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Abstract 

 

It is commonly stated proprioception or the perception of one’s own limb position, 

movement and effort is reduced following an anterior cruciate ligament (ACL) injury. 

Therefore, this thesis begins with an analysis of all current literature on this topic in the form 

of a meta-analysis. It became clear that the methods used to measure knee proprioception 

were very inconsistent and did not appear to provide normative levels of knee proprioception 

making it very difficult to syntheses results. This led to the thesis main objectives. The first 

study provided a reliable and valid method of knee joint position sense (JPS), the static 

component of proprioception, based on previous JPS protocols. This method was then used 

in the remaining studies to consider normative values of a UK population, the effect of ACL 

injury in both non-athletic and elite athletic populations, the effect of knee injuries (not 

including ligament damage) and the effect of fatigue on knee JPS. The most appropriate 

clinical method of measuring knee JPS using image capture as covered in this thesis was in 

a sitting position, from full extension in to 60-90 degrees of flexion and from 90 degrees of 

flexion in to 30-60 degrees of extension. Age, mass, height, BMI, activity level, knee 

condition (other than ligament injury) or fatigue did not appear to significantly affect knee 

JPS in an uninjured population. However, both non-athletic and elite athletic populations 

with previous ACL injury demonstrated significantly worse knee JPS when compared to 

controls. In conclusion, it would appear the only knee condition that reduces joint position 

sense ability is ACL injury. Although, it may also be possible the method is not sensitive 

enough to measure subtle changes in JPS in other populations due to large measurement 

error values. In the future it may not be necessary to place importance on knee joint position 

sense as it either may not be impacted by any injury other than ACL damage, or the methods 

used to collect JPS are not sufficient in measuring changes during rehabilitation. 

Additionally, it is important researchers consider the relationship between knee JPS and 

functional movements. 
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1.1 Anterior Cruciate Ligament (ACL) Injury and Knee Proprioception 

It is estimated 250,000 people injure their anterior cruciate ligament each year in the United 

States alone (Hewett et al., 2007a). One potential mechanism of this injury is reduced knee 

proprioceptive ability (Hewett et al., 2007a). Further, once the patient has completed 

rehabilitation, perhaps after reconstructive surgery, evidence suggests a proprioceptive 

deficiency in the knee is still present (Bonfim et al., 2003, Roberts et al., 2000, Rehm et al., 

1998, Barrett 1991a, Carter et al., 1997). Therefore clinical practitioners use ‘proprioceptive 

exercises’ to attempt to regain pre-injury levels of knee proprioception (Swanik et al., 1997, 

Ingersoll et al., 2008). However, the success of this treatment is unclear in the literature.  

There is strong evidence to support the presence of mechanoreceptors in the anterior cruciate 

ligament tissue (Barrack et al., 1994). Hence it is intuitive to assume following an injury to 

this ligament, knee proprioception may be reduced due to the loss of activated 

mechanoreceptors in the knee joint during motor tasks. Indeed, there is a plethora of 

literature to support this viewpoint (for example Fischer-Rasmussen and Jensen, 2000, 

Fremerey et al., 2000, Ozenci et al., 2007, Mir et al., 2008 and Angoules et al., 2011). 

However, there is also research to counter this theory (for example Remedios et al., 1998, 

Good et al, 1990, Harter et al., 1992, Dvir et al., 1988, Fischer-Rasmussen et al., 2001, 

Jensen et al., 2002, Co et al., 1993, Friden et al., 1996), the belief being that a proprioceptive 

deficit is not present following an ACL injury as other mechanoreceptors in and around the 

knee joint, particularly the surrounding musculature, may compensate for the loss of ACL 

afferent information (Beard and Refshauge 2000). The reason for the contradictions in 

research findings may be due to the vast range of knee proprioception measurement 

techniques used in ACL deficient population studies. However, without a validated, reliable 

measure of knee proprioception it is impossible to make a satisfactory conclusion on ACL 

injury and knee joint proprioception.  

1.2 Proprioception 

The subject of proprioception is steeped in history. For at least 400 years researchers have 

investigated how people are able to perceive and accurately control limb movements without 

visual input (Proske, 2006). Proprioception is critical for normal motor control and is 

therefore a key component of musculoskeletal rehabilitation. However, despite the obvious 

importance there is no universally accepted definition of proprioception (Lephart et al., 
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2000). Sherrington (1906a) first published the word proprioception describing it as “a deep 

field of receptors in which stimuli are traceable to actions of the organism” (p.472). It is 

believed Sherrington constructed the word from the Latin “proprius” (one’s own) and 

“reception” (receives). Clinicians have stated global proprioception as “a specialized type 

of the sense of touch” (Barrack et al., 1994, p.19) and “the sense of position and movements 

of the limb” (Grigg, 1994, p. 2) and it is thought to be “...used to reference the afferent 

information arising from proprioceptors” (Riemann and Lephart, 2002a p.72). However, if 

considered in more detail proprioception can be divided into two key aspects of joint 

homeostasis; joint kinaesthesia (the dynamic sense of movement including joint 

acceleration, force and velocity) and joint position sense (the static sense of movement) 

(Ogard, 2011).   

Important spatial and temporal afferent information is provided by specialised 

‘proprioceptors’ or mechanoreceptors located in and around joints (Hogervorst and Brand 

1998). These receptors include muscle spindles, Golgi tendon organs, ruffini nerve endings, 

pacinian corpuscles, Meissen’s corpuscles and Merkel’s discs (Richards and Selfe, 2012). 

Receptor afferent information is transmitted by transforming the mechanical energy caused 

by physical deformation of the joint and muscles to electrical energy of nerve action 

potential (Stillman, 2002). This information is transmitted to the central nervous system 

(CNS) and in turn organised and managed in various higher order areas (Biedert, 2000). For 

example balance and posture are organised at the brain stem but some proprioceptive 

information is organised at higher levels such as the cerebral cortex and the cerebellum 

(Biedert, 2000). Motor control commands are sent to relevant muscles around the joint to 

ensure co-ordinated, effective movement (Riemann and Lephart 2002b). It is clear 

proprioception has an important role in normal efficient movement therefore clinicians 

require valid and reliable measurement tools to monitor joint proprioception in patients.  

1.3 Knee Proprioception 

The knee is a complex multi-directional articulation (Dye and Vaupel, 2000) and various 

types of mechanoreceptors have been located in and around the joint that are believed to 

contribute to knee joint homeostasis (Johansson et al., 1991a). Indeed the majority of 

research has provided evidence of a sensory role for the joint’s cruciate ligaments (Friden et 

al., 2001). The anterior cruciate ligament may have up to 2.5% of neural elements consisting 

of ruffini nerve endings, Golgi tendon organs and pacinian corpuscles (Jennings, 1994). The 
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posterior cruciate ligament also contains these types of mechanoreceptors (Katonis et al., 

1991). In addition, other areas of the knee joint including the medial and lateral collateral 

ligaments and menisci all contain types of mechanoreceptors and hence may play a role in 

joint proprioception (Solomonow and Krogsgaard, 2001, Pitman et al., 1992). The presence 

of mechanoreceptors throughout the knee joint suggests proprioceptive afferent information 

is not only provided by the supporting musculature as once thought (Scott and Loeb, 1994). 

It is most likely knee joint homeostasis is achieved by accumulation of all mechanoreceptor 

information, defined as the “final common output theory” (da Fonseca et al., 2004). The 

majority of tissues in the knee joint and its surrounding muscles provide important afferent 

information on knee position and movement, therefore it is critical clinicians can measure 

knee joint proprioception in order to accurately evaluate proprioceptive rehabilitation and 

pre-screening programmes aimed at preventing knee injury.  

1.4 Knee Proprioception Measurement Techniques 

There have been a variety of approaches to knee proprioception measurement including 

investigation of sensory evoked potentials (Courtney et al., 2005), gait analysis adaptations 

following injury (Devita et al., 1998), electromyography of lower extremity muscles (Houck 

et al., 2007), postural control (Wikstrom et al., 2006) and ligament-muscle protective 

reflexes (Beard et al., 1993). However, the two most common protocols in a clinical setting 

are threshold to detect passive motion (TTDPM) and joint position sense (JPS) (Riemann et 

al., 2002c). In threshold to detect passive motion protocols the participant is most often 

seated and the leg is passively moved, the participant must then indicate, typically via a hand 

switch, the detection of this movement (Beynnon et al., 2000). This is a measure of dynamic 

proprioception or kinaesthesia. Joint position sense protocols involve measurement of an 

error angle, taken from the difference between a target knee angle set by the researcher and 

a reproduced knee angle completed by the participant (Beynnon et al., 2000). This is a 

measure of static proprioception. Although it is agreed these are the two most commonly 

used knee proprioception measurement techniques, there is no consistency in the protocol 

details. For example researchers and clinicians have used a variety of equipment, angular 

velocities and displacements, target angles, knee movements and participant positions in 

knee proprioception measurement. Furthermore, there is no large evidence base which 

recommends the necessary number of trials for JPS testing. This is not an extensive list of 

decisions to be made prior to data collection and therefore it is perhaps not surprising a 
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consensus on the most appropriate method has not been agreed. There is also a shortage of 

reliability and validity analysis of knee proprioception measurement techniques. Any, or all 

of these variables may impact on the measurement of knee proprioceptive ability. As 

previously stated, it is imperative clinicians can evaluate knee proprioceptive ability 

effectively and therefore a standardised method of knee proprioception must be established.  

1.5 Age and Knee Proprioception 

An increase in age is perhaps inevitably correlated to a decrease in certain musculoskeletal 

and neurological systems (Gilsing et al., 1995). Therefore it is perhaps no surprise research 

has identified a proprioceptive decline with an increase in age. The results of cross-sectional 

research evidence shows reductions in both static (JPS) and dynamic (TTDPM) 

proprioceptive ability with older populations (Kokmen et al., 1978, Pai et al., 1997, Barrett 

et al., 1991b, Kaplan et al., 1985, Petrella et al., 1997, Hurley et al., 1998). This has been 

explained using theory on both peripheral and central adaptations. At the mechanoreceptor 

level, joint stiffness increases with age (Miwa et al., 1995). This is because of age 

adaptations in the muscle receptors; the receptors diameters reduce (Herter et al., 2014) and 

the capsular thickness increases (Swash and Fox, 1972, Mynark and Koceja, 2001). This 

can create a reduction in sensitivity of muscle spindles and hence proprioception (Herter et 

al., 2014). Furthermore, the composition of muscle spindles can change which again 

contributes to desensitisation of the muscle spindles (Suetterlin and Sayer, 2014) and also 

the total number of effective mechanoreceptors reduces (Shaffer and Harrison, 2007, Aydoğ 

et al., 2006, Iwasaki et al., 2003).  

Dendrites receive and relay stimuli between neurones and thus are critical to efficient motor 

control (Lundy-Ekman, 2013, McBean and van Wijck, 2013).  At the central level, evidence 

has suggested the dendrite system is less effective in older patients (Ribeiro and Oliveira, 

2010). Furthermore, the nerve conduction velocity decreases, along with a reduction in the 

number of motor units in adults over 60 years old (Campbell et al., 1973). All potential age 

related declines may reduce proprioceptive ability (Barrack et al., 1993, Yan and Hui-Chan, 

2000). However, there is no normative data available that considers a range of adult ages 

across a healthy population. This is needed to inform clinicians and their treatment of 

proprioceptive deficits.   

1.6 Gender and Knee Proprioception 
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The majority of clinical practitioners will be aware of the difference in ACL injury rates 

between men and women; women appear to have a higher risk of ACL injury than men 

(Arendt et al., 1999). However, there is limited research that considers the effect of gender 

on proprioception and hence if this indeed may be a contributing factor to the increased rate 

of ACL injury in women. Both Rozzi et al., (1999a) and Nagai et al., (2012) reported some 

initial reports of a female reduction in knee proprioception. Furthermore authors have 

considered the effect of the menstrual cycle on proprioception, the theory being the increase 

in oestrogen interacts with neurotransmitters in the brain which may improve central 

processing of afferent information (Daniusevičiūtė et al., 2012). However, researcher 

findings are inconsistent (Fridén et al., 2006, Hertel et al., 2006). Therefore, there is a need 

for a large scale normative study on knee proprioception that considers any potential effects 

of gender.  

1.7 Body Mass Index and Knee Proprioception 

Body mass index (BMI) is a standard measure of mass of a patient with concurrent 

consideration of height (World Health Organisation, 2000). The effect of BMI on knee 

proprioception has rarely been considered in the literature. Paschalis et al., (2013) reported 

proprioceptive deficiencies in overweight and underweight participants compared to a lean 

control group. Also, Kaya et al., (2014) compared overweight patients with pathology to 

uninjured overweight controls and reported pathology reduced knee proprioceptive ability. 

However, to the author’s knowledge this is the full extent of the literature on BMI and 

proprioception. There are many detrimental consequences of becoming overweight; 

therefore it may be a reduction of proprioception is also one of these negatives. Clinicians 

should be aware of the effects of BMI on proprioception to inform their practice. However, 

more evidence is required in this area.  

1.8 Physical Activity and Knee Proprioception 

In contrast to gender and BMI, the effects of physical activity on proprioception have been 

well researched in recent years. Regular physical activity has many health benefits and the 

majority of research would suggest an enhanced proprioceptive ability is one of those 

benefits. Many studies consider the effects of regular physical activity and proprioception 

using elderly populations (Tsang and Hui-Chan, 2003, 2004, Li et al., 2008a, 2008b, Xu et 

al., 2003, Petrella et al., 1997, Ribeiro and Oliveira, 2010). The type of exercise 
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implemented in this research ranges from Tai Chi, golf, swimming, running and strength 

training. Results are of the same consensus; regular physical activity appears to heighten 

knee proprioception. In particular with the elderly groups, regular exercise may indeed 

attenuate the age related decline in proprioception. This is explained by exercise induced 

adaptations at both peripheral and central areas.   

It is thought the latency of the stretch reflex is reduced and the amplitude of the stretch reflex 

is increases as a result of regular exercise (Hutton and Atwater, 1992). The repetitive nature 

of exercise may also improve the effectiveness of the gamma motor neuron route (Ribeiro 

and Oliveira, 2010). This also improves central processing of afferent information (Tsang 

and Hui-Chan, 2003). Furthermore exercise increases body temperature which has been 

shown to improve the effectiveness of cutaneous receptors up to temperatures of 37°C 

(Green, 1977, Gescheider et al., 1997). Therefore regular exercise is thought to improve 

knee proprioception. 

Regular physical activity or training is critical to elite athletic populations. It follows that 

elite athletes may have enhanced knee proprioception. Indeed, much research provides 

support for this hypothesis, for example early work by Lephart et al., (1996) and Barrack et 

al., (1984a, 1984b) reported increased proprioceptive ability in ballet dancers and gymnasts. 

Other research has replicated this finding with American footballers and archers (Euzet and 

Gahery 1995) soccer players (Muaidi et al., 2009) swimmers and badminton players (Han 

et al., 2013a and Waddington et al., 2013). The reasons for this may be divided into two 

areas: innate characteristics (Euzet and Gahery, 1995) and the effects of long term training 

(Ashton-Miller et al., 2001). Elite athletes may be born with superior physiological and 

neural systems that may enhance proprioception. This may further be enhanced by 

improvements in central processing of afferent information that may occur during training 

(Meeuwsen et al., 1993). However, the elevated performance of regular exercisers and elite 

athletes needs to be confirmed using reliable and valid knee proprioception testing.   

 

1.9 Peripheral/ Muscular Fatigue and Knee Proprioception 

Peripheral or muscular fatigue references the effects of fatigue below the neuromuscular 

junction, in the muscle fibres and specifically to the adaptations in the contractile 

mechanisms of muscle (Hiemstra et al., 2001). The outcome of peripheral or muscular 
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fatigue is typically a decrease in the capacity to produce muscular force (Enoka and 

Duchateau, 2008). The effect of peripheral or muscular fatigue on proprioception has been 

well considered in the literature (Allen and Proske, 2006, Rozzi et al., 1999b, Torres et al., 

2010, Skinner et al., 1986a, Gear, 2011, Ju et al., 2010, Miura et al., 2004, Allen et al., 2010, 

Ribeiro et al., 2007, Stillman et al., 1999, Ribeiro et al., 2011, Paschalis et al., 2007, 2008, 

2013, Marks and Quinney 1993, Dieling et al., 2014). This research provides information 

on a proprioceptive decline following a bout of maximum exercise to fatigue levels (Torres 

et al., 2010, Allen et al., 2010, Ribeiro et al., 2011, Gear, 2011). This may be attributed to 

impaired excitation of the motor units (Rozzi et al., 2000), an increase in knee laxity 

(Changela et al., 2012) and an increase in pain (Fortier and Basset, 2012).  

However, conversely authors have published evidence that peripheral or muscular fatigue 

fails to reduce knee proprioceptive ability (Miura et al., 2004, Stillman et al., 1999, Dieling 

et al., 2014, Marks and Quinney, 1993). The contrariety of research may be due to 

inconsistencies in the fatiguing protocol and knee proprioception measurement. Therefore 

it is still unclear how peripheral or muscular fatigue impacts proprioceptive ability.  

1.10 Osteoarthritis and Knee Proprioception 

Osteoarthritis in the most common type of arthritis (Pai et al., 1997) and the knee joint is 

the most common location for the disease (Sharma et al., 1997). Unfortunately, the 

pathology typically causes a reduction in knee joint stability and therefore potentially a loss 

of knee proprioceptive ability (Collier et al., 2004). This result has been demonstrated using 

both knee kinaesthesia (Lund et al., 2008) and knee joint position sense (Segal et al., 2010). 

It is thought this can be attributed to impaired articular mechanoreceptors and hence 

modulated afferent discharge, reduced gamma motor neurone activity and inflammation of 

the joint (Knoop et al., 2011). However, as stated in previous sections, the measurement of 

knee proprioception is far from consistent. Therefore clinical practitioners should generalise 

current research with caution. 

 

1.11 Thesis Aims and Objectives 

The global aim of this thesis can be divided into two sub-sections. The first aim involves 

measurement; to find the optimal condition to record knee joint position sense ability. The 

22 



second aim involves implementation of this tool to report the effects of various independent 

variables on knee joint position sense ability. The different components of each aim are 

provided below:  

 

Methodological Aims  

 To establish a measurement technique that provides the best representation of knee 

joint position sense ability.  

 To establish a reliable, consistent and sensitive measurement of knee joint position 

sense.  

 To establish a valid measurement technique of knee joint positioning. 

 To establish the number of trials required for consistent knee joint position sense. 

 

Population Group Aims 

 To collect normative knee joint position sense from a representative sample of the 

UK population. 

 To consider the effects of age, gender, BMI, physical activity and self-reported 

knee condition on knee joint position sense.  

 To compare the knee joint position sense of anterior cruciate ligament deficient 

patients (both non-athletic and elite athletic) to an uninjured matched control 

group. 

 To compare the knee joint position sense of patients with any other knee injury (not 

including ligament damage e.g. OA) to an uninjured matched control group.  

 To consider the effect of peripheral fatiguing exercise on knee joint position sense. 
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2.1.1 The effect of Anterior Cruciate Ligament Injury on Knee Proprioception 

The ACL is the most commonly injured knee ligament (Miyasaka et al., 1991). Hewett 

(2007a) states potentially 250,000 individuals will suffer an ACL injury, with approximately 

50,000 needing knee surgeries (Miyasaka et al., 1991) each year in the United States alone. 

Injuries to the ACL are career threatening for sports professionals and even when 

rehabilitation is completed, secondary injury problems are common place (Lephart et al., 

2000). There is a significantly greater risk of suffering osteoarthritis in the damaged limb, 

occurring at 10 times a greater rate in ACL-injured athletes, as well as higher risk of injury 

to the uninjured knee (Bahr and Krosshaug, 2005, Hewett et al., 2006, Johansson et al., 

2000). Therefore, it is important to develop effective treatments and preventative strategies 

for ACL injury. 

Evidence suggests an ACL injury significantly reduces the number of effective 

mechanoreceptors in the ligament (Barrack et al., 1994). Typical surgical practice is to 

reconstruct and replace the damaged ligament tissue with tendon tissue, which again reduces 

the number of working mechanoreceptors (Hewett, 2007a).   

Mechanoreceptors provide important afferent information regarding position (static) and 

movement (dynamic) to the central nervous system for processing, this is known as 

proprioception (Lephart et al., 2000). Therefore it follows that such injuries can be 

detrimental to proprioception of the knee. The subject of proprioception is steeped in history. 

For at least 400 years researchers have been investigating how people are able to perceive 

and accurately control limb movements without visual input (Proske, 2006). Proprioception 

plays a critical role in normal human performance (Riemann and Lephart, 2002a, 2002b, 

Stillman, 2002, Barrack and Munn, 2000). Deficits may lead to abnormal movement patterns 

which may lead to knee misalignment then to other problems such as osteoarthritis (Lephart 

et al., 2000).  Physiotherapists and other clinical practitioners have therefore used 

measurements of proprioception in training and rehabilitation strategies to inform their 

practice (Hewett et al., 2007b, Ogard, 2011, Stillman, 2000). It is common place for 

physiotherapists to include proprioceptive exercises in rehabilitation following an ACL 

injury (Perrin and Irrgang, 2000).  

