
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and the microphones. This is probably caused by low frequency cut-off in the

sensitivity of the transducer that limits the response of the transducer in the

range of 200 Hz-10 kHz [LMS and Siemens (2014)].

(a) Coherence and FRF from left hand front
(LHF) woofer to microphones.

(b) Coherence and FRF from right hand front
(RHF) woofer to microphones.

(c) Coherence and FRF from left hand rear
(LHR) woofer to microphones.

(d) Coherence and FRF from left hand rear
(LHR) woofer to microphones.

Figure 2.3: Coherences and FRFs between two volume velocity source loca-
tions at the dashboard and the under the driver’s pedal and the two micro-
phones at the rear headrests. The microphones locations at the front headrests
are noted as: LHR: Left hand rear. RHR: Rear hand rear. −: FRF. −:

Coherence.

These two locations of the source may not be sufficient for measuring the

sound field, since they do not directly couple with all the low order acoustic

modes of the vehicle. More excitation and measurement locations are necessary

to perform a complete acoustic modal analysis of the cabin, in order to map

the sound field across the cabin. However, this is not a primary task in this

study as the excitation does not come from inside the vehicle but it is due

the vibro-acoustic coupling between structural and acoustical resonances of the

vehicle. For feedforward active control it is necessary to further investigate the

relation between several parts of the axle that could potentially used as reference

locations for the vibration sensors that provide the inputs to the control filters.

As a next step we will introduce the secondary paths transfer functions of the

control systems that are the electro-acoustic systems between the loudspeakers

and the microphones at the headrests.
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2.3.3 Electro-acoustic frequency response functions

As previously mentioned, it is worth investigating the acoustic responses of the

sound field at the microphone locations when the audio system of the vehicle

is activated, as we will use it later on to generate secondary canceling field. In

particular, for active sound control the loudspeaker arrangement is important to

be able to excite the low frequency acoustic modes of the cabin [Nelson and Elliott

(1991)] for the effective reduction of the low frequencies that coincide with the

eigenfrequencies of the cabin. In this section we define the FRFs of the electro-

acoustic systems and how we measured them in the vehicle. The sound pressure,

pl(ω) signal at the lth-microphone in the cabin and the signal, vm(ω) from the

mth-loudspeaker are used to identify the electro-acoustic FRFs that determine

the secondary paths of the active control system. These electro-acoustic FRFs

between the electrical inputs of the loudspeakers and the microphones outputs

can be defined as

Clm(ω) =
pl(ω)

vm(ω)

[
Pa

V olts

]
. (2.2)

The identification of these FRFs was performed through the use of white noise

that was emitted by the loudspeaker system of the vehicle. Each loudspeaker

was driven separately develop the matrix that contains all the FRFs between

four loudspeakers and twelve microphones. The measurement configuration is

shown in figure 2.4.

Figure 2.4: Loudspeaker and microphone placement inside the cabin. The
LMS Siemens SCADAS DAQ systems was generating the white noise signals
that was driving the audio amplifier and also measuring the microphone re-
sponses that were referenced back to the white noise signal, in order to obtain
the electro-acoustic FRFs. The four loudspeakers are noted as s1, s2, s3, s4
and the twelve microphones as m1, m2, m3, ..., m12. •: Microphone positions.
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An after-market car audio amplifier with four inputs and outputs was used to

drive the loudspeakers of the vehicle with white noise between 0-1 kHz generated

from the SCADAS Siemens LMS system. Each of the five loudspeakers was

tested seperately in order to generate all possible combinations between the

loudspeakers and the microphones.

From the perspective of an active control system, the low frequency trans-

ducers of the audio system are expected to generate the appropriate sound pres-

sure levels at the road noise resonances, especially in the range of 0-300 Hz,

where most of the structure-borne noise appears in the particular luxury vehicle.

In addition to this the loudspeakers should not be placed at the pressure minima

of the first standing waves of the cabin, so that the loudspeaker drivers are not

driven with large voltage signals to compensate for the low acoustic impedance

in front of them.

(a) FRFs from left hand front (LHF) woofer to
microphones at the front headrests.

(b) FRFs from left hand front (LHF) woofer to
microphones at the front headrests.

(c) Phase responses from left hand front (LHF)
woofer to microphones at the right headrests.

(d) Phase responses from left hand front (LHF)
woofer to microphones at the right headrests.

Figure 2.5: Magnitude and phase responses of FRFs between the left hand
front (LHF) woofer and the microphones in the cabin. The microphone posi-
tions are noted as LHFin/out: left hand front inner/outer, RHF: right hand
front inner/outer, LHR: left hand rear inner/outer RHR: right hand rear in-

ner/outer.
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In terms of the phase responses, the microphone in front of the woofer does

not roll-off as sharply as in other electro-acoustic paths, since it is very close to

the near field of the loudspeaker and it is not effected by the cabin resonances.

The same behaviour is noticed in figure 2.6(c), where the microphone is placed

in front of the right hand front woofer. As for some of the magnitude responses

in figure 2.6(b), sharp antiresonances above 200 Hz occur between the right hand

front woofer and the microphones mounted on the right rear headrest.

(a) FRFs from right hand front (RHF) woofer
to microphones at the front headrests.

(b) FRFs from right hand front (RHF) woofer
to microphones at the front headrests.

(c) Phase responses from right hand front
(RHF) woofer to microphones at the rear head-
rests.

(d) Phase responses from right hand front
(RHF) woofer to microphones at the rear head-
rests.

Figure 2.6: Magnitude responses of FRFs between the right hand front (RHF)
woofer and the microphones in the cabin.

When the sound field is excited by the left rear woofer in figures 2.7(a)-

2.7(c), the response levels for the front microphones are reduced in the frequency

range of 100-200 Hz. This fact suggests that the front woofers are necessary as

they can achieve 10-25 dB higher output levels compared to the rear woofers.

In contrast to this the microphones at the rear headrests are not close with this

loudspeaker and are almost insensitive to the acoustic resonances above 100 Hz,

thus the magnitude levels vary in a smaller range within 5 dB.
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(a) FRFs from left hand rear (LHR) woofer to
microphones at the front headrests.

(b) FRFs from left hand rear (LHR) woofer to
microphones at the front headrests.

(c) Phase responses from left hand rear (LHR)
woofer to microphones at the rear headrests.

(d) Phase responses from left hand rear (LHR)
woofer to microphones at the rear headrests.

Figure 2.7: Magnitude responses of FRFs between the left hand rear (LHR)
woofer and the microphones in the cabin.

The fourth woofer at the right hand rear door was also measured. As figure

2.8(a) illustrates, several antiresonances are present in the FRFs between this

woofer at the rear door and some of the microphones at the front of the cabin.

This may influence the length of the FIR filters used for modelling these transfer

functions for the development of the ANC system, as several taps might be

required for accurately modeling such high order secondary paths. If several low

frequency acoustics modes are includes in the secondary paths, then the decay

of the impulse response is relative slow. As the sampling rate increase more taps

are necessary to model the tail of the impulse response that corresponds to the

low frequency contain of the secondary path. For example, for a sampling rate

of 1 kHz and an acoustic impulse response of a duration of 0.1 seconds, an FIR

filter with 100-taps is required.

The side-effects of poor estimation of the electro-acoustic systems is slow

convergence of the adaptive algorithm and also instabilities [Hansen (2001)] and

therefore precise estimation of the secondary paths is always necessary for the

robustness of the system. The subwoofer located under the parcel shelf behind

the rear headrests was also measured, since it is the only transducer that is only

a short distance from the sensors at the rear headrests. The placement of this

subwoofer is ideal for the active sound control as we will see later in the impulse
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responses of the secondary paths, as the propagation delay is dependent on the

distance between the transducer and the microphones in the cabin’s sound field.

(a) FRFs from right hand rear (RHR) woofer
to the microphones at the front headrests.

(b) FRFs from right hand rear (RHR) woofer
to the microphones at the front headrests.

(c) Phase responses from left hand front (RHR)
woofer to the microphones at the rear headrests.

(d) Phase responses from right hand front
(RHR) woofer to the microphones at the rear
headrests.

Figure 2.8: Magnitude responses of FRFs between the right hand rear (RHR)
woofer and the microphones in the cabin.

As a result, the phase responses of the rear microphones transfer functions,

displayed in figure 2.9(d), decay at a low rate. As figure 2.10(a) illustrates, this

subwoofer provides the highest sensitivities for the rear microphones, which may

prove beneficial for high sound pressure levels at low frequencies.

(a) FRFs from the rear subwoofer at the parcel
shelf to microphones at the front headrests.

(b) FRFs from left hand rear (RHR) woofer to
microphones at the front headrests.
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(c) Phase responses from the rear subwoofer at
the parcel shelf to microphones at the rear head-
rests.

(d) Phase responses from the rear subwoofer at
the parcel shelf to microphones at the rear head-
rests.

Figure 2.9: Magnitude responses of FRFs between the rear subwoofer and
the microphones in the cabin.

In our experiments we observed that the sound field in the cabin is heavily

damped. Some sharp notches are included in the FRFs between the front and

rear part of the vehicle, which they may effect the amplification stage of the ANC

controller in some cases. However, most of the loudspeakers provide a relatively

high sensitivity response in the range of 100-200 Hz, where most of road noise

energy is concentrated. The rear subwoofer has the ideal location for an active

application, since it is close to the rear headrests. In the following section we

discuss further the time delays that are inherited from the electro-acoustic paths.

2.4 Electro-acoustics impulse responses

In this section we continue further with our investigation on the impulse re-

sponses of the physical plants that determine the secondary paths of the control

signals from the input of each transducer to the microphones inside the cabin.

In this case the inverse FFT of the complex FRFs was used to transform the

measured systems in the time domain.

In active systems of road noise the latency that is embedded in the con-

troller can strongly downgrade the noise reduction of random disturbances as

it was found by Sutton [Sutton et al. (1994), Elliott and Sutton (1996)]. For

feedforward road noise control system reduction levels of 6 dB are possible with

highly coherent sensor signals. Interestingly, in figures 2.10(a), 2.10(c) illustrate

that around 5 milliseconds delay is required for the direct sound to travel from

the left hand front woofer to the front microphones at the headrests. On the

other hand, more time is necessary for rear microphones, more specifically 10

milliseconds, as displayed in figures 2.10(b) and 2.10(d). This latency is pro-

portional to the distance between the source and the receiver and it can only
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be compensated if the loudspeakers are located at the headrests [Sutton et al.

(1994), Cheer and Elliott (2014)].

(a) IRFs from LHR woofer to microphones at
the front headrests.

(b) IRFs from LHR woofer to microphones at
the rear headrests.

(c) IRFs from LHR woofer to microphones at
the front headrests.

(d) IRFs from LHR woofer to microphones at
the rear headrests.

Figure 2.10: Impulse response functions (IRFs) between the two front woofers
and the microphones in the cabin.

Some modern commercial ARNC systems use loudspeakers and microphones

that are integrated in the vehicle’s headrests [Silentium (2014)]. This arrangment

decreases signficantly the delay in the acoustic path between the control loud-

speaker and the microphone, where the sound pressure minimum is created. For

the purpose of our study we focus our design in the scenario that the standard

loudspeaker system mounted at the doors is available and the microphones at

the headrests. We measured for the impulse responses from the rear subwoofer

to the rear headrests microphones, where the first peak that corresponds to the

direct sound is 4 milliseconds, as illustrated in figures 2.12(a),2.12(b), due to the

close proximity between the transducers and the sensors at the rear headrests.
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(a) IRFs from LHR woofer to microphones at
the front headrests.

(b) IRFs from LHR woofer to microphones at
the rear headrests.

(c) IRFs from the LHR woofer to microphones
at the front headrests.

(d) IRFs from the LHR woofer to microphones
at the rear headrests.

Figure 2.11: Impulse responses between the two rear woofers and the micro-
phones in the cabin.

(a) IRFs from the subwoofer to microphones at
the front headrests.

(b) IRFs from the subwoofer to microphones at
the rear headrests.

Figure 2.12: Impulse response functions (IRFs) between subwoofer at the
rear parcel self and the microphones in the cabin.

2.5 Vibro-acoustic frequency response functions

2.5.1 Structural mobility frequency response function

The analysis of mechanical structures in terms of structural dynamics is based

on the assumption that harmonic forces are applied on Linear Time Invariant

(LTI) systems. The vibrational responses of such mechanical systems are linearly
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related with the excitation forces that applied across the structure. Coupled

systems such as vehicles can be modeled with measurable vibrational quantities,

in order to synthesise structural or acoustical responses across the mechani-

cal system. In many cases complex mathematical functions such as mechanical

impedance are used to estimate the operational forces at the interface between

two structures. For example, the operational forces that are applied by a engine

on an isolator that is used to reduce the transmission cannot be measured di-

rectly, thus methods for force identification are derived with the use of impedance

functions. These methods are widely used in the automotive industry as NVH

design and analysis. In particular, the so-called Transfer Path Analysis method

uses mechanical impedance functions, as we will explore in a later section. As

a first step we need to define some basic mechanical FRFs and their extensions

to Multiple-Input-Multiple-Output (MIMO) systems. The mechanical impedance

can be determined from the applied force on a structure divided by the response

at a point on the structure as follows

Z(ω) =
f(ω)

v(ω)

[
N

m/s

]
. (2.3)

In practice, the inverse of the mechanical impedance is measured on the struc-

tures, the so-called mobility function. This is essentially the vibrational velocity

at the response point on the structure referenced to the input force that is applied

at the system as shown below

Y (ω) =
v(ω)

f(ω)

[
m/s

N

]
. (2.4)

2.5.2 Structural mobility matrix

For high order mechanical systems, the structures vibrate in different motions

and their directions that contribute to the vibrational response of the systems.

Each complex motion can be expressed by a number of independent movements

that are referred as DoF (Degrees of Freedom). In vehicle structures, several

vibrational resonances are effecting the structural response of the system and

they are included in a matrix of a mobility functions of n-DoFs, which is usually

measured with impact hammer testing on the decoupled system. This approach

requires to disconnect the axles from the body, in order to identify the structural

properties of the mechanical components of the vehicle. The most common

measured property on a vehicle is the mobility matrix that contains all the

mobility FRFs that are later used for various calculations in advanced NVH
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analysis methods. The mobility matrix of such a high order system contains the

transfer mobilities and the point (input) mobilities at the excitation points on

the vehicle axles. The transfer mobility function of a structure can be defined

under the condition that there is only one force applied on the structure at a

j-point and the response is measured at another i-location [Fahy and Gardonio

(2007)]

Yij(ω) =
vi(ω)

fj(ω)
, fj(ω) 6= 0, ∀j = 0, (2.5)

the special case of the response location measured at the excitation point, defines

the point or direct mobility function

Yjj(ω) =
vj(ω)

fj(ω)
, fj(ω) 6= 0,∀j = 0. (2.6)

The inverted FRFs of the mobility functions provide the mechanical impedances

of the system as follows

Zij(ω) =
fi(ω)

vj(ω)
, vj(ω) 6= 0, ∀j = 0. (2.7)

As we will explain later, this property of the impedance functions is useful for the

TPA method where the input forces that act on a vehicle structure are estimated.

Figure 2.13: Multiple Input Multiple Output system (MIMO) that can be
described by mobility frequency response function. The forces f1, f2, f3, ..., fi
are the inputs to the system and the velocity responses v1, v2, v3, ..., vj are the

outputs of the MIMO system.

In general, the mobility FRF matrix of the MIMO mechanical system is defined

as

Y =


Y11(ω) Y12(ω) Y13(ω) ... Y1j(ω)

Y21(ω) Y22(ω) Y23(ω) ... Y2j(ω)

Y31(ω) Y32(ω) Y33(ω) ... Y3j(ω)

... ... ... ... ...

Yj1(ω) Yj2(ω) Yj3(ω) ... Yij(ω)

 . (2.8)
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The diagonal terms of this matrix contain the direct or point mobility functions

that relate to the mechanical impedances at the excitation points of the structure.

The cross-diagonal terms contain the structural paths between the excitation at

a certain DoF and the response at a location for the same or another DoF. If the

inverted mobility matrix is multiplied with the velocities responses measured on

a structure, the forces that act on a structure can be identified as follows

f = Y−1v. (2.9)

Equation 2.9 is in fact the basis of inverse force synthesis, which is used in classic

TPA [Plunt (1999)], but also lately in in-situ TPA for the coupled system [Elliott

et al. (2013)]. As previously mentioned, the inversion results in the mechanical

impedance matrix, which is sometimes hard to obtain with good accuracy due

to numerical issues during matrix inversion operations. For the successful inver-

sion of a mobility matrix the eigenvalues of the MIMO system must non-zero

and positive defined [Moorhouse and Gibbs (1998)]. As a consequence, matrix

reguralisation techniques are suggested to tackle with these issues [Thite and

Thompson (2003a),Thite and Thompson (2003b)]. The mobility matrix can be

also used to find ratios between the velocities or the forces depending on the

interpretation of the matrices. These type of functions are related to the me-

chanical sensitivities of the system. They can be formulated into matrices that

link the velocities or the forces at the two terminals of a MIMO mechanical sys-

tem. In the case of the sensitivity functions between the vibrational responses

at the two terminals of the coupled system, an alternative formulation of the

mobilities function is used. If the transfer mobility matrix, Ybc (c-connections

b-receiving structure, body side) is multiplied with the inverted point mobility

matrix, Y−1
cc of the mobility at the c-connection inputs points such as mounts

or bushing points as follows [Magrans (1981), Ribeiro et al. (2000) Maia et al.

(2001)]

Tbc = YbcY
−1
cc , (2.10)

Tbc = YbcZcc. (2.11)

The sensitivity function T is usually referred as generalised transmissibility func-

tion [Ribeiro et al. (2000)]. These FRFs are used in Advanced TPA method

that is a method developed by Magrans in [Sapena et al. (2012) ,Malkoun et al.

(2014)], which has been mostly applied mostly in NVH analysis for high speed

trains. It is important to mention that the in-situ TPA and the ATPA are applied

on the coupled system, whereas in classic TPA the source must be dismounted
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from the receiver’s structure. As a consequence, less measurement time is re-

quired and also information about the blocked forces and the weakest transfer

paths can be obtained [Magrans (1981), Zafeiropoulos et al. (2013)]. A simpler

version of the transmisibility function, which is commonly used in NVH and

especially for the purposes of tuning isolator properties is the so-called forced

transmissibility [Duncan et al. (2011)]. This function is defined as the ratio

between the forces with or without the presence of an isolator

Tf =
Ybody + Ysuspension

Yisolator + Ybody + Ysuspension
, (2.12)

where Ybody is the mobility of the vehicle’s body, Ysuspension is the suspension’s

mobility and . The forces applied to the isolators are found with the use of the

Hooke’s law [Plunt (2005), Moorhouse et al. (2013)] and are calculated as follows

fbase = K(xsuspension − xbody), (2.13)

where K is the dynamic stiffness matrix and the dynamic stiffness is defined as

the input force normalised by the displacement response. Dynamic stiffnesses

are widely used for structure-borne NVH design. If we now take into account

that the stiffness is inversely proportional to the mobility function, then equation

2.12 changes as follows

Tf =
K−1
body +K−1

suspension

K−1
isolator +K−1

body +K−1
suspension

. (2.14)

Equation 2.14 is a useful method, as it is used to achieve a specific tuning be-

tween the structural properties of the chain source-isolator-receiver [Duncan et al.

(2011)]. An example of dynamic stiffnesses at an important input to the body

side of the luxury vehicle that we investigate in this thesis is presented in figure

2.14(a).

These local dynamic stiffnesses were measured on the coupled system and

some interesting characteristics regarding the vehicle’s structure can be obtained

from these FRFs. First of all, the dynamic stiffness are fairly damped, as they are

close to the suspension damper as it illustrated in figure 2.14(b). In addition low

dynamic stiffness is necessary, in order to block the road related vibrations and

avoid any modal coupling between the axles and the body. Ideally, the dynamic

stiffness across the vehicle needs to be as high as possible and especially at

mount and bushes locations, in order to decouple the mechanical systems and

block vibrations that may cause structure-borne road noise [Neto and de Oliveira
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(a) Dynamic stiffnesses between the dome top and the
control arms at the top suspension.

(b) ↑: Excitation and response at the
damper top. ↓, ↓: Responses at the con-
trol arms

Figure 2.14: Local dynamic stiffness measured between the body side at
the suspension damper top and the two suspension locations at the z -axis.
−: Dynamic stiffness at the excitation point on the body side. −: Dynamic
stiffness between the excitation point on the body side and first control arm.
−: Dynamic stiffness between the excitation point on the body side and second

control arm.

(2010)]. The methods that we have mentioned up until this point, such as

TPA are crucial passive NVH techniques that highlight weaknesses in the vehicle

structure and quantify the road forces. We will further investigate the vibro-

acoustic FRFs that are used for NVH analysis methods in the following section, in

order to gain a better understanding of structure-borne road noise transmission.

2.5.3 Vibro-acoustic frequency response functions

When road forces act on a vehicle structure, structure-borne sound is gener-

ated due to vibrations that are transmitted through multiple paths inside the

cabin. There are points in the structure, which have such structural proper-

ties that can allow vibration transmission between the excitation source location

and the sound field inside the cavity. The type of FRF that can describe the

physical relationship between an excitation force that acts on the vehicle and

the structure-borne sound is called noise transfer function (NTF) and it usually

reveals the relationship between the sound pressure levels for an impact force

applied on the vehicle structure and it is defined follows [Wang (2010), Lyon

(1987)]

H(ω) =
p(ω)

f(ω)

[
Pa

N

]
. (2.15)
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In reality multiple, excitation forces act on a structure and thus this relationship

is also extended for a MIMO system as

Hij(ω) =
pi(ω)

fj(ω)
, fj(ω) 6= 0,∀j = 0. (2.16)

The FRF matrix of a vibro-acoustic system that includes all the FRFs between

the input forces and the sound pressure responses is defined as

H =


H11(ω) H12(ω) H13(ω) ... H1j(ω)

H21(ω) H22(ω) H23(ω) ... H2j(ω)

H31(ω) H32(ω) H33(ω) ... H3j(ω)

... ... ... ... ...

Hj1(ω) Hj2(ω) Hj3(ω) ... Hij(ω)

 , (2.17)

and the total sound pressure at a m-location inside a cavity can now be expressed

as the superposition of all the vibro-acoustic FRFs multiplied with the excitation

forces

pm(ω) =

N∑
i=1

Hij(ω)fj(ω) (2.18)

and in a more compact form can be written as the multiplication of the FRF

matrix, H with the vector of the excitation forces, f

p = Hf. (2.19)

Equation 2.19 is also the quality check of TPA methods, where the estimated

force spectra are used as inputs into the vibro-acoustic system of the vehicle

and the predicted sound pressure spectra are compared to the actual road noise

specta obtained usually on chassis dynamometers or on the road.

2.5.4 Vibro-acoustic FRFs for impact forces on the front axle

Many modern vehicle structures are assembled using advanced suspension sys-

tems to improve the ride and dynamic behaviour of the car. A typical multilink

suspension system with four mounting points between the subframe and the

body is shown in figure 2.15. In this case impact forces were applied in the
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z-direction, since the other directions were not accessible with the hammer for

obtaining reliable measurements.

Two resonances dominate in the NTFs between 100-200 Hz , the first one

centered at 125 Hz and the second one at 200 Hz. At these frequencies road

related vibrations could potentially be transmitted inside the cabin. It is evident

that in figures 2.16(d), 2.16(e) and 2.16(f) that the sensitivity levels at the NTFs

are around 60 dB [Pa/N] at 125 Hz, which indicates that these locations may

allow road noise transmission. Some authors suggest this value to be also used

as a generic target for a NTF [Wang (2010), Duncan et al. (2011)]. Still for

a luxury vehicle with high levels of refinement the target is lower at 45-55 dB

[Pa/N] across the road noise spectrum. Interestingly, the resonances at 125 Hz

and 200 Hz for the subframe mounts and at the top of the suspension in figures

2.16(b), 2.16(c), 2.16(d) are well damped and below 55 dB [Pa/N], especially for

the damper top in figure 2.16(d).

Figure 2.15: Front axle with multilink suspension system. The main parts
of the structure are highlighted that were also included in the impact FRF

testing.

If we take into account the geometry of the locations, there is only one case

in which structural vibrations could result in road noise: when the subframe

vibrations are well coupled with the vehicle’s body. However, there is high

isolation from the subframe mounts, since they are tuned to attenuate effectively

the applied road forces at the subframe connection points.
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(a) Noise transfer function of an impact force
applied at the connection between the lower
front arm and the subframe.

(b) Noise transfer function of an impact force
applied at the rear subframe mount.

(c) Noise transfer function of an impact force
applied at the front subframe mount.

(d) Noise transfer function of an impact force
applied at the damper top.

(e) Noise transfer function of an impact force
applied at the left hand side of the subframe.

(f) Noise transfer function of an impact force
applied at the right hand side of the subframe.

Figure 2.16: Vibro-acoustic FRFs between the excitation point on the front
axle structure the four headrests microphones.

From the results of this measurement we may conclude that the front axle

of the vehicle results in fairly damped structure-borne sound responses in the

cabin. In addition to this, it is clearly evident that the main structural paths

can reduce the vibrations of the front axle for forces that are directly applied on

the axle’s structure.
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2.6 Methods for structure-borne road noise analysis

2.6.1 Transfer Path Analysis

In this section we present the formulation of the TPA method, in order to reveal

the relevant points to ARNC technology. We will start first by introducing the

parameters that are necessary for TPA and also highlight the similarities with

feedforward ARNC. Modern vehicle structures are mechanical systems composed

of various substructures. The structural dynamics of each substructure are tuned

separately, in order to meet the NVH targets. In the case of road noise there is a

limit to this fine tuning. In particular, at low frequency any mass increase of the

vehicle structure for reduction road related vibrations can several implications

on other vehicle attributes, as we mentioned in chapter 1. The mechanical sub-

systems of the vehicle couple with each other through some connection points.

The applied forces excite dominant structural resonances that may couple well

with the acoustic modes of the cabin. The general model of structure-borne

road noise generation is based on the SPC (Source-Path-Receiver) theory. Mod-

ern NVH modelling techniques combine this method with the modal behaviour

of the vehicle, in order to analyse road noise in terms of structural contributions

[Wyckaert and Van der Auweraer (1995)].

Road noise depends strongly on the tyre-road interaction. The forces at the

suspensions and subframes are important for the vehicle NVH design, as they

vary according to the road surface type and speed. The forces that are applied

directly to the vehicle body are also of a high significance, since they determine

the tuning parameters of several parts of the suspension and subframe systems.

Therefore, the road forces at the connection points between the suspension and

the body structure are usually estimated with the use of TPA (Transfer Path

Analysis). These are also the main inputs into the body structure that cause

structure-borne sound inside the cabin. In figure 2.17 a block diagram of the

transmission paths and also how TPA models the vibro-acoustic behavior of the

vehicle is presented.

The NTF matrix of each axle from an a-source location at the wheel to a

b-receiving point in the sound field of the cabin Hba contribute to the sound

pressure responses, pa. Alternatively, the vehicle system can be decomposed

with a matrix Yac from the source to a b-connection point at the axles and to

the vibro-acoustic paths Hbc from the connections to the cabin.

