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<<abstract>> 

Background Medical image perception research relies on visual data to study the 

diagnostic relationship between observers and medical images. A consistent method to 

assess visual function for participants in medical imaging research has not been 

developed and represents a significant gap in existing research. 

Methods Three visual assessment factors appropriate to observer studies were 

identified: visual acuity, contrast sensitivity, and stereopsis. A test was designed for 

each, and 30 radiography observers (mean age 31 ± 11.7 years) participated in each test. 

Results Mean binocular visual acuity for distance was 20/14 for all observers. The 

difference between observers who did and did not use corrective lenses was not 

statistically significant (P = 0.12). All subjects had a normal value for near visual acuity 

and stereoacuity. Contrast sensitivity was better than the population norms.  

Conclusion All observers had normal visual function and could participate in medical 

imaging visual analysis studies. Protocols of evaluation and populations norms are 

provided. Further studies are necessary to fully understand the relationship between 

visual performance on tests and diagnostic accuracy in practice.  

 

Introduction 

 

Medical image quality needs to be assessed in both clinical and research settings, 

and image quality testing in the clinical setting must comply with regulations and best 

practice. Interpretation of radiographs depends on the clarity of visual patterns within 

the image in addition to the neurological and psychological factors that affect the 

observer’s analysis.
1
 Traditional approaches of assessing image quality involve only 

physical measures such as noise, resolution, and contrast. These measures can be useful, 

but they do not predict the combined diagnostic performance of system and observer.  

Observer performance assessment is typically performed to quantify system and 

observer performance. This was typically done using receiver operating characteristic 

(ROC) analysis, but the location sensitive free-response ROC (FROC) method now 

offers improved statistical power. The ROC curve is graphical representation of binary 

classifier that is varied by a decision threshold. In this type of study an observer is 
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typically asked to decide whether an image is diseased or not and then state confidence 

in this decision using a rating scale. The observer is not required to indicate the 

anatomical location of disease with this method. Diagnostic performance is typically 

quantified as the area under the ROC curve (AUC). ROC analysis has been an important 

tool in medical imaging, and the development of the FROC paradigm has enabled 

researchers to perform studies that measure results closer to the clinical reality.
2
 FROC 

analysis removes the uncertainty in ROC methods caused by a lack of location data, 

where the observer is now required to  localize suspicious areas within the image. ROC 

methods are limited to a single rating per image, whereas FROC methods allow 

multiple true (lesion localisation) and false (non-lesion localisation) localisations in 

each image.  

A robust approach to assessing image quality should include physical measures 

(noise, resolution, contrast etc) and observer performance (ROC/FROC). However, we 

also feel that visual assessment of the observer is also an important stage in the 

diagnostic process. 

This study seeks to identify and characterize suitable measures of observer 

visual function in the context of medical image evaluation. A series of visual function 

tests were applied to a group of observers. The intention was to reveal how visual 

function data should be analysed and how conclusions about visual function can be 

drawn. 

 

 

Errors in Medical Imaging 

Diagnostic errors in medical imaging have been reported since 1947.
3
 In 2013, 

Lee et al reported an error rate for radiologic examinations of approximately 30%, with 

some techniques particularly prone to errors.
4
 For example, 20% to 50% of chest 

radiographs are misdiagnosed.
5
 Most missed tumors occurred in the apices, 

paramediastinal, and hilar areas. Difficulty in separating normal structures from signs of 

early-stage lung cancer was the apparent cause of these errors. Factors contributing to 

errors in interpretation  are complex and hard to isolate. One potential source of error 

could be due to changes in visual function  that decrease an observer’s ability to 

correctly identify small, solitary pulmonary nodules. This seems to hold true for 

medical students. 
6
 However, among radiology residents and board-certified 
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radiologists, no correlation was found between visual performance and the ability to 

correctly locate pulmonary nodules.
6
 These findings suggest that factors other than 

visual perception determine a radiologist’s ability to correctly identify solitary 

pulmonary nodules. Also, some have argued that experience brings an economy of 

effort and greater efficiency, which can improve visual performance.
8-10

 

Increased workload, cognitive biases, and equipment and technique problems 

(eg, referring physician failing to adequately communicate the reason for performing the 

examination) all are factors that contribute to diagnostic errors in radiology.
5
 Perception 

research in medical imaging relies on data to quantify the relationship between visual 

stimuli and observer recognition. Contrast sensitivity and visual acuity are fundamental 

quality measures for visual systems.
10,11

 These factors play a major role in perception 

and affect the ability of an observer to detect pathophysiology on a medical image.  