However, research into the effects of ACL injury on knee proprioception has yielded 

conflicting results (Beard and Refshauge, 2000). It is possible clinicians are treating an ACL 
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injury with proprioceptive exercises without significant evidence this proprioceptive deficit 

exists. Therefore a meta-analysis was completed to assess the effects of ACL injury on knee 

proprioception (see appendix 1a, 1b, 1c). This meta-analysis will be described in the next 

section.  

2.1.2 The effects of Anterior Cruciate Ligament Injury on Static and Dynamic 

Knee Proprioception  

Relph et al., (2014) revealed six studies of sufficient quality and low risk of bias to consider 

the effect of ACL injury on joint position sense (see table 1 for details). These studies were 

selected using a meta-analysis protocol. No review protocol exists for meta-analysis of 

descriptive data, thus the PRISMA guidelines on meta-analysis were followed as far as was 

practicable for the type of data concerned (http://www.prisma-

statement.org/statement.htm). The following electronic databases were accessed from their 

inception to September 2013: AMED, CINAHL, PubMed, Medline, PeDro, Sports Discus 

and the Cochrane Library. Primary journals in the field; The Knee, American Journal of 

Sports Medicine and the British Journal of Sports Medicine were also manually searched, 

as were the reference lists of all selected studies to ensure the search was comprehensive. 

Key terms were: anterior cruciate ligament, proprioception, postural sway, joint position 

sense, balance, equilibrium or posture using the Boolean operator “OR”. Limits of the search 

were: English language studies (none of the researchers spoke foreign languages); human 

studies, adult participants and peer reviewed published full access articles. Unpublished 

literature and trial registries of current studies were not included in the search. Studies were 

eligible for inclusion if they 1) investigated proprioception of the knee following ACL injury 

(conservatively managed or reconstructed) 2) recruited adults (over 16 years) with an ACL 

injury, including participants with ACL injuries combined with meniscus and/ or collateral 

ligament damage and 3) included a primary outcome measure of knee proprioception 

measured by mean angle of error in degrees.  

The primary outcome measure could take two forms; studies measuring knee kinaesthesia 

used the TTDPM method where the mean angle of error was defined as the difference in 

degrees from initiation of motion and the participant’s perception of motion and studies 

measuring JPS utilising an index angle matching method in which the mean angle of error 

was defined as the difference in degrees between the target angle and the angle reproduced 

by the participant. The type of control measure (the participant’s contralateral leg or the leg 
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of an external matched control) was also collected along with the corresponding data. The 

search results were merged using reference management software (Endnote X6) and 

duplicates removed. The titles and abstracts were screened and articles which obviously did 

not meet the selection criteria removed.
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Table 1: Characteristics of the articles included in the meta-analysis (Relph et al., 2014). 

Study Participants Age, mean (SD) 
and Gender ACL 
patients 

Age, mean (SD) 
and Gender 
Controls 

Equipment Knee ROM Method of measuring 
proprioception 

Barrack et al., 
(1989) 

11 ACL-D  

10 Controls. 

25 (NP) years 
9 men, 2 women 

25 (NP) years 
NP 

Purpose built 
proprioception 
device. 

From a starting angle of 40° at 
an angular velocity of 0.5°/s.  

TTDPM - Mean angle of error in 
degrees from 10 trials randomly 
assigned to flexion or extension 

Fischer-
Rasmussen 
and Jensen 
(2000) 

20 ACL-D 

18 ACL-R  

20 Controls   

ACL-D 27(5) 
years 
11 men, 9 women 
 
ACL-R 27(5) 
years 
9 men, 9 women 
 

27(4) years 
11 men, 9 
women 
(Plus uninjured 
knees of 
patients) 

Purpose built 
proprioception 
device.  

From a starting angle of 25° 
flexion to 15, 20, 25, 30, 35 or 
60° flexion to full extension. 

JPS (passive positioning then active 
repositioning task) – Mean angle of 
error in degrees from 20 trials 
randomly assigned to target angles.  

Fremerey et 
al., (2000) 

 

 

10 ACL-D  

20 ACL-R  

20 Controls 

ACL-D 22.7(3.2) 
years 
7 men, 3 women 
 
ACL-R 28.4(4.4) 
years 
13 men, 7 women 

26.4(4.8) years 
13 men, 7 
women 
(Plus uninjured 
knees of 
patients) 

Purpose built 
proprioception 
device.  

From a starting angle of 0° to 
random target angles in 3 
intervals; extension 0-20° , 
mid-range 40-60° and flexion 
80-100°. All passive motion 
was set at 0.5°/s.  

JPS (passive positioning then 
passive repositioning task) – Mean 
angle of error in degrees from trials 
randomly assigned from the 
extension range, mid-range and 
flexion range.  

Ozenci et al., 
(2007) 

20 ACL-R 
(auto-graft) 

20 ACL-R 
(allo-graft) 

20 ACL-D  

ACL-D 
29.0(5.4) years 
18 men, 2 women 
ACL-R 
Auto – 29.5(6.9) 
years 
20 men 

27.6(2.6) years 
17 men, 3 
women 
(Plus uninjured 
knees of 
patients) 

Cybex 
Dynamometer 

JPS - From full extension to 
flexion (no further details 
given).  

TTDPM - From 15° flexion to 
either flexion or extension at an 
angular velocity of 1°/s.  

JPS (passive positioning then active 
repositioning task) – Mean angle of 
error in degrees from 10 trials. 

TTDPM - Mean angle of error in 
degrees from 10 trials randomly 
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20 Controls Allo – 30.2(4.6) 
years 
16 men, 4 women 

assigned to either flexion or 
extension. 

Angoules et al. 
(2011) 

20 ACL-R 
(hamstring) 

20 ACL-R 
(patella 
tendon) 

16 men, 4 women 
 
 
18 men, 2 women 

N/A Con-Trex 
Dynamometer 

JPS – From full extension (0°) 
to flexion angles of 15, 45 & 
75°. 

 

JPS (passive positioning then active 
repositioning task) – Mean angle of 
error in degrees from three trials.  

Mir et al. 
(2008) 

12 ACL-R  

12 Controls  

23(4.75)years 
12 men 

22(4.35) years 
12 men (Plus 
uninjured knees 
of patients) 

Digital camera, 
markers. 

From a starting angle of 60° 
flexion to 30° flexion and from 
a starting angle of 0° flexion to 
30° flexion. All motion was at 
an angular velocity of 10°/s.  

JPS (active positioning then active 
repositioning task) - Mean error 
angle in degrees over 3 trials. 

 

ACL-D: Patients with an ACL deficiency, ACL-R: Patients with a reconstructed ACL, TTDPM: Threshold to detect passive motion, JPS: Joint 
position sense. NP: Not Provided, NA: Not applicable.
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The full text of the remaining studies was then checked against the selection criteria. Studies 

with outcome data that did not meet our criteria were excluded at this stage. The selection 

of appropriate articles was agreed through discussion between two of the researchers and a 

third party was available to arbitrate if necessary. 

The methodological quality of the studies that met the selection criteria was appraised by 

two of the research team independently to identify studies that had a low risk of bias. There 

is no established tool to assess the methodological quality of descriptive studies, therefore 

we amended a quality assessment tool previously developed and used by the researcher team 

(Herrington and Fowler, 2006). This tool considered eight potential sources of bias; 

confirmation of ACL deficiency, representation of population, representation of sample, 

homogeneity of participants, sample size, study design, assessor blinding / bias, statistical 

analysis (see appendix 1b and Table 2). The better the source of bias was addressed, the 

more points were awarded. Summating the scores for items on the assessment gave a 

maximum score of 88. The methodological quality scores were arbitrarily, but logically, 

grouped as ‘poor’ (a score of less than 29/88), ‘moderate’ (a score of 30-58/88) or ‘good’ (a 

score of 59+/88). Studies of moderate to good quality (that is, 30–88/88) were selected as 

providing data of sufficient low risk of bias to enter in to the meta-analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

30 



Table 2: Methodological quality score for each of the articles included in the meta-
analysis 

Scoring Section 
(maximum score) 

Barrack et 
al., (1989) 

Fischer-
Rasmussen 
& Jensen 
(2000) 

Fremerey 
et al., 
(2000) 

Ozenci et 
al., (2007) 

Angoules 
et al., 
(2011) 

Mir et al., 
(2008) 

Confirmation of 
ACL Deficiency 
(3) 

3 1 3 1 3 0 

Representation of 
Population (19) 

9 8 10 14 13 10 

Representation of 
Sample (5) 

3 0 3 3 3 0 

Homogeneity of 
Participants (13) 

5 11 11 7 4 11 

Sample Size (25) 3 9 7 9 6 4 
Study Design  (4) 1 1 1 1 4 1 
Assessor Blinding 
/ Bias (5) 

5 0 0 0 5 0 

Statistical Analysis 
(14) 

1 1 4 3 14 9 

Total (88) 30 31 39 38 52 35 
Quality Level Moderate Moderate Moderate Moderate Moderate Moderate 

Note: Studies were grouped in to poor (a score of less than 29/88), moderate (a score of 
30-58/88) or good (a score of 59+/88) studies based on their final methodological quality 
score. 

Studies that met the eligibility criteria and were of sufficient quality (see table two) were 

included in the meta-analysis. The following data were extracted: the number of participants, 

mean angle of error measured using TTDPM and/ or JPS methods and accompanying 

standard deviation values to include in the meta-analysis and the following comparisons 

were made:  

For joint position sense data: 

· ACL injured leg versus contralateral leg control 

· ACL injured leg versus external control leg 

· Patients with a reconstructed ACL versus patients with a deficient ACL 

For data on the threshold to detect passive motion:  

· ACL injured leg versus contralateral leg control  
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· ACL injured leg versus external control leg  

Firstly, comparisons were made using a fixed effect model with an inverse variance method 

as the outcome measures for both JPS (error matching score) and TTDPM (angular 

displacement before perception of movement) were consistent between the included studies. 

However, after consideration of the variability and specifically the heterogeneity values 

within the JPS and TTDPM protocols, a random effect model with an inverse variance 

method was also used for comparisons. All data was analysed and presented as forest plots 

using Review Manager Software (version 5.1). Standard mean difference between groups 

measured the effect size. Heterogeneity between comparable trials was tested using the chi 

squared test (level of significance = p< 0.10). Heterogeneity was further tested using I2 

percentages to consider the impact potential heterogeneity would have on the meta-analysis. 

The initial search strategy yielded 3076 articles, 2737 of which did not relate to the research 

question. Screening of the titles and abstracts of the remaining 339 articles revealed that 290 

did not fully meet the inclusion criteria; the main exclusion factor was the use of techniques 

to measure proprioception other than TTDPM and/or JPS. A further 43 articles were 

excluded as they provided ‘poor’ quality data with a high risk of bias and/or had missing or 

inadequate outcome data. The main reasons for missing data were that median data were 

presented instead of mean data or measures of the variability of the data (standard deviation) 

were missing. This left six studies which were selected for inclusion in the meta-analysis. 

The PRISMA flow chart detailing the selection process is shown in figure one. 

The selected studies compared the injured leg to the participant’s un-injured leg as the 

control (Fischer-Rasmussen and Jensen, 2000, Fremerey et al., 2000, Ozenci et al., 2007, 

Mir et al., 2008 and Angoules et al., 2011) using a range of JPS procedures. Results of the 

fixed effect model indicated the injured leg had significantly poorer JPS than the uninjured 

leg. Specifically, all included studies compared the injured leg to the participant’s un-injured 

leg (n=170) as the control and provided a pooled standard mean difference of mean angle of 

error of 0.52° (95% CI [0.41 to 0.63]; P<0.001; I2 = 63%) indicating that the un-injured leg 

had a lower mean angle of error (better joint position sense) compared to the injured leg. 

Fischer-Rasmussen and Jensen (2000), Fremerey et al., (2000), Ozenci et al., (2007) and 

Angoules et al., (2011) also compared the injured legs (n=140) to an external control 

(n=104). Again, results of the fixed effect model pooled data revealed the control group had 

better joint position sense than ACL patients. Specifically, the pooled standard mean 
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difference of the mean angle of error was 0.35° (95% CI [0.14 to 0.55]; P= 0.001; I2 = 78%) 

indicating that the control group had better joint position sense than ACL patients. Three 

studies (Fischer-Rasmussen and Jensen, 2000, Ozenci et al., 2007 and Angoules et al., 2011) 

compared ACL reconstructed (n=116) and ACL deficient (not reconstructed) legs (n=100). 

The pooled standard mean difference of the mean angle error was -0.62° (95% CI [-0.76 to 

-0.48]; P<0.001; I2 = 42%) indicating that ACL reconstructed patients had better joint 

position sense.  

Results of the random effects model revealed similar findings to the fixed effects model 

findings for both comparisons between ACL injured and uninjured legs (mean angle of error 

0.54°; 95% CI [0.36 to 0.72]; P<0.00001; I2 = 63%) and ACL reconstructed to ACL deficient 

(mean angle of error -0.63°; 95% CI [-0.81 to -0.45]; P<0.00001; I2 = 42%). Again, this 

supports JPS differences between ACL patients and the uninjured knee and ACL 

reconstructed versus ACL deficient. However, the random effects model found no difference 

in JPS between ACL injured legs and external controls (mean angle of error 0.41°; 95% CI 

[-0.03 to 0.86]; P=0.07; I2 = 78%). Therefore, there is some uncertainty in the findings of 

the meta-analysis. 
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Figure 1: A PRISMA flow chart of article reduction.   

A plethora of additional studies support the findings of the study by Relph et al., (2014). 

Some studies have used a visual analogue model instead of the contralateral or ipsilateral 

leg being used for replication of knee joint position to demonstrate JPS deficiencies in ACL 

injured patients (Bonfim et al., 2003, Roberts et al., 2000, Rehm et al., 1998, Barrett 1991a, 
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Carter et al., 1997). Poor JPS ability has also been evidenced using passive reproduction 

methods, in which participants deactivate knee movement using a switch on the apparatus 

when they feel they have reached the target position (Lee et al., 2009 and Zhou et al., 2008, 

Friden et al., 1997).  Further evidence, using a passive followed by an active reproduction 

protocol in which participants use their own muscle force to replicate the target angle, 

provides more evidence of reduced JPS acuity following an ACL injury (Corrigan et al., 

1992, Ochi et al., 1999, Katayama et al., 2004, Baumeister et al., 2008). Iwasa et al., (2000) 

measured JPS using a longitudinal research design and concluded it may take up to 18 

months for complete restoration of JPS abilities. However, it should be noted that no pre-

injury or normative data was available to make comparisons to post-operative levels. Also, 

Reider et al., (2003) reported significantly better JPS scores compared to external controls 

six months post-operative, suggesting rehabilitation may in fact improve JPS to levels above 

an uninjured population. Knee JPS was measured using passive-active methods discussed 

previously. Muaidi et al., (2009) considered knee JPS in the transverse place and presented 

similar results to previous sagittal plane studies, JPS was significantly reduced in ACL 

injured participants.  

Ochi et al., (1999) explained JPS deficits using sensory evoked potentials, their results 

suggested reconstruction of the ACL preserved mechanoreceptors in the ACL and hence 

improved JPS compared to ACLs not reconstructed. Baumeister et al., (2008) measured 

electroencephalography (EEG) signals to consider varied cortical activity during JPS tasks 

in ACL injured participants. Results indicated ACL participants increased the cortical 

activity during tasks, this suggests they have higher attention to the task and hence may 

perceive the task as more complex than uninjured controls. Therefore ACL injured patients 

may have altered cortical activity and may find motor tasks more complex than pre-injury. 

However, there is also significant evidence to suggest no JPS deficiencies exist following 

ACL injury when using passive-passive reproduction (Nishiwaki et al., 2007) passive-active 

reproduction (Remedios et al., 1998, Good et al, 1990, Harter et al., 1992, Dvir et al., 1988, 

Fischer-Rasmussen et al., 2001, Jensen et al., 2002, Co et al., 1993, Friden et al., 1996, 

Friden et al., 1997, Fonseca et al., 2005, Roberts et al., 1999) active-active reproduction 

(Hopper et al., 2003, Dvir et al., 1988) and visual analogue reproduction (Roberts et al., 

1999 and Friden et al., 1997). All of these studies concluded there is no difference between 

ACL injured and control groups and thus suggests an ACL injury has no negative effects on 

knee proprioceptive ability. It is possible other mechanoreceptors around the joint 
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compensate for the loss of ACL afferent signals. However, it may also be possible the 

methods used to measure proprioception did not involve ACL afferent input and hence 

deficits were not found.  

Furthermore, potential sources of bias must be noted in all studies considering ACL injury 

and proprioception, regardless of their conclusions. Studies had to be excluded from the 

meta-analysis (Relph et al., 2014) data due to potential threats to reliability and validity. The 

majority of studies on this topic do not complete reliability and validity statistics of the 

measurement tool and therefore it is unclear if the data were viable. There are also issues 

with missing data in some studies; for example Friden et al., (1997), Roberts et al., (1999), 

Reider et al., (2003) and Friden et al., (1996) report median data instead of mean data 

therefore making comparisons to other findings difficult. 

Therefore, the suggestion that ACL injuries negatively impact JPS appears intuitive, 

however the evidence is not as compelling as one might expect. For example within a single 

study, JPS ability is reduced in some measures, and not in others (Jensen et al., 2005 and 

Reider et al., 2003). The inconsistency in procedures between studies makes it very difficult 

to strongly conclude ACL injury does in fact reduce JPS ability. There are two theories to 

explain the discrepancy in results. Firstly, that the ACL does not play an important role in 

knee JPS, rather it is the knee musculature around the joint that is the dominant source of 

afferent information (Beard and Refshauge 2000). Secondly, that the measurement 

techniques employed are too variable, unreliable and inconsistent. As there is no 

standardised, reliable measure of JPS, authors have used a vast range of techniques, the 

majority of which are not tested for reliability and validity. Indeed, lack of reliability and 

validity measures in many studies led them to be excluded from the meta-analysis (Relph et 

al., 2014). For full details of articles not included in the meta-analysis (Relph et al., 2014) 

and evidence of the range of protocols used, please see appendix 1c.   

The meta-analysis also considered the effect of ACL injury on dynamic proprioception 

measured using the threshold to detect passive movement (TTDPM). Relph et al., (2014) 

revealed two studies considering TTDPM of sufficient quality to be considered for inclusion 

in the meta-analysis (Barrack et al., 1989 and Ozenci et al., 2007). Both studies compared 

the injured leg (n=71) with the uninjured leg (n=71) in ACL patients. The pooled standard 

mean difference of mean angle error was 0.02° (95% CI -0.32 to 0.35; P= 0.91; I2 = 61%) 

indicating no difference. Barrack et al., (1989) and Ozenci et al., (2007) also compared ACL 
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injured legs (n=71) to external control legs (n=30). Results of the fixed effect model 

indicated a difference in mean angle error of 0.38° (95% CI 0.04 to 0.72; P= 0.03; I2 = 73%) 

indicating that the external control group had a better TTDPM than the injured leg group. 

The random effect model results provided opposite findings to the fixed effects model; ACL 

injured legs were significantly different to ACL uninjured leg (mean angle of error 0.39°; 

95% CI [0.24 to 0.54]; P<0.00001; I2 = 50%) but not significantly different to the external 

control group (angle of error 0.45°; 95% CI [-0.21 to 1.11]; P=0.19; I2 = 73%). Therefore, 

as with the JPS meta-analysis findings, results are appear to be inconclusive.  

There are additional studies that support the findings of the meta-analysis by Relph et al., 

(2014); however, potential risks of bias may be present. Studies excluded from the meta-

analysis had missing data and did not appropriately present reliability and validity statistics 

on the chosen TTDPM protocols. Therefore these studies are considered here, but with 

caution. Many studies conclude TTDPM is significantly increased following ACL injury 

(Lephart et al., 1992, MacDonald et al., 1996, Courtney and Rine, 2006, Friden et al., 1999, 

Beynnon et al., 1999, Borsa et al., 1997, Corrigan et al., 1992, Reider et al., 2003, Lee et 

al., 2009, Roberts et al., 1999). In contrast, Valeriani et al., (1996) suggest ACL 

reconstruction does not restore TTDPM ability, measured using sensory evoked potentials. 

However, research by Pap et al., (1999), Foonseca et al., (2005), Nishiwaki et al., (2007), 

Jensen et al., (2002), Fischer-Rasmussen et al., (2001), Risberg et al., (1997) and Wright et 

al., (1995) conclude TTDPM ability does not reduce following ACL injury. It is difficult 

therefore to make clear conclusions regarding the effect of ACL injury on TTDPM. It may 

be TTDPM protocols are less sensitive than JPS to changes in knee proprioception following 

an ACL injury. Indeed the nature of the protocol, in which the knee is moved dynamically 

and then the patient responds, may not be sensitive enough to measure ligament deficiencies 

contributing to proprioception.  