In the frequency domain the vector of the sound pressure is defined as the

product of the forces at the tyre contact patch multiplied with the matrix of the
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Figure 2.17: Source path receiver model (a): sources at the axle (b): receiver
responses, (c): connections between the axle and the body structure. The
forces at various points on the axle are denoted as fa and the forces at various
connection points are presented as fc. The vibration paths between the tyre and
the connections are showed as transfer mobilities Yac and the point mobilities
at the connections are noted as Ycc. The vibro-acoustics paths between the
connections and the interior sound pressure Hcb and the primary paths of
structure-borne noise are noted as Hba. The error between the estimated sound

pressures, p̂b and the measured road noise responses pb is denoted as e.

primary transfer paths Hba

pb = Hbafa. (2.20)

In practice, the forces at the connection points fc are estimated and used as

sources. These force spectra can be used for various body structure as long as

the structural design of the suspension and the body have not changed dramat-

ically. Usually, TPA methods are used to predict the forces and also to rank the

most sensitive vibro-acoustic paths of road noise. The most common method

of calculating the road forces is based on the matrix inversion of the mobility

matrix Ycc measured at the (c)-connection points. The point mobilities at the

connection and are defined as the ratio between the velocity response at m-DoF

and the driving force at the k -reference DoF as

Ycmck =
vcm
fck

, (2.21)

for the special case that m = k , the FRF is the point mobility at the connection.

Now the point mobility FRF matrix at the interface can be defined as

Ycc =


Yc1c1 Yc1c2 Yc1c3 ... Yc1ck
Yc2c1 Yc2c2 Yc2c3 .... Yc2ck
... ... ... ...

Yckc1 Yckc2 Yckc3 ... Ycmck

 . (2.22)
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The vibro-acoustic transfer function between the excitation point-k at (c) and

the sound pressure response at a l -microphone location in the cabin is

Hblck =
pbl
fck

. (2.23)

Now the matrix Ycc is measured either for the uncoupled system source-receiver

in the case of classic TPA or for the coupled structure if in-situ TPA methods

are used for the analysis. As previously mentioned in section 2.5.2 the forces

at the connections, f̂c between the two structures are estimated with the use of

matrix inversion methods, which in the case of TPA the point mobility matrix

must be inverted Ycc. This is also the backward step of the TPA method the

vibrational responses at the receiving structure are fed as inputs to the inverted

FRF matrix in order to obtain a prediction of the road forces as shown below

f̂c = Y−1
cc vc. (2.24)

The second forward step of the TPA methods is to synthesise the sound pressure

responses inside the vehicle’s cabin and compare the estimated spectra with

actual measurements for evaluating the quality of the predicted road forces.

p̂b = Hbcf̂c, (2.25)

where the estimated road noise is noted as p̂b. The error of the TPA method is

defined as the difference between the predicted noise spectra that indicates how

reliable are the estimated road forces

e = pb − p̂b. (2.26)

Now if we modify the diagram of figure 2.17 and include a feedforward controller

we obtain the follow augmented system of figure 2.18. The reference inputs, x to

the control filters, W are suggested to be placed very close to the wheel [Couche

(1999)] or at axle locations with high vibrational responses [Bernhard (1995),

Sutton et al. (1994)] or either to perform a simulating annealing algorithm for

finding the optimum set of reference signals [Stothers et al. (1995)].

However, there are advantages of using the principals of TPA for ARNC

design as it may be possible to obtain a better understanding regarding the
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Figure 2.18: System diagram for Transfer Path Analysis and ARNC. fa: road
forces, Hba: vibro-acoustic paths, T: Structural transfer paths from the source
to the reference sensor locations, W: control filter matrix, C: electro-acoustic
paths from the loudspeakers to the microphones at the headrests, x: vibrational
responses as reference inputs to the controller, y: control signals that drive the
loudspeakers in the cabin, pb, p̂b: are the measured and synthesised road noise
spectra and e: the residual error signals at the cancellation point in the cabin.

number of DoFs and the reference sensor locations that act on the vehicle and are

related to structure-borne road noise before applying the technology. So far, most

of the proposed techniques for reference sensor selection result in several locations

and DoF, which indicates that they are not taking into account the structural

design of the vehicle. Apart from the high number of reference vibrational signals

the locations of the sensors should also correlate with the structure-borne noise

sources at the axles. In the past it has been suggested that the number of

dominant structure-borne noise sources should be equal to the references sensors

used for the feedforward system [Sutton et al. (1994)]. On the other hand Park

[Park et al. (2002)] proposed that a higher number of reference signals is required

for ARNC for ensuring robust broadband performance as several DoF contribute

at each road noise resonance. This is true for vehicles with very poor structure-

borne NVH performance, but for luxury vehicles with several passive treatments

a more systematic approach is required for using a number of reference signals

that is related to the actual structure-borne noise contributions that are revealed

from NVH analysis of road noise. Consequently, knowledge obtained from TPA

method or from other NVH analysis methods regarding the locations may lead to

a more solid approach for the selection of the reference inputs to the controller.

In our case, we will make some assumptions that are used in TPA, such as the

hypothesis that the connection points at the axles are the first candidates for road

noise transmission and also important inputs to the vehicle and as an extension

to the controller. We will further focus on the vehicle road noise analysis in

chapter 4, where the statistical relation between the connection points at several

axle locations and the interior noise for each of these paths is presented. Another

problem that the controller has to face is the fact that the sources across the

vehicle are partially correlated and that has an effect on the references. In figure

2.18 the reference signals x are mixed due to the spatial filtering through the

matrix T, which effects the performance of adaptive systems as demostrated by

Elliott in [Elliott and Cook (2000)]. Before we present the structure-borne road
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noise performance of the luxury vehicle that we investigate in section 2.7, we

will first introduce the multiple coherence problem on vehicle structures in the

following section.

2.6.2 Incoherent structural road sources

In most commercial structures several structural sources are interacting with

each other, due to strong mechanical coupling that allows low frequency vibra-

tion transmission. Modern vehicles structures with advanced suspension systems

are connected to complex subframe structures that cause a multi-source struc-

tural environment with multiple paths that allow the vibration transmission.

The mechanical interaction between these structural parts randomises the phase

of the vibration responses across the axles at low frequencies. Therefore, for op-

erational modal analysis of structure-borne noise, decomposition methods based

on PCA are applied to the acceleration matrix [Otte et al. (1988), Meillier and

Mairesse (1996)], in order to analyse virtually independent phenomena instead

of the actual operational vibrations that are partially correlated. The problem

of the incoherent sources has been thoroughly analysed by Kompella in [Kom-

pella et al. (1994)] and his method is very useful for understanding how many

independent structural sources act on the structure and also for the force synthe-

sis of TPA [Bernhard (2000)], where it is necessary to reference the vibrational

responses at the connections to the the principal components before estimating

the road forces [Elliott et al. (2013)].

Figure 2.6.2 demonstrates the mixing of the vibrational responses due to

structural cross-coupling in the system. The road forces are causing various

complex motions of the two axle with several DoF contributing at each resonant

frequency of the system. In addition multiple structural paths that are strongly

coupled allow the vibrations to be diffused across the structure, thus the recorded

signals by the reference sensors are the summation of the contributions of each

source. In chapter four we will apply PCA in operational data, in order to cal-

culate the virtual multiple coherences according to [Price and Bernhard (1986),

Otte et al. (1988)].

The matrix, Sxx contains the auto and cross-spectra between the k-reference

signals measured by the sensors, thus the statistical relations between the sources

are expressed as [Kompella et al. (1994)]

Sxx = gHSuug, (2.27)
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Figure 2.19: Interaction between various vibrational sources through struc-
tural transmission paths in a multisource environment. The vibrational re-
sponses at each source are noted ui and the measured responses by the sensors
as vj . The stuctural paths between the i-inputs at the sources and the j-output

responses at the reference locations are noted as gij .

where Sxx is a square non-diagonal matrix of size k× k and g is the FRF matrix

between the structural responses at the n-structural sources to the k-reference

points and Suu is a diagonal matrix that contains the decorrelated autospectra

of the reference. If the off-diagonal terms of Sxx are zero, then the forces at

the input locations are uncorrelated and sources act independently. As previ-

ously mentioned in a vehicle structure the forces at the connections between

suspension, subframe and body are interacting at various directions, but in a

complex way such as several DoF are contributing to the vibrational response.

As a result, the acceleration responses are partially correlated and their rela-

tions are included in the off-diagonal terms of Sxx. As a result, the FRFs under

operative conditions cannot be directly determined with conventional signal pro-

cessing methods. Moreover, impact testing methods cannot be used in this case

as the source location is not known and some locations are inaccessible for the

hammer testing. An example of vehicle vibration measurement is presented in

figure 2.20, where a tri-axial accelerometer was mounted on the wheel side for

road noise measurements.

The data obtained from road noise measurements are usually analysed with

PCA that we will introduce in chapter 4. If the primary vibro-acoustic paths

were known and could be also measured reliably, then ANC design methods

for feedforward control based on the primary paths [Nelson and Elliott (1991)]

could potentially be used that are also applicable to feedforward control for ANC

headphones technologies [AMS (2015)]. Unfortunately, the road noise responses

vary significantly and thus adaptive methods are used, since they can compensate

for changes in the acoustic environment of the cabin. In the following section

we will introduce the variability of the road noise specta under various driving

conditions.
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Figure 2.20: Physical installation of the accelerometers on the front axle. ◦:
An accelerometer mounted on the wheel side.

2.7 Structureborne road noise responses

Structure-borne road noise is mostly dominant when cruising with medium to

high speed (50 km/h-100 km/h) over coarse chip surface. In this section we

present the road noise responses measured at the headret locations for four rep-

resentative speeds, in order to find out the main structure-borne road noise

resonances that are audible inside the compartment. In this particular luxury

vehicle two main frequency bands of road noise can be identified between 90-120

Hz and 190-220 Hz for three incremental speeds, 50 km/h, 60, 80 km/h and

100 km/h. The tyre pressure was set to 2.2 bar that is recommended by the

manufacturer. The main road noise resonances can be observed in the measured

autospectra in figures 2.21(a)-2.21(d).

It can be observed that the noise levels increase as a function of the speed

of the vehicle, due to the higher levels of vibrations at mechanical inputs of the

axles as it illustrated in figure 2.21(e), in specific for one of the suspension control

arms. This trend verifies the strong dependence on the tyre-road interaction and

determines the magnitude and the frequency content of the forces that act the

vehicle structure. The first low frequency band is the road rumble around 90-120

Hz that is 5 dB(A) louder at the rear headrests than in the front for all of the

driving conditions. The rumble peaks at 60 dB(A) for 100 km/h at the rear

headrests as shown in figures 2.21(c), 2.21(d). This could be explained by the

fact that the rear headrests are close to the vibrating area of the vehicle that

causes the road rumble. As for the second road noise band it is effective in the

frequency range of 190-220 Hz and it is the typical tyre cavity resonances that

travel from the tyre through the suspension links up to the rest of the vehicle

structure. At medium speeds such as 50 km/h, two tyre cavity resonances are

noticeable and at high speeds such as 100 km/h only one tyre resonance is created

during the rotation of the wheel [Wang (2010)].

Figures 2.22(a)-2.22(d) present the spectrograms of the microphone signals
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(a) Left hand front microphone responses. (b) Right hand front microphone responses.

(c) Left hand rear microphone responses. (d) Right hand rear microphone responses.

(e) Acceleration response measured at the
lower arm at the left hand front suspension.

Figure 2.21: Structure-borne road noise response at the interior in a Bentley
Flying Spur measured at the four headrests positions and an acceleration re-
sponse at one of the suspension arms at the front axle. The measurement was
conducted at a rough surface for providing high excitation inputs at the tyres.

−: 50 km/h, −: 60 km/h −: 80 km/h, −: 100 km/h.

are presented, where the two main structure-borne road noise bands are notice-

able. It should be noted that the amplitude of the noise in these two bands of

road noise changes due to the randomness of the road surface. This is very im-

portant observation as even with a constant speed the noise levels are maintained

at the same sound pressure levels as the road excitation are roughly consistent.

Structure-borne road noise resonances are usually predicted through modern

CAE software packages with advanced FEA solvers. In addition to this, the

resonant frequencies of tyre cavity noise can be predicted from an acoustic tube

model with both sides open that couple with the rest of the vehicle structure. The
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(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 2.22: Spectrograms of the four microphone responses at 50 km/h for
a 20 dB(A) amplitude spam.

acoustic tube model for tyre cavity noise was first introduced by Thompson in

[Thompson (1995)]. The main assumption of this model is that at low frequencies

plane waves propagate inside the tyre cavity, as the wavelength of the acoustic

waves is larger than the dimensions of the cross-sectional area of the tyre. This

is the case when rolling tyre is loaded by road forces and it is deformed. As a

result, the cross-sectional area of the cavity is compressed, which may cause a

volumetric air change inside the tyre cavity. The acoustic compliance changes

and two standing wave are also created, one on the horizontal and one on the

vertical direction of the tyre. These two acoustic waves couple with the rest of

the suspension structure and propagate throughout the vehicle structure into the

interior and cause a disturbing tonal component. The tyre mode is presented in

2.23(b), where also an acoustic model of the tyre is also illustrated.

Unfortunately, modifications on the structure cannot complete remove the

noise levels of tyre cavity resonances, but only attenuate some part of the prop-

agating wave as illustrated in 2.24(a)-2.24(b). As an example, a passive noise

control technique is applied only at one of main paths at the front axle. The

mass of the front axle was increased, in order to control the transmission of tyre

cavity vibrations. In terms of noise reduction, 2 dB(A) at 188 Hz and 3 dB(A) at

211 were removed from the road noise spectra at the driver’s headrest, whereas

no reduction was obtained at the rear headrest. This happens because the fact
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(a) Unloaded tyre cavity acoustic tube model. (b) Loaded tyre cavity acoustic tube model.

(c) Acoustic mode of the loaded tyre. (d) Acoustic mode of the loaded tyre.

Figure 2.23: Tyre cavity acoustic tube models and the two first modes of the
cavity. Taken by Thompson [Thompson (1995)].

that the rear axle was not modified or tuned to reduced vibrations at the tyre

cavity range.

(a) Left hand front microphone response. (b) Left hand rear microphone response.

Figure 2.24: Tyre cavity control, with a modified structural path at the front
axle. −: Before passive treatment. −: After passive treatment.

Tyre noise cavity is the only road noise resonance, which is known and usu-

ally sensitive structural parts of the suspension system couple well with the tyre

resonances and allow their transmission. Several modifications on the suspen-

sions and the axles might be necessary for blocking all the paths that allow tyre

cavity vibrations to propagate into the axles after finding the most significant

transfer paths from TPA as demonstrated in [Neto and de Oliveira (2010)]. An-

other characteristic of tyre cavity noise are the two acoustic resonances of the

tyre vary as a function of speed. Figure 2.25 demonstrates the variability of the

two resonant frequencies of the tyre over a coast down from a high to a medium

speed, because of the Doppler effect.
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Figure 2.25: Tyre cavity resonant frequency drift over time and coast down
speed sweep from 100 km/h to 50 km/h at the driver’s headrest.

At high speeds the two tyre cavity resonances are evident from the beginning

of the recording. A time increases and the vehicle reaches 50 km/h, only the

high frequency tyre cavity resonance appears to dominate, whereas the distance

of the two resonance has reduced significantly. A significant level drop is evident

in the midfrequency road resonance at 290 Hz, whereas the rumble has not

reduced by no more than 5 dB(A), which is also the case also for the constant

speed measurements of same response (figure 2.21(d)). These are significant

observations for an adaptive algorithm, since a multichannel controller with a

high number of taps will not be able to adapt in such a short period of time ,as

several minutes are required for the adaptation stage on the road [Stothers et al.

(1995)]. Still under constant driving conditions this could be an issue and once

the adaptive system is trained, the ”frozen” coefficients of the filter will be able

to generate the appropriate control signals to compensate for the rapid changes

in the road responses.

2.8 Summary

In this chapter we performed several NVH measurements in a luxury vehicle, in

order to analyse the physical FRFs, which are crucial in structure-borne road

noise generation. We began with an analysis of vibro-acoustic FRFs in the road

noise range and found that the NTFs of the subframe are around 60 dB [Pa/N]

in the rumble range and 50 dB [Pa/N] in the tyre cavity. This indicates that the

front axle subframe is the most sensitive part out of the five mechanical parts

that were tested with the impact hammer technique. We also investigated the

sound field of the cabin at low frequencies, in order to have an impression on
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how the loudspeaker system of the vehicle affects the sound field inside the car.

This is instrumental for the of of ANC system, as the physical distance between

the loudspeakers and the location of the microphones may a strong influence on

the adaptive algorithm, as we will explain later in chapter 6.





Chapter 3

Physical simulator of road

noise

Structure-borne road noise is usually physically simulated with the use of con-

trollable excitation sources such as chassis dynamometers or shaker transducers.

The main benefit of using chassis dynamometers is that road noise can be tested

at various speed ranges and sweeps. However, two drawbacks in this approach:

the first one had to with background noise from the drum motors, whereas the

second one deals with the pseudo-random excitation that is created by the peri-

odicity of the rolling surfaces. Road noise is a signal of random nature, thus the

use of shaker transducers, which are fed with random signals. In this way, the

latency of the control system can be revealed as the performance of the ARNC

system is sensitive to delays. Road noise simulators based on shaker transducers

may also reveal the effects of delays in the control path [Dehandschutter et al.

(1995), Sas and Dehandschutter (1999)], hence the experimental configuration of

this chapter might be an alternative test bench for ARNC development, before

testing on the road. In chapter, we focus on the development of a physical road

noise simulator with shaker transducers as the primary source of the vehicle ex-

citation. The outcome of this NVH technique development, will provide us with

useful insight that will help us study the sound field inside the cabin when it is

dominated purely by structure-borne sound without the presence of other NVH

components and external noise sources during the measurements. Additionally,

we will be able to analyse this NVH attribute without other contributions that

are usually present under driving conditions and influence the repeatability of the

63
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experiments. Previous studies have used road noise simulators to develop and

demonstrate ARNC systems for various control strategies [Ferren and Bernhard

(1991), Adachi and Sano (1998), Sas and Dehandschutter (1999)]. However, in

most of these experimental studies a single shaker was attached to one of the

tyres or directly mounted on a stiff location of the vehicle’s structure with some

parts of the vehicle dismounted. These changes in the vehicle were necessary,

in order to access rigid locations on the vehicle’s structure, which allow good

coupling between the shaker source and the body structure. It is unknown to

the us whether the experimental data were valid enough to allow the correla-

tion between the simulated responses with actual measured noise under driving

conditions. In addition to this limiting factor of the previous simulators, the

low number of excitation inputs does not create a multi-source structural en-

vironment across the vehicle. In such a structural environment several sources

interact with each other and the vibrational responses are partially correlated

with the interior road noise resonances. In our study we hope to improve these

conditions and develop a more realistic simulation of the structural behaviour

of the vehicle for random inputs by including four excitation locations, one for

each tyre. This addition in the hardware configuration of the simulator allows

to replicate the road noise responses of the specific vehicle, so that feedforward

ARNC systems experimentally at the main road noise resonances.

Recent advances in shaker transducers technologies enable the management

of the force inputs to each tyre individually and replicate the acceleration re-

sponses on the axles that are acquired from road testing [Bräunig et al. (2013)].

However, this type of experimental setup requires extra sophisticated equipment

and large shaker transducers that apply high output forces at very low frequen-

cies. As an alternative in our experimental setup we focused to simulate the

spectra of road noise responses that we acquired under driving conditions by

exciting directly on the vehicle’s tyres with random forces from 0-1 kHz, in order

to create an uncorrelated vibrational field.

3.1 Chapter outline

This chapter is divided into a number of sections that aim to describe in detail our

experimental setup and results. As a starting point we excite a front tyre with

a band-limited force signal, while the microphone responses at the headrests are

measured for a quarter vehicle analysis in section 3.2.1. An improved method of

exciting the tyre and replicating the road noise responses is then developed and

presented in section 3.2.2. In the final step of this development, the simulated

responses are compared with road noise measurements (subsection 3.2.4), in
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order to evaluate and compare the quality of the measured data of that were

produced by the physical road noise simulator.

3.2 Technique development of physical simulation of

structure-borne road noise

As previously mentioned, chassis dynamometers with special surfaces mounted

on the roller are used for the simulation of road noise under rolling conditions. In

this case, the surfaces of the rollers do not provide perfectly random inputs into

the vehicle’s structure, due to the periodicity of the rolling surfaces. Generally,

two wheel rollers are available in the majority of automotive testing facilities and

thus the structure-borne road noise contributions of the front and rear axle are

measured separately. This may prove to be an issue for an all-wheel vehicle like

the one we use in our study. In particular, mechanical parts of the powertain

transmission must be removed such as the drive shaft to allow road noise testing.

Still a simulator based on shakers can excite the whole vehicle under the condition

that at least four shakers are used to provide the input forces at the four tyres.

Four shaker transducers that are suitable for low frequency NVH testing are

used in this development to ensure that high input forces can be applied to the

tyres. In this way, audible structure-borne noise levels are obtained inside the

compartment.

3.2.1 Quarter vehicle excitation

The first stage of this experiment involved a number of steps. First, the shakers

were attached on the tyres almost diagonally, due to space limitations and placed

the vehicle on top of some wooden blocks, as illustrated in figure 3.1(a). Force

sensors for measuring the applied forces on the tyre were placed between the tyres

and the shakers. The sensors were mounted between the beams that were bolted

on the shakers and the metallic washers, which in turn were glued upon the tyre

and was used as a contact area. This modification was found necessary, as tyre

compliance compensates for forces coming from the transducer. Other parts of

the wheels, such as the alloys, were difficult to excite and in turn produce consis-

tent measurement results. Recently, sophisticated shaker technologies have been

specially developed for simulating the acceleration responses at the suspension

with the use of modern DSP controller that can compensate for the tyre com-

pliance [Bräunig et al. (2013)]. The graphs in in figures 3.2(a)-3.2(d) illustrate
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(a) Measurement setup outside the ve-
hicle.

(b) Microphones at the headrests.

Figure 3.1: Static test bench for physical simulation of structure-borne road
noise.

the noise responses of the quarter vehicle measurement (between 0-300 Hz), in

relation to the band-limited input force signal. We observe several resonances,

yet only the tyre cavity resonance centered at 200 Hz dominates the sound field

of the cabin. Another interesting observation is that at the tyre cavity range, the

microphones placed at the outbound facing side of the vehicle, measured slightly

higher noise levels than the inbound ones. The road rumble appears at much

lower sound pressure levels than the tyre cavity. This can be possibly due to the

fact that the front axle vibrations are not the primary contributors of the road

rumble and this highlights the fact that the rear axle needs to be included in the

(a) Noise spectra at the left hand front head-
rest.

(b) Noise spectra at the right hand front head-
rest responses.
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(c) Noise spectra at the left hand rear headrest
responses.

(d) Noise spectra at the right hand rear head-
rest responses.

Figure 3.2: Microphone responses at the four headrests for an input force from
0 to 250 Hz applied to the left hand front wheel. −: Microphone responses
at the inbound facing side of the vehicle. −: Microphone responses at the

outbound facing side of the vehicle.

3.2.2 Whole vehicle excitation

The simulated noise responses at the headrests with four input forces applied to

each wheel are presented in 3.3(a)-3.3(b) and 3.4(a)-3.4(b). Two changes in the

excitation technique were performed hoping to improve the simulated structure-

borne noise responses . The first change deals with the input signal that drives

the shaker transducers. The frequency range was set from 0-250 Hz to 0-1 kHz,

in order to introduce broadband random forces into the structural system of the

vehicle. A small metal cube was mounted between the metallic washer on the

tyre side and the force gauge to improve the coupling between the shakers and

the tyres. As a result, less losses between the shaker and the tyre were witnessed

than in the previous setup. Interestingly, all the road noise resonances are now

present in the simulated road noise spectra (figures 3.3(a)-3.4(b)).

(a) Input force autospectra at the front tyres.
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(b) Noise responses at the front headrests.

Figure 3.3: Forces applied at the diagonal of the front tyres and the corre-
sponding sound pressure responses at the headrests of the front seats.

With regards to the input forces at the front tyres a resonance at around

180 Hz appears to dominate the force spectra (figures 3.3(a)-3.3(b)), whereas

the tyre resonance of the noise spectra at the front headrests is centered slightly

higher at 200 Hz. The force energy is concentrated between 20-200 Hz, while

when it is above 200 Hz the forces decay sharply, due to the tyre dynamics that

compensate for forces at higher frequencies. Two higher order resonances are also

present in the force spectra at 290 Hz and 300 Hz, with the first one appearing

also at the noise responses at the front headrests. Figures 3.4(a)-3.4(b) illustrate

the input forces at the rear tyres and the noise responses at the rear headrests.

In this case it is obvious that the force levels are slightly lower than in the front

headrests.

In the cases, front and rear tyres above the tyre cavity resonance (220Hz)

the input forces are significantly reduced. In general, the input forces seem to be

high at the range of 20-200 Hz with some higher order tyre resonances present as

we already discussed in the case of the front forces. Several reasons may cause

this:

(a) the tyre stiffness that can effectively block input forces above 200 Hz

(b) the need for higher input force levels that are closer to the magnitude

of road forces that are obtained on rough roads.

The main improvement of the developed experimental technique is that

the simulated road noise spectra contain all the structure-borne road noise res-

onances, which appear under driving conditions at constant speed around 50

km/h. This is in contrast with the quarter vehicle excitation, in which only tyre

cavity dominated the sound field in section 3.2.1.
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(a) Input force autospectra at the rear tyres.

(b) Right hand rear microphone force.

Figure 3.4: Forces applied to the diagonal of the rear tyres and the corre-
sponding sound pressure responses at the headrests of the rear seats.

3.2.3 Comparison between multiple coherence functions based

on force and acceleration reference signals

As we discussed in chapter 2, various structural sources act upon the vehicle and

multiple structural paths are responsible for the transmission of the vibrations

related to structure-borne road noise. This happens because many parts of the

vehicle are not mechanically decoupled or not optimise in terms of structural

dynamics to block vibrations that can cause structure-borne sound. As a conse-

quence, when we perform random road noise excitations the multiple coherence

function at the microphones can be generally poor (since the acceleration signals

are partially correlated). Figure 3.7 presents the location of the accelerometer

sensors on the axles. In this section we investigate the alternative case, which

uses force signals as references in the calculation of multiple coherence function

between the input forces at the tyres and the responses at the microphone placed

at the headrests. Figures 3.6(a)-3.6(d) illustrates the outcome of the comparison
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Figure 3.5: Accelerometer locations at front and rear axles. The two front
locations are symmetrical at the front suspension and one at the rear subframe

mount at the rear axle. �: One dimensional accelerometers

between multiple coherence functions based on force and acceleration autospec-

tra as follow:

γ2
mk(f) =

|Sxmyk(f)|2

Sxkxk(f)Symym(f)
, (3.1)

where the k -input reference force autospectra are defined as Sxkxk(f) and the m-

acceleration autospectra are Symym(f). It is evident in these figures that the four

force signals measured by the force sensors between and the tyre and the shaker

transducers result to higher multiple coherence values in comparison with the

three acceleration signals at the z-direction mounted at important mechanical

parts of the vehicle, such as suspension links and subframe mounts. The multiple

coherences used two acceleration signals that were measured at the front axle and

one at the rear. Strikingly, the coherence is even lower at the rear microphones.