 

Visual Function 

An observer’s ability to process visual information is one of the fundamental 

links in the diagnostic imaging chain.
12

 Visual function is the primary tool through 

which imaging information is gathered for processing into concrete data. Decreased 

visual acuity could significantly increase the threshold contrast required to identify 

high-frequency diagnostic information.
13

 Contrast sensitivity is an indicator of visual 

pattern-detection for stimuli of various sizes. Low-contrast objects are difficult to 

evaluate and are one of the greatest challenges for observers reviewing images.
1
 

Contrast sensitivity across all spatial frequencies declines with age. This decline 

normally starts at 45 years of age, and higher spatial frequencies are more affected than 

lower frequencies.
14

 However, this topic has been subject to very little scrutiny in 

medical imaging. Quaghebeur et al found that 71% of radiologists felt that regular 

monitoring of visual acuity should be required for practice and 82% agreed to 

undergoing such testing.
15

 

 

Measurement of Visual Function 

The Snellen Visual Acuity test is a common standard in the measurement of 

vision. Results from this test take the format 20/x. In this system, the numerator (20) is 

the distance at which the subject recognizes an optotype (the letters or symbols on the 

chart), and the denominator (x) is the distance at which a person with standard visual 

http://en.wikipedia.org/wiki/Fraction_(mathematics)
http://en.wikipedia.org/wiki/Fraction_(mathematics)
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acuity would recognize the optotype.
16

 In this system, 20/10 vision is excellent, because 

the observer could see at 20 feet what a person with standard vision could see at 10 feet. 

20/100 vision is poor, because the observer could only see at 20 feet what a person with 

standard vision could see at 100 feet.  

Numerous charts are used for visual acuity testing, but the ETDRS chart is preferred for 

vision testing in clinical trials.
17

 This study used a Vector Vision ETDRS Chart – CSV 

1000 (see Figure 1). Logarithm of the Minimum Angle of Resolution (LogMAR) is a 

more precise method of calculating visual acuity. In LogMAR notation, lower scores 

correspond to better vision, and as acuity becomes worse, the value of the LogMAR 

increases. When converting LogMAR to a Snellen visual acuity measurement, the 

following equation can be used:
18

  

 

Decimal acuity=antilog (-LogMAR) = 10
-logMAR

   (1) 

 

This example assumes a LogMAR result of -0.15, which corresponds to a Snellen visual 

acuity measurement of approximately 20/14 using equation 1:   

 

Decimal visual acuity = 10
-LogMAR

 = 10
0.15 

=
 
1.41 

Snellen visual acuity denominator = 20/decimal acuity 

 = 20/1.41 = 14 

Snellen visual acuity = 20/14 

 

Grating contrast sensitivity is an important measure of visual function. It measures the 

ability of an observer to perceive slight changes in luminance between regions which 

are not separated by definite borders.
19,20

 This is a significant function in imaging 

analysis of low-contrast targets such as isoechoic lesions on ultrasonography or 

isodense lesions on computed tomography (CT). These lesions can be recognised only 

indirectly, through contour irregularities or displacement of identifiable adjacent 

structures.
1
 The perception of complex patterns in mammograms also is linked to the 

contrast sensitivity of the observer.
21

 Pattern-detection is determined by eye contrast 

sensitivity for stimuli of various sizes. If an observer has abnormal contrast sensitivity, 

low-contrast targets might be difficult to identify and can be missed. Figure 2 shows an 

anthropomorphic chest phantom containing a small simulated nodule (A) which is only 

distinguished because of the irregular shape of the vessel (B). 