Furthermore the potential risk of bias in TTDPM studies is evident from the range of 

protocols used. As with JPS studies, there has been no standardised TTDPM measurement 

technique established, hence authors use which ever protocol they feel is most appropriate 

and often do not provide reliability and validity statistics related to their chosen protocol. 

This may explain why a number of authors found significant reductions in some TTDPM 

measures but not others (Friden et al., 1996, Friden et al., 1997 and Roberts et al., 2000, Co 

et al., 1993). See appendix 1c for more details of the excluded studies in the meta-analysis 

by Relph et al., (2014).  

37 



2.1.3 Summary 

Results of the fixed effect meta-analysis (Relph et al., 2014) indicated there are statistically 

significant differences in the proprioception, in terms of JPS acuity and threshold to 

detection of movement, of patients with ACL injury in that they have poorer proprioception 

than people without such injuries and poorer proprioception in the injured than uninjured 

leg.  The proprioception of people whose ACL was reconstructed was statistically 

significantly better than those whose ligament is left unreconstructed (ACL deficient). These 

differences are seen whether the comparator group is a patient’s uninjured leg, or a control 

group of people with no injuries; suggesting that either can be used as a control group in 

future research.  

However, results of an additional random effect analysis revealed ACL patients may have 

worse JPS than their contra-lateral leg, but not compared to an external control group. 

Therefore, results are inconsistent and no clear conclusions can be made regarding ACL 

injury and proprioception. This is probably due to the large variation in approaches to JPS 

measurement, indicated in the analysis by the high I2 scores (these ranged from 42% to 

78%). Therefore, a consistent knee proprioception measurement protocol must be developed 

in order to distinguish whether ACL injury does indeed decline proprioceptive ability. 

However, the significant differences that were reported in the meta-analysis were seen most 

clearly when joint position sense was measured but were less apparent when threshold to 

detect passive motion measurement techniques were used; the meta-analysis revealed 

greater differences in joint position sense (JPS) than studies using TTDPM. Furthermore, 

comparison of the fixed and random effects model results produced opposite findings, again 

suggesting the result of an ACL injury on dynamic proprioception is not clear.  Techniques 

may be insufficiently sensitive to detect the responses of rapid receptors such as the pacinian 

corpuscles in the ACL (Barrack and Munn, 2000) as measurements incorporate the 

participants’ reaction time, which is unrelated to their injury. JPS methods may be more 

sensitive as these measurements also incorporate the slower responses of the ruffini nerve 

endings and Golgi tendon organs (Schultz et al., 1984) and allow the conscious perception 

of joint motion and position. Therefore, joint position sense should be used to measure knee 

proprioception.  

These findings were supported by the majority of literature excluded from the meta-analysis 

(Relph et al., 2014). As stated previously, it is thought mechanoreceptors in the ACL provide 
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afferent information on the relative position and movement of the knee joint (Riemann and 

Lephart 2002a, Johansson et al., 2000, Schultz et al., 1984). Therefore, ACL injury may 

well impair proprioception through disruption to the transmission of this sensory 

information (Barrack and Munn, 2000). Marks et al., (2007) suggest other articular 

structures in the knee joint may attempt to compensate for the loss of ACL afferent signals. 

However, these compensatory signals may be ‘nonphysiologically disorganised’ (Marks et 

al., 2007 p.42), and hence the central nervous system and consequently joint position are 

disturbed and the knee become more unstable. The differences in directional (i.e. flexion or 

extension) proprioception may be due to the location of the injury. The anteromedial bundles 

of the ACL are most taut in flexion, the posterolateral bundle tautest in extension. Therefore 

the area of deficiency may determine which direction the deficits in proprioception lie.  

However, there is significant research to suggest injury may not reduce proprioceptive 

ability. In a similar study design to Relph et al., (2014), Fyhr et al., (2014) reported results 

of their meta-analysis on shoulder injuries and proprioception; it was suggested there is only 

limited to moderate evidence for a proprioceptive deficit following injury. Ambiguity in 

previous research can be attributed to differences in methods, for example research design, 

participant injury type, rehabilitation completed, equipment used, proprioception methods 

and outcome measures. Furthermore, very few studies on ACL injury and knee 

proprioception include information on the reliability, sensitivity and measurement error of 

the measurement techniques used. Generally the statistical analysis does not provide 

appropriate detail.  For example only two studies in the meta-analysis (Mir et al., 2008, 

Angoules et al., 2011) reported whether the data was normally distributed and hence 

justified the use of parametric statistics. Many studies used ‘home-made’ measurement 

devices prepared specifically for data collection but the reliability and sensitivity were 

infrequently reported. Again, only two of the studies included in the meta-analysis reported 

reliability statistics. Mir et al., (2008) stated test-retest reliability using a correlation 

coefficient (0.99); however this was from a previous study which was not referenced. 

Angoules et al., (2011) did comprehensively report the accuracy of their data collection 

methods, reporting the standard error of measurement (SEM), coefficient of variation (CV), 

smallest detectable differences (SDD) and intraclass correlation coefficients (ICCs) for each 

of their seven measures of knee proprioception. Hence, as reliability and validity is lacking 

in the majority of studies it is possible that the differences in proprioception found after an 
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ACL injury are due to measurement error and/or the measurement techniques were 

insufficiently sensitive to detect clinically significant differences (Relph et al., 2014).  

Another explanation is that the comparisons included in the meta-analysis could be under-

powered because the sample was too small, (again, very few of the studies discussed 

calculated sample size using power estimations). However the pooled data from the meta-

analysis (Relph et al., 2014) involved nearly 200 patients and the 95% confidence intervals 

of the comparisons made were small, indicating that a lack of power was not an issue.  

Further research is needed to evaluate the sensitivity and reliability of techniques to measure 

proprioception at the knee, before they can meaningfully be used as an evaluation tool.  

A more likely, but controversial, explanation of such ambiguous findings is that ACL 

injuries do not have a major impact on proprioception at the knee. This might support the 

view that muscle, rather than ligaments, provide the primary afferent information in the 

sensorimotor system (Beard and Refshauge 2000) which is not a surprise given that only 1-

2.5% of the ACL total area is made up of proprioceptive receptors (Barrack and Munn, 

2000) and that receptors are often still deficient six months after reconstructive surgery 

(Barrack and Munn, 2000). It may, to some degree, also explain the inconclusive evidence 

for reconstructive surgery and conservative (non-surgical) rehabilitation (Beard and 

Refshauge 2000, Friden et al., 2001, Tagesson et al., 2008), while some patients ‘cope’ with 

an ACL-deficiency and have an apparently stable knee even after complete rupture, others 

do not ‘cope’ despite reconstructive surgery and apparent passive stability (Barrack and 

Munn, 2000, Beard and Refshauge, 2000, Herrington and Fowler, 2006, Friden et al., 2001). 

Given that joint stability relies on synergy between muscles and ligaments (Ryder et al., 

1997, Lephart et al., 2000, Huston et al., 2000, Smith et al., 2010), once the ligament is 

damaged, patients may adapt by using proprioceptive information from the muscles to a 

greater extent to compensate for the lack of information from the ligament. This may explain 

why some patients cope better with ACL injury (however it is managed) than others 

(Herrington and Fowler, 2006); some may be more able to make that adaption more than 

others. The surgical treatment used to reconstruct the ACL may also influence 

proprioceptive rehabilitation. Although evidence shows auto-graft techniques can produce 

structural improvements such as stiffness and ultimate load that exceed uninjured ACLs 

(Woo et al., 2005), it is unclear whether the tissues used in this surgery allow 

mechanoreceptor regeneration or optimisation of the remaining mechanoreceptors. 

Therefore, surgical techniques may also hinder proprioceptive ability. 
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A limitation of research into ACL injury and proprioception is that all data collection is 

retrospective, which inevitably means pre-injury proprioception is unknown. It is possible 

that patients who suffered injuries had poorer proprioception which predisposed them to 

injury. Large scale normative studies are needed to give insight into the distribution of 

proprioception abilities across the population and whether this predisposes people to ACL 

injury. Such studies should consider a measurement technique that explores the full range 

of knee motion and direction using large sample sizes that represent the complete ACL 

patient population and normative data on proprioception ability. 

It must also be noted that heterogeneity of variance in the referenced meta-analysis (Relph 

et al., 2104) and the fixed effect model was greater than the recommended level of 50% 

(Deeks et al., 2008) in all but one comparison; this may be due to variability in the 

recruitment strategies across studies. The time since injury when proprioception was 

measured and the use of rehabilitation programmes was not consistent. Highly varied 

measurement techniques were also evident, which is a limitation that hampers further 

analysis. Different pieces of measuring equipment and varied knee movements, in terms of 

direction and speed of motion, were employed (see appendix 1c). Proprioception increases 

towards the extremes of range of movement in order to protect the joint from injury (Barrack 

and Munn, 2000, Borsa et al., 1997), thus studies that do not include measurements across 

the whole range of movement may either be under- or over- estimating knee proprioception. 

These inconsistent methods of measuring proprioception could have contributed to the high 

levels of heterogeneity in the current analysis. However as there is no gold standard method 

of measuring knee proprioception, this variation was unavoidable.  

 

This section of the thesis examined the effect of an ACL injury on proprioception, in terms 

of joint position sense and threshold to detect passive motion. The results indicate that 

patients with ACL injury may have poorer proprioception than people without such 

injuries and poorer proprioception in the injured than uninjured leg.  The proprioception of 

people whose ACL is reconstructed may be better than those whose ligament is left 

unreconstructed (ACL- deficient). This may be due to an increase in knee stability. These 

differences are seen whether the comparator group is a patient’s uninjured leg, or a control 

group of people with no injuries; suggesting that either can be used as a control group in 

future research.  However there is variability in proprioceptive measurement techniques 

and a lack of reliability and validity statistics. There is also inconsistency in findings when 
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a fixed effect model is compared to a random effects model, again providing evidence that 

a standardised protocol for collecting knee proprioception is needed. There is also a need 

for large scale normative data to make appropriate comparisons to injured populations, 

indeed Stillman (2002) concludes “clearly there is a need for more normative data derived 

from reliable instrumentation…” (p.559). The following sections consider the topics of 

proprioception, and the current measurement tools of this “sixth sense” (Berthoz, 2002). 
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2.2.1 The Sensorimotor System 

The sensorimotor system encompasses the complex relationship between the neurosensory and 

neuromuscular systems (Lephart et al., 2000). The system incorporates all sensory information 

from the visual, vestibular and peripheral mechanoreceptors to facilitate joint homeostasis 

(Riemann and Lephart, 2002a) (see figure 2). Although vision and vestibular inputs are 

important to joint stability, the peripheral nervous system is of most interest to orthopaedic and 

musculoskeletal practitioners and hence will be the focus of this thesis. The peripheral nervous 

system involves the communication and management of peripheral afferent information 

provided by mechanoreceptors or “proprio-ceptors” (Sherrington, 1906a) located in muscle, 

tendons, articulations and cutaneous tissue (Lephart et al, 2000). This information is processed 

by the central nervous system to control muscle activation and joint stabilisation (Riemann and 

Lephart, 2002a). It is believed that proprioception is an important aspect of this process and 

provides information on muscle length, tendon tension, joint position, joint movement and deep 

vibration (Lundy-Ekman, 2013).  

 

Figure 2. The sensorimotor system (adapted from Riemann and Lephart, 2002a, p.72). Dotted 
lines denote afferent pathways, solid lines efferent pathways and grey lines modification and 
regulation pathways.  
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In 1833 Sir Charles Bell referred to the ability to detect positions and actions of the hand as the 

“sixth sense” (McCloskey, 1978). Later the term “kinaesthesia” was coined by Bastian in 1888 

and refers to the sense of position and movement of the joints (Proske and Gandevia, 2009). 

Following this the ground-breaking neurophysiologist Sherrington first published the term 

“proprioception” describing it as “a deep field of receptors in which stimuli are traceable to 

actions of the organism” (1906a, p. 472). The word itself is derived from the Latin for one’s 

own (proprius) and receives (reception). It may be seen as a mysterious sense since we are 

largely unaware of it in our daily movements but yet it plays a crucial role in motor control 

(Proske and Gandevia, 2009). Sherrington’s work forms the bases of current physiological 

understanding of the musculoskeletal senses (Stillman, 2002). He classified all senses and 

sense organs based on their source of stimulation, suggesting that each receptor type is 

activated by one accompanying type of stimulus (Sherrington, 1906a). There have been several 

interpretations of Sherrington’s work and of the term “proprioception”. Some authors regard 

proprioception as only the acquisition of senses from mechanoreceptors (Grigg, 1994), whilst 

others regard proprioception as the acquisition and processing of sensory information (Lephart 

et al., 2000).  The term proprioception will be used in this thesis to describe the process of 

acquiring and processing sensory information from mechanoreceptors (specifically in the 

muscle, tendons, articulations and cutaneous tissue) to maintain joint stability and control 

muscle activation. Evidence has indicated both afferent and efferent information can determine 

position and movement of the limbs (Ogard, 2011, Gandevia et al., 2006). To note; the more 

global term of somatosensory sensations would encompass postural equilibrium, tactile, 

temperature and pain senses (Riemann and Lephart, 2002a) in addition to proprioception and 

as such will not be considered in detail in this thesis.  

2.2.2 Peripheral Afferent (Sensory) Pathways 

Mott and Sherrington (1895) were some of the first researchers to consider peripheral afferent 

information; their studies on primates indicated that surgical deafferentation of sensory endings 

in the upper and lower body caused extreme impairment and in some cases abolishment of 

movement. This strongly indicated afferent information is a key component in motor control. 

It is now known ascending nerve pathways forward sensory input from peripheral 

mechanoreceptors to the central nervous system for processing (Grigg, 1994, Mott and 

Sherrington, 1895). A mechanical stimulation, such as compression or deformation of a muscle 

or joint, causes a sensory response in mechanoreceptors. Pressure is transmitted to the sensory 
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nerve ending and changes the potential of this nerve ending (Lundy-Ekman, 2013). If this is of 

sufficient magnitude, a neural signal is propagated towards the central nervous system along 

ascending pathways. These pathways include the dorsal root ganglion to the spinal cord, to the 

brain stem and/or the cerebellum and basal ganglia, then from the brain stem to the 

motor/cerebral cortex (Lephart et al., 1998). A description of each type of peripheral 

mechanoreceptor is detailed below (also see table three).  It is important to note that 

mechanoreceptors do not work independently of each other, indeed Sherrington himself 

referred to them as “allies” (Sherrington, 1906b). This concept will be explored later in this 

section of the thesis.  

Table 3. Receptor name, classification, axon type, location and adequate stimuli (adapted from 
Richards and Selfe (2012) and Lundy Ekman (2013)).  

Receptor name Classification Axon Type Location Stimulus 

Muscle spindle Ia Large myelinated Throughout muscle Muscle stretch 

Muscle spindle II Medium myelinated Throughout muscle Muscle stretch 

Golgi tendon 

organ 

Ib Large myelinated Musculotendinous 

junction 

Strain/ Tension 

Pacinian 

corpuscle 

II Medium myelinated Capsule, ligament, 

menisci, fat pads, skin 

Compression 

Ruffini ending II Medium myelinated Capsule, ligament, 

menisci, skin 

Stretch, strain 

Free nerve 

ending 

Aδ Small myelinated Capsule, ligament, 

menisci, skin 

Nociceptive 

Free nerve 

ending 

C Small unmyelinated Capsule, ligament, 

menisci, skin 

Nociceptive 

Meissner’s 

corpuscles 

 

Merkel’s discs 

Aβ 

 

 

Aβ 

Medium myelinated 

 

 

Medium myelinated 

Skin 

 

 

Skin 

Deformation 

caused by light 

touch. 

Continuous 

pressure 
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Muscle-Tendon Unit Mechanoreceptors 

Muscle Spindles  

The number of muscle spindles serving each limb joint significantly declines from proximal to 

distal positioning, for example there is an estimated 1821 muscle spindles serving the knee 

joint compared to the 6659 approximate muscle spindles assisting the cervical spine (Scott and 

Loeb, 1994). Muscle spindles provide important sensory information regarding muscle tension 

or length of muscle fibres and the velocity of change of muscle displacement (Collins et al., 

1998, Edin and Johansson, 1995, Gandevia et al., 1992b, Matthews and Stein, 1969). The 

muscle bellies contain intrafusal fibres, which are made up of nuclear bag and nuclear chain 

fibres (Lundy-Ekman, 2013).  

Nuclear bag fibres respond directly to quick and sustained spindle stretch (Type Ia), and the 

frequency of firing increases as stretch increases (Proske et al., 2000). A second smaller group 

of sensory fibres (annulospiral endings, Type II) attach mainly to the nuclear chain fibres and 

respond with lower frequencies to sustained stretch (Proske et al., 2000, Matthews, 1987). The 

currently accepted view is that primary endings (Type Ia) of spindles contribute to sense of 

position and movement, whereas secondary endings (Type II) respond to position sense alone 

(Proske, 2006). For most types of receptors in the body an increase in discharge rate 

corresponds to an increase in stimulus intensity; however an increase in muscle spindle 

discharge rate represents a longer muscle not an increase in stimulus (Proske, 2006). This is 

because muscle spindle discharge rates increase in approximate proportion to the size of the 

lengthening (Proske, 2005). Furthermore, all muscle spindles are recruited at just 25% of 

maximum contraction, making them very sensitive to the stimulus (Proske, 2006) which is 

again different to other types of receptors.  

Further, the spindles in most muscles do not span the entire length of the fascicle to prevent 

the intrafusal fibres from becoming too compliant (Proske et al., 2000, Proske and Gandevia, 

2009). The ends of intrafusal fibres are attached to extrafusal fibres (Lundy-Ekman, 2013) and 

such work together in sensory feedback. Evidence also suggests coupled muscles, such as 

agonist, antagonists and synergists, provide a heightened proprioceptive ability when working 

together (Ribot-Ciscar and Roll, 1998), hence both muscle groups provide simultaneous 

afferent information (Grigg, 1994). In addition, the afferent signals transmitted from one 

muscle alone do not provide sufficient information for successful proprioceptive ability (Ribot-
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Ciscar et al., 2003). Therefore it follows that proprioception would be at an optimum when all 

involved musculature of a movement contribute to the afferent signal. 

There is also strong evidence that suggests muscle contraction during active movement 

increases muscle spindle activity in contrast to passive movement (Gandevia et al., 1992b). 

The type of muscle contraction will also influence spindle afferent discharge, for example when 

muscle spindles fire there is an increased afferent signal during lengthening of a muscle 

compared to shortening of that muscle (Ribot-Ciscar and Roll, 1998, Matthews, 1987). This 

suggests that as joints move through a range of motion, the predominant source of muscle 

spindle afferent information changes, the signals increase towards the lengthened muscle. 

However, this could also imply that “net” muscle spindle activity across all involved muscles 

stays constant simply switching between agonist and antagonist depending on the direction of 

movement. This theory has yet to be confirmed by experimental data.  

Golgi tendon Organs in muscle 

Golgi tendon organs are situated within muscle bellies near musculotendinous junctions or 

within tendons and provide additional extrafusal fibres (Type Ib) (Jami, 1992, Stillman, 2000). 

These mechanoreceptors average length and diameter is 1600µm and 122µm respectively 

(Jami, 1992). Golgi tendon organs detect differences in tension and force (Proske et al., 2000) 

but not length (Riemann and Lephart, 2002a), dynamically responding to rapid increases in 

these two stimuli only. Therefore, due to the high threshold and brief response, it is thought 

Golgi tendon organs have a protective mechanism near a joint’s extreme range of motion when 

tension rapidly increases (Johansson et al., 2000). However, previous literature has illustrated 

Golgi tendon organs may not fire during passive movement (Riemann and Lephart, 2002a) and 

hence are thought of as purely active mechanoreceptors.  

As stated, Golgi tendon organs are predominately tension or force receptors therefore it may 

be the amount of load or muscular contraction occurring during passive movement is below 

the threshold potential of the respective mechanoreceptor (Bergenheim et al., 1996, Jami, 

1992). Indeed research demonstrates Golgi tendon organs have much higher activation 

thresholds for passive force than for active force (Stuart et al., 1972; Stuart et al., 1970).  There 

is also error in joint proprioception ability when isometric contractions occur (Grigg, 1994). It 

is thought that Golgi tendon organs provide force-related information, when this is added to 

muscle spindle length information during isotonic contraction the combination of afferent 

signals produces accurate proprioception. However, during isometric contractions the force 
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and muscle length afferent information is conflicting, it appears large forces are not 

accompanied by displacement of the joint. Therefore this may confuse the CNS and reduce 

proprioceptive ability (Rymer and D’Almeida, 1980, Gandevia et al., 2006). This provides 

evidence for an important role for both muscle and tendon mechanoreceptors in proprioception 

during movement.  

Articular Mechanoreceptors 

Golgi-like Tendon Organs 

In contrast to Golgi-tendon organs situated near musculotendinous junction, Golgi tendon 

organs located in joints provide afferent information on joint angle or position and not force or 

tension (Solomonow and Krogsgaard, 2001). It is suggested these types of Golgi tendon organs 

that are found in the knee joint provide constant levels of afferent information throughout the 

voluntary range of motion (Rymer and D’Almeida, 1980).  