This may happen because as only one accelerometer placed at the rear axle is

used in this calculation. This verifies the fact that one sensor as reference is not

enough to capture all the components of the rear axle vibrations, especially if we

take into account the complicated geometry of modern subframe and multilink

suspensions.

(a) Left hand front microphone. (b) Right hand front microphone.
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(c) Left hand rear microphone. (d) Right hand rear microphone.

Figure 3.6: Multiple coherence between two types of the vibration signals
(forces and accelerations) and the microphones at the headrests. −: Four

forces as reference signals. −: Three acceleration as reference signals.

This acceleration signal set resulted to poor coherence at the rear headrests,

especially for the right hand rear microphone response. Therefore, it is imper-

ative to include further measurement locations, so that the correlation between

the noise signals at the rear headrests and the vibrations from the rear axle

increases. Two extra measurement locations at the rear axle were included at

the rear as figure 3.7 illustrates. This increase in the reference sensor number

Figure 3.7: Accelerometer locations at front and rear axles. The two front
locations are symmetrical at the front suspension and one at the rear subframe

mount at the rear axle.

and location is followed by a significant improvement of the multiple coherence

functions based on accelerometers as shown in figures 3.8(a)-3.8(d).
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(a) Left hand front microphone. (b) Right hand front microphone.

(c) Left hand rear microphone. (d) Right hand rear microphone.

Figure 3.8: Multiple coherence between the vibration sensors (force gauges,
accelerometers) and the microphones at the headrests. −: Four force signals

as references. −: Five acceleration signals as references.

If we now compare the coherence functions based on the 4 force signals with

the 5 acceleration signals, we observe that they agree with each other between

80-150 Hz. The acceleration based coherence is slightly higher, as the structure

amplifies these vibrations, above this range and in particular in the tyre cavity

range 180-220 Hz. In fact these are the most audible road noise components

inside the car. Figures 3.9(a)-3.9(e) demonstrate the acceleration spectra at the

five measurement locations on the axles. The acceleration autospectra of the

control arms indicate that they are the main transmission paths of vibrations

that relate to tyre cavity resonances.
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(a) Front axle: Left hand side front suspension,
lower control arm.

(b) Front axle: Right hand side front subframe
mount.

(c) Rear axle: Left hand side front mount. (d) Rear axle: Right hand side front mount.

(e) Rear axle: Right hand side rear mount.

Figure 3.9: Five acceleration signals measured at the front and rear axle.

It then comes as no surprise that in figures 3.9(a)-3.9(e) several structural

resonances appear at the road noise bands. Interestingly, high levels of vibration

were recorded in the frequency of the tyre cavity noise at the accelerometer

locations of the front axle (figures 3.9(a) and 3.9(b)). High acceleration levels at

the rear axle were obtained mostly at the low frequency rumble band between

90-120 Hz for the figures 3.9(c)-3.9(e), whereas low levels of vibrations were

measured at the tyre cavity range. This demonstrates that vibrations that relate

to the road rumble dominate at the rear axle, whereas vibrations at the tyre
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cavity range more noticeable at the front axle. Overall, road noise dynamics are

present in all subframe mounts as the graphs in figures 3.9(b)-3.9(e) demonstrate.

3.2.4 Comparison of road noise and simulated road noise with

shaker

This section presents a study that involves road noise measurements at the head-

rest at 100 km/h and the noise responses obtained by the shaker experiment.

Figures 6.20(b)-6.22(a) illustrate the outcomes of the comparison between road

noise responses and simulated road noise spectra with shakers.

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 3.10: Comparison of interior noise at the four headrests. −: Simulated
road noise with shaker transducers. −: Road noise measurement over a rough

surface.

For the purposes of this comparison, the road auto-spectra were reduced by

20 dB(A). In this way the comparison is focused only at the spectral content, as

the shakers cannot produce the same inputs that the actual tyre-road interaction

generates. This reduction of road noise levels was performed deliberately as the

shaker transducers were required to be driven with a certain voltage level limit

to avoid any distortion products at the output of the transducers. Due to the

limitations on the sensitivity of the transducers the simulated road spectra are

lower than the actual spectra measured under operational condition.
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In terms of the content of the simulated spectra, the road resonances they

coincide with the ones of the road measurements. This is particularly evident in

the road noise spectra at microphones placed at the two rear headrests.

The rumble band in the case of the simulated noise seems to have greater

bandwidth compared to the measured responses on the road at the rear headrests

in figure 6.20(d) and 3.10(d). This is probably caused by the fact that the shakers

strongly excite two DoF as they are mounted on the diagonal of the tyres. This

may trigger high vibrational levels on the z-direction at the rear axle, as we

previously described in section 3.2.3. These structural resonances couple well

with the sound field below 200 Hz as they appear at the microphone responses.

Yet, the noise responses measured on the road strongly depend on the consistency

of the surface and its roughness. Even if there are differences in the way that

the tyres are excited during the road measurements compared to the simulation

with the shakers, the shape of the road spectra is not that different, which is an

important validation step of the physical road noise simulator.

3.3 Summary

In this chapter we developed a technique that simulates structure-borne road

noise with controllable structural sources was developed. We began with a dis-

cussion on the noise measurements obtained by the quarter vehicle simulator,

which several previous studies have used. We concluded that such an approach

only reveals road noise contributions from the front axle. We also revealed that

only one road noise component was detectable at the microphones that relates

to a tyre cavity resonance is detectable at the microphones.

As a means to improve this NVH technique, we extended the system mea-

surements using three extra shakers one for each tyre. Through this improvement

we allowed four independent sources to act on the tyres. On this basis, we went

on to study how the number of observation signals, which are used as reference

inputs for the determination of multiple coherence function between the struc-

tural inputs and the corresponding noise response at each headrest. We verified

that a small number of input sensor leads to low coherence values especially if the

structural source is composed by several DoF. Instead of increasing the DoF at

the initial measurement locations of the accelerometers we found an alternative

method to improve the condition. We increased the observation points at the rear

axle to capture all the vibrations at various input locations, which act as inputs

into the rest of the vehicle structure. Then, we compared the multiple coherence

functions against each other. We found that the four tyre forces, which were
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the actual inputs into the vehicle system, provide higher coherency compared to

three acceleration signals. For the improved sensor arrangement with the five

acceleration signals was found enough to result to good agreement between the

multiple coherence function based on the four forces and the one based on the

acceleration signal set. This can be explained by the fact that the accelerome-

ters at the rear axle were located at sensitive locations—i.e. the vibrations are

highly correlated with the rumble noise. As a direct consequence, this configu-

ration helped increase the multiple coherence functions with the acceleration as

reference input.

In the final stage of the current study, we evaluated the performance of the

physical simulator by comparing the simulated road noise spectra with road noise

signals recorded on the road. It was found that the physical simulator can in fact

replicate the noise responses, which were measured under driving conditions on

a rough surface. The only disadvantage of this solution is that higher noise levels

are measured on the road, but still the simulated road noise spectra are quite

similar to the ones measured on the road. In particular, the simulated road noise

resonances coincide with the actual ones from the road. These findings encourage

the further use of this simulator in structure-borne NVH analysis as well as the

development of active control systems in an experimental environment, where

only this attribute is present.



Chapter 4

Signal analysis of road noise

The principal of coherent sound sources is the basis of active noise control, since

the reproduced sounds by the loudspeaker system inside the vehicle’s cabin must

be coherent with the primary road noise disturbances in order to achieve satis-

factory active noise reduction. As a consequence, feedforward controllers need

to make use of a set of vibrational signals that are highly correlated with the

road noise. This way they can generate a secondary sound field through the

loudspeaker system that is highly coherent with the interior road noise. It is

thus not suprising that the vibration sensors must be able to observe the main

dynamics of road noise as the level of road noise control-attenuation depends on

their location in the vehicle structure.

In this chapter an investigation of coherence function between the vibrations

at the front and rear axle and the microphones at the headrest is presented. A co-

herence based method is developed for the selection of the number of accelerom-

eters and their placement on the vehicle. As a first step the ordinary coherence

functions are calculated between all the accelerometer and microphone signals.

A colour map of the coherence at each of the transfer path is created in order

to investigate in which channels there is some correlation between the measured

vibrations and the interior road. As an outcome of this analysis the accelerom-

eter signals that have relatively high coherence within the road noise frequency

bands are then used to calculate the multiple coherence. We found that these

set of accelereation signals are highly coherent with the road noise inside the

cabin high and thus they were also used as reference-inputs for predicting the

attenuation of a feedforward ARNC system.

In the past mathematical optimisation techniques [Stothers et al. (1995)]

77
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have been used for obtaining an optimal set of accelerometer signals for imple-

menting feedforward controllers in vehicles. Apart from this method techniques

for the identification of the accelerometers location in the vehicle structure have

been so far based on in-situ measurements on the car. Ussually, Principal Compo-

nent Analysis (PCA) is performed on the Cross-Power Spectal Density (CPSD)

matrix of the acceleration signals for ranking the structural sources and identify-

ing their Principal Components (PC) [Wyckaert and Van der Auweraer (1995)].

The main drawback of the current available methods is that they always result

to a large number of acceleration sensors in order to ensure that the controller is

able observe the all the structural dynamics that are related to road noise. This

is due to the fact that modern vehicles have many sensitive structural paths with

different level of contributions to the interior road noise and by measuring all the

degrees of freedom on the vehicle structure secures good performance of the con-

toller. This can be the general case for vehicles with very poor structure-borne

road noise performance, but not vehicles that have only a couple of road noise

components.

It is necessary to have a better insight of the coherent contributions to the

interior noise before applying an ANC system, since as it will be shown in this

chapter various locations on the vehicle structure can observe several road noise

dynamics with good coherency. These locations may result to a low number of

the reference sensors and used as an optimimum set of inputs to the controller.

4.1 Chapter outline

In this chapter the discussion is restricted to coherence analysis of road noise data

that were obtained by road measurements. The coherence analysis is divided

in three sections, quarter, half and whole vehicle analysis for identifying the

location of the each road noise source around the vehicle and their coherent

contributions. The methodology that is applied to the vibrational signals is

presented in sections 4.2.3. The multiple coherence of the selected acceleration

signals from the method and their predictions for a causally uncostrained ARNC

are presented in sections 4.2.4 and 4.3 .



Chapter 4 Signal analysis of road noise 79

4.2 Coherence analysis

4.2.1 Introduction to road noise analysis

Road noise signals are often measured with accelerometers mounted at the sus-

pension and subframe connection points. This way the main noise transfer paths

are identified and ranked according to the vibrational energy that is observed at

each path. Figure 4.1 describes the road noise transmission path problem.

Figure 4.1: The road forces f result to vibrations that are measured by the
accelerometer signals, x1,..., xk. The road noise response d inside the cabin is

the superposition of all the output signals from the noise transfer paths.

The measurement setup of road noise on a quarter vehicle that was used to

obtained the first road noise data is shown in 4.2. Four microphones were placed

on the headrests in the vehicle’s compartment and four tri-axial accelerometers

at four different locations at the suspension of the left hand front wheel.

Figure 4.2: Sensor arrangement on the vehicle. The red dots indicate the
measurement locations of the sensors. Accelerometers were mounted close the
front wheel and four microphones were measuring the noise at the headrests.

At a first step the acceleration cross-spectra density matrix (CPSD) is calcu-

lated, in order to perform Principal Component Analysis (PCA). For vibrational

signals with non-zero off-diagonal elements in the CPSD matrix, the virtual

coherence function is calculated [Otte et al. (1988)]. This can performed by de-

composing the CPSD matrix into a diagonal matrix that contains the virtual

uncorrelated auto-powers of the measured acceleration signals.

For every noise transfer path the corresponding single-input, single-output

coherence can be defined as



80 Chapter 4 Signal analysis of road noise

γ2
mk(f) =

|Sxmyk(f)|2

Sxkxk(f)Symym(f)
, (4.1)

and the acceleration CPSD matrix can be decomposed with the use of Singular

Value Decomposition (SVD) as [Wyckaert and Van der Auweraer (1995)]

Sxx(f) = U(f)Svv(f)V(f), (4.2)

,where the virtual autospectra are in the diagonal matrix Svv(f).The summed

virtual coherence function based on the virtual auto-spectra can now be found,

which is equivalent to the multiple coherence function as suggested in [Price and

Bernhard (1986),Akiho (1995)] as follow

γ2
m:k(f) =

K∑
k=1

|Svkym(f)|2

Svkvk(f)Symym(f)
, (4.3)

,where Svkym is the cross-spectrum between the m-th microphone signal and

the k-th acceleration signal and Svkvk and Symym are the virtual auto-spectra

of the acceleration and sound pressure signals respectively. The new matrix

that contains the virtual auto-spectra can be used for identifying the number

of independent vibrational sources that act on the vehicle structure [Otte et al.

(1988)], [Sutton et al. (1994)].

(a) Measured acceleration power spectral den-
sities.

(b) Virtual uncorrelated acceleration power
spectral densities.

Figure 4.3: Measured and virtual uncorrelated power spectral densities of the
left hand front suspension.

The most dominant components for the front suspension are found at the

tyre cavity region. In particular, in the frequency range of 180-220 Hz, four

principal components are actually important in figure 4.3(b) and therefore four
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independent contributors are acting at the left hand front suspension. Likewise,

four independent contributors are also found in the rumble range 100-120 Hz.

In contrast, in the road drum frequency range, six contributors are noticeable at

around 20 Hz, 60 Hz, 110, 180 Hz, 220 Hz and 290 Hz. To conclude, maximum six

independent structural sources are acting on the front suspension this observation

correlates well also with previous findings [Park et al. (2002)]. However, it is

questionable if all of them are necessary as inputs to a feedforward controller as

in reality the structure-borne noise levels are dependent on the ranking of these

sources that is usually found in TPA [Elliott et al. (2013)]. In chapter 6 we will

investigate which axle locations and their DoF are actually important for the

optimal performance of the controller.

4.2.2 Coherence analysis of quarter vehicle

The acceleration signals of the previous were used to calculate the coherence

functions of each transfer path.Figures 4.4(c)-4.4(f) present the coherence func-

tions for the front microphones and figures 4.5(c)-4.5(f) for the microphone at

the rear headrests.

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Coherence map between the left hand front
microphone and the accelerometers close to the
front wheel.

(d) Coherence map between the right hand
front microphone and the accelerometers close
the front wheel.
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(e) Multiple coherence between the left hand
front microphone and the accelerometers close
to the front wheel.

(f) Multiple coherence between the right hand
front microphone and the accelerometers close
to the front wheel.

Figure 4.4: Front microphones responses and coherence functions at 60 km/h.

In figures 4.4(c) and 4.4(d) relatively high coherence (≥0.7) can be noticed

around 180-220 Hz for most of the paths, where two tire cavity peaks at the sound

pressure responses in figures 4.4(a) and 4.4(b) dominate. Some correlation can

be also noticed around 290 Hz for some paths at a highly damped resonant peak

around 290 Hz. High multiple coherence around 0.9 is obtained at the tire cavity

range as it can be seen in figures 4.4(e) and 4.4(f) for the front microphones.

Similar behaviour can be also observed for the case of the rear microphone:

especially at the left hand rear microphone in figure 4.5(a) for most of its paths.

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Coherence map between the left hand front
microphone and the accelerometer at the front
wheel.

(d) Coherence map between the right hand
front microphone and the accelerometer at the
front wheel.
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(e) Multiple coherence between the left hand
front microphone and the accelerometer at the
front wheel..

(f) Multiple coherence between the right hand
front microphone and the accelerometer at the
front wheel.

Figure 4.5: Rear microphones responses and coherence functions at 60 km/h.

At the frequency range of the rumble 100-120 Hz low coherence is noticed

for all of the paths in figures 4.4(c), 4.4(d), 4.5(c) and 4.5(d). This fact indi-

cates that there is low contribution of the front axle at rumble range. As a

consequence, the multiple coherence is around 0.8 at 105 Hz for all of the micro-

phones, but at the rest of the range is around 0.6 or less in the case of the rear

microphones. As previously noticed in the PCA of the acceleration signals there

were no significant independent components between 100-120 Hz. In addition

the multiple coherence functions in figures 4.5(e) and 4.5(f) between the rear

microphones and the accelerometer signals high coherence is only found in the

tire cavity range 180-210 Hz. This indicates that it is very likely that the rumble

is due to a source acting somewhere at the rear axle of the vehicle that is not

included in this analysis.

In this quarter vehicle analysis it is revealed that not all the structure-borne

road noise sources are identified. The accelerometers placed at the quarter of

the car (around the right hand front wheel only) were not able to identify the

source of rumble noise. Only accelerometer positions that have high coherence

with the tire cavity noise were found. Therefore it is necessary to place more

accelerometers around the vehicle for identifying the coherent paths from each

wheel to the interior microphones.

4.2.3 Coherence analysis of half vehicle

In this section the results of the coherence analysis of half vehicle are discussed.

More measurement locations were included in the front axle and 27 accelerometer

signals were recorded. The data were obtained by driving the again on a rough

surface and on coast down starting with a high speed from 100 km/h and going

down to 60 km/h thus improving the excitation on the vehicle. The acceleration

cross-spectra density matrix is calculated separately for the front and rear axle in
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order to found out the contribution of each axle to the total road noise response

in the cabin.

(a) Left hand front microphone coherence map. (b) Right hand front microphone coherence
map.

(c) Left hand rear microphone coherence map. (d) Right hand rear microphone coherence
map.

Figure 4.6: Coherence map between each accelerometer signals mounted at
the front axle of the vehicle and the four microphones for a coast down from

100 km/h down to 60 km/h.

In the contour maps of figures 4.6(a) - 4.6(d) the results for the front axle

are presented. Relatively good coherence (more than 0.7) can be found at 290 Hz

for the left hand front microphone as before in the new accelerometer positions

at the front axle. Tire cavity noise is still sensed at some of the sensors, since

there is some coherence around 190 Hz for the left hand front microphone and

around 214 Hz for right hand rear microphone. However rumble noise is still not

coherent the front part of the vehicle. The following figures show the coherences

between the paths coming from the rear part of the vehicle. Apart from the

left hand front microphone in figure 4.7(c) the rest of the microphone coherence

maps indicate that there is coherence between some paths and the rest of the

microphones responses in the range of 100-110 Hz, where the rumble is located.
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(a) Left hand front microphone coherence map. (b) Right hand front microphone coherence
map.

(c) Left hand rear microphone coherence map. (d) Right hand rear microphone coherence
map.

Figure 4.7: Coherence map between each accelerometer signals mounted at
the rear axle of the vehicle and the four microphones for a coast down from

100 km/h down to 60 km/h.

4.2.4 Multiple coherence of whole vehicle

The multiple coherence analysis was extended to the whole vehicle by calculating

the virtual cross-spectra density matrix that contains the front and rear axle

acceleration signals for 60 km/h. It is obviously expected that a high number

accelerometer will result to high multiple coherence in the range of structure-

borne road noise, mostly in 0-300 Hz as it can be seen in figures 4.8(a))-4.8(d). It

can be also noticed that there is high coherence between the front microphones

and front axle vibrations compared to the rear axle in the 120 - 200 Hz. On

the other hand, in the range 100 - 120 Hz there better coherence for the rear

axle compared with the front axle, especially for the rear microphones. This

validates that the most of the noise at the rumble range is due to contributions
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from the rear axle that are highly correlated with the noise response at the four

microphones.

(a) Multiple coherences at the left hand front
microphone.

(b) Multiple coherences at the right hand front
microphone.

(c) Multiple coherences at the left hand rear
microphone.

(d) Multiple coherences at the right hand rear
microphone.

Figure 4.8: Multiple coherence functions between the four microphones and
three cases of accelerometer signal inputs. Black line:Whole vehicle accelera-
tion signals. Blue line: Front axle acceleration signals. Red line: Rear axle

acceleration signals.

4.3 Evaluation of a reduced set of acceleration signals

4.3.1 Multiple coherence analysis

Only four accelerometer signals were used to calculate the multiple coherence.

A good compromise has to use the two acceleration signals for tyre cavity from

the front axle and two for rumble, which were coming from the rear axle. The

acceleration locations of path 3 and 22 of the front axle (figure 4.6(a), 4.6(b))

were selected as they contribute highly to the range of 180 - 220 Hz. As for the
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rear axle, the locations of path 11 and 12 are used for the rumble range (figure

4.7(c), 4.7(d)).

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Multiple coherence at the left hand front
microphone.

(d) Multiple coherence at the right hand front
microphone.

Figure 4.9: Multiple coherence functions between the two front microphones
and the four accelerometer signals at 60km/h.

Here the multiple coherence of their combination is demonstrated in order to

shown that they can provide high coherence for an ANC system. In the rumble

at 100-110 Hz and tire cavity range 190-220 Hz, the coherence was around 0.8.

In addition good coherence is also noticeable at the midfrequency around 290

Hz.

(a) Left hand rear microphone response. (b) Right hand front microphone response.
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(c) Multiple coherence at the left hand rear mi-
crophone.

(d) Multiple coherence at the right hand rear
microphone.

Figure 4.10: Multiple coherence functions two rear microphones and the four
accelerometer signals at 60km/h.

Therefore these coherence values between the sensor may potentially be

enough for achieving good ANC performance at the road noise bands. In fig-

ures 4.9(c), 4.9(d),4.11(b), 4.11(c) the multiple coherence for the selected four

accelerometer locations are presented for stationary road noise data at 60 km/h.

The same exercise is also repeated for signals obtained at 100 km/h in figures

4.11(a) - 4.11(d).

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Multiple coherence at the left hand front
microphone.

(d) Multiple coherence at the left hand front
microphone.

Figure 4.11: Multiple coherence functions between the two front microphones
and the four accelerometer signals. at 100 km/h
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(a) Left hand rear microphone response. (b) Left hand front microphone response.

(c) Multiple coherence at the left hand rear mi-
crophone.

(d) Multiple coherence at the right hand rear
microphone.

Figure 4.12: Multiple coherence functions between the two rear microphones
and the four accelerometer signals at 100 km/h.

The coherence is still high at the main road noise bands, but outside these

bands the coherence has dropped significantly due to other NVH attribute start-

ing to taking effect on the sound field such as wind and traffic noise.

4.3.2 Non-causal prediction of feedforward ARNC performance

The multiple coherence of the four acceleration signals can be used to estimate

the performance of a multichannel ARNC system without including the con-

straint of causality [Oh et al. (2002)]. This means that the physical delays of the

secondary paths transfer functions and the electronic latency of the controller

are not included in this type of prediction and only the coherency between the

input-output signals is taked into account. The reduction as a funtion of fre-

quency of an active road noise controller is usually estimated with the use of the

multiple coherence between the accelerometer signals and a microphone signal

in the cabin as follow

R(f) = −10log(1− γ2
m:k(f)) (4.4)

Tables 4.1 and 4.2 present the predictions for the four optimised accelerometer

positions and for twenty accelerometer signal obtained from the main paths of

structure-borne road noise.
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Left hand front Right hand front Left hand rear Right hand rear

Speed [km/h] ARNC dB(A) ARNC dB(A) ARNC dB(A) ARNC dB(A)

60 3.05 3.03 3.04 3.04

100 3.02 3.00 3.02 3.03

Table 4.1: Predicted ARNC performance for each of the four microphone

at the headrests. The calculation is based on the four reference acceleration

signals for the frequency range of 0-500 Hz.

Left hand front Right hand front Left hand rear Right hand rear

Speed [km/h] ARNC dB(A) ARNC dB(A) ARNC dB(A) ARNC dB(A)

60 3.27 3.26 3.29 3.29

100 3.26 3.26 3.28 3.28

Table 4.2: Predicted ARNC performance for each of the four microphone

at the headrests. The calculation is based on twenty reference signals for the

frequency range of 0-500 Hz.

By comparing the two tables it can be noticed that there is a very small

improvement from four to twenty accelerometer signals as reference inputs. This

is contradictory to what has been found in the past for other vehicles as an

increase in the number of reference acceleration signal significantly improved

the reduction [Mackay and Kenchington (2004)]. On the other hand, Bernhard

has that four acceleration signals may result to 7 dB reduction for a Japanese

sedan [Heatwole et al. (1993)]. This variation in the unconstrained prediction

of the active reduction implies that there is a strong dependency between the

estimated ARNC performance and the type of vehicle. In our case the luxury

vehicle happens to have relatively high levels of refinement compared to typical

high volume vehicles, which explains the fact that theoretically it can achieve

more that 3.2 dB(A) reduction.

In our case the vehicle under investigation has relatively good structure-

borne road noise performance especially for the front seats as we discovered in

the analysis of the vibro-acoustic FRFs in section 2.5.3. As a result the ARNC

system can provide a certain amount of improvement in this vehicle, since from

the coherence analysis looks like that only two structural road noise sources

are actually acting on the vehicle. Hence, sufficient control at the road noise

resonances can be achieve also with a low number of accelerometer sensors.



Chapter 4 Signal analysis of road noise 91

4.4 Summary

Based on road noise measurement data, this chapter has investigated the most

coherent transfer paths of noise. It was found that the contributions from the

front axle are mostly related to tire cavity noise and also to a midfrequency

resonance at 290 Hz. On the other hand, the rumble noise (100-120 Hz) is

caused due to structural vibrations coming from several points at the rear axle.

Two subframe mount locations from the front and two from the rear axle were

selected to calculate the multiple coherence and evaluate the performance of

a feedfoward ARNC controller. Reduction around 3 dB(A) at each headrest

microphone are predicted, which is a good indication that the accelerometers

are placed at sensitive structural points of the car that provide high levels of

vibrations related to the interior road noise.





Chapter 5

Road noise synthesis

The coherence analysis of the vibro-acoustic paths in the previous chapter re-

vealed that there are two main locations at the rear axle that are responsible for

the road rumble between 90-120 Hz. As for the tire cavity band between 180-220

Hz the primary paths originate from the front axle of the vehicle. In this chapter

we will demonstrate that these locations can be used to artificially synthesise

the interior road noise with multireference adaptive filtering in the time domain.

This technique is widely used in the identification of impulse responses of physical

systems. In our case we determine the impulse responses of each NTF between

the reference sensors and a microphone in the cabin in the time domain without

the electro-acoustic paths between the loudspeakers and the microphones, which

we will use later to model the ARNC system. The main target of this artificial

synthesis of road noise is to highlight the contributions from the front and rear

axle with the use of adaptive filtering instead of frequency domain methods, such

as OTPA, which require matrix inversion of the CPSD matrix of the acceleration

signals. In our case, we make use of adaptive filtering to identify the systems

between the acceleration and sound pressure signals. This type of approach is a

special case of adaptive noise cancellation that does not include the effects of the

acoustic secondary paths. Therefore this can reveal the potential reduction with

a given set of sound and vibration signals acquired from the vehicle without the

effect of delays that are inherent in the secondary path impulse responses and

also in the hardware of the controller. To summarise, this study aims to offer an

impression of how close is the performance of adaptive filtering algorithms are to

the attenuation, which is computed non-causally in the frequency domain with

the use of multiple coherence function.
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5.1 Chapter outline

In section we start with the introduction of the famous multiple reference LMS

algorithm that is used in section 5.3 In section 5.4, 5.5, 5.7 and 5.7 the main

structural inputs into the vehicle’s body from the subframe are used for synthe-

sising their vibro-acoustic contributions.