http://en.wikipedia.org/wiki/Logarithm
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Grating contrast sensitivity is measured by detection of sinusoidal gratings, 

which are patterns of parallel light and dark bars. Contrast sensitivity testing measures 

the eye’s sensitivity over a range of spatial frequencies represented by bar widths.
22

 The 

spatial frequency, measured in cycles per degree (cpd), is a measure of how 

often sinusoidal components of the structure repeat per unit of distance. Normal contrast 

sensitivity maximizes at a spatial frequency of about 6 cpd and declines at both higher 

and lower spatial frequencies (Figure X). 

Digital images could be represented both in spatial and frequency domains.
23

 

The spatial domain refers to a matrix of grey level intensities in a 2-D spatial plane. The 

frequency domain refers to the rate of change of intensity in an image in terms of 

sinusoidal intensity profile.
24

 

Stereopsis is a measure of an observer’s ability to perceive 3-D features (ie, the 

ability to perceive the depth of an object) and thus obtain binocular single vision.
25

 

Binocular single vision is the coordination of both eyes, fusing 2 slightly differing 

images into a whole image with 3-D perception. Although the radiographic image is a 

2-D depiction, it represents 3-D anatomy. Radiographs are created from the shadows of 

the x-ray absorption pattern as they pass through the body, including information from 

multiple planes in 3-D space.
26

 The observer must translate the image into a 3-D 

representation to properly analyse and localize structures.  

Recent investigations indicate that stereopsis is an advantage
27

, and probably 

could be an impact factor in the comprehension of complex radiographs with many 

visible structures. Stereopsis is an important function that helps the observer when 

reviewing spatial information from medical imaging. Figure 3 shows a 3-D 

reconstruction of a chest CT scan in which the anatomic structures are volumetrically 

represented. Stereopsis allows the observers to determine the depth of objects in the 

central visual area, enhancing vision quality. 

Stereopsis is measured using a unit called minutes/seconds of arc, which is a 

measure of angular distance. A minute of arc is equal to 1/60
th

 of one degree; a second 

of arc is equal 1/3600
th

 of one degree. This is a measure of the angle of separation 

between the two eyes, and the distance from the eyes to the object. The smaller the 

angle is, the better the observer’s ability. Some standard stereopsis test measures from 

3500 to 20 seconds of arc, which can provide an idea of the kind of tiny angles the 

human eye is capable of recognizing.  

http://en.wikipedia.org/wiki/Sine_wave
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Methods 

Thirty observers with a mean age of 31.6 ± 11.7 years (17-57 years) agreed to be 

visual assessed before evaluating plain radiographs and CT scans. The observer group 

included radiographers, student radiographers, and medical physicists. Ethical standards 

for the study complied with Lisbon School of Health Technology requirements, and 

observers were given feedback on the results of the visual function tests they 

participated in. 

The observers received a visual assessment that included visual acuity, contrast 

sensitivity, and stereopsis  tests. These visual function tests measured abilities necessary 

for assessing medical image quality (see Table 1). The most commonly measured 

aspect of visual function is visual acuity.
16,17

 Visual acuity describes the ability of the 

eye to resolve the size of an object. In radiology, this function is important for an 

observer’s ability to identify small, solitary pulmonary nodules, for example.
6
 A nodule 

could be missed because the visual acuity of the observer is not sufficient to resolve the 

size of the nodule (see Figure 4).  

Eye charts are used to measure visual acuity. These charts consist of uppercase letters 

arranged in rows, with the largest letters at the top with progressively smaller letters 

toward the bottom. The observers’ visual acuity for distance was assessed in low-light 

conditions at a distance of 8 feet with an illuminated ETDRS chart in a backlit stand 

(see Figure 1). 