Pacinian Corpuscles 

Pacinian corpuscles are small ellipsoidal nerve fibres situated close to Golgi-like tendon organs 

with axon diameters between 8 and 12µm (Lundy-Ekman 2013). They have a low threshold 

and rapidly adapt to phasic movements earning them the exclusive classification of “dynamic 

receptors” (Riemann and Lephart, 2002a). Previous literature has shown pacinian corpuscles 

rapidly sense acceleration and deceleration and hence changes in movement, but not static or 

constant joint rotations (Johansson et al., 2000). Therefore they detect the onset or termination 

of movement, but not constant joint displacement.  

Ruffini Endings 

Ruffini endings are found in the collagen aspects of fibrous capsules, primarily in the flexion 

side of the articulation, hence the side that is stretched during extension (Grigg, 1994). Ruffini 

endings typically have diameters between 5 and 9 µm and are both static and dynamic receptors 

as they have a low threshold but slow adapting characteristics (Riemann and Lephart, 2002a). 

They are found in articulations and cutaneous areas and hence provide sensory feedback on 

joint and skin tension applied in all directions and information on joint position, movements 

and also pressure (Stillman, 2000, Grigg, 1994). Due to their slow adapting characteristics it is 

believed Ruffini endings contribute to joint position sense (Burke et al., 1988). These receptors 
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are most sensitive at maximum flexion and extension positions (McCloskey, 1978, Burgess et 

al., 1982).  

Free Nerve Endings 

The majority of free nerve endings are unresponsive during normal joint movement, however, 

are active when damage or injury occurs in the articular tissue (Johansson et al., 2000). 

Therefore, research suggests this receptor provides afferent information only once the joint is 

damaged via nociceptive sensory input (Solomonow and Krogsgaard, 2001, Hogervorst and 

Brand, 1998).   

Cutaneous Mechanoreceptors 

Meissner’s corpuscles and Merkel’s discs 

Meissner’s corpuscles are responsive to light touch and vibrations. Merkel’s discs are 

stimulated by skin pressure and hence contribute to proprioception when the skin is stretched 

(Burgess et al., 1982). Although neither of these receptors is thought of as a true 

“proprioceptor” the afferents they provide have a minor role in joint position sense and 

kinaesthesia (Edin and Johansson, 1995, Grigg, 1994, Matthews, 1987, McCloskey, 1978). It 

is intuitive that the sense of skin movement through stretch or pressure may contribute to our 

overall proprioception ability, although the presence of Ruffini corpuscles in the skin may also 

contribute specifically to joint position sense (Edin and Johansson, 1995). However, there is 

little evidence to fully support this theory. Grigg (1994) suggests this is due to the difficulties 

in isolating cutaneous receptors and hence measuring specific cutaneous responses to joint 

movement. Although this can also be disputed using evidence that the afferent signals provided 

by cutaneous receptors are time and speed dependent; after 1-2 minutes and at speeds under 

0.1mm/s cutaneous sensation ceases (Horch et al., 1975, McCloskey, 1978). Cutaneous 

receptors may therefore be thought of as secondary or facilitating contributors to 

proprioception (Burgess et al., 1982).  

2.2.3 Summary 

Although it is believed sensory information from all receptors may be integrated at the spinal 

level, there has been debate over which receptors are most prominent in proprioception 

processing (Proske et al., 2000). In the 1950s authors believed articular receptors may be the 

most prevalent in proprioception due to lack of evidence at that time that Type 1 (muscle 
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spindle) afferent information was ascended to the cerebral cortex (Riemann and Lephart 2002a, 

Matthews, 1987, Proske, 2005). Also, authors at this time believed it to be more logical to look 

for dominant joint movement receptors within the joints themselves. However, latterly authors 

have reverted back to the traditional belief of Sherrington’s (1906b) “muscular sense”, that is 

the most dominant mechanoreceptor in proprioception to be muscle spindles (Scott and Loeb, 

1994, Proske and Gandevia, 2009, Proske et al., 2000, Proske et al., 2005, McCloskey, 1978). 

Indeed feline studies have indicated the knee joint is served by 400 myelinated joint afferents 

but 4000 myelinated muscle afferents. This principle is supported by evidence suggesting 

articular receptors may not be as responsive in mid-range movements (Rymer and D’Almeida, 

1980, Burke et al., 1988, McCloskey, 1978) and hence cannot be the most important 

proprioceptor. Furthermore, studies have illustrated joint proprioception is not lost when 

articular and cutaneous afferent information is blocked (Clark et al., 1979). Vibration and 

tendon pulling studies have suggested muscle receptors must have the dominant role in afferent 

signals as an illusion of joint movement can be induced with these techniques (Matthews, 1987, 

Proske and Gandevia, 2009, Berkinblit et al., 1992).  For example Goodwin et al., (1972) 

published ground-breaking evidence that when a muscle belly is vibrated the participant 

experiences illusions of movement and position changes, however if this vibration is moved to 

the joint, no illusion occurs. Thus it is now more popular to believe muscle spindles may be 

the main afferent provider for proprioceptive processes.  

However receiving only muscle afferent information does actually significantly reduce 

proprioceptive ability (Grigg, 1994), hence it is most likely that all mechanoreceptors 

contribute to effective proprioceptive ability in some way (Gandevia and Burke, 1992a, Millar, 

1973, Proske et al., 2000). Grigg (1994) proposed that as the joint moves closer to its end range 

of motion, the change in muscle length is reducing and hence muscle afferent information is 

reducing; however concurrently the change is joint tension is increasing and hence articulation 

mechanoreceptor information is increasing. Therefore, it may be that the primary 

mechanoreceptor changes across the range of motion (Burgess et al., 1982). This is supported 

by the “ensemble coding theory”; this theory suggests afferent information is transmitted by 

different populations (ensembles) of receptor afferents. The ensemble must constitute receptors 

with a range of sensitivity and hence show different responses to stimulus to provide the most 

useful afferent signal (Bergenheim et al., 1996, Jones, 1993). It is believed this range of 

responses affords the ensemble to encode a greater amount of stimuli and provide the most 
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useful and a manageable amount of afferent information to the central nervous system 

(Bergenheim et al., 1996).  

Following stimulation of mechanoreceptors, afferent information is sent, in the first instance, 

to the spinal cord (Lephart et al., 1998). Proprioceptive information is relayed to the higher 

central nervous system via the two dorsal lateral tracts and the spinocerebellar tracts (Lundy 

Ekman 2013). The two dorsal tracts are located in the posterior region of the spinal cord and 

transport conscious proprioceptive information such as position and kinaesthetic sensations 

(Bosco and Poppele, 2001). The spinocerebellar tracts are believed to be responsible for 

relaying unconscious proprioception, such as joint angles, muscle tension and length (Dye, 

2000, Bosco and Poppele, 2001). This information is vital in reflexive, automatic and voluntary 

muscle contractions. This pathway is also involved in the transmission of an efference copy of 

all motor information back to the cerebral cortex (Dye, 2000); this will be discussed in a later 

section on the cerebellum.  The following section details the continued pathways at the central 

nervous system and descent pathways to muscle spindles.  

2.2.4 Central Efferent Pathways 

The central efferent pathways are responsible for the processing of afferent proprioceptive 

information ascending from the peripheral nervous system (Riemann and Lephart 2002b). 

There are two divisions; automatic (involuntary) and somatic (voluntary) nervous system and 

within these divisions two mechanisms; feedback and feedforward motor responses (Biedert, 

2000).  The motor components that comprise the efferent pathways can be divided into the 

central axis and two associated areas (Lundy Ekman, 2013). The central axis contains the spinal 

cord, brain stem and cerebral cortex (three levels of motor control).  Motor output at these three 

levels are proceeded by afferent input, the response can be reflexive (spinal cord) or descending 

motor commands from the brain stem and/or cerebral cortex (Lephart et al., 1998). The 

associated areas are the cerebellum and the basal ganglia; these being responsible for 

modulation and regulation of motor commands (Biedert, 2000). Motor commands can both 

inhibit and facilitate sensory relay to peripherals. The following section will detail the three 

levels of motor control and the associated areas.  

The Spinal Cord  

The spinal cord contains three types of neuron: motor neurons, sensory neurons and 

interneurons (Bosco and Poppele, 2001). The motor neurons run through the ventral horn to 
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supply muscle fibres. Sensory nerve fibres enter the spinal cord via the dorsal horn (Stillman, 

2000). The spinal cords main contribution to integration of afferent information is to provide 

the space in cord grey matter for synapses to occur between mechanoreceptor transmission and 

interneurons (Barrack et al., 1994). This sensory information may be transmitted to other 

interneurons, higher motor centres and other antagonistic motor neurones (Bosco and Poppele, 

2001). The spinal cord is also responsible for the quickest response to peripheral afferent 

signals, the reflex response (Hewett et al., 2002). This response is necessary for protective 

reflexes in joint stability (Hewett et al., 2002).   

Brain Stem 

The brain stem had a significant role in postural equilibrium and autonomous movement 

through integration of visual, vestibular and all somatosensory sources (Lephart et al., 1998). 

It is under direct cerebral cortex command and provides the relay between the spinal cord and 

the cortex (Lundy-Ekman, 2013). Specifically, the medial neural pathway from the brain stem 

descending to the spinal cord influences axial and proximal muscles, whilst the lateral neural 

pathway controls distal muscles. Evidence also states the brain stem contributes to spinal 

reflexes and muscular tone (Lundy-Ekman, 2013).  

Cerebral Cortex 

The cerebral cortex is the highest level of motor control and is responsible for complex and 

discrete voluntary movements (Lephart et al., 1998). Efferent signals are transmitted from the 

cortex both directly to the spinal cord into interneurons and motor neurones or indirectly via 

the brain stem (Barrack et al., 1994). The major neural pathway from the cortex to the spinal 

cord is the corticospinal tract (Riemann and Lephart 2002a). Riemann and Lephart (2002a) 

describe three main areas of somatosensory management. The primary motor cortex is most 

directly responsible for muscle contraction, using information from several afferent pathways 

to determine the muscles that are activated, the muscular force of the movement and the 

direction of movement (Riemann and Lephart 2002a). The pre-motor area, as the name 

suggests, is indirectly responsible for muscular contraction, organising and preparing the motor 

commands and the supplemental area assists the primary motor area when programming 

complex, muscles group contractions (Riemann and Lephart, 2002a). The supplementary area 

works with the pre-motor area to control bi-lateral synergic movement (Lephart et al., 2000).  

Cerebellum 
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The cerebellum has a vital role in the correct sequencing of motor activity. This part of the 

brain “contains more nerve cells than the rest of the central nervous system combined” (Dye, 

2000, p31) and as such may be expected to have this critical role. It is believed the cerebellum 

is responsible for feedback, feedforward and error correction processes. Bhanpuri et al., (2013) 

explains the cerebellum predicts body state (i.e. position, acceleration) from a copy of motor 

commands (known as an efference copy) plus previous knowledge on body movement. Hence 

perception of sensory information occurs in the cerebellum providing meaningful 

interpretation of sensory information (Lundy-Ekman, 2013, Proske and Gandevia, 2009). 

Afferent information is ascended to the cerebellum through the dorsal and ventral 

spinocerebellar tracts (Bosco and Poppele, 2001). The neural pathways along these tracts are 

the most rapidly conducting nerves in the entire neurological system reaching speeds of around 

100m/s (Dye, 2000). The dorsal tracts provide information from the various mechanoreceptors 

(Bosco and Poppele, 2001). The ventral tract provides the efference copy of all neurological 

signals already sent to the spinal cord, and hence it is believed to monitor millions of motor 

unit contractions, for example agonist and antagonist muscle actions (Dye, 2000). This 

neurological copy is used to monitor and adjust motor activity; this is done by comparing the 

intended motor commands of the cerebral cortex to the actual musculoskeletal movement (Dye, 

2000), for example during isometric contractions, in which receptors are stimulated, but no 

movement occurs (Rymer and D’Almeida, 1980).  

The term “efference copy” was first proposed by Sperry (1950) and Von Holst and Mittelstaedt 

(1950). The CNS compares the efferent command with the expected afferent feedback; the 

reafference (Sperry, 1950). If the two signals match, i.e. if the efferent command minus the 

reafference equates to zero or a null point the motor act is perceived as successful. However 

any additional afferent feedback (known as exafference) from the external environment is 

reported to the sensory centres (the corollary discharge) and may be perceived as a sensation 

in its own right (Gandevia et al., 2006). This process allows the CNS to account for afferent 

activity arising from the motor act itself and hence provide a meaningful signal from muscle 

spindles (Proske, 2005). However, it is important to state there is no direct supporting evidence 

for a central subtraction process at this time (Proske, 2006).  

The feedforward motor commands are not fully understood, but it is believed they play a vital 

role in preparing the body for impending movement. The lateral zone of the cerebellum is 

thought to facilitate this planning - “…neurones in the dentate nucleus manifest a copy of the 

next sequence of motor signals at a time when a current musculoskeletal movement is in 
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progress…” (Dye, 2000 p. 33). This predictive ability reduces the dependence on peripheral 

feedback that is time-delayed (Bhanpuri et al., 2013). This theory is supported by work from 

Bhanpuri et al., (2013); this research group compared the performance of simple, complex and 

complex disturbed tasks between patients with cerebellum damage and healthy controls. 

Results implicated an important role for the cerebellum during active predictive tasks, the 

control group performed better than the patient group in this condition. However, if the task 

was disturbed and hence unpredictable, both groups performed poorly, the cerebellum was 

unable to provide useful feedforward and preparatory information. The exact role of the 

cerebellum is not yet fully understood (Boisgontier and Swinnen, 2014) however, it is clear 

that this component of the central nervous system plays a vital role in motor control and 

activity.   

Basal Ganglia 

The basal ganglion has a direct connection with the cerebral cortex only and it is believed this 

area of the brain is responsible for higher order aspects of motor control, receiving input from 

all areas of the cerebral cortex, not just sensorimotor information (Riemann and Lephart, 

2002a). Research has yet to fully explain the role of the basal ganglia in body homeostasis 

(Lundy-Ekman, 2013).  

2.2.5 Efferent Information in Muscular Contraction 

Lower motor neurones responsible for muscular contraction are alpha and gamma motor 

neurones (Proske et al., 2000). Alpha (α) motor neurons have large diameters up to 20 µm and 

smaller efferent gamma (γ) motor neurones are no larger than 10 µm (Lundy-Ekman, 2013). 

Gamma motor neurones can be divided into gamma d (dynamic sensitivity) and gamma s (static 

sensitivity) (Riemann and Lephart 2002a). Gamma motor neurones connect with stretch 

receptors to detect minute changes in muscle fibre length (Stillman, 2000). Gamma motor 

neurones are constantly updated with sensory input from peripheral receptors in joints and also 

efferent information from the corticospinal tract (Stillman, 2002). Furthermore the activation 

of alpha motor neurones cause excitation of gamma motor neurones, hence an increase in 

sensitivity of muscle spindles to stretch, and increase awareness of proprioception and stretch 

reflexes (Palastanga and Soames, 2012).  

The thin gamma efferent motor neurones innervate the contractile ends of the intrafusal fibres 

and serves motor function driven by the central nervous system (Palastanga and Soames, 2012). 
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Changes in gamma efferent activation enable the spindle to continuously monitor and regulate 

length of the muscle. The “gamma motor neurone loop” which consists of gamma motor 

neurones – muscle spindles – primary muscle spindles afferent pathways, contribute to muscle 

stiffness regulation (Biedert, 2000, Burgess et al., 1982). It is further suggested that this process 

may pre-programme (feedforward) joint stiffness and muscle stiffness (Riemann and Lephart, 

2002a).  

2.2.6 Summary 

Important afferent information arising from a range of muscle, tendon, articular and cutaneous 

mechanoreceptors is acquired, synthesised, and transported to all levels of the central nervous 

system. This information is uniquely processed at specific central nervous system levels and 

an appropriate response is conveyed to the necessary muscles. There is a complex relationship 

between afferent and efferent pathways and it is overly simplified to describe them as a simple 

input-output procedure (Kalaska, 1994). This specialised system is responsible for joint 

homeostasis during movements and its overall aim is to ensure optimised motor control of the 

body.  The following section considers proprioception relative to the knee joint.  

2.3.1 Knee proprioception 

The knee is one of the most complex anatomical structures in the body (Dye and Vaupel, 2000, 

Lloyd et al., 2005), managing high loads between the femur, tibia, fibula and patella. The 

surrounding muscles are the quadriceps and hamstring groups whose co-contraction helps 

stabilise flexion and extension of the joint.  The articulation includes the femorotibial joint, 

patellofemoral joint and the joint capsule. Normal loading of the knee during walking ranges 

from 1.7BW to 4.3BW depending on the measurement tool (Komistek et al., 2005). In the past, 

joint tissues such as ligaments have been thought of as solely passive structures contributing to 

mechanical joint stability only (Johansson et al., 1991a). However, research now suggests 

tissues within the knee may contribute to sensory afferent information and hence active or 

functional joint stability and coordinated movement (Dye and Vaupel, 2000, Johansson et al, 

1991a, Stillman, 2000). The majority of investigators have considered an important sensory 

role for knee joint ligaments and capsules, one of the first being Abbott et al, in 1944, and more 

recently, the Kennedy group in the 1980s and the Johansson group in the 1990s. It is believed 

knee joint capsules and ligaments provide conscious knee joint position sense and kinaesthesia 

to the central nervous system and may have a role in protective reflexes (Barrack et al., 1994, 
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Zimny, 1988, Stillman, 2000). The following sections discuss each of the pertinent knee 

ligaments plus tissues in the joint capsule believed to have a sensory feedback role. 

2.3.2 The Anterior Cruciate Ligament (ACL) 

The ACL is the primary ligament restraint to anterior tibia draw (Dye and Vaupel et al., 2000) 

and secondary restraint to internal rotation (Duthon et al., 2006). The ligament originates on 

the lateral femoral condyle within the intercondyle notch and inserts into the middle section of 

the tibial plateau (Duthon et al., 2006). It is composed of the anteromedial and posterolateral 

bundles, both contributing to knee stability by resisting tension created during loading (Woo 

et al., 2005). The ACL can sustain 2000N before rupture in cadaver models; however 

hamstring quadriceps co-contraction prevents this level of loading in human movement 

(Krogsgaard et al., 2002). The anteromedial bundle is under more force during angles closer 

to 90° whereas the posterolateral bundle is most taut during full knee extension (Woo et al., 

2005). In addition to mechanical properties, the ligament is also thought to provide important 

sensory information during knee motion.  

Schultz (1984) was the first to discover mechanoreceptors (specifically Golgi-like tendon 

organs) in the ACL supplied by the posterior articular nerve (PAN). It is now suggested that 

between 1-2.5% of the ligament is made up of neural elements (Friden et al., 2001). Further 

histology research indicates the ACL contains ruffini nerve endings, Golgi-like tendon organs 

and pacinian corpuscles (Hogervorst and Brand, 1998, Jennings, 1994, Duthon et al., 2006, 

Schutte et al., 1987, Adachi et al., 2002, Stillman, 2000). Connections have been established 

between these mechanoreceptors and the central nervous system, specifically the spinal dorsal 

ganglion (Madey, et al., 1993) and the cerebral cortex (Pitman et al., 1992). ACL 

mechanoreceptors can respond to relatively small tensile loads, between 5 to 40N (Johansson 

et al., 1991a).  

The highest density of ACL mechanoreceptors is situated close to the tibial insertion of the 

ligament but receptors have also been located beneath the synovial membrane and the femoral 

insertion (Schultz et al., 1987). As discussed earlier, mechanoreceptors only become stimulated 

when the neurone excitation reaches a critical level, this can be related to particular joint 

positions. The ACL is most taut in extreme extension (Fuss et al., 1989) and hence more 

mechanoreceptors are stimulated in these positions. However, research has also evidenced 

certain fibres (specifically containing ruffini nerve endings) in the ACL can also be taut across 
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the whole range of motion, specifically to ensure that the distances between the origin and 

insertion of the cruciate ligaments remains constant and hence the articular surface between 

the femur and tibia is also constant (Johansson  et al., 1991a). Therefore, it is believed the ACL 

has the ability to provide sensory information throughout all ranges of movement (Johansson 

et al., 1991a). Despite this theory, there is still a disproportionate amount of ligament receptors 

that fire during extreme extension compared to those during mid to low ranges of motion 

(Barrack et al., 1994).  

The ligament may also send important position sense information during internal and external 

rotation at extreme extension and hence communicate potential impending injury (Barrack et 

al., 1994). Research has indicated afferent signals from the ACL may elicit a muscular reflex 

from the hamstrings that inhibits knee extension and facilitates knee flexion thus removing the 

knee from a position of injury risk (Marks et al., 2007, Barrack et al., 1994, Solomonow and 

Krogsgaard, 2001, Tsuda et al., 2001). However, the latency of these reflexes may not be 

sufficient in protecting the joint from injury during high loading events (Pope et al., 1979). 

However during normal loading events the ACL may indeed send afferent information which 

causes an increase in the gamma motor neurone activity and hence muscle spindle sensitivity 

(Shultz et al., 2007, da Fonseca et al., 2004). This will be discussed further in a later section.  