5.2 Multiple reference LMS algorithm

Before introducing the formulation of multichannel feedforward adaptive algo-

rithms for active control, we first formulate the multireference LMS [Widrow and

Stearns (1985)]. The necessity of multiple reference input signals was first pre-

sented by Widrow, where multiple electrical noise sources are generating noise

at a the receiver of a transmission line [Widrow et al. (1975)]. Windrow also

highlighted the constraint of causality for the cancellation of random signals.

This was an important observation as the adaptive controller cannot converge

to an optimal filter solution, if the delay in the controller is greater than that in

the primary noise path. Therefore in the case of road noise large delays in the

controller will limit the performance of the ARNC system [Sutton et al. (1994)].

If the reference signals, xk(n) at each discrete time instant n measured by k -

reference sensors and also l -number is the primary disturbances that are observed

at the cancellation points, then a set of control filters wl,k(n) is required to create

the predicted l -disturbance signals as follows

d̂l(n) =
L∑
l=1

J−1∑
j=1

wl,k(n)xk(n), (5.1)

and the difference between the primary disturbance and the output of the adap-

tive filter can be found by the difference between the primary disturbance dl(n)

and its estimate d̂l(n)

el(n) = dl(n)− d̂l(n), (5.2)

which defines the l -th error signal that is fed back to the adaptive algorithm. If

we now jump some steps in the derivation of the multireference algorithm and
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move directly to the update the equation of the MISO LMS algorithm [Widrow

and Stearns (1985)]

wlk(n+ 1) = wlk(n) + 2µxk(n)el(n), (5.3)

where µ is the converge factor of the algorithm that controls the speed of the

adaptation and also determines the stability of the algorithm. In our case xk

are the acceleration signals that were recorded on the axles and dl(n) the road

noise signals. The signals d̂l(n) are the estimated road noise signals from the

outputs of the adaptive filters that will be compared to the actual structure-

borne road noise spectra. In this artificial way of synthesing the structure-borne

road noise spectra we will be able to have a first impression of how different sets

of acceleration signals help the algorithm to generate the appropriate output

signals that synthesise the road noise contribution of each signal set.

5.3 Road noise synthesis with multireference LMS al-

gorithm

The raw data that were recorded in the vehicle are now used to build a model of

an adaptive multireference algorithm that estimates the road noise contributions

of various acceleration signals set that were measured on the front and rear

axles. First, the multireference LMS was used to estimate the impulse responses

between the reference sensors and the observation sensors in the cabin. Once

these impulse response are found with a low estimation error, the reduction at

the observing microphones is evaluated (before developing the actual active noise

canceller). If the road noise is reduced effectively in this simulation, the reference

sensors provide inputs highly correlated inputs with the microphone signals. As

a consequence, this simulation allows to evaluate the accelerometers placed at

axle locations; whether their structural responses are sensitive in terms of large

road inputs that appear especially at coarse chip surfaces. The virtual synthesis

of road noise also allows to identify a set of impulse responses that represent

the vibro-acoustic paths between the vibrational and acoustical sensors with

the acceleration responses as reference inputs. This is an interesting type of

function for modern structural dynamics that it was defined in chapter 2.5.3 as

transmissibility. In this case, we will estimate the impulse response functions

with the use of adaptive filters for predicted the interior road noise for various

combinations of acceleration data. The selection of this reference inputs is based
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on the coherence analysis of chapter 4, where these structural inputs had high

coherence at the main road noise resonances.

Widrow introduced the constraint of causality in the case of adaptive noise

cancellation of random disturbances, such as road noise. It is necessary some-

times to delay the reference signals, in order to allow some time to perform

the required convolutions that are necessary for generating the output signals.

These signals synthesise the estimated noise signal by the multireference algo-

rithm [Widrow et al. (1975)]. In reality though, this delay is only introduced if

the main source is caused by an electrical system. In contrast, a physical system

has an inherent delay that corresponds to the propagation time of the waves

from the noise source to the receiving location.

Obviously, for road noise cancellation the main structural road noise sources

cannot be delayed, unless the source is an electrical disturbance, i.e. a control-

lable source. Yet, in the case of tire force excitation, the control system is

expected to perform the filtering stage in a very small time frame that depends

on the propagation time of the noise from the reference sensors to the micro-

phones in the compartment. Therefore, the accelerometer needs to be placed

as far as possible from the microphone in the cabin, in order to increase the

delay between the sensors. In this way, more time is gained for the controller’s

filtering, since the delay in the feedforward path cannot be compensated. Figure

5.1 illustrates the problem of the cross-coupling of the uncorrelated sources. The

actual sources ψm are affected by the spatial filtering matrix Fmk of the struc-

ture, since the multiple structural paths are summed at the reference location,

where the accelerometers are placed. The actual noise transmission paths Sm

for the sources are also summed at the microphone position, where the primary

road noise disturbance is located.

As shown in section 4.2.1 the measured acceleration signals are decomposed

with the use of SVD in the frequency domain. The reference signals also become

decorrelated by performing some filtering in the time domain. An interesting

technique that is based on the decomposition of the correlation matrix of the ac-

celeration signal was presented as a solution to the decorrelation of the reference

signals in [Dehandschutter and Sas (1998)]. However, this technique cannot be

implemented in a real-time system as it has very high computational require-

ments.

In the following simulation study, accelerometer locations on the subframe

mounts are used as reference inputs to an adaptive algorithm for system identifi-

cation. The purpose is to evaluate offline the perfomance of a causal feedforward

controller. Additionally, the estimated impulse responses between the sensors

are used to perform a time domain TPA analysis. It should be mentioned that
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Figure 5.1: Multireference adaptive filtering problem with adaptive FIR fil-
ters. Taken from [Widrow et al. (1975)].

the acoustic plants (from the controller’s ouput to the cancellation point) are

not included, in order to present an idealised scenario, where these plants do not

affect the magnitude and the phase of the cancellation signal.

5.4 Front subframe mounts as reference inputs to the

system

The acceleration signals from the front mounts were used to train a set of adaptive

filters with the multireference LMS algorithm that was described in the previous

section. These filters are an estimate of the contributing paths of the front axle

and thus a small estimation error would reflect how well correlated is this set of

acceleration signals.

In particular, the spectra of the error signals are evidently lower for the

front headrests (figures 5.2(a)-5.2(b)) compared to rear headrests (figures 5.2(c)-

5.2(d)). The poor estimation is particularly noticeable at the rumble range for

the microphones at the rear headrests. The only road noise component that

is estimated with evidently low error is the tyre cavity, which verifies what we

previously found in the coherence analysis.
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(a) Left hand front microphone responses. (b) Right hand front microphone responses.

(c) Left hand rear microphone responses. (d) Right hand right microphone responses.

Figure 5.2: Comparison between measured road noise spectra, synthe-
sised/estimated with LMS and the difference between them (error signal). −:
Road noise. −: Estimated front and rear subframe mount contribution. −:

Estimation error.

5.5 Rear subframe mounts as reference inputs

The contributions from the rear axle are now evaluated using the measured

acceleration signals measured at the mounts of rear subframe. We observe a

rather poor synthesis of the road spectra for the microphones at the front part

of the cabin (figures 5.3(a)-5.3(b)). In addition to this, it is almost the same

as the measured road noise spectra for most of the error spectra. However, we

notice a good estimation of the rumble range at the rear headrests, as figures

5.3(c)-5.3(d) illustrate. This indicates that high road rumble levels are caused

by rear subframe vibrations.
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(a) Left hand front microphone responses. (b) Right hand front microphone responses.

(c) Left hand rear microphone responses. (d) Right hand right microphone responses.

Figure 5.3: Comparison between measured road noise spectra, synthe-
sised/estimated with LMS and the difference between them (error signal). −:
Road noise. −: Estimated front and rear subframe mount contribution. −:

Estimation error.

5.6 Subframe mounts as references

In this section we use the three directions of the acceleration signals measured at

the mounts at the front and rear subframe. The mounts are the last connections

between the axles and the main vehicle’s body, therefore they are regarded as

the main structural inputs into the main vehicle structure. As it is illustrated

in figures 5.4(a)-5.4(d) it is possible to capture all the dynamics that relate to

low frequency road noise with the use of these reference points on the mounts.

The estimation is very accurate at the road rumble, 90-120 Hz, as the subframe

vibrations mainly contribute to this frequency range.

Previous studies compared the estimated performance of ARNC with adap-

tive filtering with the coherence-based calculation. We also perform this com-

parison, in order to evaluate the quality of the estimated impulse response by
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(a) Left hand front microphone responses. (b) Right hand front microphone responses.

(c) Left hand rear microphone responses. (d) Right hand right microphone responses.

Figure 5.4: Comparison between measured road noise spectra, synthe-
sised/estimated with LMS and the difference between them (error signal). −:
Road noise. −: Estimated front and rear subframe mount contribution. −:

Estimation error.

the multireference LMS algorithm. Yet, we do not use it to predict the ARNC

performance, since we aim to make more realistic prediction using MIMO ARNC

systems, which we will introduce in the following chapter. It can be noticed that

the adaptive algorithm is very close to the coherence predictions for this par-

ticular set of reference inputs. This is also verifies the fact that adaptive filters

with very low latency can achieve reduction levels very close to the coherence

predictions.
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(a) Road noise cancellation for left hand front
microphone.

(b) Road noise cancellation for right hand front
microphone.

(c) Road noise cancellation for left hand front
microphone.

(d) Road noise cancellation for right hand front
microphone.

Figure 5.5: Comparison between measured road noise spectra, synthe-
sised/estimated with LMS and the difference between them (error signal). −:
Road noise. −: Estimated front and rear subframe mount contribution. −:

Estimation error.

5.7 Control arms and subframe mounts as references

In the final stage of this study we extend the adaptive system with the accelera-

tion signals from the front suspension aiming to improve the estimation for the

tyre cavity. From a first glimpse, it is evident that the synthesised road spectra

are very similar to the measured ones, as low levels of error are obtained in fig-

ures 5.6(a)-5.6(d). Moreover, the error spectra are closer now to the ones from

the coherence calculation as figures 5.7(a)-5.7(d) illustrate. This indicates that

this is almost an optimal acceleration combination, as the simulation resulted

into a low estimation error.
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(a) Left hand front microphone responses. (b) Right hand front microphone responses.

(c) Left hand rear microphone responses. (d) Right hand right microphone responses.

Figure 5.6: Comparison between measured road noise spectra, synthe-
sised/estimated with LMS and the difference between them (error signal). −:
Road noise. −: Estimated front and rear subframe mount contribution. −:

Estimation error.

(a) Left hand front microphone responses. (b) Right hand front microphone responses.
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(c) Left hand rear microphone responses. (d) Right hand right microphone responses.

Figure 5.7: Comparison between the estimated attenuation between the co-
herence limit and multireference adaptive filtering. −: Multiple coherence. −:

Adaptive filtering error.

5.8 Summary

We performed a novel virtual synthesis of road noise by implementing an adaptive

multireference LMS algorithm for system identification between the sensors at

the vehicle’s axles and the microphones mounted at the headrests. The main

task of this simulation was to accurately synthesise road noise based on the most

coherent structural locations of road noise. We managed to verify the origin of

the road rumble, which is the rear axle and tyre cavity is mainly transmitted

from the suspension arms at the front axle.

This method of synthesis of the structure-borne sound field highlights the

sensitivity of the acceleration signals placed at the sources or at axle locations,

when exposed at high levels of road excitation, which may offer sufficient esti-

mation of the main road resonances. In terms of ARNC this method is useful

is a useful starting tool that offers a first look at acceleration signals frequency

content, since they can improve the performance of the adaptive algorithm for

specific road noise bands depending on their location.





Chapter 6

Active Road Noise Control

A significant step prior to application of a real-time controller on the vehicle in-

volves the and evaluation of the controller’s performance at several accelerometer

locations and directions. In this chapter we determine the fundamental adaptive

algorithms for multichannel active noise control. We then, compare the reduc-

tions we achieved at different reference accelerometer locations and directions.

This approach can allow to understand how locations that are essential in NVH

road noise analysis, such as TPA-based methods are related to the performance

of a multichannel controller, which uses the same input accelerometer locations

as TPA. This could potential be advantageous, in case specific locations of the

vehicle are known for their significant contribution to structure-borne road noise

from TPA or other road noise NVH methods as the installation of the controller

can be faster and more robust in terms of the reference sensor location. In this

simulation study we examine the performance of a multichannel controller based

on the geometry of the sensitive structural parts, in order to reveal the relation

between the directions that are used in TPA methods. The common ground of

ARNC and TPA is that both aim to synthesise accurately road noise, but with

different input signals. In particular, TPA methods use force signals as inputs,

whereas ARNC acceleration signals. However, both methods require measure-

ment locations at several points on the suspension or other axle parts that are

usually causing or allowing low frequency vibrations. On that basis, we will in-

vestigate most of the parts that are usually found in TPA analysis, in order to

understand the physical relationship between the reference acceleration signals

and the ARNC operation.
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6.1 Chapter Outline

Twelve three dimensional accelerometers at twelve locations at front and rear

axle were used to built up an ARNC model. In first section 6.2 the theory of

multichannel adaptive feedforward controller is derived, in order to introduce

the famous filtered reference LMS algorithm that is later used in the simulation

study and also in the real-time system in chapter 7. Following that in section

6.4 the results of the causal time domain simulation with the use of vehicle

data are analysed for estimating the potential performance of the ARNC for

various combination of locations at the front and rear axles. In particular road

data at high speed (100 km/h) obtained on coarse chip asphalt road are used

deliberately as at this speed airbourne contributions from as wind and road

noise may start to influence the microphone signals, thus the performance of the

controller. However, the vibration levels are high on the accelerometer side thus

most of the structure-borne sources that act on the vehicle are exciting during

this drive. As a result it is a realistic scenario for simulating the controller

with most of the disturbances been active and discussing the limitations of the

adaptive cancelling algorithm in the last section 6.4.

6.2 Feedforward Active Road Noise Control

6.2.1 MIMO Filtered reference LMS algorithm

In the previous chapter we introduced the MISO LMS algorithm that is now

extended to the MIMO filtered reference algorithm for active noise control. This

algorithm and its modified versions adjusts the coefficients of the control filters in

the time domain [Elliott et al. (1987), Douglas (1999)], since the adaptation can

be also be performed in the frequency domain aiming to reduce the computational

requirements of the algorithm for its DSP implementation [Stothers et al. (1995)].

The main difference between the multireference LMS and the filtered refer-

ence LMS is that the latter is expected to compensate for the secondary physical

propagation paths between the actuators and the location where the noise or the

vibration is about to be cancelled. It is worth mentioning that the same algo-

rithm has been used for active vibration control of road noise [Dehandschutter

et al. (1995), Belgacem et al. (2012)]. In our study, the secondary paths are de-

fined from the output of the DSP controller to the microphones at the headrest
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and they consist of the DAC, the reconstruction filters, the loudspeaker and the

acoustic transfer fuctions to the microphones.

A multichannel feedforward system for ARNC is composed by k-reference ac-

celerometer sensors, m-loudspeakers and l-microphones. So if the output signals

of the MIMO controller are ym(n) and drive each m-transducer, the secondary

estimated distrurbances at the microphone location are defined as

d̂l(n) =
M∑
m=1

J−1∑
j=0

clmjym(n), (6.1)

whereas the reduced sound pressure signal at the l-microphone is the difference

between the estimate of the estimated disturbance d̂l and the actual primary

road noise dl

el(n) = d̂l(n)− dl(n). (6.2)

The adaptive controller is required to compensate for the impulse response clm

,as demonstrated in adaptive inverse control in the special case of the FxLMS al-

gorithm [Widrow and Walach (2008)]. The extension of the FxLMS algorithm for

multi-reference signals is presented according to the derivation in [Elliott (1998),

Elliott (2000b)]. The adaptation stage can become quite complicated compared

to the multireference LMS algorithm for system identification. Moreover, the

control filtering stage requires M×K convolutions for generating the canceling

signals that are summed over the K-references for driving each M -loudspeaker

ym(n) =

K∑
k=1

I∑
i=0

wmkixk(n− i), (6.3)

where the output signal at each l-microphone is the spatial summation of the

refererence signals, xk, which are inputs to the controller multiplied by the control

filters coefficients wmki and the sum of the controller’s output multiplied with

electro-acoustic paths clm

el(n) = dl(n) +

M∑
m=1

J−1∑
j=0

K∑
k=1

I−1∑
i=0

clmjwmkixk(n− i), (6.4)

where the filtered reference signals derived from the convolution between the

estimated impulse responses of the secondary plants between the M-loudspeakers
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and the L-microphones

rlmk(n) =
J−1∑
J=0

ĉlmjxk(n− j), (6.5)

and the vectors of the filtered reference signals are defined as

rl(n) =
[
rl11(n) rl12(n) ... rl1K(n) rl21(n) ... rlMK(n)

]T
(6.6)

and the control filters wmki are adapted for each sample as follow

wmki(n+ 1) = wmki(n)− α
L∑
l=1

el(n)rlmk(n). (6.7)

The filtered reference LMS is the topic of interest in a plethora of books and

publications and it is commonly acknowledged as the main algorithm for active

noise control applications [Hansen (2013), Elliott (2000a)]. A version of the

MIMO filtered reference algorithm with IIR filters for the control filtering part

of the algorithm has been presented by Melton and latter tested real-time in a

reverberant room by Laugesen [Melton and Greiner (1992), Laugesen and Elliott

(1993), Hansen (2013)]. However, careful design of the algorithm is necessary,

as IIR filters are more sensitive to instability.

With regards to the computational complexity of the multichannel algo-

rithms, Douglas has proposed modified versions of filtered reference LMS with a

smaller number of calculations than the standard time-domain algorithm [Dou-

glas (1999)]. However, the only algorithm that achieves high reduction in the

required convolutions has been developed by Lotus [Stothers et al. (1995)]. In

the special case of partially correlated reference signals the algorithm can be

modified by prefiltering of the reference signals in order to decorrelate the sig-

nals as it shown in [Elliott and Cook (2000), Bai and Elliott (2004)]. In practice,

this filtering adds more computation in inside the DSP processor. With that in

mind, in our work we consider only the standard filtered-reference LMS.

Equation 6.7 can be also written in a more compact manner through matrix

formulation [Elliott (2000a), Elliott (2000b)]

w(n+ 1) = w(n)− αR̂
T

(n)x(n), (6.8)
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where R̂
T

(n) is a matrix that contains the filtered reference signals and is defined

as

R(n) =


rT1 (n) rT1 (n− 1) rT1 (n− 2) ... rT1 (n− I + 1)

rT2 (n) rT2 (n− 1) rT2 (n− 2) ... rT2 (n− I + 1)

rT3 (n) rT3 (n− 1) rT3 (n− 2) ... rT3 (n− I + 1)

... ... ... ... ...

rTL(n) rTL(n− 1) rTL(n− 2) ... rTL(n− I + 1)

 , (6.9)

and the vector of the FIR control filter taps is

w(n) =
[
wT0 wT1 ... wTI−1

]T
. (6.10)

The minimum value that reduces the following cost function optimum

w(n+ 1) = w(n)− αR̂
T

(n)x(n), (6.11)

produces the optimum Wiener filter solution, which is calculated by multiplying

the inverted correlation matrix of the filtered reference signals with the cross-

correlation matrix between the filtered reference signals and the disturbances

wopt(n) = E{[R(n)R(n)]}−1E{[R(n)d(n)]} (6.12)

In practice ,methods for inverting the correlation matrix of size MKI ×MKI

are necessary, thus adaptive methods are preferable in practice ,since they can

provide realisable filters that can be implemented into a DSP system.

The same algorithm can be modified by filtering the error signals el(n)

instead of the references xk, in order to reduce the computational requirements

[Wan (1996),Elliott (1998)]. This algorithm is usually referred as adjoint LMS or

filtered-error LMS and the equation that updates the coefficients of the adaptive

filters is now based on the cross-correlation between the filtered error signals fm

and the references xk

wmki(n+ 1) = wmki(n)− αxk(n)fm(n+ i). (6.13)

where the filtered error signals can be found from the filtering of the error signals

el(n) of the electro-acoustic paths clm
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fm(n) =
L∑
l=1

J−1∑
j=0

clmjel(n− j) (6.14)

Both the filtered reference LMS and the filtered error may take place the adap-

tation stage in the frequency domain and the new filter coefficients into the time

domain with the use of inverse FFT transform. In this way, the controlling

filtering part of the algorithm can still take place in the time domain without in-

troducing the delays of the FFT blocks, which are essential in frequency domain

calculations [Elliott (2000a)].

Lotus Engineering have developed and also patented the filtered error LMS

in the frequency domain [Stothers et al. (1995), Stothers (1997)]. The main

benefit of this algorithm is that compared to the time domain version it reduces

the calculations of the algorithm significantly. This requires a great number of

calculations of the cross-correlation between the reference signals xk and the

filtered error signals fm. The equation that updates the filter coefficients of the

FIR filters of the filtered reference LMS in the time domain, but performs the

rest of the calculations in the transformed domain is the following

wmki(n+N) = wmki(n)− αIFFT{
L∑
l=1

R∗lmk(k)El(k)}., (6.15)

and the filtered error LMS algorithm in the frequency domain can be expressed

as

wmki(n+N) = wmki(n)− αIFFT{Fm(k)X∗k(k)}. (6.16)

Rafaely has provided detailed information about the derivation of frequency do-

main adaptive algorithms in [Rafaely and Elliot (2000)]. Subband adaptive filters

have become an research area over the past years, as they focus on algorithms on

adaptive noise cancellation (especially for acoustic enviroments where the control

needs to identify long impulse responses) [Qiu et al. (2006)]. However, studies

have reported several issues with phase distortion in multiband filtering [Milani

et al. (2009)]. Therefore, the fundamental filtered reference LMS was used in the

modeling process of the ARNC system.
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6.3 Active Road Noise Control strategy

In this simulation study we use the acceleration signals from sensitive struc-

tural locations in terms of road inputs. These signals are also used in TPA and

other road noise analysis methods, such as operational modal analysis [Meillier

and Mairesse (1996), Wyckaert and Van der Auweraer (1995)]. The data were

recorded on a rough road, in order to ensure that main road resonances are

captured. The diagram figure 2.18 illustrates the relationship between the TPA

and ARNC is presented. It can be noticed that both methods reconstruct the

road noise signals, still they use input signals. The measurement locations of

TPA are typically mounting points, suspensions links and suspension dampers,

which in this case also used to control of the recorded interior road noise signals.

Heatwole showed that specific parts of the front and rear axle are effecting the

performance controller depending on the vehicle [Heatwole et al. (1993), Heat-

wole and Bernhard (1994)]. This is somehow expected, given that the axle design

changes depending on the targeted performance for vehicle dynamics. The same

parts are also used in the NVH tuning of structure-borne road noise. Mechanical

components, such as suspension dampers and subframe mounts are usually de-

signed to block road forces and isolate the axles from the body, so that vibrations,

which can cause road noise, are not transmitted into the cabin.

6.4 Comparison of reference sensor number and lo-

cation

At this point we should out the importance of simulating and evaluating sensor

locations in accordance with the architecture of the vehicle axles. To the best

of our knowledge such a study has not taken place before, thus it is essential to

improve the level of understanding between the structural dynamics at crucial

mechanical parts of the axles and their effects upon the performance of an ARNC.

The locations of these parts are usually used for TPA and also for tuning the

local dynamic stiffness, which makes them the unique paths of structure-borne

road noise transmission. In our study we performed various simulations that are

based on these strategic locations. It should be noted that at an earlier stage

of our research we already investaged these locations using coherence analysis

(presented in chapter 4). Through our analysis we observed that some vibro-

acoustic paths provide coherence value more than 0.5. The time recordings of

these accelerometer locations are now used as reference signals to a multichan-

nel feedforward system built in a Matlab/Simulink environment, with including
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also the impulse responces of the paths from the loudspeakers to the headrest

microphones.

6.5 Simulink model of ARNC

The Matlab environment offers Simulink, as a method for control system design

and simulation. Simulink is a graphical programming languange for modelling

dynamic. Signal processing algorithms can also be developed and compiled in C,

which is especially useful for real-time systems and DSP processors. With that

in mind, the first step involved the simulation of the algorithms as it is presented

in this chapter, whereas as a second step we compiled it for an Analog Devices

DSP processor that is embedded in the multichannel controller. In this way, we

developed a system for road noise acquisition and control as we will see later in

chapter 7.

Figure 6.1 illustrates the main parts of the algorithm. One of the main ad-

vantages of simulating a DSP system in Simulink is that its states are calculated

in each time-step that is set before the simulation, but also for a specific time-

span. In our case the time-step is the sampling rate of the recorded signals and

the time-span is in fact, the time duration of the recording. Generally speaking,

this type of modelling is preferable by modern control systems, as they expect a

specific time response or processing time. Both these factors are critical, since

model in a purely frequency domain modelling may result into non-causal fil-

tering. Each Simulink block contains a specific signal processing process that is

performed in each time step in this case as the model must simulate a real-time

algorithm that is based on sample by sample calculations. The delays from the

electro-acoustic are therefore significant in this type of simulation compared to

causally uncostrained noise reduction predictions based purely on multiple coher-

ence of section 4.3.2, which may overestimate the performance of the controller.

6.5.1 One directions reference signals

In this simulation study we initiate the controller with reference signals at the z-

direction. The underlying reason behind choosing the z-axis is the fact that this

direction is generally the main transfer direction of vibrations of the suspension

[Wang (2010)]. Therefore we will initiate our study with vibrations coming the

subrame and suspension points and only the z-axis.
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Figure 6.1: Simulink model for simulation and prediction of ARNC systems.

6.5.1.1 Case 1: Subframe mounts z-axis

The first case evaluates the four subframe mounting points of the front axle com-

bined with also four mounting locations at the rear axle. As far as the directions

are concerned, only the acceleration signals that come from the z-direction at

the front and rear subframe mounts are used in this case, as illustrated in figure

6.2.

Figure 6.2: The locations of the accelerometers in the vehicle structure and
the directions of the reference signals. �: One direction.

Overall, eight reference signals are fed into the adaptive algorithm. The

acceleration signals of the z-direction help the ARNC system to reduce by 5

dB(A) the noise levels at the tyre cavity range between 90-220 Hz, a fact that

is evident in figures 6.3(a) - 6.3(d). It also help the controller to attenuate the

road noise levels for a resonance at 290 Hz for the left hand front microphone.

The rumbe is attenuated by at least 5 dB(A) at the driver’s headrest and also

of the headrest at the right hand rear seat,yet it is less than 4 dB(A) in the

other microphones across the rumble range. This is apparent at the co-driver’s
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headrest, where only some part of the rumble resonance is removed. It is likely

that more directions are necessary to use as references for noise reduction at the

rumble band behind the co-driver’s head.

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.3: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

The average noise reduction of the controller in the range 0-500 Hz is slightly

more than 2 dB(A) across the four microphones. The highest reduction is ob-

served at the right hand front microphone with 2.8 dB(A) of active reduction in

the road noise range.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.4 1.5 2.3 2.4 2.2

Table 6.1: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.
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6.5.1.2 Case 2: Subframe mounts and suspension z-axis

The set of the acceleration signals from the z-direction at the subframe mounts

of the rear axle is maintained as shown in figure 6.4, but only two symmetrical

locations at the front suspension, which observe the vibrations of z-axis, are now

included in the ARNC model. Consequently, six acceleration signals are used as

reference inputs to the feedforward controller. It must be pointed out that this is

relatively low for an ARNC application, since several structure-borne sources are

expected to be observed by the controller. The locations at the front axle are in

fact rathen close to the wheel located at the lower control arm of the suspension.