The CSV chart incorporates LED light source technology and auto-calibrate the 

test luminance to 85 candela per square meter (cd/m
2
). The CSV1000 chart has the 

advantage of having 5 letters on every row, equal spacing of the rows on a log scale 

(separated by 0.1 log unit), equal spacing of the letters on a log scale, and letter 

difficulty balanced for each row. Vision testing begins with the left-most letter on the 

top row of the chart. Visual acuity was recorded at the last line on which the observer 

correctly identified at least 3 of the 5 letters. Visual acuity is worse than average above 

0.0 LogMAR or when the denominator of the Snellen visual acuity measurement is 

greater than 20 (eg, 20/100).
28

  

Near visual acuity was assessed in well-lit conditions with both eyes at a 

distance of 40 cm using a LogMAR chart (Good-Lite), (see Figure 5). Visual acuity 

was recorded at the last line on which the observer correctly identified at least 3 of the 5 
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letters. Visual acuity was considered abnormal when greater than 1M (the M-unit is the 

unit of letter size).
16

  

In this study, contrast sensitivity was assessed in low-light conditions with the 

CSV1000E contrast chart. The chart consists of a matrix of sinusoidal gratings: circles 

filled with dark and light bars. Spatial frequency increased from top to bottom, and 

contrast decreased from left to right (see Figure 6). For the purpose of our study, spatial 

frequency was divided into low (3 cpd), medium (6 cpd) or high (12 and 18 cpd) 

categories. The contrast level of the last circle the observer correctly identified on each 

row was recorded as the contrast sensitivity score for that row. The procedure was 

repeated for each row in descending order. Visual contrast was considered abnormal 

when less than 1.61 for 3 cpd; less than 1.66 for 6 cpd; less than 1.08 for 12 cpd; and 

less than 0.56 for 18 cpd.
29

 

Stereoacuity was assessed with a Stereo Butterfly test (Stereo Optical Company) 

at 40 cm. For this test, a card with superimposed images of circles was shown to the 

observer to measure the ability to detect the elevation of the circles above the plane of 

the card (see Figure 7). The circles indicate a stereopsis level ranging from 800 to 40 

seconds of arc. The standard stereopsis test has been applied with results equal or 

shorter than 50 seconds of arc considered normal stereoscopic acuity.
25

 

All subjects who usually wear corrective lenses were asked to wear them during vision 

testing to assure that refractive errors were corrected. Refractive error refers to the 

amount of myopia, hyperopia, or astigmatism that might affect the testing. These 

conditions require correction with glasses or contact lenses to achieve the best possible 

corrected visual acuity.
30

 Because the observers typically would use both eyes to 

perform image evaluation, the 3 visual functions were measured with both eyes open.  

 

Results 

Of the 30 observers, 3 (10%) could not recall ever having their vision examined 

and 5 (16.7%) were examined approximately 5 years before the study began. Eleven 

observers (36.7%) reported that their most recent vision examination had been 

performed within the previous 2 years. 

Visual acuity, contrast sensitivity, and stereoacuity distributions were recorded. 

The mean visual acuity for distance was 20/14, with a minimum of 20/10 and a 

maximum of 20/20. All subjects had maximal visual acuities of 20/20 (LogMAR, 0.0) 

http://www.rcophth.ac.uk/Revalidation/document_section.asp?section=767&sectionTitle=Glossary+of+Terms
http://www.rcophth.ac.uk/Revalidation/document_section.asp?section=767&sectionTitle=Glossary+of+Terms
http://www.rcophth.ac.uk/revalidation/document_section.asp?section=767&sectionTitle=Glossary+of+Terms
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or better for distance (see Table 2). The mean visual acuity of female observers (n = 15) 

was 20/14 (LogMAR, -0.15) and for male observers (n = 15) it was 20/14 (LogMAR, -

0.16). Subgroup analyses by sex revealed no significant differences (P = 0.46). 

Seven subjects wore corrective lenses. They had a mean visual acuity of 20/16 

(LogMAR, -0.11). Participants who did not wear corrective lenses had a mean visual 

acuity of 20/14 (LogMAR, -0.17). The difference between observers who used 

corrective lenses and those who did not was not statistically significant (P = 0.12). 