2.3.3 The Posterior Cruciate Ligament (PCL) 

The PCL is the primary restraint to posterior tibia draw, attached to the femoral intercondyle 

notch and posterior tibial “shelf” (Amis et al., 2006). The ligament is made up of two bundles, 

the anterolateral and posteromedial bundles.  The posteromedial bundle is tauter during knee 

extension, and hence mechanically resists hyper-extension and is also taut in hyper-flexion. 

The anterolateral bundle is most resistant in flexion (Amis et al., 2006). In addition to passive 

resistance, the PCL is also thought to have a role in knee proprioception.  

There are fewer studies into the role of the PCL in knee joint proprioception; perhaps due to 

the reduced number of injury occurrence in this ligament. However, a study by Katonis et al., 

(1991) confirmed the presence of ruffini endings, pacinian corpuscles and free nerve endings 

in the PCL. As with the ACL, there appears to be higher densities of these mechanoreceptors 

near the attachment sites (Katonis et al., 1991), hence it may be pertinent to assume during 

knee flexion, when both bundles of the PCL are taut, proprioception will be heightened. Del 

Valle et al., (1998) considered PCL mechanoreceptors of patients undergoing surgery for total 
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knee arthroscopies with comparisons to controls (cadavers). Their results concur with Katonis 

et al., (1991); both ruffini endings and pacinian corpuscles were found in the ligaments of both 

patient and control groups, but no Golgi-like tendon organs were present in either group. 

Interestingly, mechanoreceptors were also discovered in the arthritic knee joints, however 

although present, it is unclear if function would be the same as prior to injury (Mihalko et al., 

2011). There is also some evidence of a PCL-quadriceps reflex (Solomonow and Krogsgaard, 

2001, Krogsgaard et al., 2002); this reflex may inhibit muscle contraction and reduce knee 

extension force. However this has not been confirmed in the literature. 

2.3.4 Additional Knee Joint Mechanoreceptors 

The main focus of research to date has been on mechanoreceptors located in the ACL and PCL. 

However, there is some evidence that the medial collateral ligament (MCL) and lateral 

collateral ligament (LCL) contain Golgi-like tendon organs and ruffini endings (Solomonow 

and Krogsgaard 2001, Dyhre-Poulsen and Krogsgaard, 2000) but not pacinian corpuscles. This 

suggests the collateral ligaments would not provide afferent information on rapid acceleration 

or deceleration of the joint. De Avila et al., (1989) conclude due to the scarcity of 

mechanoreceptors in the collateral ligaments, they may only be important in protecting injured 

joints, when other mechanoreceptors in the cruciate ligaments have been lost.  However, there 

has also been some minor evidence of a MCL-sartorius/ quadriceps reflex (Kim et al., 1995), 

although again this has not been well documented. 

The menisci are crescent shaped areas, made up of fibrocartilage situated in the condyles of the 

femur and tibia (Marks et al., 2007). The majority (up to 90%) of menisci is Type 1 collagen. 

However, mechanoreceptors including ruffini endings, pacinian corpuscles and Golgi-like 

tendon organs have been identified in the medial meniscus, particularly in the posterior horn 

(Friden et al., 2001). There is also some evidence to suggest the medial meniscus is connected 

to the cerebral cortex (Pitman et al., 1992).  

Dye et al., (1998) used conscious mapping of the internal structures of the knee joint without 

use of anaesthesia to isolate specific sensory contributions of intra-articular structures. Results 

indicated a level of sensory control for the majority of intra-articular aspects of the knee joint. 

Therefore knee joint tissues other than the cruciate ligaments may contribute some afferent 

information during knee movement.  

2.3.5 Summary 
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Despite a wealth of research there are limitations to histological mechanoreceptor studies; the 

use of gold and silver chloride stains is not always accurate and vascular structures can be 

mistaken for mechanoreceptors (Johansson et al., 2000, McCloskey, 1978). The classification 

of mechanoreceptors is also inconsistent and the identification alone of mechanoreceptors does 

not imply functionality (Johansson et al., 2000, McCloskey, 1978). However, due to the vast 

amount of research on the knee joint, we can somewhat confidently conclude 

mechanoreceptors are present in articular and periarticular areas. Two main theories are 

proposed to explain the management of afferent information provided by articular 

mechanoreceptors. The first theory discusses H-reflexes including medial collateral, lateral 

collateral anterior cruciate and posterior cruciate ligament – muscular reflexes (Dyhre-Poulse 

and Krogsgaard, 2000). This hypothesis is not a current one, Hilton in 1863 stated “muscles, 

indeed, appear to be told, through the medium of the nerves of the interior of the joint, that its 

articular structures are overtasked” (p.169). Early direct studies were on feline animals using 

the cranial cruciate ligament a comparable ligament to the ACL (Cole et al., 1996). Results 

provided evidence of neural adaptations that would support a ligament-reflex response 

following stimulation of the ligament. 

The most commonly researched is the ACL-hamstrings reflex (Krogsgaard et al., 2002). This 

theory states afferent information from the ligament creates excitation of the hamstring muscle 

fibres and hence acts as a protective mechanism (in this case to hyperextension) (Tsuda et al., 

2001, Dyhre-Poulsen and Krogsgaard, 2000). The afferent signals from the ACL either activate 

or inhibit hamstring muscle spindles via the gamma motor neurone system (Dyhre-Poulse and 

Krogsgaard, 2000). This reflex has a latency of between 95-110ms (Dyhre-Poulse and 

Krogsgaard, 2000, Krogsgaard et al., 2002) and hence cannot be a protective mechanism. Pope 

et al., (1979) also discredited a protective reflex theory using basic calculations of time 

latencies following a theoretical ski injury. They concluded the ligamento-muscular reflex 

would take 89ms to activate whereas the ligament would fail at 34ms following knee loads. 

Therefore, the authors proposed an alternative function for knee joint afferent signals during 

joint stability.  

A more feasible theory is the contribution to pre-programming of muscle stiffness around the 

knee joint (Johansson et al., 1991a, Johansson et al., 1991b). It is thought joint afferent signals 

feed in to gamma motor neurones in the muscle spindle. This information contributes to the 

“final common input”, that is information from muscle spindles, joint mechanoreceptors and 

potentially other mechanoreceptors to regulate the stiffness of muscle and prepare the joint for 
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impending loads using the feedforward mechanism (da Fonseca et al., 2004, Johansson et al., 

1991b, Dyhre-Poulse and Krogsgaard, 2000). This theory is more feasible as the joint afferents 

may provide continuous afferent signals and not just at extreme ranges of movement that 

inform preparation signals for impending loads (Ferell et al., 1987). 

Although theories support a role for cruciate ligaments in proprioception, it is unclear exactly 

how much contribution can be accredited to knee joint receptors (Adachi  et al., 2002, 

Johansson et al., 1991a) and surrounding muscle spindles (Riemann et al., 2002c) or indeed 

interaction between the two, for example in the “final common output” theory (Johansson et 

al., 1991b). Research is this area has been criticised for its indirect nature, for example 

considering sensory evoked potentials (SEPs) during unconscious palpation of tissues (Dye 

and Vaupel, 2000). Indeed the main body of literature comes from histological perspectives 

and is therefore lacking in ecological validity. However, it is evident that structures in the knee 

joint have the architecture to provide proprioception information during movement, and hence 

contribute to joint stability (Adachi et al., 2002). As such, it is likely all mechanoreceptors in 

and around the knee joint contributes to proprioception. The following section discusses the 

current protocols for the measurement of knee proprioception; hence the “net” proprioceptive 

ability of the knee joint, regardless of which classification of mechanoreceptors supplied the 

afferent information.  

2.4.1 Measurement of Knee Proprioception 

If we consider the complexity of each component of the sensorimotor system, it becomes clear 

that a valid measurement technique for any one anatomical area of this system (i.e. the knee 

joint) is difficult to address. Investigators have utilised a range of techniques to measure knee 

joint proprioception. Some researchers consider the pathway between mechanoreceptor 

afferent information and the cerebral cortex, investigating firing patterns of sensory evoked 

potentials (SEPs) after stimulation of a ligament (Courtney et al., 2005). Other researchers have 

simplified the problem by measuring the outcome (movement) of sensorimotor system 

processes only. These studies include measurement of laboratory based outcome measures such 

as joint kinematics and kinetics during gait analysis (Devita et al., 1998), muscular contraction 

patterns using electromyography (Houck et al., 2007) and postural control (Wikstrom et al., 

2006). An alternative to these methods measure the ligament-muscle protective reflexes such 

as the ACL-hamstring contraction discussed previously (da Fonseca et al., 2004, Jennings and 

Seedholm, 1994; Beard et al., 1993). In clinical environments however, knee proprioception 
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has been divided into static and dynamic modalities. Static proprioception is concerned with 

the position of segments relative to other segments (Jerosch and Phymka, 1996a, Jerosch and 

Phymka, 1996b) and is measured using joint position sense techniques (Wikstrom et al., 2006). 

Dynamic proprioception identifies kinaesthesia (rate of movement) ability and is typically 

measured using threshold to detect passive motion techniques (Wikstrom et al., 2006, Beynnon   

et al., 2000). Suetterlin and Sayer (2014) have summarised the available types of clinical 

proprioceptive testing (see table four). The Foundation of Sports Medicine Education and 

Research workshop of 1997 identified joint position sense (JPS) and the threshold to detect 

passive movement (TTDPM) as the two most commonly used methods to quantify 

proprioception (Lephart et al., 2000).  However, Stillman (2000) states “…the average 

clinician, whilst now more aware of the significance of proprioception, does not appear to 

have significantly increased the frequency or quality of clinical proprioception assessments 

from the levels which applied at least 50 years ago” (p.222). 
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Table 4. Types of clinical proprioceptive testing (adapted from Suetterlin and Sayer, 2014, p.314). 

Name of test 
(proprioceptive sense 
tested) 

How to perform Specific cognitive 
requirements 

Variables to control Equipment needed 

Toe position sense Passive positioning of the toe into 
ventral and dorsiflexion 

None Distance moved, extraneous 
cutaneous stimulation 

None  

Ipsilateral remembered 
matching (JPS) 

Position matching using the same 
limb 

Intact working 
memory 

Time to reference position, 
distance moved, dominance of 
side used, active / passive 
movement 

Position 
measurement 
equipment 

Contralateral matching 
(JPS) 

Position matching using the 
opposite limb 

Intact inter-
hemispheric 
communication 

Time to reference position, 
distance moved, dominance of 
side used, active / passive 
movement 

Position 
measurement 
equipment 

Contralateral 
remembered matching 
(JPS) 

Position matching using both 
contra and ipsilateral limbs 

Intact inter-
hemispheric 
communication and 
working memory 

Time to reference position, 
distance moved, dominance of 
side used, active / passive 
movement 

Position 
measurement 
equipment 

Kinaesthetic testing 
(Kinaesthesia/ TTDPM) 

The limb or joint being tested is 
attached to a motor and the 
slowest movement detected by 
the participant is measured 

None Extraneous auditory and 
cutaneous stimulation 

Specialised motor 
driven equipment, 
audio equipment, 
pneumatic sleeve 

Dynamic position test 
(dynamic position 
sense) 

Subject opens hand when elbow 
joint rotates through a pre-
determined target position with 
eyes closed 

Intact JPS and working 
memory 

Dominance of side used, time to 
reference position 

Video camera, 
specialised torque 
motor-driven 
equipment 
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Thumb finding sense 
(dynamic position 
sense) 

Upper limb is placed in a target 
position, participant has to touch 
target thumb with other thumb 
with eyes closed 

Intact JPS and inter-
hemispheric 
communication 

Time to reference position, 
distance moved, dominance of 
side used, active / passive 
positioning 

None 

Finger-nose test 
(dynamic position 
sense) 

One / both limbs moved and 
participant touched nose with 
forefinger with eyes closed.  

Intact JPS and inter-
hemispheric 
communication 

Time to reference position, 
distance moved, dominance of 
side used, active / passive 
positioning 

None 
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The following sections critique knee joint position sense and knee threshold to detect passive 

motion or kinaesthesia only. These measurements will be considered separately as it is a 

common belief the processing of static and dynamic proprioception are two separate modalities 

(Elangovan et al., 2014).  

2.4.2 Joint Position Sense  

Knee joint position sense is measured using matching knee angle methods (Smith et al., 2012). 

This typical begins with vision being excluded (via closed eyes or a blindfold) and the knee 

joint being passively extended or flexed by the researcher or a machine, for example on an 

isokinetic dynamometer (IKD) (Carter et al., 1997) or self-constructed pulley system (Rehm 

et al., 1998) to a specific target angle. There is no standard direction of movement or target 

position; hence research has used both flexion and extension into a range of target angles 

moving through low to high ranges of motion. Angular velocities have also varied from 2°/s to 

uncontrolled (Beynnon et al., 2000). The leg is held in this position for 3-5s then passively 

returned to the starting position (typical 0° or 90° of knee flexion). The participant is instructed 

to replicate this angle and again, as there is no standardised technique, this has been done in a 

variety of ways. The most common is to ask the participant to actively move the same leg to 

the target angle and hold this position; this is known as passive active reproduction (PAR). 

However some studies have also considered passively moving the same leg (PPR) and stopping 

movement on the command of the participant either verbally or using a hold button (Katayama 

et al., 2004).  

Other studies use a plastic handheld or computerised visual analogue of a leg or the 

contralateral leg to collect reproduction angles. However it is known matching error will 

increase when the target is reproduced using another part of the body or an external device 

(McCloskey, 1978, Rodier et al., 1991, Elangovan et al., 2014). This is due to the increase in 

required neural processing for cross-modal tasks (Reider et al., 1991). For example, the transfer 

of required information to mediate matching positions will increase, more processing stages 

are involved and more attention is used, therefore there is a higher probability of errors (Reider 

et al., 1991). Furthermore, Grob et al., (2002) consider the correlation coefficients between 

different PPR JPS techniques, analogue scale and contralateral leg procedures. Results 

indicated that there were no significant relationships between the three PPR techniques and 

hence techniques should not be used interchangeably.  
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The angle matching tasks can be executed in open kinetic chain sitting and/or prone positions 

(for example Co et al., 1993) and standing or closed kinetic chain positions (for example 

Kiefer, 1998). The closed kinetic chain task is a weight-bearing position and provides the 

opportunity to collect active target and active reproduction angles (AAR) under typical loading 

conditions (Bullock-Saxton et al., 2001). Partial weight-bearing conditions in which 

participants lie on a sliding platform and push off a stable surface to the target and reproduction 

angles (Bullock-Saxton et al., 2001) may also provide a more ecologically valid environment 

than non-weight-bearing and a more realistic task for unstable participants such as the elderly. 

However they have been used less frequently in the literature, perhaps due to difficulty in 

controlling the target positions. 

Currently there is no consistent evidence base for the recommended number of trials for knee 

joint position sense. Although Selfe et al., (2006) stated consistent results may occur after 

completion of five or six trials depending on the outcome measure recorded. The only other 

study to consider the required number of trials is Piriyaprasarth et al., (2009). This study 

examines the learning effect on stroke patients and concludes it may be necessary to take ten 

trials to collect representative data from this population (Piriyaprasarth et al., 2009); however 

these patients will have both musculoskeletal and neurological deficits. Stillman (2000) 

concludes it is important an appropriate number of trials for accurate JPS representation is 

confirmed in the literature. There is also no information on how long the leg should be held in 

the target position. However it is suggested error matching scores worsen as the amount of time 

between target and matching angles increases (Xie and Urabe, 2014) and hence the time lapse 

between target and reproduction tasks should be minimal. This finding is disputed by Horch et 

al., (1975). They concluded knee joint position sense does not change with time; in fact 

memory of target position is still accurate up to 3 minutes after target joint positioning thus 

proprioceptive memory is good. However the knee joint must rotate a minimum of 3-4° before 

change is position is perceived (Horch et al., 1975).  

Knee flexion or extension target and reproduction angles are typically measured using image 

capture, goniometry, electrogoniometery or isokinetic dynamometry (Smith et al., 2012). 

Indeed, Smith et al., (2012) recently published a review on JPS measurements with an aim to 

determine a reliable JPS measurement. The findings suggested that intra-rater reliability was 

dependant on data acquisition techniques; image capture produced greater reliability than 

electrogoniometery and dynamometry. There are limitations to some available JPS equipment 

(Stillman, 2000). For example the use of an IKD may produce abnormal afferent feedback for 
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two reasons; the first is caused by the joint being abnormally stressed if the axis is not aligned 

properly to the lever arm of the equipment. Secondly, the straps used to attach the apparatus 

can distort natural afferent feedback from cutaneous receptors. Goniometry also has its 

limitations; the size of the goniometer may not be suitable for every participant leading to 

measurement errors. Furthermore electrogoniometery and clinical goniometry is reliant on 

accurate placement of the device and assurance the device models the underlying axis of 

rotation accurately (Stillman, 2000). Finally visual analogue scales may not be ecologically 

valid when measuring JPS as it requires different neural processes to that of normal knee 

movement (Stillman, 2000). Nasseri et al., (2007) also found both automated tracking and 

manual goniometry from photos of knee motion to be reliable. However, it may be video 

analysis, which is less intrusive than other techniques is the optimal equipment for JPS 

measurement. Nevertheless, practitioners should appreciate JPS techniques are not correlated 

and should not be used interchangeably (Kiran et al., 2010).  

Another issue regards how data has been measured; using relative, absolute and variation in 

error scores. Relative error scores provide information on direction and magnitude of error and 

hence details of overestimation or underestimation of the reproduction position. Absolute error 

scores supply only magnitude of error providing an overall ability to reproduce the target angle 

(Beynnon et al., 2000). Some investigators have used the standard deviation of error scores to 

present JPS precision (Beynnon et al., 2000). Due to this there is a lack of normative JPS values 

in the literature. Stillman et al., (2002) does provide normative values for 44 young adults using 

a passive-active reproduction sitting protocol of -0.8°±2.0 (mean relative error score±SD), 

2.2°±1.2 (mean absolute error score±SD) and 2.0°±1.0 (mean variable error score±SD). 

Further, Ogard (2011) states normative JPS scores in the range of 0.7° to 6°. However, large 

scale normative and representative JPS scores have yet to be established (Stillman. 2000). 

There are clear variations in JPS protocols, considering the neurophysiology previously 

discussed, each variation in method provides different JPS constraints. For example, during 

end of range knee joint motion it is known a higher percentage of ligament mechanoreceptors 

will be stimulated and the cerebellum subconsciously excites the antagonist muscles (Dye, 

2000, Janwantanakul et al., 2001, Zimny, 1998, Matthews, 1987, Stillman, 2000). Hence it 

would be logical to conclude that if target angles are measured at the end range better error 

scores will be collected compared to mid and low range target angles.  Starting position may 

also impact joint position sense ability (Lonn et al., 2000a); it is suggested that positions which 
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place the antagonist muscles around joints in a more elongated condition will improve 

proprioceptive ability due to a higher spindle firing rate from the start of the protocol.  

Similarly, active-active reproducing protocols should elicit better JPS scores as 

neurophysiologically more mechanoreceptors are stimulated throughout the duration of the test 

(Andersen et al., 1995, Kiefer et al., 1998, Matthews, 1987) compared to passive-active 

reproduction protocols (Lonn et al., 2000a). Further to this point, Stillman and McMeeken 

(2001) provide evidence that weight bearing active-active reproduction protocols elicit smaller 

JPS error scores, potentially due to increased muscular mechanoreceptor activation as a result 

of increased muscle contraction in areas around the knee joint (including the gastrocnemius 

complex) to resist body weight. Active testing may also be precise as it involves increased 

input from the central nervous system (Evarts, 1981). For example, simple predictive active 

movement (such as knee flexion and extension) are enhanced by efference-copy based 

predictions in the cerebellum, distinct from alpha gamma motor neurone modulation of muscle 

spindles (Bhanpuri et al., 2013). In addition, closed chain tasks put more strain on knee 

ligaments (Fleming et al., 2001, Heijne et al., 2004) hence it would be expected more 

mechanoreceptor feedback would be initiated in JPS protocols of this type. Investigators also 

suggest active-active protocols increase ecological validity (Stillman and McMeeken, 2001). 

This is supported by Herrington (2005), Ghiasi and Akbari (2007) and Andersen et al., (1995) 

who concluded closed chain active-active reproduction protocols were more accurate than open 

chain procedures. Despite such findings Kramer et al., (1997) and Lokhande et al., (2013) 

found a standing JPS protocol produced greater error scores than unloaded conditions and 

hence may not be an optimal JPS environment. It is important to consider certain populations, 

such as patients with joint instability or the elderly, may not be able to complete weight-bearing 

knee flexion-extension tasks and therefore a partially loaded procedure may be more 

appropriate (Bullock-Saxton et al., 2001). However more reliability and validity analysis is 

needed in this type of JPS procedure. Unsurprisingly, closed and open kinetic chain tests are 

not significantly correlated and should not be used synonymously (Ghiasi and Akbari, 2007, 

Foch and Milner, 2013, Bullock-Saxton et al., 2001). 