Therefore sufficient control of tyre cavity resonances should be easier to achieved

easier.

Figure 6.4: The locations of the accelerometers in the vehicle structure. �:
One direction reference signals.

This change in the acceleration signal set may have implications on the con-

troller’s performance at other frequencies in the rumble range. For example, in

figures 6.5(a) and 6.5(b) the reduction at the rumble of the front headrests is

very limited. This may be due to the fact that there is some contribution from

the front axle that is not fed into the controller as input, thus it remains uncon-

trolled. Interestingly, the reduction levels at the tyre cavity do not improved and

the midfrequency resonance at 290 Hz is unattenuated for all the noise spectra.

The general poor performance affects on the total reduction for each head-

rest location, which becomes less than 2 dB(A). Still, the improvements are

greater than to the trade-offs of other NVH control methods, especially the im-

provements in the right hand rear microphone of the rumble. Still, they are

attractive enough fto turn the implementation of this echnology into a vehicle

worthwhile.

The total reduction levels in all the microphones are poorer than the ones of

the previous accelerometer configurations. As a matter of fact, only 1.6 dB(A)

is the average attenuation across the four headrests.
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(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.5: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

1.5 1.2 2.1 2.5 1.8

Table 6.2: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.1.3 Case 3: Subframe mounts and suspension dampers z-axis

An important part of multilink suspension systems in road noise NVH is the

top of suspension at the z-direction [Wang (2010)], where high road forces are

usually applied. It is worth to investigate how this road noise input location can

help the active systems control the rumble. In this case, only two symmetrical

subframe mounts are used as displayed in figure 6.6. Apart from the top mount

of the suspension strut also the bottom mounting point is also included for

the front axle, thus in total ten reference signals were used for this case. The

attenuation is slightly improved, especially for the front microphones in figures

6.7(a)-6.16. At the rear part of the cabin, the atternuation is improved at the

tyre cavity range 180-220 Hz, but worse at the rumble of the microphone at
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Figure 6.6: The locations of the accelerometers in the vehicle structure. �:
One dimensional accelerometers.

the left headrest. This change in the control focus deals with the fact that the

acceleration singals at the front axle are close to the wheel, hence they should

include spectral components that are related to tyre cavity noise. On the other

hand, they do not contain any components that relate to the rumble range and

also the midfrequency resonance at 290 Hz that appears at the front headrests.

The limited performance of the controller is somehow expected, as they are far

from the actual structural sources that cause these two road resonances at the

interior noise spectra. In the following cases, we will not use the suspension

damper locations anymore, since apparently they do not offer any significant

improvements.

(a) Left hand front microphone response. (b) Right hand front microphone response.
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(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.7: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

In comparison with the previous scenario, the total reduction levels are

improved. More specifically, 2 dB(A) in the frequency range of 0-500 Hz are

removed.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.1 1.3 2.0 2.7 2.0

Table 6.3: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.1.4 Case 4: Subframe rear mounts z-axis

In this case we further reduce the number of references with four acceleration

signals coming from the z-direction the front subframe mounts of each axle. We

already discovered that the front suspension part, e.g. the dampers and the

control arms, do not improve in the performance.

This case is comperable with the first case 6.5.1.5, in which eight signals

from the mounts were the reference inputs to the controller. Figure 6.8 presents

the four locations at the front mounting points of the vehicle subframes, whereas

figures 6.9(a)-6.9(d) present the corresponding spectra before and after ARNC.
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Figure 6.8: The locations of the accelerometers in the vehicle structure. �:
One dimensional accelerometers.

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.9: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

The performance is rather limited and effective only at the rumble range,

90-120 Hz. Some minor reductions can be seen in case in the left hand side mi-

crophones for the first tyre cavity resonance at 180 Hz. In addition to the limited

success of this configuration, the total reduction level is only 1.4 dB(A) across
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the microphones. It is becoming apparent that more directions are necessary to

improve the active reduction levels of the system.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

1.5 0.8 1.5 1.6 1.4

Table 6.4: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.1.5 Case 5: Suspension and subframe only z-axis

In the final case of our investigation into one-dimensional signals, we emply

sixteen measurement locations distributed across the axles at the z-dimension.

As a consequence, this sensor arrangement is almost equivalent to map the axle

vibrations of the whole vehicle in one axis. In return, all structure-borne sources

should be now observable by the controller.

Figure 6.10: The locations of the accelerometers in the vehicle structure. �:
One dimensional accelerometers.

The increase in the acceleration signal number causes a drastic improvement

in the ARNC performance. The controller can now reduce road noise up to 300

Hz. The noise levels at the second tyre cavity resonance are attenuated by 10

dB(A) at the rear headrests. Overall, the structure-borne road noise is attenu-

ated by 3 dB(A) on average across the four headrests, from 0 to 500 Hz. If we

now compare table 6.1 of the eight reference with the table 6.5, then it can be

concluded that doubling the number of the reference signals at one direction can

improve the reduction by 1 dB(A). An ARNC controller with a high number of

references can significantly effect the specifications for its DSP implementation.
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(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.11: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

It is questionable if such a large system is necessary for achieving 1 dB(A) im-

provement compared to the case in section 6.5.1.3, where less sensor locations

were used. With that in mind, we will continue our investigation into finding

optimum set of signals can achieve between 2-3 dB(A) across each headrest with

a maximum number references twelve input signals for the controller.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

3.3 2.4 3.0 3.2 3.0

Table 6.5: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.
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6.5.2 Two directions reference signals

Up until now, we have analysed the results of ARNC models based on single DoF

reference signals. Only structure-borne noise contributions related to vibrations

at the z -direction were mostly attenuated by the control system. in the following

cases we will increase the complexity of the system with one more directions, the

y-dimension. In this way, we are able to investigate, whether there are any

significant benefits when more DoF are used as reference inputs.

6.5.2.1 Case 7: Front mounts z-axis and rear subframe rear mounts

y,z-axis

Among the different case we have explored up until this point, the one with the

best acceleration signal set with eight references measured at the z-directions at

the eight subframe mounting locations was found for case in section 6.5.1.1. If

we consider two directions y, z -direction for the mounts at the rear subframe,

significant improvements can be obtained from 0-300 Hz for the rear headrests

as illustrated in figures 6.13(c)-6.13(d). Twelve reference signals were used in

total to make this ARNC prediction, which illustrates that an improvement at

the rumble range for the rear headrests with the addition one extra DoF from

the rear axle vibrations can be obtained.

Figure 6.12: The locations of the accelerometers in the vehicle structure. •:
One direction reference signals. �: Two directions reference signals.

The control is mostly effective up to 200 Hz for the rear headrests, but up to 300

Hz can for the front seats. The overall attenuation is slightly higher on the right

side of the vehicle, while the right hand rear headrest has the highest reduction

level at 3 dB(A) from 0 to 500 Hz.
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(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.13: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

On average 2.8 dB(A) can be obtained from this reference signal combina-

tion. By comparing the total reductions of table 6.7 with the first one in table

6.1, which used one direction and the same locations, the y-direction provides

very small improvements and only at the right hand side headrests.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.9 2.1 2.9 3.0 2.8

Table 6.6: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.2.2 Case 8: Front mounts y,z-axis and rear subframe rear mounts

z-axis

In this case, the y-direction for the front axle mounts is also included (figure

6.14), aiming to emphasise once again the control at the front axle. We previ-

ously observed that the tyre cavity and the midfrequencies are harder to control,
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as multiple paths are allowing their transmission through the front axle com-

pared to the rumble. This also implies that it is harder to decompose the road

noise dynamics at the front axle and advanced algorithms for decorrelating the

reference signals have been suggested for improving several characteristics of the

feedforward system such as decoupling the reference inputs and thus improving

the coherence between the vibrational and acoustical sensors [Akiho (1995), El-

liott and Cook (2000), Dehandschutter and Sas (1998), Bai and Elliott (2004)].

Despite the use of these algorithms, vibration signals that are close to the struc-

tural sources are still necessary, in order to achieve high SNR in the measured

acceleration signals that contain several road resonances. Therefore the need for

decomposing and uncorrelating the vibration singals may be only benificial in

the case of faster convergence of the adaptive algorithm [Bai and Elliott (2004)].

Figure 6.14: The locations of the accelerometers in the vehicle structure. �:
One direction reference signals. •: Two directions reference signals.

Instead of increasing the complexity of the algorithm, we augment the controller

with four extra signals at the y-direction from the mounts of the front subframe.

Decorrelation filtering of the reference signal actually requires extra filtering be-

fore the signals are fed into the algorithm as suggested by reveral researchers

[Bai and Elliott (2004), Tu and Fuller (2000)].

The attenuation is slightly impoved at the rumble range for the front head-

rests compared to the results from the previous section. Tyre cavity resonances

are also better controlled as the filtered references and error signals are well cor-

related by the addition of acceleration signals. It is becoming more evident that

contributors of the front axle are hard to be identified by the system if more

directions are not included. However, the subjective levels of improvement will

not be perceivable for this level of improvements for the front axle.
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(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.15: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

The active attenuation levels at the rear microphones are now slightly re-

duced and 2.7 dB(A) are removed from all the four headrests.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

3.1 2.2 2.7 2.9 2.7

Table 6.7: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.2.3 Case 9: Front suspension y, z-axis and rear subframe rear

mounts z-axis

In section 6.5.1.2 we used acceleration signals at the z-direction that were recorded

at front suspensions lower control arms. In this case we include also the y-axis

of these suspension points, in order to investigate the level of improvement we
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can obtain from these locations. The single direction signals of the front suspen-

sions in section 6.5.1.2 were not able to help the system attenuate the road noise

efficiently, especially at the front headrests.

Figure 6.16: The locations of the accelerometers in the vehicle structure. •:
One direction reference signals. �: Two DoF reference signals.

In figure 6.17(a) only a narrow part of the road rumble is attenuated. The first

tyre cavity resonance is only canceled and the 290 Hz resonance is completely

uncontrolled. In contrast to this the noise at right hand side headrest is at-

tenuated by 5 dB(A) at the rumble and tyre cavity range, but the level of the

midfrequency resonance at 290 Hz is still not reduced by the system. This is very

likely to occur again if the right reference signal are not feed into the feedforward

system.

The control at the left hand rear microphone is relatively limited between

2-4 dB(A) across 90-120 Hz. Interestingly, the effectiveness of the control is

noticeable up to 300 Hz, whereas in the case of the left hand front headrest

it was limited to 190 Hz. The combination of two directions at the front axle

and one at the rear has a great effect on the ARNC performance at the front

microphones as figures 6.17(a) and 6.17(b) illustrate. In particular, the reduction

is around 5-7 dB(A) across 100-290 Hz for the front headrests. As for the rear

headrests, high levels of reductions are obtained; between 90-200 Hz for the

right hand microphone with almost 10 dB(A) been removed from the second

tyre cavity resonance at 213 Hz. The controller with a reference signal set can

potentially achieve reductions of 3 dB(A) across the road noise range. The only

microphone that is difficult to control is the one located at the left hand rear,

which is very likely to be affected by airborne contributions coming from the

trunk. This happens because sound insulation material from the left hand rear

wheel arches is necessary for blocking the low frequency airborne contribution.

On that side of the vehicle the oil tank creates an opening that allows airborne

transmission straight from the left hand rear tyre. More details on this will not
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be revealed in this thesis due to a confidentially agreement with Bentley Motors.

However, this problem highlights some limitations of the ARNC system that

emerge when contributions from other NVH sources are not effectively attenuated

in the frequency range of structure-borne road noise. The reduction levels are

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.17: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

not significantly improved compared to the single direction systems that were

presented in section 6.5.1 and especially to the first case in the subsection 6.5.1.1.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.1 1.5 2.4 2.8 2.3

Table 6.8: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.
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6.5.2.4 Case 10: Front suspension x, z-axis and rear subframe rear

mounts z-axis

In the final case we use the front subframe mounts as reference locations for the

input sensor. In particular, x and z -directions of the acceleration signals recorded

at the front subrame mounts are combined, since we have not yet evaluated the

x -axis has not been evaluated so far. Figures 6.18(a)-6.18(b) demonstrate the

reduction at the front headrest, which confirms the necessity of front mount

locations as inputs for reducing the front axle contributions. By comparing

them with the previous results shown in figures 6.17(a)-6.17(d), we observe that

the rumble was not complete reduced across its range, because of the wrong

positioning of the accelerometers. Overall 3.1 dB(A) from the noise spectra can

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.18: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

be attenuated at the driver’s headrest and 2.4 dB(A) at the co-driver’s, which we

have constantly found always hard to attenuate in this simulation study possibly

because other NVH contributions are also included in the recorded signals —

the vehicle comes from the production line. As consequence, some airborne

paths may affect the recorded signals in the cabin (at such a high speed) due
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to the absense of underseats that would block the airborne paths of the body.

However, this makes this simulation study even more realistic as deviations that

may occur because of the modifications of the NVH packaging of the vehicle, are

not expected to influence severely the operation of the ARNC system. It seems

that even with these problems the estimated performance of the controller still

provide good improvements for refinement levels especially at the rear headrests,

where more close up to 3 dB(A) be removed from the road noise spectra.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

3.1 2.4 2.8 2.9 2.8

Table 6.9: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.3 Three directions reference signals

In this section we compare the reference signal by taking into account all direc-

tions for some of the locations. This will help us find out if there are any further

improvements in the performance of the ARNC system or if there is a threshold

in the maximum reduction that can be achieved with feedforward control for this

luxury vehicle. Up until this point we have noticed that it is difficult to resolve

the dynamics with only one direction from the accelerometer. These locations

are located at parts that have multiple directions effecting the vibrational re-

sponses at low frequencies, for example subframe vibrations are approximately

generated by a metallic plate and they are more complicated vibration responses

than a suspension arm.

6.5.3.1 Case 11: Front suspension x, y, z-axis and rear subframe

mounts z-axis

In the cases presented in the previous section we used the mounting points of the

front and rear axle. In current case we change the locations of the front axle to

the damper bottom, where the suspension strut is mounted and also the two front

and rear control arms. Locations at the suspension strut and the control arms

are often suggested by many authors as appropriate candidates for placing the

reference accelerometers [Bernhard (1995), Park et al. (2002), Oh et al. (2002)].

As a result, the adaptive system may win time to perform the convolutions of

the control filtering before the noise is received at the microphones inside the
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vehicle’s interior. This happens because the propagation time of the vibrations

can be slightly longer for the locations around the suspension system.

Figure 6.19: The locations of the accelerometers in the vehicle structure. •:
Tri-axial accelerometers position. �: One dimensional accelerometers.

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.20: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

In the case of the luxury vehicle we study the structure-borne sources that

act on the suspension parts are vibrations related to tyre cavity, since they are

close to the actual excitation source. In fact, the suspension locations worsen the

ARNC performance of the rumble range of the three headrests (illustrated in fig-

ures 6.20(a)-6.20(c)) because contributions from the front subframe locations are
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not observed by the controller. However, the tyre cavity and the midfrequency

performance are improved in the case of the front microphones.

The reduction levels at the front part of the vehicle are now 2.8 and 1.8

dB(A) at the two headrests. Overall, around 2.5 dB(A) can be obtained with

this combination of acceleration signals. Even though, the average reduction is

not much affected, at the front part of the vehicle cannot maintain the previous

attenuation that was closer to 3 dB(A), due to the consistent performance at the

rear microphones,

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.8 1.8 2.6 2.8 2.5

Table 6.10: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.3.2 Case 12: Front subframe mounts x ,y, z-axis and front mount-

ing point at the rear subframe only z-axis

Looking back at the previous simulations, we notice that the subframe mounts

at the front axle can be employed to control the road noise in frequencies above

150 Hz. In this case we decrease the number of references from the rear axle and

keep the four subframe locations of the front axle with three DoF per point.

Figure 6.21: The locations of the accelerometers in the vehicle structure. •:
Three DoF reference signals. �: One direction reference signals.

Even if we keep a high number of references at the front axle, we achieve

limited performance at road resonances transmitted from the front part of the

vehicle. This fact can be observed for the levels at the two tyre cavity resonances

and also at the resonance at 290 Hz, which are not totally removed from the road
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noise spectra as in the previous case of section 6.5.3.1, where two directions were

used at the fron axle. The reason behind this is the poor observability of the

rear axle vibrations as only two summetrical locations are not enough to help the

adaptive system to determine the dynamics of the rear axle contributions. As

far as the rumble range is concerned, the reductions levels at the rumble range

are lower, particularly at the left hand side headrests.

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.22: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

Increasing the directions at certain locations as a means to achieve better

suspension vibrations is not a helpful solution for this vehicle design structure,

since subframe vibrations seem to result to better control of the front axle con-

tributions. Surprisingly, even when sixteen signals are used as references, the

active reduction levels are not improved. This is a bit unexpected as one would

expect a different outcome with such a high number of sensors. In the first

case, presented in subsection 6.5.1.1, eight acceleration signals from the eight

subframe mount locations were used and achieved better performance obtained

across the four microphones. The average reduction levels are almost the same

in both cases, in the current case the control performance is worsened at the left

hand side of the vehicle. Consequently, there is a strong relationship between the
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reference number and the locations that are structural sensitive in terms of vi-

brations that relate to road noise. The sensor number cannot be defined if there

is no information about the location of the structural sources. Increasing the

reference signals on the basis of improved coherence only or other optimisation

methods can result to high number of sensors.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.8 1.8 2.1 2.5 2.3

Table 6.11: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.3.3 Case 13: Front subframe and damper top x, y, z-axis and rear

subframe rear mounts z-axis

In the 13-th case we include location at the front axle hoping to improve the

control at the tyre cavity and the midfrequency road resonance. In particular,

the damper top signals and the front axle mounts at three directions are fed into

the adaptive algorithm. As for the rear axle, only the z -direction is included

with a single DoF that originates from the z -axis.

Figure 6.23: The locations of the accelerometers in the vehicle structure. •:
Tri-axial accelerometers position. �: One dimensional accelerometers.

Significant improvements are noticeable at the front headrests compared to

the previous section, in which the damper at the top of the suspension strut

was not included in the reference signal set. However, the attenuation levels at

the front microphones are merely improved compared to the previous scenarios

(figures 6.24(a)-6.24(b)). Yet, as figures 6.24(c)-6.24(d) show the performance at
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the rear headrests has not changed a lot, a fact that implies indicates that more

signals from the rear axle are necessary.

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.24: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

Up until this point, the increase of the directions and accelerometer locations

has not achieved drastic improvements on the adaptive controller’s performance.

As we observe in table 6.12 the overall reduction levels are slightly more than 2

dB(A). It is starts to become apparent that improvement of more than 3 dB(A)

might require a very high number of reference inputs for including locations that

have some contribution to the road spectra. It is debatable if this extra reduction

will improve the perceived reduction by the passengers and later we will try to

verify this extreme case.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.0 2.8 1.9 2.1 2.2

Table 6.12: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.
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6.5.3.4 Case 14: Subframe mounts 3-directions front axle and z-axis

for rear axle

In this scenario, we enhance the system with reference signals from the x , y , z -

axis. These come from the front subframe mounts and at the top of suspension

strut. As for the rear subframe, two signals from the z -direction of the rear

mounts are set as references. Figure 6.25 illustrates the locations of the reference

sensors and the corresponding DoF of the acceleration signals. It should be noted

that all the mounting points between the front axle and the body are used to

model this scenario.

Figure 6.25: The locations of the accelerometers in the vehicle structure and
the DoF of the reference signals. •: Three DoF. �: One DoF.

The road spectra are presented in figures 6.26(a)-6.26(d). It is evident that

sufficient control for all road resonances at the front headrests can be achieved

with this reference sensor arrangement. It is possible that the directions at

these mounting locations at the front axle contain all the spectral components of

structure-borne road noise. As a result, the controller is able to track changes in

the vibrations that are related to road noise at the main structural input points

of the suspension and subframe into the vehicle’s body.

Notably, two acceleration signals at the rear headrests for the road rumble

90-120 Hz seem to be enough for reducing 5-7 dB(A). The low number of reference

points at the rear axle is somethat expected, as only the structural source of the

road rumble is contributing to sound field. As a consequence, the controller can

resolve the rumble dynamics even with a pair of sensors.
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(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.26: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

The reduction at the front microphones is now improved and the attenuation

is noticeable up to 300 Hz. As a result, 3 dB(A) and 2.6 dB(A) are removed from

the total road noise levels at the front headrests and 2.9 dB(A), 2.8 dB(A) for

the two rear. From a NVH perspective this improvement is significant, but from

a DSP perspective twenty signals need to be sampled from a hardware platform

to increase the cost and the complexity of such an application. Therefore, in

the following step we will reduce the acceleration signals number according to

their structure-borne contributions and investigate the effects on the controller’s

performance.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

3.2 2.6 2.9 2.5 2.8

Table 6.13: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.
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6.5.3.5 Case 15: Subframe mounts 3-directions for front and rear

axle

A feedforward system with twenty four acceleration signals was simulated in this

case aiming to determine the trade-off between a high number of references and

the performance of the controller. Figure 6.27 presents the eight subframe mount

locations, where three directions were fed into the controller as references.

Figure 6.27: The locations of the accelerometers in the vehicle structure. •:
Tri-axial accelerometers position.

Significant reductions in the road spectra are predicted for this reference set

as shown in figures 6.28(a)-6.28(d). Small reductions in the front microphones

are still noticeable up to 400 Hz in figures 6.28(a),6.28(b). As for the rear

microphones a resonances around 410 Hz is slightly attenuated. However, the

cancellation above 400 Hz is limited, due to low coherence (as we saw in chapter

4) and airborne paths possibly owing to these road resonances.

A control system with such a high number of input signals requires 96 (K ×
M = 24 ×4 ) convolutions, in order to generate the control signals that drive the

loudspeaker system of the vehicle. Such a digital control system would probably

require a DSP processor with high computational capabilities to perform the

real-time convolutions. Another technical disadvantage is the fact that several

sensors and complex wiring network across the vehicle structure would also be

necessary. In the following case we will try to reduce further the number of

reference inputs from the subframe mounts, in order to find out how much the

performance of the controller would be affected by neglecting some reference

locations and their DoF.
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(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.28: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

The reduction levels in the road noise range that derive from this scenario are

important, as they define the threshold of the maximum achieve in attenuation of

the particular vehicle. As table 6.16 demonstrates reductions more that 3 dB(A)

were predicted for this scenario. This possibly indicates that the subframes are

as the actual inputs to the vehicle system, therefore if the same inputs are fed

into the controller very good performance can be achieved. As a result, the

feedforward paths of the multichannel system can follow the behaviour of the

vibro-acoustic systems of the vehicle, as the main structural inputs are observable

by the controller.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

3.7 2.9 3.5 3.6 3.2

Table 6.14: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.
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6.5.3.6 Case 16: Reduced set of reference signals from subframe

mounts

We continue further with effort to reduce the number of acceleration signals

from the subframe mounts and in the current section we explore whether there

is degradation in the performance by using only two directions from the front

axle and one from the rear. In total, twelve acceleration signals are fed into the

controller as reference inputs.

Figure 6.29: The locations of the accelerometers in the vehicle structure. �:
Two DoF reference signals. �: One DoF acceleration signal.

If we now compare the road spectra in figures 6.28(a)-6.28(d) with the cur-

rent case of figures 6.30(a)-6.30(d), we notice that the performance is not severely

affected by the reduction from 24 reference to 10. This is a rather striking ob-

servation as it shows that minor improvements can be obtain even if we include

all the structural inputs from the axles into the controller.

The controller improves the vehicle’s NVH performance at frequencies, where

the structural dynamics of the subframe cannot prevent the transmission of vi-

brations that are correlated with road noise. More specifically, the subframe

mounts are the main inputs to the vehicle body and they are usually optimised

in terms of local dynamic stiffness, in order to control structure-borne noise

transmission [Plunt (2005), Noll et al. (2013)]. Therefore the improvements

in the road noise spectra obtained from ARNC technology seem to depend on

the amount of uncontrolled structural resonances, which come from the passive

structural system that contributes to the sound field inside the cabin.
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(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.30: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.

The overall attenuation is still maintained at 3 dB(A) across the four head-

rests. This means that minor improvements can be obtained for more than 10

acceleration signals in this vehicle.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

3.0 2.3 3.2 3.3 3.0

Table 6.15: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.5.3.7 Case 17: Reduced set of reference signals from subframe

mounts with two reference locations at the rear axle

The same reference signals from the front axle as in the previous case of sub-

section 6.5.3.6 are now combined with two references locations from subframe

mount of the rear axle. In total 10 acceleration signals are now the references of
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the feedforward system. The single change deals with the references of the rear

axle, as we only use signals from front subframe mounts at the z -directions.

Figure 6.31: The locations of the accelerometers in the vehicle structure. �:
Two DoF reference signals. �: One direction acceleration signal.

The attenuation has been slightly degraded in the controlled spectra for the

road rumble (figures 6.32(b) and 6.32(c)).

(a) Left hand front microphone response. (b) Right hand front microphone response.

(c) Left hand rear microphone response. (d) Right hand rear microphone response.

Figure 6.32: Interior noise at the four headrests. −: ARNC off. −: ARNC
on.
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When it comes to the other two headrests, the reduction in the rumble range

is still maintained at around 7 dB(A) across its range. The overall reduction in

cabin is 2.5 dB(A) that is an acceptable improvement in the structure-borne

NVH performance of the vehicle.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.7 2.0 2.4 2.5 2.5

Table 6.16: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

6.6 Summary

In this chapter we introduced the theory of multichannel adaptive filtering for

active control and used it to develop a realistic model that estimates the perfor-

mance of ARNC system. The prediction study focused on the identification of

the most important direction and axle locations that can result to robust perfor-

mance across the four headrests at a high speed. At the same time other NVH

contribution start to influence the sound field in the cabin. We found that with

one direction measured by eight sensors at sensitive location of the structure

2 dB(A) can be removed from the structure-borne noise spectra. It was found

that reduction levels can go up to 3 dB(A) with 10 and 12 references. The main

reason behind this improvement are that one more DoF was introduced into the

system that helped to identify road noise contributions, which were previously

partially controlled.

It was also found that this particular luxury vehicle cannot be further im-

proved in terms of structure-borne NVH as we noticed in section 6.5.3.5, since

all the DoF at the front and rear mounts that are the main inputs to the vehicle

body were included in the model. At the driver’s heardest 3.7 dB(A) can be

achieved and across the four headrests 3.2 dB(A) on average, which is compa-

rable to other cases with a smaller number of reference signals from the same

locations.

We observed that there is no significant improvement when the reference

signals are doubled from 8 to 16 signals. This is an entirely different finding to a

previous study on ARNC predictions on an Alfa Romeo 156, which showed that 5

accelerometers can reduce 8 dB and ten sensor 11 dB [Mohammad et al. (2008)].

However, luxury vehicles with relative good refinement levels, such as a Bentley

and a few passive NVH treatments for road noise can be improved up to a point
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even with less than ten sensors. A rapid increase in the references might not

offer extreme audible results. The following table summarises the best reference

signals combinations that results to more than 2.5 dB(A) broadband reduction

up to 500 Hz with the main use of subframe mount locations are reference inputs

into the ARNC system.