All subjects had normal near visual acuity and near normal stereoacuity (40.67 ± 

2.54 seconds of arc). The log average values of contrast sensitivity for each spatial 

frequency were better than the population norms (see Table 3). Of the 30 observers, one 

had low contrast sensitivity for spatial frequencies of 6 cpd (1.55) and of 12 cpd (0.31). 

However, this observer’s contrast sensitivity was improved after receiving a new optical 

prescription to 6 cpd (2.14) and 12 cpd (1.25). 

The difference between observers who used corrective lenses and those who did 

not was significant for the higher spatial frequencies (18 cpd spatial frequency P = 

0.012). Observers who used corrective lenses of any kind had a lower log average value 

of contrast sensitivity (1.34 ± 0.15) than those who did not (1.52 ± 0.08). Subgroup 

analyses by sex revealed no significant differences (P > 0.05) for all spatial frequencies. 

 

Discussion 

For this group of observers, the minimum criteria for participation in medical 

imaging studies were met. All observers’ visual abilities were fit for the study, although 

one observer required a new optical prescription. All subjects achieved the normative 

range and had acceptable results for the 3 visual functions. These 3 abilities are 

necessary for medical image evaluation in 2 codependent tasks: detection (visual acuity 

and contrast sensitivity) and localisation (stereopsis). For these preliminary results, we 

used population norms as a measure of adequacy and supposed that these norms would 

apply to medical imaging. This assumption needs to be supported with more research in 

this field. 

The mean binocular visual acuity of participants for distance was 20/14. Our findings 

are comparable with one previous study, which reported the mean acuity of radiologists 

as 20/15.
12

 In the present study visual acuity was not significantly different when 

comparing observers by sex and all subjects had maximal visual acuities measuring 
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LogMAR 0.0 (20/20) or better for distance. Visual acuity influences the ability to detect 

nodules which makes the assessment of this function an important measure for medical 

imaging.
6
 All subjects had normal values for contrast sensitivity. Only one observer had 

low contrast sensitivity for spatial frequencies of 6 cpd and 12 cpd. The observer’s 

glasses were updated to a new prescription, which resolved this problem. 

We detected a statistically significant difference between observers who used 

corrective lenses and those who did not in the log average values for higher spatial 

frequencies (18cpd). This difference favored the participants who did not use corrective 

lenses. One cannot conclude, however, that there would be any resultant clinical effect 

on medical image observer studies. Only 7 observers used corrective lenses, and 

although a statistically significant difference was detected, both values were within the 

normal range. It is unlikely that this difference would adversely influence clinical 

performance. 

In the present study, we measured visual function with different charts for each 

function. However, in future studies these tests could be standardized and displayed on 

the same monitor used for medical image display. This will provide more accurate 

information about visual function for the observer’s actual practice and could be applied 

to the set of visual tests in this study. 

Three observers could not recall ever having their vision examined and 5 were 

examined approximately 5 years ago. The elapsed time since the last reported eye 

examination raises the question of whether regular examinations are important to 

medical imaging. No strict international recommendations in medical imaging exist, 

although it is recommended that even those with no signs or risk factors for eye disease 

receive a comprehensive eye evaluation at 40 years of age.
31

 More research is necessary 

to identify norms and guidelines for visual performance evaluation in medical imaging. 

Observers without prescribed corrective lenses should be tested, and when visual 

anomalies are detected they must be excluded from studies that involve image 

interpretation unless the corrective lenses are used. Observers with corrective lenses 

should have routine eye examinations and, if necessary, an updated prescription to 

ensure they maintain maximal visual performance. 

The authors plan to continue the evaluation of the role of visual function in 

image interpretation to determine the level of decreased eye function that could lead to 

errors in image interpretation. Future challenges are related to the visual function tests, 
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which could be correlated with the screen viewing distance used by observers to provide 

more relevant information about diagnostic accuracy. 