A final consideration for clinicians is the impact of a warm up prior to JPS collection. A warm-

up is defined as a period of preparatory exercise to enhance performance (Fradkin et al., 2010). 

At the peripheral level a warm-up may improve the visco-elasticity of muscular tissue, increase 

nerve-conduction rate and increase body temperature which may improve proprioception 

(Ribeiro and Oliveira, 2011). At the central level increased corollary discharges and fusimotor 
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commands following a warm-up may improve muscle spindle sensitivity (Ribeiro and Oliveira, 

2011). Although, research in this area is sparse compared to the literature on other measurement 

variables, it is hypothesised a warm up should improve knee JPS ability both at the peripheral 

and central levels (Subasi et al., 2008). Exercise may improve the muscle’s visco-elastic 

properties, leading to more laxity (abnormal rotation or displacement of the tibia relative to the 

femur) around the joint. This may in turn increase the response of mechanoreceptors in the area 

and hence increase the sensitivity of these receptors which may improve JPS.  

Other responses to exercise that may improve the function of mechanoreceptors are enhanced 

oxygenation by increased blood flow, increased nerve conduction rate and increased 

temperature because of vasodilation (Magalhães et al., 2010). At the central level, exercise at 

sub-maximal levels may increase corollary discharge and fusimotor commands followed by 

muscle spindle sensitivity thus preparing the nervous system for an effective response during 

JPS measurement (Bouët and Gahéry, 2000). However, despite these theories, evidence does 

not fully support the use of a warm up to enhance JPS. To date four studies have shown some 

weak supportive data. For example Bouët and Gahéry (2000) found 10 minutes of self-paced 

low intensity cycling improved JPS using one contralateral limb matching protocol, but three 

further measures of knee JPS were not affected by the warm up. It should be noted there was 

no control group and non-parametric statistics provided the conclusions. Bartlett and Warren 

(2002) also suggest that a warm-up can improve knee JPS acuity. However, again non-

parametric statistics provide limited generalizability to the population of interest and JPS data 

were collected using a hand held knee model that has been criticised for its poor ecological 

validity. Subasi et al., (2008) and Magalhães et al., (2010) elected to use the more tradition 

limb repositioning techniques discussed earlier in this section. Both studies reported some 

improvement of knee JPS following a warm-up. Specifically, Subasi et al., (2008) discovered 

a 10-minute warm-up period significantly improved some measurements of JPS taken using a 

passive replication tasks in an open kinetic chain position. Again, non-parametric data and 

small sample size limit these findings. Magalhães et al., (2010) also found JPS to improve but 

only in a closed kinetic chain environment and not in an open kinetic chain as in the study by 

Subasi et al., (2008). Overall methods are inconsistent, results are conflicting and therefore it 

remains unknown as to whether a warm-up is needed prior to JPS collection.  

The plethora of JPS measurement techniques in the current literature, although all providing a 

type of JPS measure, cannot be easily synthesised and hence results cannot be generalised. The 

lack of concurrent JPS methods may also be due to the minimal amount of consistent reliability 
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and validity research completed. Kramer et al., (1997) reported moderate (0.40-0.75) intra-

class correlation coefficient scores for both sitting and standing JPS scores taken from an 

asymptomatic population. Sitting provided higher reliability statistics than standing however 

standard error of measurements were relatively similar to JPS error scores; thus authors 

discussed the precision of JPS scores may be masked by error in measurement technique. This 

is supported by Kiefer et al., (1998), who reported poor to modest intra-class correlation 

coefficient scores, concluding again that clinicians must consider measurement error in JPS 

scores, as they might mask JPS changes. Similarly Fatoye et al., (2008) found knee JPS test-

retest reliability to be poor to moderate. Marks (1994) reported the standard error of 

measurement of a sitting JPS protocol using an IKD ranged from 0.78°-1.06° which may well 

be in the range of JPS ability error scores.  

Olsson et al., (2004) reported fair to good intra-class correlation coefficients for one approach 

to JPS measurements using an electrogoniometer in sitting and prone positions. The good intra-

class correlation coefficients results were from JPS in a sitting condition, using a mid-range 

target angle. Beynnon et al., (2000) compared several JPS protocols, including closed and open 

chain tasks both in sitting and standing positions. In support of previous research, intra-class 

correlation coefficients ranged from poor to good; the most reliable protocol being a JPS 

standing condition. Interestingly, three studies that used Pearson’s correlation coefficients 

rather than intra-class correlation coefficients to examine the test-retest reliability of knee JPS 

(Petrella et al., 1997, Fischer-Rasmussen et al., 2001, Mir et al., 2008) all found strong 

relationships between session one and session two (r=0.88, r=0.8, r=0.99 respectively). 

However despite some promising outcomes it needs to be recognised studies used a range of 

equipment, both open and closed kinetic chains and also range of motions. As such it is very 

difficult to syntheses the reliability findings in this section.  

Considering the current literature it is difficult to identify the most reliable method of JPS. This 

may be attributed to the inconsistent protocols used in current studies. Furthermore, Grob et 

al., (2002) and Herrington et al., (2005) found no significant correlation between different JPS 

protocols. It is critical that clinical practitioners have one reliable and valid JPS method 

confirmed to inform their practice. It is evident there is much variation in the techniques used 

to measure JPS (see appendix 1a and 1c) and as yet there is no clear standardised clinical 

method. With up to 12 decisions to make for each JPS measurement (warm-up, equipment, leg, 

position of participant, knee angle starting position, angular velocity, direction of movement, 

target angle, hold time, reproduction technique, number of trials, outcome measure) it may not 
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be surprising no “gold standard” technique has been agreed. In fact, the only aspects JPS 

protocols have in common is visual feedback is removed from the process, either via a blindfold 

or screen and measurements are conscious. Therefore the reliability of a methodology should 

be established for a range of knee angles, joints and age groups; for healthy, sedentary and 

physically active men and women and for those with joint pathology (Marks, 1994, Clark, 

1992, Stillman, 2000). 

2.4.3 Threshold to Detect Passive Motion. 

There is more consistency among threshold to detect passive motion protocols; perhaps 

because the process is comparatively simpler. The participant is seated and the leg is passively 

moved, the participant must then indicate the detection and sometimes direction of this 

movement. This method was introduced by Goldsheider in 1889 and has been the main 

measurement of kinaesthesia ever since (McCloskey, 1978, Beynnon et al., 2000). 

Investigators have used motion into knee flexion and extension but the angular velocity is 

normally approximately 0.5°/s. It is known that very slow speeds below 1°/min are not 

detectable and therefore should not be used in TTDPM testing (Stillman, 2000). Starting 

positions are not always consistent (see appendix 1a). The threshold to detect passive 

movement is typically measured using angular displacement (°) prior to conscious detection of 

passive movement (for example Valeriani et al., 1999). A statistically significant increase of 

TTDPM tends to occur in the range of 0.5° to 1.5°; however the clinical significance of this 

increase is unknown (Ogard, 2011). Researchers have also used time elapsed (s) before 

conscious detection of passive movement (for example Lephart et al., 1992).  

Pincivero et al., (2001) considered TTDPM in a prone position, using an isometric hold 

procedure. Participants were asked to respond isometrically in response to the arm of an IKD 

releasing the leg. Results indicated an improved TTDPM near the extreme ranges of motion; 

this follows the neurophysiological expectations discussed in the previous section. However, 

no reliability statistics were presented and as this is the only study to use an isometric response 

protocol, as such result should be generalised with caution.  

Reliability data has been produced for the more traditional TTDPM methods. Boerboom et al., 

(2008) considered reliability of TTDPM using a prone protocol; results indicated there were in 

fact significant differences between some variables across testing days. Therefore not all 

TTDPM protocols were deemed reliable. Ageberg et al., (2007) presented moderate to good 

70 



 

intra-class correlation coefficients for TTDPM measurements collected using a self-built lever 

machine. Again, the results of this study are limited due to the difficulty clinicians have in 

reproducing purpose built machines for TTDPM testing. Beynnon et al., (2000) presented an 

intraclass correlation coefficient of 0.83 when considering test-retest reliability for a TTDPM 

protocol involving an IKD. Fatoye et al., (2008) also reported an intraclass correlation 

coefficient value of 0.83 for TTDPM using a purpose built machine. Fischer-Rasmussen et al., 

(2001) provide further support for good test-retest TTDPM reliability stating a Pearson’s 

correlation coefficient r value of 0.9.    

Threshold to detect passive motion protocols appear to be more consistent than joint position 

sense procedures, perhaps due to its relative simplicity. However, researchers still have to make 

up to six choices (equipment, position, leg, starting angle, direction, angular velocity) before 

data collection. As with JPS methods, this limits the generalisability of results across studies.  

2.4.4 Summary 

As has been argued there is no “gold standard” knee proprioception measurement technique 

(Beynnon et al., 2000, Lonn et al., 2000b, Laskowski, 2000, Ogard, 2011). Furthermore, there 

are no normative values of reliability and sensitivity statistics from knee proprioception 

measures (Lonn et al., 2000b). Methods chosen by researchers are inconsistent and varied by 

up to 12 variables. In addition both knee flexion and extension have been considered in JPS 

and TTDPM measurements; this is important as different muscles, tendons and ligaments will 

be most active and hence different amounts of mechanoreceptors will be active in particular 

directions. It is also important to note individuals will have different distributions of 

mechanoreceptors in tissues and perhaps have better proprioception in particular directions. 

Stillman (2000) also identified the role of gravity and hence perception of limb weight on 

proprioception measures; as limbs are moved from 90° to 0° the effect of gravity increases and 

so will perception of limb weight. Hence it is likely target position will affect knee joint 

proprioception (Stillman, 2000, Young et al., 1993).   

It is also important to appreciate both JPS and TTDPM protocols measure the conscious 

appreciation of knee proprioception. It is yet to be confirmed the level of correlation and/or 

agreement between conscious and unconscious proprioception. However, Van Beers et al., 

(1998) suggests proprioception may be more precise during unconscious perception. There is 

no validated, reliable method of measuring knee proprioception components of the 
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sensorimotor system. To prevent injuries using pre-screening and justify and evaluate knee 

joint rehabilitation programmes, it is paramount a standardised knee proprioception technique 

is established. As Beynnon et al., (2000) states “while the importance of proprioception as a 

clinical outcome measure is becoming well recognised, the best measurement techniques have 

yet to be defined” (p.128). More recently, Suetterlin and Sayer (2014) claim there has been 

little progress in the assessment of proprioception using clinical techniques and more accurate 

clinical assessment of proprioception is “vital” (p.317). 

2.5.1 Normative Proprioception Levels 

Despite the lack of a standardised measurement technique studies have attempted to provide 

some information on the effects various participant factors have on proprioception. These 

include age, gender, BMI, physical activity levels and knee condition (other than ACL 

injuries). The following section will consider each one in detail.   

2.5.2 Age and Proprioception 

An increase in age inevitably brings about declines in neuromuscular and motor performance 

(Gilsing et al., 1995). The distribution of mechanoreceptors is thought to decrease with older 

age (McCloskey, 1978). Indeed joint position sense has been shown to become more accurate 

throughout childhood and adolescence, peak in young adulthood, then progressively decline 

after this (Goble, 2010). Using stabilometry measures and clinical balance testing, older adults 

(typically over 60 years of age) have reduced stability and balance ability (Riva et al., 2013, 

Fransson et al., 2004, Manchester et al., 1989, Woollacott et al., 1986, Hageman et al., 1995, 

Horak et al., 1989). However, as stated previously these measurement techniques incorporate 

visual, vestibular and somatosensory contributions to balance control. Authors have also 

presented data on increased H-reflexes in the elderly (Suetterlin and Sayer, 2014) however 

again this incorporates additional systems to the somatosensory system and proprioception. In 

order to understand the age decline of joint proprioception specific measurements such as 

TTDPM and JPS must be taken.   

The majority of studies investigating age effects on proprioception have been cross-sectional, 

comparing differing age groups using either JPS or TTDPM methods (Ribeiro and Oliveira 

2007). Kokmen et al., (1978) were the first to investigate aging effects; they considered the 

metacarpophalangeal and metatarsophalangeal joint kinaesthesia using a TTDPM procedure. 

The aging group (61 to 84 years of age) demonstrated a significantly higher threshold to detect 
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movement in the lower extremities compared to the younger aged (19 to 34 years of age) group. 

Skinner et al., (1984) considered another lower extremity joint; the knee. Joint position sense 

and kinaesthesia were both positively correlated to age (p<0.001 for both measurements) 

indicating as age increases knee proprioceptive ability decreases. In agreement Pai et al., 

(1997) found a positive correlation between ages and knee JPS. Barrett et al., (1991b) also 

found a positive relationship between ages and knee JPS using a matching analogue scale 

technique. However, these studies did not compare statistical differences between age groups 

and so we cannot infer cause and effect with any certainty. Another study by Kaplan et al., 

(1985) examined knee joint position sense using contralateral and ipsilateral matching 

protocols on females under 30 years of ages and over 60 years of age. In support of other 

findings, the older group had poorer knee proprioception; this being particularly evident in the 

ipsilateral conditions. This may be due to deficiencies in memory, however no data were 

provided on this aspect. Similarly, Petrella et al., (1997) noted an age decline in knee JPS using 

another ipsilateral active matching method. Not all research has supported an age decline, for 

example Barrack et al., (1983) only stated a decline in knee kinaesthesia with aging not knee 

joint position sense.  

Later research has provided additional support for age related declines in proprioception. 

Hurley et al., (1998) compared the knee JPS of young (mean age 23 years) middle aged (mean 

age 56 years) and elderly (mean age 72 years) groups using an electro-goniometer technique 

into both flexion and extension. Results indicated elderly participants had the worst JPS of the 

three groups and age was again positively correlated with acuity of JPS. As discussed 

previously, measurement of JPS may be influenced by weight-bearing. However, Bullock-

Saxton et al., (2001) discovered elderly participants (60-75 years old) found it difficult to 

complete full weight bearing JPS protocols so also considered partial weight-bearing 

measurements. Results stated the elderly group were less accurate in JPS than middle-aged and 

younger groups in both conditions.  

An age-related decline in upper extremity and other lower extremity proprioception has also 

been studied with comparable findings. Verschueren  et al., ( 2002), Gilsing et al., (1995), 

Jordan (1978), Kalisch et al., (2012), Stelmach  and Sirica (1986) and Adamo et al., (2007) all 

reported declines of either position sense or kinaesthesia in elderly populations.  

The apparent age related decline in proprioception has been explained by theories from both 

the central and peripheral nervous system. With ageing there are changes to the sensory organs 
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themselves; muscle spindles reduce in diameter (Herter et al., 2014). Also, the muscle spindle 

capsular thickness increases in the majority of muscles (Swash and Fox, 1972, Herter et al., 

2014, Ribeiro and Oliveira, 2007, 2010, Shaffer and Harrison, 2007, Miwa et al., 1995, Mynark 

and Koceja, 2001). This is due to an increase in collagen and fibrous tissue content arranged in 

the inner capsule (Swash and Fox, 1972, Miwa et al., 1995). There is also an increase in the 

fibrous tissue encapsulating groups of muscle fibres involving typically 10-80 extrafusal fibres 

(Swash and Fox, 1972). These changes in the muscle capsule cause an increase in stiffness and 

a reduction in the extensive ability of the primary endings (Miwa et al., 1995). This is turn 

causes a loss in ability to deform and hence reduced sensitivity of the spindle (Mynark and 

Koceja, 2001) which would ultimately reduce joint position sense and kinaesthesia.  

Muscle spindle sensitivity may also be reduced because of changes in spindle composition 

(Suetterlin and Sayer, 2014, Herter et al., 2014). It is thought there is a loss of fast myosin 

heavy chain isoforms, axonal atrophy, axonal swelling and expanded end plates which cause 

denervation (Shaffer and Harrison, 2007, Suetterlin and Sayer, 2014, Miwa et al., 1995, Ribeiro 

and Oliveira, 2010, Mynark and Koceja, 2001). This decreases the nerve conduction velocity 

(Miwa et al., 1995, Tanosaki, 1999) by up to 34.3% (Mynark and Koceja, 2001) and hence 

makes the spindle less sensitive to stimuli.  

There is also a reduction in the total number of intrafusal muscle fibres (particularly nuclear 

chain fibres) (Herter et al., 2014, Ribeiro and Oliveira, 2007, 2010, Shaffer and Harrison, 2007, 

Miwa et al., 1995, Mynark and Koceja, 2001) articular receptors (Aydoğ et al., 2006) and 

cutaneous receptors (Herter et al., 2014, Suetterlin and Sayer, 2014, Iwasaki et al., 2003). For 

example Liu et al., (2005) found a significant reduction in the number of nuclear chain fibres 

present in the biceps muscle of adults aged over 69 years old compared to a younger control 

group. Similarly, Iwasaki et al., (2003) found a decrease in the distribution per mm2 and cross-

sectional area of cutaneous receptors of the elderly. Aydoğ et al., (2006) also found significant 

reductions of ruffini nerve endings, pacinian corpuscles and Golgi-like tendon organs in the 

ligaments of aged rabbits. It is logical to assume a reduction in the total number of receptors in 

the peripheral system will reduce proprioceptive ability.  

There is also evidence for changes in the central nervous system with aging. There appears to 

be losses in some aspects of the dendrite system (Ribeiro and Oliveira, 2010). For example, 

the total number of functioning motor neurons may reduce by up to 21% in some areas of the 

body between 71 and 80 year olds (Mynark and Koceja, 2001) and an average of 10% loss 
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between the ages of 20 and 90 years (Pakkenberg and Gundersen, 1997). The remaining motor 

units are larger and have signs of axonal atrophy resulting in a reduced nerve conduction 

velocity (Ribeiro and Oliveira, 2007). In fact motor nerve conduction velocity may reduce from 

48.1 m/s to 44.2 m/s in adults over 60 years (Campbell et al., 1973) because individual, larger 

motor units attempt to produce the same amplitude but at a slower speed. There is also some 

qualitative evidence to suggest a thinning of grey matter in post central gyrus areas (Herter et 

al., 2014, Scheibel et al., 1975). Therefore they may be an almost sequential pattern of 

deterioration of the central nervous system of the elderly; there is a progressive disappearance 

of cortical neurones, plus a thinning of the grey matter which results in a less effective central 

nervous system and ultimately a reduction in proprioceptive ability.  

In summary, the majority of research supports the notion of a proprioceptive decline with 

aging. Because of this the deficit in the elderly knee JPS error scores may be up to 6.54° 

(Barrack et al., 1993) and in TTDPM up to a 50% decline (Yan and Hui-Chan, 2000) when 

compared to younger groups. However, proprioceptive methods used are inconsistent and 

findings have not been compared to large scale normative data. Most studies explain 

proprioception deterioration with aging on two main mechanisms; changes in the peripheral 

nervous system and changes in the central nervous system. Table five summarises the 

anatomical, physiological, central nervous system and clinical changes that are thought to occur 

with aging (Shaffer and Harrison, 2007). However, it is still unclear which aspect or which 

combination of aspects causes the decline in proprioceptive ability. The available research 

suggests loss in muscle spindle function is more evident than motor unit function. Perhaps it 

may be that measurement of cortical activity is more difficult than peripheral function so there 

is less research on it. It is very difficult to clearly divide the effects of aging between central 

and peripheral as both systems serve each other in proprioceptive organisation. The reduction 

in muscle spindle sensitivity may be a result of supra-spinally medicated changes in the gamma 

drive (mediated by the central nervous system) to the muscle spindles themselves. In 

conclusion, it is probable the reduction in knee proprioception with aging is a result of both 

peripheral and central modifications.  
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 Table 5. Age-related anatomical, physiological, central nervous system and clinical changes in proprioception (adapted from Shaffer and 

Harrison, 2007, p.197). 

Model Muscle Spindle Changes Articular Receptor Changes Central Nervous System 
Changes 

Clinical Proprioception 

Human · Increased capsular thickness 
 
· Reduced spindle diameter in 

some muscles 
 
· Reduced number of total 

intrafusal fibres and nuclear 
chain fibres in some muscles, no 
change in number of nuclear bag 
fibres 

 
· Modifications in myosin heavy 

chain content 
 
· Alterations in distal sensory 

axons 
 

· Reduction in all joint receptor 
types in some injured ligaments 

· Thinning of grey matter 
 

· Reduction in the number 
of motor neurones 

 
· Remaining neurones are 

larger and have a slower 
nerve conduction velocity 

· Reduction in JPS 
measurements 
  

· Reduction in TTDPM 
measurements 

Animal · Impaired spindle sensitivity with 
aging 

· Reduction in pacinian, Ruffini’s 
and Golgi tendon like receptors 
in older rabbits’ ACLs 
 

· Reduction in joint receptors and 
afferent input in mice with OA.  
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2.5.3 Gender and Body Mass Index and Proprioception 

Due to the higher ACL injury rate of female athletes there has been a wealth of literature 

considering the effect of gender on ACL risk (for example Arendt et al., 1999, Voskanian, 

2013). Researchers have considered neuromuscular control via kinematic and kinetic (Hewett 

et al., 2005), electromyography (Raunest et al., 1996) and knee joint laxity (Shultz et al., 2004) 

measurements to name but a few to explain the gender main effect on ACL injury risk. 