Simulation case no. Number of references Reduction dB(A)

5 16 3.0

12 14 3.0

15 24 3.2

16 12 3.0

17 10 2.5

Table 6.17: Best reference signal combinations and the corresponding average
reduction across the four headrests.





Chapter 7

Active noise control

experiments on a road-noise

simulator

Up until this point in this thesis we concentrated on the relationship between the

various structural locations of the vehicle, which are sensitive to road noise inputs

and are coherent with the interior road noise resonances. This study offered us

a deeper insight into the relationship between the structural resonances coming

from the two axles and the ones coming from interior road noise.

On that basis we evaluate a single reference input feedforward adaptive

controller for three different excitation conditions, front tyres, rear tyres and

whole vehicle. In this way, the structural sources that are located at the front

and rear axle are physically decomposed and only the main contribution from

each axle appears in the sound field inside the cabin. As a last stage all the

tyres are excited by the shakers transducers (whole vehicle simulation) and each

reference sensor location is once again tested in terms of performance. In addition

to this, a multichannel system was developed. Road data were obtained using a

multichannel control system and used to predict offline the performance of the

system.

145
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7.1 Chapter outline

We begin this chapter by introducing the experimental setup of the controller on

the vehicle in section 7.2. We then move on to present an analysis of the mea-

surement results. This is divided according to the different excitation locations

(front tyres, rear tyres, four tyres-whole vehicle). In section 7.3 and 7.4 the cases

of front and rear tyres excitation are presented and the measured performance

after the training of the adaptive ARNC system is discussed. The next step

involved testing the controller using four shaker sources that excited each tyre

simultaneously. The results for this vehicle simulation are presented in section

7.5. Additionally, a multichannel road noise controller is presented in section

7.6 with computer predictions based on road noise data obtained through the

multichannel system.

7.2 Experimental ARNC on a Bentley vehicle

7.2.1 Purpose of ARNC physical simulation

In the previous chapters we performed computer simulations that aimed to inves-

tigate how different locations of the axle, which are important for structure-borne

NVH can either improve or degrade the performance of feedforward ARNC con-

trollers. In the final stage of our study, we address the effects of the reduction

obtained by a real-time feedforward controller with a single reference sensor.

The aim of this physical simulation of an ARNC system is to explore the

application of a single channel feedforward controller that uses one sensor placed

at a structure-borne noise source or at a part of the axle that allows the trans-

mission or road noise related vibrations.

7.2.2 Real-time ARNC measurement setup on a Bentley vehicle

For the purpose of these tests an isolated environment was selected with also

low levels of background noise, which was also employed in chapter 3 for the

development of the experimental setup of the road noise simulator. This setup

allows structure-borne noise to be measured at the microphone locations, so

that the performance at each sensor location is evaluated without other NVH
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attributes interfering with structure-borne noise and vibrations coming from the

tyres.

(a) ANC & LMS SCADAS setup on the vehicle.

(b) Block diagram of the acquired signals by the two systems.

Figure 7.1: ANC configuration of the whole vehicle road noise simulator. The
sensor signals f (t), a(t) and p(t) are common inputs to the LMS SCADAS and
the feedforward controller. The signal y(t) is generated from the output of the

adaptive controller and drives the audio amplifier unit.

The four signal generators of the LMS SCADAS system drove four shaker

transducers with white noise from 10 Hz to 1 kHz. It is worth mentioning that

the shakers were placed at the diagonal of each tyre, so that they do not excite a

specific directions, but a mixture of x -, z -directions. As a result, the road noise

resonances that act on the vehicle during rolling conditions are included in the

simulated road noise spectra as it was presented in chapter 3.

The signals of the controller and data acquisition chain are displayed in

figure 7.1(b). A data acquisition system by LMS was used to measure the applied

forces, f (t) at the tyres and the vibro-acoustic responses a(t) and p(t) on the

vehicle. A commercial adaptive controller by Causal systems Ltd was integrated

with a Monacor four channel car audio amplifier. The crossover filters of the

audio amplifier were set to low-pass filtering with a cut-off frequency at 500

Hz. Figure 7.2(a) illustrates the actual ANC setup in the vehicle, including the

wiring between the controller, the audio amplifier and louspeaker of the vehicle

can be seen. Figure 7.2(b) shows the headrest microphones that provide the

error signals of the adaptive algorithm.

The structure in figure 7.3 presents the sensor and loudspeaker arrangement

inside the vehicle. Four microphones were placed at the headrests in similar

manner to the measurement studies. The three woofers that were mounted at
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(a) Setup of the car audio amplifier in the
vehicle.

(b) Interior microphones at the headrests.

Figure 7.2: ANC hardware setup in the vehicle.

the front doors and at the left hand rear door integrated the feedforward control

path. Additionally, the subwoofer at the parcel shelf behind the rear headrests

was also chosen to generate of the secondary canceling field, since its secondary

path delay is short (as we found in section 2.4). In terms of reference inputs, an

example of a reference sensor location with an accelerometer mounted close to

the left hand front wheel is shown in figure 7.3.

Figure 7.3: ANC configuration for feedforward control in a vehicle. The
sensor signals are noted as a1: for the accelerometer, m1,m2, m3, m4: for
the microphones and for the loudspeakers are displayed as s1, s2, s3 and s4.

The adaptive ANC controller that was used in these experiments has a

single reference input and four error microphone sensors. Four output signals

were also allowed in this setup, which were connected to the four channel input

car audio amplifier. It is worth pointing out that the Monacor audio amplifier

has only a low pass and a high pass filtering setting, since modern digital car

audio amplifiers are equipped with high-order filtering for room equalisation. It

is very likely that this type of audio filtering may include extra delays from the

DSP hardware, which constitutes the reason why we chose this analog amplifier

in this study.
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7.2.3 Structure of the real-time experimental study

The following section presents the experiments we undertook. We distinguish

among a set of different experiments based on two factors: a) the excitation on

the tyres b) the parameters that affect the operation of the adaptive algorithm,

such as the number of FIR taps and the sampling rate. Therefore, the structure

of the following sections is organised as follows

1. Front tyres excitation and reference accelerometer at the lower control arm

at the front axle

(a) Case1: FIR control filter I =256-taps, number of error microphones

L=3 and control loudspeakers M =4 at fs=4 kHz

(b) Case2: FIR control filter I =512-taps, number of error microphones

L=4 and control loudspeakers M =4 at fs=4 kHz

(c) Case3: FIR control filter I =256-taps, number of error microphones

L=4 and control loudspeakers M =4 at fs=4 kHz

2. Rear tyres excitation and reference accelerometer at the rear subframe

mount of the rear axle

(a) Case4: FIR control filter I =512-taps, number of error microphones

L=3 and control loudspeakers M =4 at fs=4 kHz

(b) Case5: FIR control filter I =1024-taps, number of error microphones

L=3 and control loudspeakers M =4 at fs=4 kHz

3. Rear tyres excitation and force signal as refererence measured at one of the

rear tyres

(a) Case6: Force signal as refererence, FIR control filter I =512-taps,

number of error microphones L=4 and control loudspeakers M =4 at

fs=4 kHz

4. Rear tyres excitation and reference accelerometer at the front subframe

mount of the rear axle

(a) Case7: FIR control filter I =750-taps, number of error microphones

L=4 and control loudspeakers M =4 at fs=8 kHz without anti-aliasing

(b) Case8: FIR control filter I =128-taps, number of error microphones

L=3 and control loudspeakers M =4 at fs=2 kHz

5. Whole vehicle excitation and reference accelerometer at the rear subframe

mount of the rear axle
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(a) Case9: FIR control filter I =128-taps, number of error microphones

L=3 and control loudspeakers M =4 at fs=4 kHz

6. Whole vehicle excitation and reference accelerometer at the rear subframe

mount of the rear axle

(a) Case10: FIR control filter I =256-taps, number of error microphones

L=4 and control loudspeakers M =4 at fs=4 kHz

7. Whole vehicle excitation and reference accelerometer at the front subframe

mount of the rear axle

(a) Case11: FIR control filter I =256-taps, number of error microphones

L=4 and control loudspeakers M =4 at fs=4 kHz

8. Whole vehicle excitation and reference accelerometer at the lower control

arm at the front axle

(a) Case12: FIR control filter I =512-taps, number of error microphones

L=4 and control loudspeakers M =4 at fs=8 kHz

(b) Case13: FIR control filter I =128-taps, number of error microphones

L=4 and control loudspeakers M =4 at fs=2 kHz

7.3 ARNC simulation: Excitation at the front tyres

As a starting point, broadband forces from two shaker transducers excited the

two front tyres, in order to reduce noise levels from the contributions that are

mainly generated from front axle vibrations. In particular, tyre cavity resonances

were transmitted through several parts of the front axle into the rest of the vehicle

as we discovered in chapter 4. The effect of having only the structural sources

from the front part of the vehicle was simulated, in order to cause structure-borne

noise in the cabin that corresponds only to the vibro-acoustic contributions of

the front axle. The shakers at the rear tyres are inactive thus there are no forces

applied at the rear axle, which simulates the case of having the rear tyres with

very low air pressure. The reference accelerometer was placed close to the tyres

at one of the suspension arms to capture high levels of coherent vibrations with

the tyre cavity resonance inside the cabin.
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7.3.1 Experimental procedure for front tyres excitation

Two shaker sources excited the front wheel as presented in figure 7.4. The dia-

gram in this figure demonstrates the noise transmission because of the excitation

applied to the two front wheels and its control through the SIMO feedforward

system.

Figure 7.4: Block diagram of a single channel adaptive feedforward controller,
where f1 (t), f2 (t) are two uncorrelated forces applied on the front tyres, a(t) is
acceleration signal that is fed to the control filter matrix H and cl1 , cl2 , cl3 ,cl4
are the cancellation paths from the loudspeakers to the headrest location of

the attenuated signal el(t).

As it is evident in figure 7.4, the adaptation stage is excluded, since the

controller’s performance was tested after the system was adapted to a solution

for the FIR filter set. The performance of the controller was averaged for a

minute of random excitation applied to the tyres with the filters coefficient been

fixed to their converged values. It should be noted that between 10 to 15 minutes

were required in the experiment to converge to a solution. In practice, modified

versions of the FxLMS algorithm can be used that converge much faster than the

conventional time domain FxLMS that was used in our case [Qiu and Hansen

(2007), Sun et al. (2015)].

In this case the shaker transducers at the rear part of the vehicle did not

apply any forces to the rear tyres, therefore structure-borne contributions coming

from the rear axle were not included in the sound field in the cabin. As a result,

vibro-acoustic coupling occurred only in the case of the front axle vibrations and

the acoustic resonances in the compartment. Therefore, the suggested principle

of reducing the noise that is caused independently by the structural sources on

the front and rear axle was used to verify the selected accelerometer locations

from chapter 4. The road noise analysis indicated that there are two structural

sources acting globally in the front and rear axle with relatively low structural

interaction. However, their modal contributions aggregate and generate the road
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noise field in the cabin, which, in this study, is controlled by a single reference

channel feedforward control with an accelerometer placed at the main structural

sources of each axle.

7.3.2 Secondary path estimates

Before starting the adaptation process of the FxLMS algorithm, the secondary

paths impulse responses are necessary for the algorithm as it is shown in the

controller’s setup in figure 7.4. Figure 7.5 demonstrates a comparison between a

high resolution and high sampling rate impulse response that was modeled as an

FIR filter with 1024-taps at 8 kHz and another one with 256-taps at 1 kHz. In

both case the estimation error was 20 dB lower that the original noise signal that

was used to train the filter set of the secondary paths. As it can be observed the

256-taps FIR is very similar to the 1024-taps filter above 0.04 seconds, where the

accuracy of the filter is important at the tail of the impulse response contains the

low frequencies that are important in the ARNC case. The high rippling that

represents the high frequencies of the secondary path between 0-0.02 seconds is

not same for the two FIR filters as the 1 kHz sampling rate limits the modeled

system up to 500 Hz.

Figure 7.5: Comparison between secondary path estimates. �: Measured
with the dual channel FFT analysis.

7.3.3 Sensor arrangement on the front axle

In chapter 4 we demonstrated that the tyre cavity noise is related to structural

vibrations located at the front axle. Specific locations, such as the control arms

of the suspension, were found to be highly correlated with the interior road noise
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in the coherence analysis. One of the suspension control arms is used at this

stage to reduce the noise levels at the tyre cavity band as it is shown in figure

7.6.

Figure 7.6: Reference sensor at the control arm of the suspension. �: Accel-
eration signal from the z -axis.

7.3.4 Case 1: Reference at the lower control arm and control

filter length I=256

The first step of the experiment dealt with the control over the simulated structure-

borne road noise at the three headrest locations: co-driver and rear passengers

seats. The microphone at the driver’s headrest was used as an observing tool to

examine, whether there are side-effects on the rest of the sound field. Changes

on the road surface are useful acoustic cues for the driver, thus it might be the

only area in the sound field that the controller does not attenuate the sound

pressure levels.

Figure 7.7: Cancellation zones at the three passengers headrest marked with.
• and uncontrolled zone at the driver’s headrest with.

In the past this type of ARNC configuration, in which the cancellation at

the front part of the vehicle, resulted to sound pressure increase at rear seats

[Sano et al. (2000)]. However, in our study the cancellation is focused mostly to

the rear headrests, where road noise resonances are perceptually very noticeable.

The experimental setup in figure 7.4 shows that the controller was set to reduce

the road noise when the forces from the shakers were applied only at the front
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tyres. The digital controller sampled the all the input signals at 4 kHz and

the length of the control was set to 256 taps. Figures 7.8 and 7.9 present the

preliminary results of the structure-borne noise reduction within the cabin. As

the figures illustrate, a significant reduction was noticed between 120-220 Hz for

the right hand front microphone, with 11 dB(A) at the tire cavity band and 10

dB(A) around 120 Hz. A reduction of 10 dB(A) was also noticed at the 290 Hz

resonance for the left hand rear microphone and 11 dB(A) at around 120 Hz for

the right hand rear microphone.

Figure 7.8: ARNC at the four headrests for front tyres excitation, when only
the front tyres are excited by the shakers.−: ARNC off. −: ARNC on.

Figure 7.9: ARNC performance at the four headrests.

However, a rapid increase in sound pressure at the left hand front micro-

phone (driver’s headrest) was noticed at the tyre cavity band. As a consequence,

the spatial averaged reduction of the four microphones is not significant (see

figures 7.10(a), 7.10(b)), especially at the targeted noise band (200-220 Hz).
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(a) Averaged interior noise. −: ARNC off. −: ARNC on.

(b) Averaged Attenuation.

Figure 7.10: Averaged ARNC performance at the four headrests.

Another observation is that 5-7 dB(A) attenuation was obtained between

105-120 Hz. However, the total reduction remains relatively low at 1.9 dB(A) as

table 7.1 demonstrates. Even if the reduction was 2-4 dB(A) at the three headrest

microphones, the amplification at the observation microphone was high.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

-9.3 4.5 2.6 4.0 1.9

Table 7.1: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.3.5 Case 2: Reference at the lower control arm and control

filter length I=512

In this section we present our second effort to improve the performance of this

ARNC configuration. The length of the control filters was doubled to 512 taps

and better reduction was measured at the three cancellation areas, as figure 7.11

shows.
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Figure 7.11: Interior noise at the four headrests, when only the front tyres
are excited by the shakers. −: ARNC off. −: ARNC on

A significant improvement at the right hand front microphone (co-driver’s

headrest) can be noticed in figure 7.12. Tyre cavity resonances dominate the

noise spectrum at 180 and 220 Hz, where the controller manages to reduce the

noise to 12 dB(A) and 17dB(A) respectively.

Figure 7.12: ARNC performance at the four headrests.

This high active noise reduction may be close to the optimal performance

of the coherence limit. The peak reduction of 17 dB(A) should correspond to

0.87 according to equation 4.4, which is a high value for the coherence function

at the tyre frequency range. This also confirms that the accelerometer sensor

was placed at an optimum location, where the vibration levels that relate to

tyre cavity noise were high. Significant cancellation maximum of 10 dB(A) in

the range of 200-220 Hz was achieved at the rear headrest microphone. Another

important achievement is that good reduction is also noticed between 100-120

Hz for the front axle contribution to the rumble band at the three headrests. In
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the case of the observation microphone the amplification peaks at the tyre cavity

resonance at 180 Hz. This indicates that including a fourth microphone in the

control loop is necessary in order to eliminate the high sound pressure increase

at the driver’s headrest.

However, for determining the minimum number of sensors was rather advan-

tageous, since a production line application on a vehicle requires a low number of

sensors. To the best of our knowledge, such reductions have not been achieved

in the past with such a low number of sensors at an experimental level with

simulated structure-borne noise [Ferren and Bernhard (1991), Bernhard (1995),

Dehandschutter et al. (1995), Sas and Dehandschutter (1999)]. In fact, as a rule

of thumb it is proposed that the number of accelerometer sensors should be equal

to the number of independent structural sources that act on the vehicle [Sutton

et al. (1994)]. In contrast to this, Park and Fuller suggested that the number

of sensors should be more than the vibrational sources of structure-borne noise

[Park et al. (2002)]. In this way, it is ensured that the controller observes all the

structural resonances that are correlated to road noise. Still, in both cases the

location of sensors is not found by the TPA analysis, but only the decomposi-

tion of the acceleration spectra with PCA. Therefore, the path analysis based

on the coherence (presented in chapter 4) has improved the placement of the

accelerometers.

(a) Averaged interior noise. −: ARNC off. −: ARNC on

(b) Averaged Attenuation.

Figure 7.13: Averaged ARNC performance at the four headrests.
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As mentioned previously, existing methods for reference sensor selection may

result in a high number of sensors, as they do not take into account the partial

contributions of each vibro-acoustic path to the interior noise response. In this

case, the suggested approach was based on the most sensitive locations in terms

of structure-borne road noise dynamics, where the ordinary coherence at each

path can be high at the road noise bands. This makes us select locations with

high contributions at the microphone response at the headrests. This approach

was validated with the use of a single accelerometer — proposed as reference

sensor location in chapter 4. A second accelerometer at the symmetrical location

of the front axle should be used, but the hardware constraints of the controller

allowed only one reference input. With regards to the number of microphones

in the cabin, the performance was once again lower than expected due to the

amplification at the left hand front microphone (driver’s headrest). On the other

hand, the average reduction is improved compared to the first trial and 5-6 dB(A)

is achieved at the main road noise bands. This is also reflected on the average

reduction in table 7.2, which is around 2.8 dB(A). An impressive reduction of

6.4 dB(A) on the co-driver headrest is also noticed.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

-6.7 6.4 2.8 2.4 2.7

Table 7.2: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.3.6 Case 3: Reference at the lower control arm and control

filter length I=256 and four error microphones

In this trial the left hand front microphone becomes the fourth error microphone,

aiming to compensate for the sound pressure increase at the left hand front

microphone. Figure 7.14 illustrates that tyre cavity noise is attenuated effectively

for the microphone at the left side of the cabin, which is also the side of the

accelerometer. Approximately 19 dB(A) reduction is obtained for the left side

in figure 7.15. In addition to this high reduction is also observed for the rumble

range for the left hand side microphones with around 5-10 dB(A) in the range

of 110-120 Hz.

At the other side of the cabin the reduction is much lower at the tyre cavity

band for the co-driver’s microphone around 5 dB(A) at 180 Hz. This is proba-

bly due to the fact that at the co-driver’s headrest the noise is incoherent with

vibrations coming from the left side of the axle, as a main contribution is not ef-

fectively reduced. An extra accelerometer is necessary at a symmetrical location
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Figure 7.14: Interior noise at the four headrests, when only the front tyres
are excited by the shakers. −: ARNC off. −: ARNC on.

Figure 7.15: ARNC performance at the four headrests.

on the side of the co-driver for measuring the in-phase vibrational components

of road noise. On the hand, the road boom around 80 Hz is attenuated by 11

dB(A) at the right hand front microphone. For the right hand rear microphone,

better performance was measured compared to the front microphone and 8-10

dB(A) reduction was obtained between 200-220 Hz.

The averaged reduction at the four headrests is 4 dB(A). This implies that

the sensor position on the suspension system is one of the weakest links in terms

of road noise dynamics, the controller takes advantage of the high contribution

of this point to the noise at the headrests. As a result, the controller is able to

cancel effectively most of the road noise resonances that are generated by front

axle vibrations. Very good overall performance between 0-500 Hz was measured

according to table 7.3, where the noise levels are reduced by 4 dB(A) across the

four microphones. The highest reduction is obtained at the side of the reference
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(a) Averaged interior noise. −: ARNC off. −: ARNC on.

(b) Averaged Attenuation.

Figure 7.16: Averaged ARNC performance at the four headrests.

sensor, where around 6 dB(A) are removed from the structure-borne noise levels.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

6.6 0.5 6.3 2.7 4.0

Table 7.3: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.4 ARNC simulation: Excitation at the rear tyres

In this section the two locations at the right side of the rear axle of the vehicle

were evaluated as references to the feedforward controller. In chapter 4 we found

that these two locations on the rear axle are responsible for the road rumble and

in this study were used to provide coherent reference signals to the controller.

The two locations at the rear subframe that are investigated in the following

sections are presented in figure 7.17, where only the z -axis was found to be the

most important direction for road noise and its active control in chapters 6 and

4.
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Figure 7.17: Reference sensors at the subframe mounts of the rear axle. �,
�: Acceleration signals from the z -axis.

7.4.1 Case 4: Reference at the rear subframe mount and control

filter length I=512

The first reference sensor location was at the right hand mount on the rear axle.

For the purpose of this experiment, the sampling rate was set at 4 kHz and filter

length was 512 taps, which is twice the length of the FIR filter used for the front

axle, since the rumble band is broader than tyre cavity.

As in the previous section three microphones were used as error microphones

as a point and the microphone at the driver’s hearest was used as an observation

microphone. In figure 7.18 the simulated road noise responses are presented. In

can be noticed that cancellation is very effective also at the front part of the

vehicle at the co-driver’s headrest (right hand front microphone) in the rumble

range. The measured reduction at that position was around 9-10 dB(A) from

100-120 Hz as presented in figure 7.19. Similar levels of reductions are also

recorded for the rear headrest at the right hand side of the vehicle.

Figure 7.18: Interior noise at the four headrestswhen only the rear tyres are
excited by the shakers. −: ARNC off. −: ARNC on
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Figure 7.19: ARNC performance at the four headrests.

For the third microphone at the left hand rear headrest the reduction is

close to 8 dB(A) but over a narrower frequency range, 100-110 Hz. In terms

of the observation point at the driver’s headrest, no significant reduction or

amplification was obtained, due to the fact that source is coming from the back

of the vehicle.

In the previous section for the tyre cavity noise, high amplification was no-

ticed, since the structural sources of the front axle directly couple with the sound

field at the front headrests. Therefore if selective zone of quiets are designed such

as the driver can hear the road surface changes, then the location of the road

noise sources must be considered as side-effects can occur if they have strong

contribution to the driver’s headrest.

In figure 7.20(a) the operation of the controller is mainly effective from 100

to 120 Hz for the three microphones and the attenuation is ranging from 7-10

dB(A). This is expected as the road rumble requires more acceleration signals,

in order to observe the rear subframe vibration. In chapter 6 we found that

the four rear subframe locations are necessary for completely canceling the road

rumble. However, significant improvements were obtained even with the single

sensor, as the total averaged attenuation in the road noise range according to

table 7.4 is 2.2 dB(A).
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(a) Averaged interior noise. −: ARNC off. −: ARNC on.

(b) Averaged Attenuation.

Figure 7.20: Averaged ARNC performance at the four headrests.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

-0.6 4.0 2.5 2.7 2.2

Table 7.4: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.4.2 Case 5: Reference at the rear subframe mount and control

filter length I=1024

In the second experiment for the front axle in section 7.3.5 it was demonstrated

that doubling the control filter length can increase the level of reduction. Simi-

larly, the length of the FIR control filters was doubled from 512 to 1024 taps.

This change in the configuration of the adaptive controller improved the

performance of the system as illustrated in figures 7.21 and 7.22 with the longer

filters.
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Figure 7.21: Interior noise at the four headrests, when only the rear tyres are
excited by the shakers. −: ARNC off. −: ARNC on.

Figure 7.22: ARNC performance at the four headrests.

The rumble is effectively reduced up to 12 dB(A) for the right hand front

microphone and 5-12 dB(A) for the rear headrests. Good control of the rumble

can be noticed across the three headrests, which results to 4.6 dB(A) overall

reduction. In table 7.5 an impressive 7 dB(A) reduction was measured for the

right hand front microphone and around 6 dB(A) for the rear headrests. Some

small enhancements are noticed at sound pressure level at the driver’s headrest

(front left microphone), which for once more it was not included as an input to

the controller.

In a past research study for ARNC it has been shown theoretically that an

increase of 100 taps in the control filter length, can improve the reduction by 1

dB [Bernhard (1995)]. If table 7.4 and table 7.5 are compared, then it can be

observed that the attenuation is increased from 2.2 dB(A) to 4.6 dB(A) for the

same reference signal.
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(a) Averaged interior noise. −: ARNC off. −: ARNC on.

(b) Averaged Attenuation.

Figure 7.23: Averaged ARNC performance at the four headrests.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

-1.7 7.0 6.0 6.2 4.6

Table 7.5: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.4.3 Case 6: Force signal as reference and control filter length

I=512 and four error microphones

Force signals have been used as references for the theoretical modeling of the

performance of a feedforward ARNC system [Mohammad and Elliott (2006),Mo-

hammad et al. (2008)]. The random force signals were used as the reference

inputs to a multichannel feedforward controller and it was shown that they do

not provide significant attenuation. In the same studies it was also demonstrated

that sixteen force signals are necessary to cause 4 dB of the acoustic potential

energy in a rectangular cavity.

In this experiment a force gauge that was placed inbetween the shaker and

the left hand rear tyre and the output signal of the sensor was used as reference.

Therefore this case investigates how the controller performs, when it is using one

of the uncorrelated inputs as a reference input to the controller. As it can be
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noticed in figure 7.24 the control is effective only at the rear headrests. Around

10 dB(A) of attenuation was obtained at the rear headrest microphones between

100-120 Hz. The limited effectiveness at the front headrests might be expected,

since the spatial filtering of the structure and the contribution of the second

shaker limit the performance with only one single sensor.

Figure 7.24: Interior noise at the four headrests, when only the rear tyres are
excited by the shakers. −: ARNC off. −: ARNC on

Figure 7.25: ARNC performance at the four headrests.

Unfortunately, some amplification at the front sear can be noticed, especially

above 200 Hz, which justifies the necessity for a second reference signal coming

from the rear right shaker transducer. However, it can be expected that if force

sensors can be somehow placed in the vehicle structure, then better control of

structure-borne noise can be achieved. Therefore, it might be possible to use

also the forces from various sensitive structural points in the axles instead of

the forces that are directly applied on the tyres. However, in this study we did

not concerntrate on the design of sensors that may also to measure directly the

forces at the points on the structure, but it is strongly recommended for future
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research studies. Especially, if the car is analysed with the use of TPA, where

the force spectra at several points of the vehicle are already know and might be

used for ARNC prediction studies, before applying the technology.