 

An assessment of visual function of medical image observers is absent in the 

literature. Although quality control programs have been implemented for the 

performance of digital displays, similar attention has not been devoted to quality control 

for radiologists and other health care professionals who examine the results of medical 

imaging systems.
12

 Our study proposes a range of visual tests suitable for assessing 

observers before participation in studies on medical imaging. We propose that these 

visual function tests be conducted on potential observers prior to conducting medical 

imaging research using perceptual methodologies.  

 

Conclusion 

Quality standards for visual assessment should be implemented to decide if an 

observer has adequate eye function to participate in medical imaging observer studies. 

A method has been provided for visual function assessment of observers prior to 

medical imaging perceptual research studies. Normal visual function should be assured 

prior to performing vision-based tasks in medical imaging. Protocols of evaluation and 

population norms have been provided with the assessment of three functions (visual 

acuity, contrast sensitivity, and stereopsis). Observers with visual function anomalies 

should be excluded from observer studies that involve image evaluation and 

interpretation, unless corrective lenses are prescribed and used. Further studies are 

necessary to clarify the relationship between visual function and diagnostic 

performance.  
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Table 1. Visual functions Necessary for Assessing Medical Image Quality 

 

 

 

Table 2. Descriptive Statistics Data From the 3 Visual Function Tests  

 

Visual Function Test Mean Minimum Maximum 

 
Snellen LogMAR ± SD 

Snellen 
Log

MAR 
Snellen 

Log

MAR 

Distance acuity 20/14 -0.15 ± 0.07 20/10 -0.30 20/20 0.00 

Near acuity 20/20 0.39 ± 0.02 0.32  0.40  

Stereoacuity (seconds) 40.67 ± 2.54  40 50 

Log Average Values of Contrast Sensitivity 

 (3 cpd)  
1.85 ± 0.09 1.63 2.08 

 (6 cpd) 
2.16 ± 0.15 

1.70 2.29 

 (12 cpd) 

1.89 ± 0.16 
1.25 1.99 

 (18 cpd) 

1.47 ± 0.12 
1.25 1.55 

Abbreviations: cpd, cycles per degree; SD, standard deviation. 

 

 

Table 3. Normative Data for Analysing Visual Function Tests Results 

Visual 

Function  
Basis for Testing 

Visual acuity 
Makes possible the accurate detection of size

16,17
 radiologic 

anatomic structures. 

Contrast 

sensitivity 

Makes possible the discrimination of low-contrast and high-

contrast frequency information.
19,20

 

Stereopsis 

Reduces the amount of visual scanning necessary to extract spatial 

information, which sustains comprehension of complex visual 

experiences. 
25,27 

Most importantly, this function provides visual 

memory with a 3-D interpretation. 

Visual functions Population Norms  

Distance acuity ≤ 0.0 LogMAR
28

 

Near acuity ≤ 1M
16

 

Stereopsis ≤ 50 seconds
25

 

Contrast Sensitivity 

 3 cpd  ≥ 1.61 ± 0.21
29

 



15 

 

 

 

 

 

Abbreviation: cpd, cycles per degree. 

 

 

 

Figure 1. ETDRS – CSV 1000 Vector Vision Chart. Image courtesy of author CL 

 

 

Figure 2. A simulated 5-mm pulmonary nodule (A) that is only distinguishable from 

simulated pulmonary vessels (B) by the shape of the object. Image courtesy of author 

JDT.  

Figure 3. A 3-D reconstruction of a chest computed tomography acquisition. Image 

courtesy of author JDT. 

Figure 4. The 3 arrows in the magnified box indicate a 5-mm simulated solitary 

pulmonary nodule in a chest phantom model. Image courtesy of author JDT. 

Figure 5.LogMar Good-Lite chart. Image courtesy of author CL …. 

Figure 6. CSV1000E Vector Vision contrast chart. Image courtesy of author CL… 

Figure 7.The Stereo Butterfly test (Stereo Optical Company). Image courtesy of author 

CL… 

 

 6 cpd ≥ 1.66 ± 0.23
29

 

 12 cpd ≥ 1.08 ± 0.32
29

 

 18 cpd ≥  0.56 ± 0.35
29

 