However there has been very little attention on the effects of gender on proprioception 

measures of either normative or previously injured participants (Nagai et al., 2012).  

Gender differences may exist in the joint kinaesthesia of physically active populations (Rozzi 

et al., 1999a). However, Rozzi et al., (1999a) could only identify a difference moving in to 

knee extension, not flexion. Nagai et al., (2012) measured the effect of gender on knee TTDPM 

in the transverse plane. Females displayed diminished TTDPM in two out of four independent 

variables, namely towards internal rotation from both an internal and external rotation start 

position. Therefore females may be more at risk of ACL injury as they are slower to respond 

once the knee is in an “at risk” position that includes internal rotation and knee extension. 

However, it must be acknowledged that measurement in the transverse plane is difficult and 

hence research is very limited in this area.  

One obvious difference between males and females is the occurrence of a menstrual cycle.  

Aydoğ et al., (2005) considered the effect of the menstrual cycle, specifically levels of 

oestrogen and progesterone, on active knee joint position sense to three different target angles 

using both extension and flexion. Results indicated the phase of the menstrual cycle (menstrual, 

follicular and early luteal) had a main effect on knee JPS. Specifically, females were less 

accurate during the menstrual phase in the majority of measurements. Daniusevičiūtė et al., 

(2012) found hormonal effects on knee joint position sense in both basketball players and non-

athletic controls; both groups had better position sense in the ovulation phase. It may be that 

increased oestrogen levels interact with neurotransmitters in the brain and improve movement 

sense. Fridén et al., (2006) also researched females across three phases of the menstrual cycle; 

menstrual, ovulatory and pre-menstrual using a TTDPM of the knee protocol. These results 

indicated kinaesthesia was worse during the pre-menstrual phase compared to the other two 

phases. Although this difference was statistically significant, the mean difference was only 

0.2°, so its clinical value can be questioned. Also, no correlation between hormone levels and 

joint kinaesthesia was found. Further no control group of males was used in the study design.  
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There is also some evidence that hormone levels do not affect joint proprioception. For 

example, Hertel et al., (2006) revealed that despite varying hormonal levels throughout the 

menstrual cycle, no difference in passive knee joint position sense was found. This finding is 

supported by Harriell et al., (2010); who also showed that neither knee kinaesthesia nor joint 

position changed across the menstrual cycle. Some studies suggest the menstrual cycle may 

influence joint proprioception by altering sensory evoked potential discharge or excitability of 

mechanoreceptors (Aydoğ et al., 2005) but it is not known how hormonal changes influence 

joint proprioception directly. The effect of the menstrual cycle on joint proprioception is still 

debated; hence it is not clear if gender will modify proprioceptive acuity. Furthermore 

discrepancies in findings may be due to the variation in proprioception methodologies used, 

the timing of measurements across the menstrual cycle and also lack of male control groups to 

ensure gender differences exist regardless of the menstrual cycle.  

Researchers have also investigated the effect of pregnancy on joint proprioception. It has been 

suggested that pregnant women may have diminished knee joint position sense compared to 

non-pregnant controls (Bányai et al., 2009). Preetha et al., (2011) also compared ankle joint 

position sense of pregnant and non-pregnant women. Women who were pregnant in their third 

trimester had significantly worse ankle joint position sense than non-pregnant women. 

Deficiency in joint proprioception may be due to an increase in laxity in the joints during 

pregnancy caused by weight gain and an increase in relaxin hormone levels. Therefore if a 

gender difference exists it may be exacerbated by pregnancy. However, these studies had small 

sample sizes and therefore potentially low effect sizes and had no male control group. 

Therefore, it is difficult to generalise findings to the general population.  

In conclusion there is only limited data on differences in knee proprioception between males 

and females. There is some evidence that hormonal changes during the menstrual cycle or 

pregnancy may influence joint proprioception. However, most studies have utilised non-

parametric data limiting statistical power and generalizability. Also, importantly, no male 

control group was used in these studies. However, one study, Schmidt et al., (2013), did use a 

male control group and found no significant effect of gender on elbow joint position sense 

using a larger parametric sample (n=87). Given such findings the effects of gender on 

proprioception remain unclear.  

Being overweight is correlated with a poorer quality of life and potentially life-threatening 

diseases (Wing et al., 2007). However, the author is only aware of two research articles to 
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consider the effect of mass, height or BMI on proprioceptive ability. The first, Paschalis et al., 

(2013), compared the knee joint reaction angle and position sense of overweight, underweight 

and lean female participants. The knee joint reaction angle measures the angular displacement 

covered before the participant can actively respond to the leg being transferred from passive 

support to no support whilst lying in a prone position (Paschalis et al., 2007, 2008, 2013). There 

was a main effect of BMI on proprioceptive ability; the lean group had better knee joint position 

sense and reaction angle than both overweight and underweight groups. Underweight 

participants may have reduced proprioceptive ability due to greater neuromuscular deficiencies 

in the included joint whereas overweight participants may have poorer proprioception due to 

changes in body geometry, joint laxity and postural stability (Paschalis et al., 2013).  However, 

it is still unclear exactly how these factors reduced proprioceptive ability. The second paper, 

Kaya et al., (2014), considered overweight adults (BMI>29kg/m2) with and without knee pain. 

Knee proprioception was measured using a specialised piece of equipment that allowed semi-

loaded squats with visual feedback (Functional Squat System (FSS), Monitored Rehabilitation 

Systems, Haarlem, The Netherlands). Results indicated the overweight group with knee pain 

had poorer proprioception than the overweight group without knee pain; no control groups 

were used so it is difficult to use this data for any further predictions. Furthermore, it is difficult 

to compare results of both overweight groups with other studies due to the novel method of 

collecting proprioceptive ability. Also, detailed activity levels of the participants were not 

reported. It is difficult to make any conclusion on BMI and proprioceptive ability as there 

simply has been no research specifically on this topic of interest.  

2.5.4 Regular Physical Activity and Proprioception 

It is commonly accepted regular physical activity and exercise has many positive benefits to 

the physiological, muscular and neurological systems. Therefore, it follows that researchers 

have considered the effects of physical activity and exercise on proprioception. Following other 

research into proprioception, outcome variables include balance ability using centre of pressure 

measures to record proprioception acuity. For example, Shim et al., (2010) and Gauchard et 

al., (1999) considered the effects of a range of activities, namely Tai Chi (a traditional Chinese 

mind-body exercise), Yoga, soft gymnastics, running, cycling and swimming, on balance 

ability. Results confirmed participants who were regularly active had better balance than 

sedentary controls. Furthermore, those people participating in more position focussed sports 

such as Tai Chi, Yoga and soft gymnastics, had better balance ability compared to aerobic 
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based sports; however the exact mechanism for this increase in balance was not confirmed. 

The majority of participants considered in proprioception and physical activity are elderly (on 

average above 60 years) and as previously stated age may have a detrimental effect on 

proprioceptive ability, this can lead to an increased risk of falls and degenerative joint diseases 

(Van Heuvelen et al., 1998).  

As stated elderly populations are also most commonly used in studies considering JPS and 

TTDPM outcome measures and Tai Chi is a popular activity of interest. Tsang and Hui-Chan 

(2003, 2004) found that elderly Tai Chi practitioners (>60years old) had better knee joint 

position sense when compared to aged matched sedentary controls. Elderly Tai Chi 

practitioners and golfers also may have comparable knee JPS to young healthy controls (Tsang 

and Hui-Chan, 2004) when JPS is collected using an IKD and passive-passive angle 

replication. Regular Tai Chi practice can also improve TTDPM in the ankle and knee joint (Li 

et al., 2008a, Xu et al., 2003). Elderly (>65years) Tai Chi practitioners had the lowest TTDPM 

in the ankle compared to aged matched elderly swimmers and runners and sedentary controls 

(Li et al., 2009, Xu et al., 2003). However, the same group was only better in knee flexion 

TTDPM, not knee extension when compared to the other groups. The authors attributed this to 

the most common position used in Tai-Chi, which has the knees flexed. Aside from Tai Chi, 

regular aerobic exercise programmes three times a week or more appear to improve weight 

bearing knee joint position sense (Petrella et al., 1997). Active adults aged 60 years or over 

had significantly better knee joint position sense compared to aged matched sedentary controls. 

The active elderly also had comparable ability to young sedentary people. However, the young 

active group had the best knee JPS out of the three groups. It should also be noted again the 

measurement protocol (fully weight-bearing) was too demanding for the two elderly groups, 

they were not able to weight-bear unaided during knee flexion and extensions. Therefore, knee 

JPS was collected differently in these groups; this is an obvious limitation of the study and 

hence application of the findings. Petrella’s et al., (1997) study results are supported by Ribeiro 

and Oliveira’s (2010) open kinetic chain knee JPS study on elderly and young groups. Again, 

exercising (aerobic, flexibility and strength training) older people had significantly better JPS 

ability to non-exercised older people and comparable results to non-exercised young. The 

evidence strongly suggests regular physical activity and exercise can attenuate the age related 

decline of knee joint proprioception.  

Further supporting evidence shows kinaesthetic sense may improve after a period of physical 

activity and exercise training (Jacobson et al., 1997, Li et al., 2008a, 2008b). Li et al., (2008a) 
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reported a significant improvement in knee TTDPM into flexion and extension in an elderly 

population (>60years) following 16 weeks of Tai Chi training. However, ankle TTDPM was 

not improved; this may be explained again by the most common Tai Chi position that already 

focusses on knee flexion positions. Furthermore, Jacobson et al., (1997) provided evidence 

shoulder TTDPM in a younger sample group (aged 20-45 years) can be improved following 

12 weeks of Tai Chi training. Moreover, six weeks of strength training, both loaded and using 

body weight, can improve both dynamic (TTDPM) and static (JPS) knee proprioception in 

older women (>65years) (Thompson et al., 2003). In this instance, proprioception was 

measured using a self-built device for TTDPM and electrogoniometer for JPS. More acute 

effects of training on knee proprioception in a young adult group were considered by Ju et al., 

(2011). Repetitive passive knee flexion and extension movements were applied to each 

participant 30 times at three different angular velocities (2°/s, 90°/s and 150°/s). At the two 

higher velocities knee JPS (passive-active repositioning) and TTDPM improved. This has 

implications on rehabilitation programmes as continuous passive movement is a common form 

of intervention. Overall, evidence suggests elderly and younger populations can modify their 

knee proprioceptive ability following physical activity training.  

The majority of evidence indicates moderate and regular physical activity can improve knee 

proprioception. However, we know the total number of mechanoreceptors does not increase 

with exercise (Ashton-Miller et al., 2001) so other peripheral adaptations must occur. 

Morphological changes may take place in the muscle spindles, specifically reduction in the 

latency and increase in the amplitude of stretch reflexes (Hutton and Atwater, 1992). It may 

also be muscle spindle sensitivity is increased following the repetition of motor skills which 

increases reliance of afferent information during performance of a skill (Thompson et al., 2003, 

Ju et al., 2011). Muscle strength improves with regular physical activity and exercise; Petrella 

et al., (1997), Tsang and Hui-Chan (2003) and Thompson et al., (2003) postulate this increase 

causes more neuromuscular control over the movement and hence more efficient 

proprioception. However, improvements in muscular strength would only explain active 

measurements of proprioception.  

It is theorised central adaptations also occur following participation in regular physical activity 

and exercise. It is accepted the brain has plasticity and as such adapts to regular experiences 

such as physical activity (Ju et al., 2011). The muscle spindle gain (the receptor output firing 

rate / magnitude of the input stimulus) is modulated via the gamma motor neuron route during 

repetitive movements of physical activity (Ribeiro and Oliveira, 2010, Tsang and Hui-Chan, 
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2003). Specifically, the muscle spindle output is increased during repetitive movements 

facilitating plastic changes in the central nervous system which over time increases the strength 

of the synaptic connection and modifies the organisation and number of connections among 

neurons in central pathways (Ribeiro and Oliveira, 2010, 2007, Tsang and Hui-Chan, 2003). 

This results in modification of the cortical maps and hence cortical representation of the joints 

and thus an improvement in proprioception.  

It is important to state proprioceptive adaptations as a result of regular physical activity and 

exercise only occur in muscle mechanoreceptors as these are the only receptors that are 

centrally modulated (Thompson et al., 2003). However, cutaneous receptors do respond to 

changes in temperature (Green, 1977, Inman and Peruzzi, 1961). As skin temperature increases 

excitation thresholds decrease and hence the reaction latency decreases (Inman and Peruzzi, 

1961, Gescheider et al., 1997). The amplitude of the impulse from cutaneous receptors may 

also increase with temperature increases (Inman and Peruzzi, 1961). However, these 

relationships are curvilinear, specifically an inverted U shape; the optimum condition for 

sensitivity of pacinian corpuscles found in the skin occurs at approximately 37°C (Green, 

1977). Therefore, during physical activity and exercise in which temperature increases 

cutaneous receptors will be more sensitive. The only adaptation that may exist in the articular 

receptors following regular physical activity and exercise in an increase in joint laxity but this 

is more likely to occur as a result of longitudinal participation in elite level sport such as ballet 

(Grahame and Jenkins, 1972).  

In conclusion, evidence indicates a positive effect of regular physical activity and exercise on 

knee proprioception. Whether this adaptation occurs peripherally or centrally or in combination 

is not yet known (Ashton-Miller et al., 2001). However, as the muscle spindle sensitivity is 

dependent on both the input stimulus and the central efferent signals it would be intuitive to 

suggest it is most likely a combination of components that can improve proprioception.  

 

2.5.5 Elite Athletic Populations and Proprioception 

Proprioception literature has predominantly considered pathological populations, particularly 

following ligament injuries. However, there has also been some specific focus on athletic 

participants. It is hypothesised athletes may have heightened joint proprioception either due to 

extended athletic training and/ or innate capabilities that provide enhanced mechanoreceptor 
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sensitivity (Safran et al., 2001). We have seen evidence of this hypothesis with the use of 

exercise programmes to enhance proprioception in elderly populations (see section 2.5.4). 

Research has not only focussed on balance through measurement of postural stability (see 

Gautier et al., 2008, Kiefer et al., 2011, Hrysomallis, 2011, Perrin et al., 2002, Vuillerme  et 

al., 2001, Golomer and Dupui 2000, Leanderson et al., 1996) but also proprioceptive measures. 

This section will mainly focus on direct proprioception measures using either JPS or TTDPM 

from athletic populations in accordance with the main thesis objective.  

Lephart et al., (1996) and Barrack et al., (1984a, 1984b) were the first authors to consider the 

effect of athletic ability on knee proprioception. Their work used TTDPM measures to compare 

ballet dancers and gymnasts to non-athletic controls. This particular type of athlete has a 

combination of motor development and flexibility with an emphasis on constant joint 

awareness. Ballet dancers and gymnasts are also thought to have significantly different joint 

modifications, in particularly greater joint laxity, compared to norms (Grahame and Jenkins, 

1972). Therefore, these athletes were considered to be a population of interest. Procedures were 

consistent between Lephart et al., (1996) and Barrack et al., (1984a, 1984b); they both used 

the same self-devised pulley system to collect data at approximately 0.5°/sec. Results of the 

studies also concurred, dancers and gymnasts had a reduced threshold to detect passive motion 

(improved kinaesthetic ability) compared to non-athletic control groups.  

Barrack et al’s., (1984a) early study on ballet dancers also included JPS measurements with 

interesting results. It was found that professional ballet dancers demonstrated a greater error 

score and hence a lower static proprioceptive ability compared to controls. Barrack et al., 

(1984a) attributed this to the hypermobility of dancers which increases joint laxity; this may 

reduce position sense ability. Later, Euzet and Gahery (1995) investigated knee JPS of athletes 

participating in National or International gymnastics, dance, American football and archery. 

Three joint position matching tasks were conducted including one contralateral leg matching 

and two matching using a visual aid (computerised image on a screen). Pooled data revealed 

an enhanced JPS ability in the athletic population compared to matched controls. This is 

supported in work by Ribeiro and Costa (2001) with surfers using active and passive ipsilateral 

matching protocols. However, both studies were limited to small sample sizes and non-

parametric data. Muaidi et al., (2009) explored the knee JPS of Olympic level soccer players 

(n=18) using a knee rotation matching protocol and parametric statistical analysis. In support 

of the majority of previous work on knee flexion and extension JPS, they concluded the athletes 

had better joint position sense acuity,  
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More recently Kiefer et al., (2013) measured knee, ankle and hip JPS and centre of pressure of 

28 professional ballet dancers and controls. JPS measurements were taken using weight-

bearing active position active reposition protocols. Using parametric statistical analyses it was 

found that dancers were superior to controls in all three joint positioning tasks. Interestingly 

there were no differences in centre of pressure results between the dancers and control groups. 

This importantly highlights researchers should not confuse global balance measures (such as 

centre of pressure) with proprioceptive ability. Han et al., (2013a) and Waddington et al., 

(2013) continued the research in to multi-joint JPS measurements in elite athletes. Data was 

provided by gymnasts, swimming, sports dancing, badminton and soccer athletes from ankle, 

knee, spine, shoulder and finger joints using a self-developed purpose built machine that had 

an automatic stopper set at specified target angles. Results followed previous findings; athletes 

had better joint position sense at all five locations compared to an external control group.  

It might be expected elite level athletes would have better proprioceptive acuity compared to 

non-athletic populations perhaps simply due to increased muscle spindle activity and increased 

automated motor skills (Euzet and Gahery, 1995). Courtney et al., (2013) compared knee 

proprioceptive ability between two different types of athletes (moderate-activity fitness 

exercise versus high-activity skilled training) to identify which type of athlete has the most 

prominent proprioceptive ability. It was apparent high-activity skilled training athletes had 

improved knee kinaesthesia and therefore may have the highest level of proprioception at the 

knee joint. Unfortunately, only TTDPM was tested therefore we cannot generalise this finding 

to joint position sense. However, Lin et al., (2006) investigated the differences in JPS between 

elite tennis players, amateur tennis players and non-athletic controls using a closed-chain 

reposition method. In support of Courtney et al., (2013) the higher the skill level the better the 

proprioceptive (joint position sense) acuity.  

Studies have also considered performance of elite athletes following a knee injury. Ribeiro and 

Costa (2001) compared injured athletes to uninjured surfers and external controls; the injured 

group produced the highest joint positioning errors and hence the lowest ability to detect knee 

joint position. However, groups were small (five or four) and the study lacked statistical power. 

Furthermore, no detail of the injuries was provided. Naseri and Pourkazemi (2012) investigated 

the effect of patellofemoral pain on knee JPS in University level athletes using weight bearing 

and non-weight bearing repositioning procedures. No differences between injured athletes and 

uninjured athletes were found in any JPS measurement. This is in contrast to ACL injured 

populations (see section 2.1.2).  
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Authors have also published data on the shoulder, trunk and ankle joint position sense of 

athletes with varied findings. For example Dover et al., (2003) assessed shoulder JPS of 

softball, soccer and track athletes and found throwing athletes increased error scores (had less 

joint position sense) than non-throwing athletes. Tennis players may also have heightened 

shoulder position sense (Boyar et al., 2007). Furthermore, Green et al., (2013) and Herrington 

et al., (2010) found no differences in shoulder JPS between previously injured (joint sprains 

and subluxations, muscular-skeletal strains and ruptures) compared to uninjured athletes, 

suggesting no significant changes to JPS following these types of shoulder injury. This is 

supported in lumbar position sense studies; athletes with lower back pain do not demonstrate 

diminished position sense when compared to uninjured athletes (Silfies et al., 2007). This 

suggests athletes are able to compensate for the potential loss of joint position sense following 

an injury and still have a heightened ability compared to untrained controls.  

Other research studies have found higher shoulder joint position sense ability when comparing 

athletes to non-athletes (for example, Nohdehi-Moghadam et al., 2013; Ramsay and Riddoch, 

2001; Herrington et al., 2010). Professional dancers may also have heightened ankle joint 

position sense when compared to matched untrained controls (Schmidtt et al., 2005, Kiefer et 

al., 2013, Han et al., 2014, Aydin et al., 2002, Li et al., 2009). There appears to be strong 

evidence to support the notion of a higher proprioceptive ability in athletic populations. 

However, again, synthesis of the results is not easy due to the varying methods of collecting 

proprioceptive data. As discussed in previous sections, varied protocols may be measuring 

different aspects of proprioception and this is a limitation of the literature.  