(a) Averaged interior noise. −: ARNC off. −: ARNC on.

(b) Averaged Attenuation.

Figure 7.26: Averaged ARNC performance at the four headrests.

The total reduction at the two rear headrests was slightly more than 5 dB(A)

as can be seen in table 7.6 and the average reduction across the four microphone

2.5 dB(A). This is a strong proof that force sensors at the tyres may potentially

provide good reduction and also in general force signal could be also used for

this type application instead of acceleration signals.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

0.6 -1.4 5.1 5.6 2.5

Table 7.6: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.
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7.4.4 Case 7: Reference at the front subframe mount and control

filter length I=750 and fs=8 kHz

For the purpose of this experiment the system was augmented with the micro-

phone at the driver’s headrest as the fourth error sensor of the control system.

Maximum reduction of 10-15 dB(A) was noticed for the rear microphone between

95-120 Hz. As for the front headrests, the attenuation was less, around 5 dB(A)

in the rumble range.

Figure 7.27: Interior noise at the four headrests, when rear the front tyres
are excited by the shakers. −: ARNC off. −: ARNC on

Figure 7.28: ARNC performance at the four headrests, when only the rear
tyres are excited by the shakers.

The effectiveness of the controller at the front microphones was very lim-

ited. This again relates to the fact that the controller can manage only a single

reference signal, since more locations at the rear are actually contributing to

the rumble range. The averaged reduction was around 5 dB(A) in the rumble
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range and 2 dB(A) at 220 Hz for the tyre cavity band. Consequently, the overall

reduction is lower than the previous experiments and 1.8 dB(A) across the four

headrests were obtained according to table 7.7.

Figure 7.29: Averaged interior noise. −: ARNC off. −: ARNC on.

Figure 7.30: Averaged ARNC performance at the four headrests.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

1.6 0.7 3.5 2.0 1.8

Table 7.7: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.4.5 Case 8: Reference at the front subframe mount and control

filter length I=256 and fs=2 kHz

The second location that also highly contributes to the rumble noise was used

as reference, but with a different configuration. The FIR filters were longer with

750 taps and 8 kHz sampling rate and the anti-aliasing filters been deactivated,

in order to investigate if there is any effect of the controller’s delay at the system.

This location is actually slightly closer to the body side of the vehicle thus it

was thought that a high sampling rate might reduce the latency of the control

filtering stage in the case it has any severe effects on the adaptation stage.



170 Chapter 7 Active noise control experiments on a road-noise simulator

In figure 7.31 it can be noticed that the reduction is somehow limited to

the first resonance for the rear microphones of the road rumble. In addition

the system was not able to provide broadband attenuation for the rear axle

contributions to the front microphones and 5 dB(A) were measured at narrow

frequency range as it can be seen in the graphs of figure 7.32.

Figure 7.31: Interior noise at the four headrests, when the rear tyres are
excited by the shakers.. −: ARNC off. −: ARNC on

Figure 7.32: ARNC performance at the four headrests.

This limited performance of the system is probably due to the fact that

actually 2-4 accelerometers are necessary at the rear axle. This way all the

structural vibrations can be observed simultaneously and possibly controlling all

the rear axle contributions. However, as mentioned before the controller allowed

only one reference and thus the performance also for front microphones was

limited to a narrow frequency range as not all the structural sources were fed

into the controller that are contributing to the rumble. Even if the attenuation

is limited to 1.3 dB(A) and 1.6 dB(A) for the left and right hand front headrest
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microphones, the performance at the rear is more than 2 dB(A) for a single

reference signal. In figure 7.32 that the attenuation was around 5 dB(A) from

90-120 Hz.

Figure 7.33: ARNC performance at the four headrests.

Figure 7.34: ARNC performance at the four headrests.

In total 2.7 dB(A) were obtained from this ARNC configuration with the

reduction been focused at the rear headrests according to table 7.9. As for the

rear headrest the noise levels were reduced by 4.7 dB(A) and 3.2 dB(A) for the

left and right side respectively.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

1.3 1.6 4.7 3.2 2.7

Table 7.8: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.4.6 Case study 9: Reference at the rear subframe mount and

control filter length I=128 and fs=2 kHz

So far a sampling rate far from the Nyquist frequency was used for reducing

the latency that may be introduced by anti-aliasing filtering at the inputs of the
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feedforward controller. In this case the sampling frequency was set to 2 kHz and

thus the antialiasing filtering was necessary. The length of the control filter was

selected to be 128-taps, in order to find also the minimum required number of

coefficient required for this vehicle structure.

Figure 7.35: Interior noise at the four headrests, when only the rear tyres are
excited by the shakers. −: ARNC off. −: ARNC on.

Figure 7.36: ARNC performance at the four headrests.

Actually the reduction of the filter length was proven to be beneficial for the

adaptive system, as the adaptive algorithm was able to achieve faster convergence

to a filter set in less than 10 minutes. Moreover reductions up to 500 Hz are

noticeable, since also the location of the rear subwoofer is relatively close to the

headrests, around 20 cm distance, thus it directly couples acoustically with the

radiated rumble noise from the vehicle’s panel.

Therefore the reduction of the sampling rate and the introduction of the

anti-aliasing filters did not actually affect the controller’s causality as it was
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been noticed in a past study with feedforward control [Sas and Dehandschutter

(1999)].

(a) Averaged interior noise. −: ARNC off. −: ARNC on.

(b) Averaged Attenuation.

Figure 7.37: Averaged ARNC performance at the four headrests.

The attenuation was significantly improved and the noise was reduced by

10-15 dB(A) at the three error microphones as it can be seen in figure 7.35. In

addition to that the averaged attenuation at the four microphones in figure 7.36

deviates from 5-10 dB(A) between 90-160 Hz, which shows the effectiveness of

the controller across the headrests.

The total reduction from 0 Hz to 500 Hz at the co-driver’s headrest was 7

dB(A), which previously the controller with the force sensor signal as reference

was not able to attenuate at all. The setup with 1024 taps at 4 kHz had also

provided exactly the same reduction for that microphone in table 7.5.

Moreover the averaged attenuation across the headrests was 5.6 dB(A) ac-

cording to table 7.9, which is 1 dB(A) higher than the one obtained in the

experiment of section 7.4.1 for the rear subframe mount. It seems that this

second location at the rear axle provides good road rumble performance, which

validates the fact that the structural location at the axles with the most coher-

ent signal provides also better control of the noise as this location and DoF was

also used for the coherence predictions in section 4.3.2. This setup also could be

also potentially used in real application in a production line luxury vehicle for
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reducing the road rumble at the rear headrests with a pair of accelerometers at

the rear subframe of the rear axle.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

1.1 7.0 5.7 7.4 5.6

Table 7.9: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.5 ARNC physical simulation: Excitation at the four

tyres

7.5.1 Case study 10: Reference location at the rear subframe

mount of the rear axle

The location at the rear axle of section 7.4.1 was for once more used as a reference

input to the controller. In this experiment the performance of the controller was

evaluated for the case of the front and rear axle vibro-acoustic paths contributing

to the sound field simultaneously as it is on actual driving conditions on the road.

As it was shown in section 3.2.4, this shaker setup can simulate fairly well the

structure-borne road noise profile for a low speeds as the transducer sensitivity

limited the output levels that could provide a higher excitation input into tyres.

Figure 7.38: Interior noise at the four headrests, when all the tyres are excited
by the shakers. −: ARNC off. −: ARNC on
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The reduction in this case is not impressive for the front headrest micro-

phones. At the driver’s headrest maximum 2 dB(A) were obtained and 7 dB(A)

at the co-driver’s headrest in the road rumble range. At the rear headrests the

noise was reduced up to 10 dB(A) between 90-110 Hz. The total noise levels in

the frequency range of 0-500 Hz were reduced at the rear headrests by 2 dB(A)

according to table 7.10 and an average of 1.3 dB(A) was obtained for the four

headrests.

Figure 7.39: ARNC performance at the four headrests.

(a) Averaged interior noise. −: ARNC off. −: ARNC on

(b) Averaged Attenuation.

Figure 7.40: Averaged ARNC performance at the four headrests.
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This limited performance for the rear axle is due to the fact that a single

reference is not enough for observing all the structural sources that contribute

to the structure-borne noise at the headrests. However, this location provides

good control at the targeted frequency region (road rumble) that was initially

selected for. We now observe a loss of performance as the vibration field now

is closer to the actual one that is caused by the interaction of the tyres and the

road surface. Even though still 2 dB(A) were attenuated from the noise levels

at the rear headrest microphones as it can be seen in table 7.10.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

0.3 0.3 2.6 2.0 1.3

Table 7.10: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.5.2 Case study 11: Reference accelerometer at the front sub-

frame mount of the rear axle

The second location of the rear axle that was used in section 7.4.6, which is the

z -direction at the front mount of the rear subframe and it is the one that has

provided the best reduction at the rear seats so far. It was observed in previous

measurements for this accelerometer location at the rear axle that the cancella-

tion was limited for the front microphones. In contrast, the reduction levels at

the rear microphone are more noticeable in figure 7.41, where the noise levels be-

tween 100-120 were reduced by a maximum of 10 dB(A) as can be seen in figure

7.42. If table 7.10 and 7.11 are compared, then it can be noticed that the atten-

uation of the structure-borne noise at the rear headrest microphone is increased

by almost 1 dB(A) in the frequency range 0-500 Hz. This improvement should

be expected as in sections 7.4.5 and 7.4.6 it was shown that this accelerometer

location provided better noise reduction at the rear headrests microphones. This

again relates to the high structural sensitivity of this part of the rear axle that

allows the vibrations to be transmitted into the vehicle’s panel. Unfortunately,

the noise levels at the tyre cavity range were not attenuated at all in sensor

arrangement, since the main transfer paths of this noise are located at the front

axle in this vehicle. Therefore, measurements with the accelerometer located at

the front axle had to be repeated and are discussed in the following section.
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Figure 7.41: Interior noise at the four headrests, when all the tyres are excited
by the shakers. −: ARNC off. −: ARNC on.

Figure 7.42: ARNC performance at the four headrests.

(a) Averaged interior noise. −: ARNC off. −: ARNC on.
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(b) Averaged Attenuation.

Figure 7.43: Averaged ARNC performance at the four headrests.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

0.5 0.9 3.2 3.1 1.8

Table 7.11: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.5.3 Case study 12: Reference accelerometer at the lower con-

trol arm at the front axle

The accelerometer location that was in section 7.3.4 at front lower control arm

of the left hand front suspension is again providing the reference input for con-

trolling the sound pressure levels of tyre cavity at the four headrests.

Figure 7.44: Interior noise at the four headrests, when all the tyres are excited
by the shakers. −: ARNC off. −: ARNC on.
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Figure 7.45: ARNC performance at the four headrests.

The reduction is only noticeable at the left side of the vehicle according to

measured microphone responses in figure 7.44. As a starting point a high sam-

pling and long FIR filter were used for this experiment. A sampling frequency of

8 kHz was used in order to avoid using any anti-aliasing filtering for the sensor

signals. However, this change required longer FIR filters and thus 512-taps were

trained for each controller. The effectiveness of the controller is again noticeable

in the tyre cavity range for the left hand front and rear headrest microphone sig-

nals was resulted after training the system with adaptive algorithm. In particular

8 dB(A) and 10 dB(A) reduction can be seen in these two headrest locations in

the tyre cavity range between 200-210 Hz. The averaged reduction is 5 dB(A)

around 205 Hz, but the overall reduction is negligible according to table 7.12.

However, there might be a subjective benefit of having this smoothing of the

road spectrum with the ARNC even at the narrow frequency range of the tyre

cavity resonance. This poor overall performance is likely to be caused by the

settings of the adaptive controller, since in experiments for the front tyres the

cancellation of the tyre cavity noise was effective in all of the microphone signals.

(a) Averaged interior noise. −: ARNC off. −: ARNC on.
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(b) Averaged Attenuation.

Figure 7.46: Averaged ARNC performance at the four headrests.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

1.5 0.0 0.2 0.3 0.5

Table 7.12: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.5.4 Case study 13: Reference accelerometer at the lower con-

trol arm at the front axle and fs=2 kHz I = 128-taps

The previous ARNC sensor setup was used again, in order to investigate the

effects of the long FIR filters and high sampling frequencies. In this case the

length of the FIR control filters was shortened to 128 taps and the sampling

rate was set to 2 kHz with also antialiasing filter also introduced into the control

path.

According to figure 7.47 the reduction in the sampling rate and filter length

of the adaptive system looks like they did actually improve the levels of cancella-

tion at all of the microphone locations. It can be noticed that good reduction of

tyre cavity noise was obtained 200-220, the maximum cancellation was 10 dB(A)

at 205 Hz. Interestingly, the controller was also able to reduce by 10 dB(A) the

290 Hz resonance at the left hand front headrest.
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Figure 7.47: Interior noise at the four headrests, when all the tyres are excited
by the shakers. −: ARNC off. −: ARNC on.

Figure 7.48: Averaged ARNC performance at the four headrests.

(a) Averaged interior noise. −: ARNC off. −: ARNC on.
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(b) Averaged Attenuation.

Figure 7.49: Averaged ARNC performance at the four headrests.

The averaged attenuation in the tyre cavity range at the four microphones

deviates from 7-9 dB(A) as it can be noticed in figure 7.49(b).

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

2.1 0.5 -0.6 0.0 0.5

Table 7.13: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.

7.6 Multichannel active road noise

A portable system based on the ADwin Gold II was developed for the evaluation

of a multichannel system. Four accelerometers were mounted on the locations

that were used in the previous experiments. The ADWin system is a multichan-

nel programmable controller through Matlab/Simulink environment for hard-

ware in the loop simulations and also for real-time control and data acquisition.

The following figure presents the arrangement of the hardware equipment for the

portable controller inside the vehicle.

Figure 7.50: Hardware equipment for ARNC inside the vehicle. The arrang-
ment of the units can be seen with the corresponding signals that flow in and

out from the controller.
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As a first step the ADwin system was used to acquire road noise and vi-

bration data, in order to predict the performance of the system with the use of

causal time domain simulation in Simulink with the use of the algorithm that

was developed in chapter 6. Four acceleration signals were measured at two

symmetrical locations at the front axle and two at the rear. The multiple coher-

ence functions for the four microphones at the headrests were calculated and are

illustrated in figures 7.52(a)-7.52(d).

(a) Multiple coherence for the left hand front
(LHF) microphone.

(b) Multiple coherence for the right hand front
(RHF) microphone.

(c) Multiple coherence for the left hand rear
(LHR) microphone.

(d) Multiple coherence for the right hand rear
(RHR) microphone.

Figure 7.51: Multiple coherence functions for the four microphones at the
headrests.

Fairly good coherence is obtained in rumble band of 90-120 Hz, but even

better for the tyre cavity noise in range of 160-180Hz. The road data were

combined with the measured impulse responses of the audio system and the

cabin for predicting the performance of the prototype system. Unfortunately, the

development of this controller had to be terminated, due to severe electrical issue

of the vehicle. Electrical transients were transmitted from the vehicle battery

and burned the fuses that were protecting the prototype and also the power

supply of the ADWin controller. Therefore only simulation results of the ADwin

data are shown in figures for estimating the performance of the multichannel

controller.
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(a) Road noise at the LHF microphone. (b) Road noise at the RHF microphone.

(c) Road noise at the LHR microphone. (d) Road noise at the RHR microphone.

Figure 7.52: Interior noise at the four headrests at 50 km/h. −: ARNC off.
−: ARNC on.

Good control can be obtained at this medium speed with four accelerometer

locations measuring one direction only. This is mainly due to the fact that the

accelerometers at this speed the main contributor is coming from the z-direction

and thus more DoF are not necessary. However, at high speeds above 90 km/h

more directions from the axles are contributing, thus more directions are neces-

sary as we saw in chapter 6. If the controller is to operate in a specific speed

range, where structure-borne dominates the sound field of the cabin, then this

sensor configuration is apparently enough to achieve the necessary improvements

in the NVH performance of road noise. It is also apparent that if the main vibra-

tional inputs of the vehicle structure are not used as reference to the controller,

then it can be difficult to demonstrate the technology and also the risk of using

a large number of sensors is increased.

LHF dB(A) RHF dB(A) LHR dB(A) RHR dB(A) Average dB(A)

4.2 5.2 4.0 4.2 4.4

Table 7.14: Total reduction for 0-500 Hz. LHF: Left hand front, RHF: Right
hand front headrest, LHR: Left hand rear, RHR: Right hand rear.
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7.7 Summary

An ARNC system was implemented on Bentley Motor vehicle, in order to in-

vestigate under real-time conditions the accelerometer sensor placement on the

vehicle chassis. The system was validated on the physical road noise simulator

that was developed in chapter 3, in order to control the structure-borne noise

contribution of the front and rear axle separately and also the whole vehicle that

replicates the road noise under a medium driving speed around 60 km/h.

Excitation at the front tyres

As a first step only the front tyres were excited and three microphones were

providing the feedback loops of the system and the four microphone the

driver’s headrest was used as an observation point. The reference input

to the feedforward input was the z -direction of the lower control arm of

the left hand front microphone. It was found that 2-6 dB(A) reduction

levels are possible for the structure-borne noise contributions of the front

axle and the system was very effective especially at the tyre cavity range.

This validated the reference sensor location as in the coherence analysis it

was found that this location is necessary for having high coherence value

at the tyre cavity band. Unfortunately, this microphone configuration had

caused enhancements at the tyre cavity range at the driver’s headrest.

Therefore for the last case of this excitation scenario the microphone at

the driver’s headrest was included as the fourth error microphone and the

level at the centre frequency of tyre cavity was reduced by 19 dB(A), which

is possible for a coherence value of 0.89 between the sensors. In the past the

performance of the feedforward ARNC controller was found to be exceed

slightly the coherence estimates [Park et al. (2004)]. This high reduction

at the tyre cavity resonance relates to the fact that the reference sensor

location at the control arm of the front suspension is actually one of the

main vibration transmission of tyre cavity noise into the rest of the vehicle

structure, which allows the algorithm to identify the relavant dynamics.

As a result, the adaptive system converges to a filter set that is focused on

that frequency area without any extra filtering in the algorithm side that

is usually necessary for ARNC controllers [Stothers et al. (1998)].

For this case it was also found that 6 dB(A) can be removed from the

noise spectra at the headrest at the left hand side of the vehicle, where the

reference sensor was also placed. Unfortunately, the reduction was lower

at the other side of the vehicle and thus 4 dB(A) reduction was obtained

across the four microphones at the headrests.
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Excitation at the rear tyres

When the rear tyres were excited by the shaker transducers, then the road

rumble was simulated and controlled with one reference signal from the

z -direction of the front or the rear mount of the rear subframe. It was

found that the front subframe mount provides better reduction than the

rear. Moreover, various filter lengths were investigated for 128-taps up

to 1024-taps. High sampling rates had to be used for 512, 1024-taps for

also avoiding the antialiasing filtering that adds an extra time delay in the

system. We noticed that doubling the filter length and maintaining the

same sampling rate improved the reduction by extra 2 dB(A) at the rear

headrest, where the road rumble dominates.

In general, it was found that longer filter slightly improved the cancellation,

but at the end it was verified that 128-taps at 2 kHz are enough. As 7

dB(A) reduction was achieved in the structure-borne road noise range at

the microphones at the right hand side of the cabin, which is also the side of

the reference sensor at the rear axle. At the co-driver headrest, where also

the road rumble is audible in total 5.7 dB(A) attenuation was achieved by

the system and the no noise enhancements at the driver’s headrests were

found as the microphone at that location was used only as an observation

sensor for the rest of the sound field.

Excitation at the four tyres

The sensor locations were again evaluated for the case that all the tyres are

excited with broadband random noise for replicating the randomness of the

vibrational and acoustic fields that are generated under driving conditions

over a coarse road. It was found that the front subframe mount provides

3 dB(A) reduction at the rear headrests with the controller focusing at

the rumble range, which is 1 dB(A) more than the resulted attenuation

when the rear mount was used with the same DSP configuration. The

last experiment targeted the reduction at the tyre cavity range and the

controller successfully managed to reduce the tyre cavity resonance at the

left hand side as the sensor was placed at the lower control arm of the

left hand front suspension. The overall reduction was very low as the tyre

resonance is very narrow compared to the rumble that dominates the road

noise range.

However the locations that were used in the initial two first experiments

with the separate excitation of the front and rear axle seem to still provide

good control of the noise levels at the main road noise bands. The sen-

sor locations reveal the fact that a sensor close to the tyre at one of the

structurally weak suspension arms allows consistent performance for the

controller at the tyre cavity range. As for the road rumble the rear axle
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subframe mounts are the main locations that the controller can observe

most of the vibrations that generate the rumble. In our case only the z -

direction was used for all the locations, but one more DoF for controlling

the rumble is necessary are the vibrational response of the rear part of the

vehicle at that frequency range is relatively complex and thus one DoF is

not enough for measuring all the components that contribute to the noise

responses at the rear headrests.

The following table summarises the best noise reduction cases that were

obtained from the road noise simulator for the control of the two main road

noise bands that the Bentley vehicle suffers from:

Shaker location Filter taps and samping rate Reduction dB(A)

Front tyres 256 @ 2 kHz 4.0

Rear tyres 1024 @ 4 kHz 4.6

Rear tyres 128 @ 1 kHz 5.6

Table 7.15: Best road noise simulation cases for tyre cavity and road rumble
ARNC.





Chapter 8

Conclusion and future work

8.1 Summary

In this thesis we have presented the full cycle of a study of structure-borne road

noise on a luxury vehicle along with the application of ARNC as a treatment

for improving the NVH performance. Luxury vehicles such as Bentleys, contain

several passive treatments for controlling the road forces at various points on

the vehicle’s structure, which play an important role for reducing the structure-

borne road noise levels inside the cabin. Therefore, performing NVH analysis

of the vehicle was essential, in order to highlight the most important structural

locations of the vehicle that are related with the random noise inside the cabin.

With that in mind coherence analysis proved to be essential in the successful

application of a feedforward controller. As the accelerometers that were used as

references input to the controller were placed at the locations, which were found

to provide coherent signals with the interior structure-borne noise at specific

road noise resonances.

The first step in our study was to analyse the vehicle with acoustically and

structurally advanced NVH methods, which are currently used in the automotive

industry in chapter 2. The second step was to develop a physical simulator for

road noise, which was presented in chapter 3 and it was used later on employed

in chapter 7 for the real-time implementation of a feedforward controller. In

chapter 4 we presented the outcomes of a study for the sensor arrangement

and the coherent vibrational sources that act on the structure, which aimed

to find a minimum set of acceleration singals that can be used for ARNC. In

189
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chapter 6 a time domain ARNC model for the Bentley vehicle was focused on

the investigation of the various combinations of accelerometer locations and the

DoF at each location. In chapter 7 a feedforward controller was presented for

real-time experiments on the physical road noise simulator for evaluating the

control strategy that made use of the locations that were found to important for

road noise in the previous chapter. A multichannel system with low hardware

latency was used for the development of a multireference adaptive system, the

same system was used for data acquisition and ARNC predictions. An electrical

issue with the vehicle’s electrical system did not allow further development of

the controller on that particular vehicle, as a consequence only the predictions

based on the acquired data are presented in the thesis. Nevertheless, an ARNC

model based on data that were initially acquired with the multichannel controller

was developed, in order to estimate its performance. The model was based on

data from four reference accelerometers, the error microphones at the headrests

and the impulse responses between the five loudspeakers of the vehicle. The

accelerometer reference sensors were placed at the same locations that were used

for the experiments with the shakers. The control arms at the suspensions of

the front axle and the two front subframe mounts at the rear axle were used as

inputs for the ARNC model. The predictions based on this multichannel system

with the low latency hardware were found to achieve active noise reduction up

to 4 dB(A) across the four headrests.

8.2 Structure-borne road noise

In chapter 4, the coherence analysis method for structure-borne NVH was mod-

ified in such a way that the coherent contributions of each axle part can be

identified from coherence functions between the DoF that act on important axle

points, such as subframe mounts and the interior noise. In this way we can iden-

tify which parts and DoF are highly correlated with the structure-borne noise

responses in the cabin under operative conditions and create a map of the co-

herence between the reference inputs and the microphone responses. Coherence

values more that 0.7 at the road noise bands were found for several locations on

the axle. In particular, the accelerations signals at suspension control arms of

the front axle were found to be very coherent for tyre cavity noise, but generally

the signals from the subframe mounts were very coherent for both road rumble

and tyre cavity resonances.

During the development of an experimental ARNC configuration for simulat-

ing road noise in control conditions a physical road noise simulator was resulted
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and it is presented in chapter 3. Another outcome of this experimental develop-

ment was the good replication of the interior noise responses for four uncorre-

lated broadband random forces applied directly to the tyres. It was also found

that with more acceleration signals than the four applied forces on the tyres,

the multiple coherence between the structural inputs and the interior noise im-

proves significantly. This was particularly evident when the accelerometers were

placed at some mechanical parts of the axle that are close or at the structural

sources that relate to the road noise bands. This implies that the interaction

of the structural sources can be slightly compensated with sensors mounted at

the main road noise contributors. As for the benefits of the physical road noise

simulator, it may prove to be a useful and cost effective method for NVH testing

of structure-borne noise, as it avoids many drives on proving grounds or other

areas where the vehicle is evaluated for road noise. The main benefit of using

shaker transducers is that the excitation forces that are applied on the tyres can

be focused on either quarter, half or the whole vehicle, in order to identify from

which axle the structure-borne sources originate from and validate it with road

data as it was performed in our case. This way of testing prove to be potentially

useful for benchmarking vehicles for road noise and evaluating design modifica-

tions of front and rear axle that are usually performed to later versions of the

same vehicle.

The main was to improve excisting signal processing methods of road noise

analysis, in order to apply these to an ARNC design method. An investigation on

the generation of the structure-borne noise was performed through the physical

simulator and managed to achieve a good synthesis of the actual noise field.

8.3 ARNC technology

The main target of this study was to improve the methods for the reference sen-

sor selection, which are necessary for the application of multichannel feedforward

ARNC. We approached this using coherence analysis combined with adaptive

noise control predictions. Coherence analysis was proved to be useful in indi-

cating the frequency content of the acceleration signals. The main conclusion is

that there is a relation between the coherence and the structural sensitivity of

the parts, in the sense that the higher the coherence, the higher the contribution

to the interior noise response. Therefore it is of utmost importance to create a

map of the coherence between the acceleration signals and the sound pressure

response inside the vehicle’s cabin before applying PCA and multiple coherence.

As the two later methods will not show any information about each measurement
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location on the structure, but only for the number of the independent sources

and their correlation with the noise instead.

Another part of this research focused on the relationship between the most

important axle parts and the performance of an ARNC controller. These parts

are optimised for dynamics and structure-borne NVH, but they still allow the

vibration transmission into the rest of the vehicle body. We focused on finding

which DoF at these parts are the most significant by combining also the knowl-

edge that we obtained from the coherence analysis of the vehicle. We found that

two DoF are necessary from the front for the reducing effectively the noise levels

at the front headrests. On the other hand, on the rear axle one DoF placed at

the structural sources was enough to provide good control at the rumble range.

The reason for having more DoF at the front axle is that the adaptive controller

cannot resolve the frequency components of the acceleration signals. This is

necessary as the accelaration signals are close to the noise floor of the measure-

ment and by including more DoF the coherence is improved. Consequently, the

cross-correlation between the filtered reference signals and the error signals of the

microphones is higher in the adaptation stage and thus the algorithm can con-

verge to filter solution that can control effectively the resonances that come from

the front axle. The inspiration behind this control strategy came in fact from

TPA, in which the sensor locations and the DoF are important for the appropri-

ate synthesis of road noise. For tyre cavity control we chose a suspension part

that provides high coherence at the tyre resonances. This type of approach for

optimising the sensor placement is therefore related to the structural dynamics

of the vehicle that relate to structure-borne road noise.

The real-time implementation of the adaptive feedforward systems was based

on the independent excitation of front and rear axle. In terms of performance,

reduction levels up to 10 dB(A) were achieved at some of the road resonances.

This mainly happens because we allowed adaptive algorithm to converge to an

optimum set of filters. Apart for that other NVH sources were inactive during

the physical simulation of road noise. Three locations were tested for referencing

the feedforward controller: one for the front axle and two for the rear. Each

location was evaluated separately and only the z-direction was tested as the con-

troller was limited to one reference only. As a consequence, broadband control

was not feasible, due to this limitation of the controller. Additionally, we investi-

gated the effect of reducing the noise at three passengers headrests, co-driver and

rear seats. The noise at the driver headrest was deliberately excluded from the

control system, in order to investigate any control spillover effects. It was fairly

evident that tyre cavity noise was amplified as most of it comes from the front

axle and it was interfered with the cancelling field that was generated by the

loudspeaker system at the front doors. When four microphone sensors were used
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as error singals in the adaptive algorithm, then good performance was measured

across the headrests. It is therefore necessary to use at least four microphones,

at least one per headrest as several resonances contribute to the sound field and

a high number of sensor ensures that the acoustic field is overdetermined by the

controller.

To conclude, good performance was achieved on the real-time experiments at

road resonances even if one reference sensor was used. When the front tyre were

excited, the spatially averaged reduction was 4 dB(A) across the four headrests.

As for the rear tyre excitation, the noise levels from rear axle structure-borne

contributions were attenuated by 5.6 dB(A) on average. For the last case of

the whole vehicle excitation, the around 2 dB(A) were removed from the noise

spectra across the four headrests.

8.4 List of contributions in structure-borne road noise

NVH

In this thesis we primarily focused on analysis methods and simulation of structure-

borne road noise, in order to create the baseline for the ARNC development that

treats this NVH problem. In this section we discuss some outcomes that spin-off

from this study and are highlighted as follow:

• A whole vehicle road noise simulator for analysing the structure-borne

road noise behavior of a vehicle with a set of random tyre forces. The setup

can be used for TPA analysis and modal analysis of the whole vehicle. In this

case it was used for measuring the main transfer paths of road noise also for the

developement of the ARNC controller.

• The method for the placement of the accelerometer sensors of feedforward

controller was based on the coherence function as a continuation of the work

performed by Bernhard in the early 90s [Ferren and Bernhard (1991), Kompella

et al. (1994), Heatwole et al. (1993)]. In our study though all the transfer paths of

the vehicle are included and a coherence function map for source identification is

created. The road noise is analysed according to the contributions coming from

the front and rear axle separately. This way the structural sources that act on

each axle can be identified. It was found that several accelerometer signals have

high coherence values with more than one road noise resonance in the cabin.

A set of these acceleration signals can be selected in order to synthesise the

road noise with the use of multireference adaptive filtering. It was found that
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these acceleration signals are enough to describe and control the sound pressure

response in cabin. This methodology is an improvement of what was suggested

in the past as a rule of thumb for the number of reference sensors of feedforward

ARNC. As in our case the selection relies on the location of the most sensitive

structural parts for road noise. The control strategy with an optimised spatial

arrangement of the sensors and with a low number of acceleration signals is

demonstrated at simulation level and compared with various combinations of

reference signals.

In terms of the accelerometer selection method up until now there was no

strict guidance for the placement. In this thesis we defined a selection process

with the following steps:

1. A coherence path analysis of front and rear axle that reveal the location of

the main sources and transfer paths of each audible road noise resonance

in the cabin.

2. Calculation of the multiple coherence with the use of the main transfer

paths and sources that are highlighed in step 1.

3. Road noise synthesis of each microphone response at the headrest with the

selected sets.

4. As a last step for validating the performance before installing the con-

troller into the vehicle, ARNC predictions with FxLMS (or other ANC

algorithms).

8.5 List of contributions in ARNC technology

The outcomes of the NVH analysis of structure-borne road noise constituted the

basis for the ARNC development and provided a better understanding of how

the ARNC performance is linked with the behaviour of the vehicle in terms of

road noise in conditions under which other NVH attributes are also present in

the cabin. The following points summarise the most significant outcomes of the

ARNC development study of this research study:

• A real-time adaptive feedforward controller with a single reference input

was successfully employed on the whole vehicle road noise simulator aiming to

prove the validity of the accelerometer positions. The developed control approach

was based on the principal that one reference signal at the road noise source can

effectively reduce the noise levels at the corresponding road resonance in the
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cabin. Therefore the reference sensor location does not relate with a random

selection at some suspension locations that optimises the cancellation levels or

with the fact that more sensors than the sources are necessary for observing all

the road noise dynamics, but on the fact that the sensor is axle locations that are

sources or transmission paths of structure-borne road noise. This was revealed

from coherence analysis in chapter 4, where a map of the coherence functions

across the vehicle was constructed and revealed several weak paths of road noise.

• In terms of ARNC performance the reduction levels with a single reference

sensor are promising, as they could lead to a low cost controller design for reduc-

ing the levels at specific road noise resonances. In particular, tyre cavity noise

can be removed completely from the road spectra and it was found that maxi-

mum reduction 10 dB(A) at the tyre resonance with a single reference at one of

the control arms at the front suspension are possible. This is an important result,

as in the past four sensors were observing tyre cavity vibrations at the wheel for

the effective reduction of noise levels that relate to tyre cavity resonances [Sutton

et al. (1994), Kim et al. (1996)]. An overall reduction of 3 dB(A) was achieved in

the frequency range of 0-500Hz for the road rumble spectra at the rear headrests

with the sensor placed at the most sensitive part of the rear axle in terms of

road noise inputs. The microphone at the driver’s headrest was sometimes used

as an observer, in order to explore the scenario of the driver having the auditory

cue from the road. It was obvious, when it comes to the road noise components

generated from the front axle vibrations, there is room for enhancements as the

microphone signal at the driver’s head is not included in the cost function of

the controller. With regards to the road noise components that originate from

the rear axle there were no side-effects. Some modifications in the algorithm to

allow for the audio feedback the road could be performed, as it is questionable

if the ARNC affects the driver’s awareness during long drives with the ARNC

system activated. To the best of our knowledge, it is the first time that this

configuration has been explored, therefore further research is necessary, in order

to optimise the efficiency of adaptive algorithms and allow controllable levels of

reductions at each headrest.

• A study into the relationship of the performance of an ARNC, DoF at vehi-

cle components that are optimised, for passive road noise control, was presented

in chapter 6. We discovered that once the location of the sensor with a single

DoF is optimised in terms of ARNC performance, then the introduction of extra

DoF provide improvements up to 1 dB(A) to this luxury vehicle. This increase

of references happens mainly at high speeds, where high road inputs are applied

on the vehicle and also airborne road noise is also present at the microphones.

With regards to eight references at one DoF, around 2 dB(A) can be achieved

across the headrests and with ten or twelve around 3 dB(A). Taking this into
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account, we may conclude that the doubling of the number of references and the

increase in the DoFs that observe the vibrations across the vehicle structure is

not a general rule. This can be the case for specific types of vehicles, with poor

levels of road noise refinement, where several structural sources are contributing

to the sound field.

• The coherence analysis of each structure-borne road path provided signif-

icant input to the development, since it highlighted the locations of some highly

correlated vibration signals with the interior noise. These also offered sufficient

control over targeted road noise bands that are mainly audible in the cabin. The

locations that came from the coherence are also critical for passive road noise

NVH, they are the main sources and transmission paths of road noise. The ad-

vantage of this technique is that it can achieve a reasonable number of reference

sensors without compromising the ARNC performance. Another advantage is

that it can possible integrated in the NVH development process. During the

structure optimisation with passive control techniques someone could use the

knowledge obtained by the NVH analysis to introduce an active solution to im-

prove further the performance.

• A novel feedforward ARNC control strategy has been developed that

makes use of the location of either the structural sources or the main transmis-

sion paths. The latter identified through advanced NVH methods that employ

signal processing methods, such as coherence. More specifically, the ordinary

coherence helped us to locate the paths and the sources across the two axles. If

the coherence is more that 0.7 between the accelerometer sensors, this is either

an indication of the main path or that the sensor is close to the structural source.

As a next later four locations were selected based on this condition, each two

symmetrical for each axle. The criterion used for the selection was the highest

coherence value and later on we calculated the multiple coherence.

We found that the combination of the sensor signals of these locations results

to multiple coherence that is high at the road resonances. This validates the

fact that the selected sensor locations are sufficient to observe the structural

dynamics that are highly correlated with the road noise resonances. Following

the coherence study, we examined the DoF that are important for ARNC and

discovered that the z, y-directions mainly affect the controller’s performance.

The x -axis on the selected locations does not notably improve the performance.

However, it was observed that for the front axle two directions are necessary.

This has to do with the complexity of the front axle design that causes more

complex structural behavior than the rear axle. Therefore we can conclude that

the number of reference signals depends purely on the complexity of vibrations

at each axle and their modal response.
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The previous studies established a relationship between the control arms

at the front axle and tyre cavity, but also a relationship between the subframe

mounts of the rear axle and the road rumble. This spatial arrangement of the

structural sources and transmission paths was the basis of the sensor placement

in the vehicle. On that basis, the real-time system was tested and we noticed

that 3 dB(A) can be reduced at the rear headrests, where the structure-borne

road noise is mostly audible. The suspension arm was used to reference the

controller and reduce the noise levels of tyre cavity resonance. Maximum 10

dB(A) can be attenuated at its centre frequency. As for the subframe mounts

that were used as inputs for road rumble control, we discovered that 5-12 dB(A)

across the rumble band can obtained when only the rear axle vibrations are

contributing to the sound field. The direct link between the main mechanical

inputs of road vibrations in the axles that are correlated with structure-borne

noise and the reference inputs of feedforward control is also important in terms

of the controller performance and robustness. In that way, the control system

may be able to cope with all road changes as the all the mechanical inputs are

able to observe the uncertainties at the mechanical inputs in the chassis.

8.6 Future work

In this thesis we investigated fundamental concepts of feedforward control with

the use of well-established NVH methodologies. It was proven that are very

helpful for the develop of such a system. Therefore this thesis sets the foundation

for several future developments, which are the ones listed here:

• Knowledge obtained from structure-borne and air-borne TPA measure-

ments can be used to develop an ARNC system with a mixed type of sensors

for extending the operating range of active systems at speeds above 100 km/h,

where airborne road noise contribution becomes audible at low frequencies. The

advantage of this approach is that it reduces significantly passive treatments and

their weight that are used for blocking air leaks around the vehicle.

• To the best of our knowledge, there is no evidence in the literature of the

effects of very low frequency wind noise, usually referred to as buffeting noise,

which is caused by opening the windows, this creates low frequency resonances.

It would be of a great interest to explore whether controller with mixed type of

sensors is able to cope also with that issue.

• Another potential line of research would be to control specific cancellation

zones as well as the levels of reduction, so that it allows the driver to hear changes
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in the road surface under driving conditions. This control approach would be ex-

tremely beneficial and innovating as modern vehicles are becoming more in terms

of technology and that sometimes restricts the driver’s driving capabilities and

road awareness. This can potentially introduce novelty in the current adaptive

control algorithms, as some of their parameters will need to adjust to achieve

this type of control. Knowledge from modern sound reproduction systems could

be helpful for achieving this type of control with the necessary adjustments on

the algorithms side.

• In terms of adaptive signal processing, it was found that the time domain

filtered reference LMS is converging slowly to a filter set. This is common prob-

lem with the filtered error LMS algorithm and needs to be addressed in the future

for a road noise cancellation application, in order to allow real-time control.

• Another are of research in terms of signal processing and control is the

robust stability of the control under severe changes in the acoustic environment

that determine changes in the secondary paths of the controller that are strongly

influencing the controller. Road impacts are partially cancelled by current algo-

rithms, but further improvements can result to significant improvements in the

RNC performance for impact road noise.

• The subjective performance of RNC systems is a dark area as most of the

time the vehicles are evaluated in terms of how many decibels the ARNC con-

troller can reduce from the overall levels. It would be of a great value for modern

NVH technologies that currently use psycho-acoustic models to integrate such

models with the algorithms so that specific frequencies that are strongly effect

the perception of the passengers are more biased than others. This approach

could potentially improve the overall subjective performance of the vehicle and

creating a more acoustically balanced compartment.

•With regards future ARNC vehicle demonstrators and production line ve-

hicles, the cabin NVH treatments above 500 Hz should be not underestimated

by future studies, as low reverberation inside the cabin helps to maintain control

filters of low orders. Panel damping for low frequency vibration control could

be removed as it will allow more vibrational energy to couple with the sound

field at low frequency and thus the structure-borne noise levels at the micro-

phones will be higher. Taking this into account, it might be fruitful to further

improve the correlation between the sensor signals and thus the convergence and

the attenuation of the controller, as damped road resonances can be harder to

identify.
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8.7 Concluding remarks

In this thesis we developed a design method for feedforward active control aiming

to reduce the levels of structure-borne noise in the compartment of a luxury

vehicle. The method takes two factors into account: a) the multiple structural

road sources that optimise the accelerometer sensor locations b) the cancellation

at specific road resonances that are audible in the cabin. This novel approach

enabled us to develop a system with a small number of reference signals. We then

demonstrated that the structural locations across the vehicle, which are critical

to TPA, are also the reference inputs to the feedforward controller. This is a

valuable outcome, as it enables automotive manufacturers the use of their NVH

tools, in order to apply the technology quicker, but also treat specific frequency

regions with high structure-borne road noise contributions.

Reducing interior noise in vehicles is a great challenge for the automotive

industry. Therefore, a significant number of research is currently active in this

field. The advances in this field aim towards a future, in which cars with a

grid of sensors will allow the integration of feedforward controllers. This will

turn the concept of silent cars into a reality. Significantly, vehicle design will

shift towards the implementation of advanced sensor networks and electronics

that support integrated active sound technologies. Further improvements in the

vehicle’s electronic systems are required to enable the use of a grid of sensors —

on the chassis or at other parts of the vehicle — for the application of feedforward

active controllers. This scenario is not far from reality, as the so-called networked

vehicles support the use of several sensor networks, thus one such network could

be used to develop ARNC systems. On that basis, feedforward ARNC is closer

to a production line solution with consistent performance across various vehicle

platforms.
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Appendix A

A.1 Instrumentation for NVH measurements

For most the NVH measurements an LMS Scadas was used for conducting the

measurements. Integrated Circuit Piezoelectric (ICP) sensors from PCB were

used for measuring acceleration and sound pressure in the car. In the case

of ARNC a signal conditioner was necessary before sending the sensor output

signals to the controllers. The equipment for the road noise simulator outside

the vehicle is shown in figure A.1.

Figure A.1: Instrumentation for the road noise simulator. The LMS Scadas
for data acquisition is shown that was used for data acquisition and also as a
signal generator for driving the shaker transducers. The set-up of the multi-
channel controller is also shown with a signal conditioner that was interfered

between the controller and the ICP sensor in the car.
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A.2 Hardware arrangement for ARNC

A portable multichannel controller was developed, in order to use the vehicle’s

battery for powering the system. The controller consisted fro a Brüel and Kjær

Nexus preamplifiers for signal conditioning and also transforming the sensor ICP

outputs to AC signals for the controller. At the output stage an analog audio

amplifier was used for driving the vehicle’s woofers and subwoofer. In terms

of controllers, two systems were integrated, the Antysound ANC Lite II (figure

A.2), which is a single reference feedforward controller. Additionally, a pro-

grammable multichannel system from Jäger GmbH was programmed through

Simulink with a multireference filtered reference algortihm. Unfortunately, some

electrical issues of the vehicle did not allow to develop any further the multichan-

nel system. In particular electrical transients at the idle damaged the fuses that

were protecting the controller and also the analog board of the power supply of

the controller.

Figure A.2: Hardware for ARNC.

A.2.1 Audio amplifier

An audio power amplifier was necessary for this project, since the current audio

system of Bentley does not have extra inputs for integrating an ANC controller.

Therefore an analog audio amplfier based on Darligton transistors was selected,

since an analog system would provide less latency than an digitally based ampli-

fier. Modern digital car audio amplifier have digital equalisers that will introduce

and extra delay in the feedforward control path, which cannot be compensated

through the control system. However, the four channel audio amplifier that

was used for this study had an analog low pass filtering stage for reducing any

artifacts that could be generated from the control unit.
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Figure A.3: The Monacor 404 four channel audio amplifier.

Pameter Value Pameter Value

Max. power 300 Watt SNR 96 dB(A)

RMS power 2 Ω 4x60 Watt THD ¡ 0.07

RMS power 4 Ω 4x40 Watt Low-pass filer 50-500 Hz, 12 dB/Octave

Frequency range 20 Hz - 30 kHz Watt High-pass filer 50-500 Hz, 12 dB/Octave

Load impedance 2Ω Supply voltage 11-16 V 30A

Input levels 0.15-5V Watt Connector 2 x RCA Left & Right speakers

Cross-talk 55 dB Weight 1.5 kg

Table A.1: Technical specifications of the Monacor audio amplifier.

A.2.2 Real-time controller: ADWin Gold II

A real-time multichannel system manufactured by Jäger GmbH was used for

the implementation of an ARNC in the vehicle. The system can allow for 16-

mulitplexed input channel and also 8-analog outputs. It is programmable with

embedded C or assembly through Analog Devices compilers or from Jäger soft-

ware tools. In our case it was programmed through a high level graphical lan-

guange, in particular Matlab/Simulink.

(a) ADwin controller. (b) DSP hardware architecture.

Figure A.4: ADwin Gold II system for real-time control and acquisition.
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Pameter Value Pameter Value

DSP Processor ADSP TS101S Resolution 16 bits

ADC/Resolution 2 ADC @ 16bit Input range ± 10 V

ADC conversion time 5 µs CAN high & low speed

Multiplexer 2 PWM 6 outputs @ 50MHz

MUX settling time 5 µs External memory FIFO

Output channels 2/8 Ethernet 100 Mbit/s

No. of DAC 2/8 Supply voltage 9 to 28 V

Table A.2: Technical specifications of the Monacor audio amplifier.

A.2.3 Real-time controller: Causal systems TigerANC Lite II

Currently, there not many commersially available active noise controllers that

can be used for the development of an ARNC system. There are only two

companies that supply ANC systems with the algorithm already programmed

in the DSP hardware. The first is an Isreally company, Silentium that provides

a SISO system, which unfortunately was not suitable for our application. The

second option, which was a very interesting ANC system with high hardware

specification and also a user friendly environment for the performing real-time

experiments was for Antysound. The TigerANC Lite II was chosen from Causal

Ltd, since it is a portable device with a touch screen that allows access to the

parameters of the adaptive algorithm. In particular, the filtered reference LMS

is integrated inside the controller with a single reference input and four error

signals. Moreover, four output signals can be used for driving different type of

actuators.

Figure A.5: TigerANC Lite II.
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Pameter Value Pameter Value

DSP Processor ADSP TS101S Resolution 16 bits

ADC/Resolution 2 ADC @ 16bit Input range ± 10 V

ADC conversion time 5 µs CAN high & low speed

Multiplexer 2 PWM 6 outputs @ 50MHz

MUX settling time 5 µs External memory FIFO

Output channels 2/8 Ethernet 100 Mbit/s

No. of DAC 2/8 Supply voltage 9 to 28 V

Table A.3: Technical specifications of the TigerANC Lite II by Antysound.
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Halosonic (2014). Halosonic: Noise management solution. http://www.

halosonic.co.uk/. Accessed: 2014-03-03.

Hansen, C. H. (2001). Understanding active noise cancellation, Volume 1. Taylor

Francis.

Hansen, C. H. (2013). Active control of noise and vibration, Volume 1. CRC

Press.

Harman (2014a). Harman cancels out road noise, without head-

phones. http://spectrum.ieee.org/cars-that-think/transportation/

systems/harman-cancels-road-noise. Accessed: 2014-03-03.

Harman (2014b). Quieting the car. http://harmaninnovation.com/blog/

pt-ru/quieting-the-car/. Accessed: 2014-05-25.

Hasegawa, S., T. Tabata, A. Kinoshita, and H. Hyodo (1992). The development

of an active noise control system for automobiles. Technical report, SAE

Technical Paper.

Heatwole, C. M. and R. J. Bernhard (1994). Prediction of multiple-input active

control of road noise in automobile interiors. In INTER-NOISE and NOISE-

CON Congress and Conference Proceedings, Volume 1994, pp. 367–372. Insti-

tute of Noise Control Engineering.

Heatwole, C. M., X. Dian, and R. J. Bernhard (1993). Determination of the

number of input transducers required for active control of road noise inside

automobiles. INTER-NOISE and NOISE-CON Congress and Conference Pro-

ceedings 1993 (1), 207–212.

Howard, C. Q. and D. J. J. Leclercq (2006). Feedback noise control of low

frequency noise in a station-wagon using a field programmable analog array

(fpaa). In International Symposium on Active Noise and Vibration Control

(6th: 2006: Adelaide, Australia) Active 2006.

Inoue, T., A. Takahashi, S. Minowa, and H. Sano (2003). Development of active

noise control system for engine booming noise. HONDA R&D TECHNICAL

REVIEW 15 (2), 201–208.

Jacobsen, F. (2007). The sound field in a reverberation room. Lecture

note (31261).

http://www.halosonic.co.uk/
http://www.halosonic.co.uk/
http://spectrum.ieee.org/cars-that-think/transportation/systems/harman-cancels-road-noise
http://spectrum.ieee.org/cars-that-think/transportation/systems/harman-cancels-road-noise
http://harmaninnovation.com/blog/pt-ru/quieting-the-car/
http://harmaninnovation.com/blog/pt-ru/quieting-the-car/


212 REFERENCES

Kim, H., S. Oh, K.-C. Kim, J. Y. Lee, J. Cheong, and J. Her (2014). Optimization

of body structure for road noise performance. Technical report, SAE Technical

Paper.

Kim, H.-S., Y. Park, and K.-H. Sur (1996). Active noise control of road boom-

ing noise with constraint multiple filtered-x lms algorithm. In International

congress on noise control engineering, pp. 1155–1158.

Kinoshita, A, T. T. D. K. and Y. Nakaji (1994). Active booming noise control

system for automobiles. Japanese Society of Automotive Engineers 14 (1),

67–71.

Kompella, M. S. and R. J. Bernhard (1993). Measurement of the statistical vari-

ation of structural-acoustic characteristics of automotive vehicles. Technical

report, SAE Technical Paper.

Kompella, M. S., P. Davies, R. J. Bernhard, and D. A. Ufford (1994). A technique

to determine the number of incoherent sources contributing to the response of

a system. Mechanical systems and signal processing 8 (4), 363–380.

KUL, L. International, M. G. AG, M. E. N.V., U. of Manchester, U. of Patras,

and V. AG (1996). Anrava-advanced noise reduction by active vibration actu-

ators. Technical report, KUL and LMS, International and Metzeler, Gimetall,

AG and Monroe, Europe, N.V. and University of Manchester and University

of Patras and VW, AG.

Laugesen, S. and S. J. Elliott (1993). Multichannel active control of random noise

in a small reverberant room. Speech and Audio Processing, IEEE Transactions

on 1 (2), 241–249.

Letens, U., G. Koners, and T. J. Saunders (1999). Adaptive road noise can-

cellation for a midclass estate car. The Journal of the Acoustical Society of

America 105 (2), 1243–1243.

LMS and Siemens (2014). Lms qsources structural and acoustic ex-

citers. http://www.plm.automation.siemens.com/en_gb/products/lms/

testing/qsources. Accessed: 2014-14-12.

Lueg, P. (1936, June 9). Process of silencing sound oscillations. US Patent

2,043,416.

Lyon, R. H. (1987). Machinery noise and diagnostics. Butterworths Boston etc.

Mackay, A. and S. Kenchington (2004). Active control of noise and vibration-

a review of automotive applications. In INTER-NOISE and NOISE-CON

Congress and Conference Proceedings, Volume 2004, pp. 247–258. Institute of

Noise Control Engineering.

http://www.plm.automation.siemens.com/en_gb/products/lms/testing/qsources
http://www.plm.automation.siemens.com/en_gb/products/lms/testing/qsources


REFERENCES 213

Magrans, F. (1981). Method of measuring transmission paths. Journal of Sound

and Vibration 74 (3), 321–330.

Maia, N., J. Silva, and A. Ribeiro (2001). The transmissibility concept in multi-

degree-of-freedom systems. Mechanical Systems and Signal Processing 15 (1),

129 – 137.

Malkoun, A., J. Sapena, K. Arcas, and F. X. Magrans (2014). Vehicle and rail

noise separation method proposal based in transfer path analysis techniques.

In Proceedings of the 21st International Congress on Sound and Vibration

[CDROM]. Beijing, China: International Institute of Acoustics and Vibration

(IIAV).

Meillier, J.-L. and P. Mairesse (1996). Transfer path analysis in a multisource

environment, application for road noise analysis. In Proceedings of the 14th In-

ternational Modal Analysis Conference, pp. 314–319. Society of Experimental

Mechanics.

Melton, D. E. and R. Greiner (1992). Adaptive feedforward multiple-input,

multiple-output active noise control. In Acoustics, Speech, and Signal Process-

ing, 1992. ICASSP-92., 1992 IEEE International Conference on, Volume 2,

pp. 229–232. IEEE.

Milani, A. A., I. M. Panahi, and P. C. Loizou (2009). A new delayless subband

adaptive filtering algorithm for active noise control systems. Audio, Speech,

and Language Processing, IEEE Transactions on 17 (5), 1038–1045.

Mohammad, J. I. and S. J. Elliott (2006). The performance of active control

of sound and vibration in a fully-coupled structural-acoustic system using dif-

ferent reference sensors. In Proceedings of the 13th International Congress

on Sound and Vibration [CDROM]. Vienna, Austria: Vienna University of

Technology/International Institute of Acoustics and Vibration (IIAV).

Mohammad, J. I., S. J. Elliott, and A. Mackay (2008). The performance of

active control of random noise in cars. The Journal of the Acoustical Society

of America 123 (4), 1838–1841.

Mohanty, A. R., B. D. St Pierre, and P. Suruli-Narayanasami (2000). Structure-

borne noise reduction in a truck cab interior using numerical techniques. Ap-

plied Acoustics 59 (1), 1–17.

Moorhouse, A., A. Elliott, and Y. H. Heo (2013). Intrinsic characterisation of

structure-borne sound sources and isolators from in-situ methods. The Journal

of Acoustical Society of America 133 (5), 3462 – –3462.



214 REFERENCES

Moorhouse, A. and B. Gibbs (1998). Simplified characterisation of multiple point

excited structures using mobility matrix eigenvalues and eigenvectors. Acta

Acustica united with Acustica 84 (5), 843–853.
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