Although difficult to summarise definitively, the results do suggest heightened position sense 

and threshold to detect passive motion ability of athletic groups when compared to non-athletic 

control groups. The explanation for this can be broadly divided in to two aspects; innate 

characteristics of successful athletes and adaptations following years of training. It is possible 

elite athletes are born with superior physiological and neural systems that causes a “natural 

selection” to high performance sports (Euzet and Gahery, 1995). However, enhanced joint 

position sense ability may be as a result of years of training. One result of such motor practice 

may be the development of muscle sensory receptors (muscle spindles) parallel to the 

development of muscle fibres (Ashton-Miller et al., 2001). This may be in the form of 

systematic increases in the fusimotor drive in challenging tasks and in the gain (the receptor 

output firing rate / magnitude of the input stimulus) to the central nervous system (Ashton-

Miller et al., 2001). The type of motor learning that occurs in the learning process and training 
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of athletic populations might also enhance proprioceptive ability. For example, motor learning 

during training increases the efficiency of motor control by initial increases in task attention 

and relevant cues which over time eventually increases the autonomy of movements (Ashton-

Miller et al., 2001, Meeuwsen et al., 1993). Furthermore, athletes become less dependent on 

the external cues of a task and use more information from internal sources such as joint position 

sense (Batson, 2009) thus making athletes more expert at neural processing of this afferent 

information. Indeed evidence suggests athletic training improves proprioceptive pathways both 

at the central and peripheral level (Ashton-Miller et al., 2001).  

Centrally, neural mechanisms are improved through the increase of neural processing and 

facilitating of afferent information. Peripherally, mechanoreceptors become more sensitive, 

particularly in the muscle spindles. Furthermore, regular movement patterns across the joint’s 

range of motion stimulate articular mechanoreceptors more frequently. Finally, athletes may 

be more attuned to the task itself during joint position sense or kinaesthesia testing. Research 

has indicated participants produce different afferent discharge patterns when asked to pay 

attention to a task compared to when no attention is shown (Meeuwsen et al., 1993, Hospod et 

al., 2007). Furthermore, athletes may be able to use this function more effectively and increase 

task attention during learning which in turn increases mechanoreceptor sensitivity (Hospod et 

al., 2007).  

Despite this evidence, literature has failed to demonstrate significant correlations between 

years of training and joint position sense ability (Han et al., 2014). This can be explained by 

genetic constraints of the athlete that are biologically determined (Muaidi et al., 2009). It may 

well be athletes reach a saturation of proprioceptive ability at some point during their career. 

Indeed research has suggested proprioceptive ability cannot be trained in non-athletic 

populations and exercise may even reduce this ability (Ashton-Miller et al., 2001). It is also 

important to acknowledge some types of athletes may have increased joint laxity as a result of 

long term training which may actually reduce proprioception (Han et al., 2014). There is a lack 

of research investigating knee proprioception ability after an ACL injury on elite athletes and 

therefore it unclear if the potential increased proprioception ability in this population remains 

following an ACL injury. Indeed athletes do not appear to have proprioceptive deficits 

following patellofemoral pain (Naseri and Pourkazemi, 2012) or various shoulder injuries 

(Herrington et al., 2010) potentially due to compensation from adjacent joints. Therefore, the 

effects of training and ACL injury on kinaesthesia and joint position sense have yet to be 

confirmed.  
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2.5.6 Fatigue and Proprioception 

There appears to be no consensus on the definition of muscle fatigue (Enoka and Duchateau, 

2008). However, Rozzi et al., (2000) states muscular fatigue is an inability to maintain a power 

output or force during repeated muscular contractions due to changes in physiological 

processes and also psychological factors such as motivation and concentration. Fatigue can be 

categorised in to peripheral and central fatigue. Peripheral, also known as muscular fatigue 

refers to localised muscle fatigue, below the neuromuscular junction in the muscle and 

contractile mechanisms (Hiemstra et al., 2001).  Central fatigue involves mechanisms above 

the neuromuscular junction (Hiemstra et al., 2001). Generally authors do agree on the result of 

muscle fatigue as a decline in performance or a “…transient decrease in the capacity to 

perform physical actions” (Enoka and Duchateau, 2008, p. 11). Recent discussion on 

proprioception suggests muscle spindles provide the dominant afferent discharge in mid-range 

joint movements (Proske and Gandevia, 2009). Therefore it follows muscle fatigue may 

negatively influence proprioceptive pathways. If proprioceptive ability is reduced with fatigue 

then this might result in an increased risk of injury. Indeed research has already demonstrated 

a large increase in sporting injuries in the final third of matches (Hiemstra et al., 2001). 

Researchers have considered the effects of fatigue on more global proprioceptive measures 

such as postural stability and balance (e.g. Caron, 2003, Johnston et al., 1998). The effects of 

fatigue on the shoulder joint (e.g. Sterner et al., 1998, Chang et al., 2006, Pedersen et al., 1999, 

Iida et al., 2014), elbow joint (e.g. Fortier et al., 2010, Brockett et al., 1997, Allen and Proske, 

2006) and ankle joint (e.g. Sandrey and Kent, 2008) have been considered. The majority of 

studies conclude fatigue negatively influences balance, posture and joint proprioception.  

The effect of both central and local fatigue on knee joint position sense and kinaesthesia has 

also been examined. The most common exercise used to induce central fatigue is cycling 

(Roberts et al., 2004b, Bayramoglu et al., 2007, Lattanzio et al., 1997, Changela et al., 2012). 

Lattanzio et al., (1997) and Changela et al., (2012) used weight bearing knee joint position 

sense with goniometry to measure the effects of cycling to maximal exhaustion or 60% of 

maximal heart rate with a subjective score of 14-17 on the rate of perceived exertion (RPE) or 

Borg scale. Both studies concluded the cycling fatiguing protocols induced a reduction in joint 

position sense. Roberts et al., (2008) induced a fatigue state by asking participants to cycle at 

an “energetic” (p. 992) pace corresponding to 60 revolutions per minute until they achieved 

exertions of 14-17 on the RPE scale. Results indicated a reduction in joint kinaesthesia towards 
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flexion but not extension using TTDPM measurements at 0.5°/s. Conversely Bayramoglu et 

al., (2007) did not find a significant effect of cycling fatigue on either knee JPS or kinaesthesia, 

although the fatiguing protocol can be questioned. This consisted of only a 5min cycle at 35-

45 revolutions per minute with no more than 100 beats per minute heart rate measurements. 

Although this protocol was justified for the population used (some had osteoarthritis and were 

elderly) it is perhaps presumptuous to define it as fatiguing.  

Other central fatiguing protocols include match simulation (Ribeiro et al., 2008), running 

(Baharlue and Khayambashi, 2012, Miura et al., 2004, Skinner et al., 1986a) and walking 

(Givoni et al., 2007). A volleyball match simulation was used to fatigue 17 elite female players 

and knee JPS was measured using open chain extension protocols with video analysis pre and 

post exercise (Ribeiro et al., 2008). A RPE scale was used to ensure all players reached at least 

a 15 score post-exercise. JPS measurements increased and hence ability to detect knee position 

decreased following the volleyball match. This finding is repeated in a study using similar JPS 

measurement techniques but using running to fatigue protocols (Baharlue and Khayambash, 

2012, Miura et al., 2004, Skinner et al., 1986a). Participants ran on a treadmill until they 

reached an RPE score of between 14-20 or heart rate values reached between 50% - 90% of 

the maximum heart rate (Baharlue and Khayambash, 2012) and JPS was taking pre and post 

exercise in one such study. Miura et al., (2004) used 5 minutes of treadmill running at 10 km/h 

with a 10% uphill gradient to induce general fatigue, heart rate was taken as an indicator of 

fatigue status. Whereas Skinner et al., (1986a) used intermittent sprinting and uphill running 

to fatigue participants. All studies using a running protocol found significant decreases in JPS 

ability despite using different JPS measurement techniques to the match-simulation study 

(Ribeiro et al., 2008). Downstairs and upstairs walking has also been shown to reduce joint 

position sense ability (Givoni et al., 2007). Fatigue was confirmed both subjectively using a 

visual analogue scale and objectively using an IKD to measure maximum voluntary 

contractions. Joint position sense ability was collected using a contralateral limb matching task 

on a purpose built machine in a sitting position. Despite again a difference in data collection, 

results concurred with other central fatiguing studies, JPS ability was reduced following a bout 

of concentric and eccentric contraction protocols. Furthermore this decrease in JPS was 

positively correlated with the loss of force in the same muscle groups; errors were larger when 

the fall in force was greater although this relationship was only seen when all data was pooled.  

Research examining fatigue and knee proprioception has more commonly used peripheral or 

local fatiguing procedures (Allen and Proske, 2006, Rozzi et al., 1999b, Torres et al., 2010, 
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Skinner et al., 1986a, Gear, 2011, Ju et al., 2010, Miura et al., 2004, Allen et al., 2010, Ribeiro 

et al., 2007, Stillman et al., 1999, Ribeiro et al., 2011, Paschalis et al., 2007, 2008, 2013, Marks 

and Quinney 1993, Dieling et al., 2014). Rozzi et al., (1999b) considered joint kinaesthesia of 

men and women before and after exercise on an IKD which included maximal concentric 

extension and flexion movement until knee extensor peak torque had reduced to 25% of the 

maximum voluntary contraction at 180°/s. Joint kinaesthesia only significantly reduced in the 

women group moving into knee flexion, all other measures showed no effect of the fatigue 

protocol. Skinner et al., (1986a) also failed to find a significant main effect for IKD fatiguing 

on joint kinaesthesia. However Torres et al., (2010) did report a reduction in kinaesthesia 1 

hour and 24 hours after an eccentric contraction fatiguing protocol on knee extensor muscles. 

Dieling et al., (2014) also found significant reduction in knee joint kinaesthesia following 40 

repetitions of knee flexion and extension at 180°/s on an IKD.  

There is limited research into knee joint kinaesthesia and peripheral or muscular fatigue 

however there is more substantial research on joint position sense and muscular fatigue. For 

instance Torres et al., (2010) examined the effect of fatigue on joint position sense and 

concluded the ability to detect knee position significantly reduced 1 hour, 24 hours and 48 

hours after the exercise at both 30° and 70° knee angles. This suggests the consequences of 

fatigue may last longer than first expected. In the same year Allen et al., (2010) used a purpose 

built machine to measure JPS before and after concentric contractions of knee flexors in a prone 

position until the maximum voluntary contraction reduced to 70% of the maximum 

performance. Position error data demonstrated a decrease in position sense ability towards the 

direction of the exercise that is fatiguing flexor muscles produces greater error in the flexion 

direction. This finding was repeated in a study in the elderly (Ribeiro et al., 2007). Participants 

over-estimated knee positions towards extension following fatigue of flexors and extensors by 

30 maximum voluntary contractions using an IKD. Absolute error also increased in this study. 

Later Ribeiro et al., (2011) used the same fatiguing protocol to investigate whether the muscle 

group fatigue influences JPS. Both agonist and antagonist exercise produced a reduction in JPS 

in the direction of fatiguing. Furthermore the level of the fatigue does appear to influence 

position sense (Gear, 2011). Fatigue decreased positional sense ability when muscle groups 

were fatigued to 90% and 50% of maximal voluntary muscle contraction but not 70%; however 

a clear explanation for this was not provided. The effects of using an active or passive fatiguing 

protocol also may affect JPS; passive exercises do not appear to significantly damage the 
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muscle enough to induce a reduction in position sense (Ju et al., 2010, 2011). This is expected 

as muscle fibres will probably not be damaged by passive movement. 

Paschalis et al., (2008, 2007) conducted single and repeated bouts of maximal fatiguing 

exercise and concluded JPS was significantly decreased following the first and second exercise 

period. However, reductions were not as significant following the second bout. This implies 

JPS reductions following fatigue may reach a plateau; future research is needed to clarify this 

finding. The Paschalis group have also examined the effect of fatigue on joint reaction angle. 

This variable measures the angular displacement covered before the participant can actively 

respond to the leg being transferred from passive support to no support whilst lying in a prone 

position (Paschalis et al., 2007, 2008, 2013). The group included this test as they stated it is 

important to measure the muscular response to an internal stimulus (loss of passive support). 

Results indicated local fatiguing protocols that included 5 bouts of 15 maximal concentric 

voluntary contractions increased the reaction angle of the knee. Force matching tasks have also 

been used to illustrate a reduction in knee proprioceptive acuity following local muscle 

fatiguing exercise (Paschalis et al., 2013, Torres et al., 2010).  

Miura et al., (2004) fatigued knee extensors and flexors using 60 consecutive maximal 

concentric contractions at 120°/s but did not find a reduction in JPS despite significant 

increases in heart rate. However, peak torque did not significantly reduce and suggested that 

muscle damage was not severe enough to influence joint position sense. Stillman et al., (1998) 

also failed to find any differences in JPS following local fatiguing of the flexors and extensors 

using an IKD. More recently Dieling et al., (2014) provided more evidence to suggest 

peripheral or muscular fatigue does not reduce knee JPS ability; they investigated knee JPS of 

elite ballet dancers and matched controls, results showed no effect of fatiguing muscles using 

as IKD on JPS performance. Marks and Quinney (1993) also did not find a difference in JPS 

following concentric – eccentric quadriceps fatiguing; interestingly the control group who did 

no exercise at all had an improved JPS, suggesting a learning effect in this study. The authors 

suggested the lack of decline in JPS ability may be due to other proprioceptors such as the 

unfatigued muscle spindles and joint receptors may have the ability to compensate for the 

fatigued muscles. Furthermore, local fatigue may not negatively affect central nervous system 

areas prominent in proprioception such as the cerebellum (Marks and Quinney, 1993). 

Although other authors attribute findings to the fatiguing protocol; it not being demanding 

enough to reduce knee position sense rather than theorising local fatigue does not in fact reduce 

position sense ability. The discrepancy in findings on knee proprioception following fatiguing 
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may be due to variability in both the fatiguing protocol and the proprioceptive measurement. 

The fatiguing protocol can be at the peripheral or central level and in many different formats 

(e.g. match simulation, isokinetic contractions or cycling) and intensities. The intensities can 

be individualised for each participant or a general protocol. The proprioception measure can 

be kinaesthesia (TTDPM) or JPS, the potential for variability in these measurements has been 

previously discussed.  

The research discussed used a variety of joint proprioception measurement techniques. 

However, the majority of research agrees fatigue at both general and local levels can reduce 

knee proprioceptive ability. The exact mechanism of this reduction is not clear. Three theories 

have been proposed; impaired excitation of motor units (Rozzi et al., 2000, Paschalis et al., 

2007,2008, Ribeiro et al., 2008, Hiemstra et al., 2001, Hutton and Atwater, 1992, Lattanzio 

and Petrella, 1998, Fortier and Basset, 2012, Gregory et al., 2004, Hutton and Nelson, 1985, 

Djupsjöbacka et al., 1994, Hayward et al., 1991) increase in knee laxity (Changela et al., 2012, 

Skinner et al., 1986b, Roberts et al., 2004b, Lattanzio et al., 1997) and increase in pain (Fortier 

and Basset, 2012, Ju et al., 2010, Ribeiro et al., 2007). The first suggests the reduction in 

proprioceptive ability is due to impaired motor unit function caused by a reduction in the 

number of functioning sarcomeres following muscle fibre damage (Paschalis et al., 2007, 

2008) or muscle acidosis caused by an increase in metabolites when fatigued (Fortier and 

Basset, 2012, Skinner et al., 1986a, Lattanzio et al., 1998, 1997, Changela et al., 2012, Ribeiro 

and Oliveira, 2011, Djupsjöbacka et al., 1994, Hayward et al., 1991).  

Muscle fibre damage can also impair the excitation-contraction coupling of the motor unit 

(Rozzi et al., 2000) and modify the muscle spindle and central neural pathways (Hutton and 

Nelson, 1985). This has been shown to increase the threshold for muscle spindle discharge 

which can also change the alpha-gamma co-activation in the muscle units (Ribeiro et al., 2008). 

The spindle resting rate is also different following fatigue, as the resting discharge is 

proportional to muscle length, this can cause misinterpretation of muscle spindle afferents in 

the central nervous system and hence a reduction in proprioceptive ability (Gregory et al., 

1999). Hutton and Nelson (1985) also demonstrated a reduction in sensitivity to stretch and an 

increase in response latency following fatigue in feline models. Therefore fatigue induced 

muscle damage can alter both afferent and efferent responses to movement and hence reduce 

knee proprioception.  
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It is commonly accepted fatigue causes an increase in intra-muscular metabolites and 

inflammatory substances (Ribeiro and Oliveira, 2011) and it is believed this can also cause 

failure of muscle spindles and Golgi-tendon organs (Lattanzio et al., 1997, 1998, Changela et 

al., 2012, Skinner et al., 1986a, Fortier and Basset, 2012). The metabolites and inflammatory 

substances have a direct impact on the afferent discharge patterns of muscle spindles (Ribeiro 

and Oliveira, 2011) for example there is increase muscle spindle sensitivity via the gamma-

motor neurone pathway. This modifies the alpha-gamma co-activation patterns, the central 

nervous system therefore reduces the accuracy of motor control and may interrupt muscle 

stabilising activity information to joints and hence reduce stability (Roberts et al., 2004b). 

Whether the failure of motor units is caused by muscle spindle damage or acidosis, the outcome 

appears to be similar. The central nervous system response is affected by the change in afferent 

signals and therefore motor control becomes less stable.  

Another theory to explain reduced proprioception is an increase in knee joint laxity (Changela 

et al., 2012, Skinner et al., 1986b, Roberts et al., 2004b, Lattanzio et al., 1997). It is clear no 

biochemical changes occur in the synovial joint fluid to cause disruption of afferent signals as 

with the muscle unit (Robert et al., 2003). Therefore it is thought the repetitive high loading 

rates during fatiguing protocols increases the plastic properties of the ligaments and hence they 

become less stiff (Skinner et al., 1986b). This again changes the relationship between afferent 

discharge and knee position which can disrupt proprioception.  

The final theory suggested as to why fatigue reduces proprioception involves pain (Fortier and 

Basset, 2012). Fatigue induces nociceptor activation, and hence pain afferents are stimulated 

(Ju et al., 2010). This creates muscle soreness, which has been associated with reduced 

excitability of motor cortex and hence disrupted afferent and efferent signals causing a 

reduction in proprioceptive ability (Ribeiro et al., 2007). However there is much still to learn 

regarding pain pathways and hence this area needs further investigation.  

Although it is unclear which explanation is the true cause of proprioceptive decline, it is 

obvious this reduction does occur following fatiguing exercise. In joint position sense research 

where relative error scores were taken, that is to identify the direction of the positional error, it 

is apparent participants over-estimated the target, or over-extended the joint. This has also been 

explained in a number of ways in the literature. The sense of effort theory is closely linked to 

the illusion theory (Fortier and Bassert, 2012, Givoni et al., 2007, Ribeiro et al., 2007). This 

involves the disruption of the relationship between sense of effort and force to joint position. 
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Further, when the joint is exercised there is an increase in the centrally driven activation rates 

on the motor units and an increase in the sense of perceived effort (Fortier and Basset, 2012). 

However, when the joint is fatigued the expected afferent feedback based on this previous 

positional and effort sense experience is related to a more lengthened muscle and hence the 

central nervous system misinterprets this increase in afferent feedback as a lengthened muscle 

(Allen et al., 2010). Therefore when the joint is repositioned in limb matching tasks it is 

overextended. This error can also be exacerbated by an increase in passive discharge rate 

(Paschalis et al., 2007) and an increase in muscle circumference which increase the activation 

of cutaneous receptors (Paschalis et al., 2008). In summary these findings indicate joint 

position sense may be centrally driven as directional errors were consistent.   

It is important to explain the results of studies that found no change in proprioception following 

fatiguing exercise (Bayramoglu et al., 2007, Rozzi et al., 1999b, Stillman et al., 1998, Fortier 

and Basset, 2012, Marks and Quinney, 1993, Baharlue and Khayambash, 2012). One viable 

explanation is the fatiguing protocols were not severe enough to induce peripheral or central 

fatigue (Rozzi et al., 1999b, Bayramoglu et al., 2007, Stillman et al., 1998). For example, the 

anterior shear loads imposed on the knee joint during an isokinetic contraction at 180°/s are 

equivocal to that of walking and compressive loads equivalent to stair climbing (Kaufman et 

al., 1991). This suggests studies using isokinetic fatiguing may not create representative 

fatiguing of the joint. Central fatiguing protocols can also be unsuccessful. For example 

Skinner et al., (1986a) failed to find a significant decline in proprioception following a running 

protocol, however participants were Navy SEALS. The authors believed they had not 

successfully generated the effects of fatigue in their study. However, it has also been suggested 

joint kinaesthesia cannot be affected by fatigue as joint motion is modulated by joint and 

cutaneous afferents that may not be damaged by muscle fatiguing (Torres et al., 2010). 

Furthermore joint kinaesthesia may have separate neural pathways to joint position sense which 

would again imply different fatiguing pathways (Fortier and Basset, 2012).  

Paramount to all of these discussion points is the method of measuring fatigue, which is 

variable between studies (Fortier and Basset, 2012). The state of fatigue was measured 

subjectively using soreness, RPE and analogue pain scales and objectively using blood analysis 

and acidosis measures and maximal voluntary contraction measurements. There is still much 

debate surrounding the optimal method of confirming a fatigue status thus making it difficult 

to consider the effects of fatigue on proprioception. Furthermore again there is no consistency 
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in proprioception measures. Practitioners are also unaware of the clinical significance of this 

potential decline in proprioceptive ability, currently no large scale normative data exists.  

2.5.7 Osteoarthritis and Proprioception 

Osteoarthritis (OA) is the most common type of arthritis with an estimated 15.8 million 

sufferers in the United States (Pai et al., 1997) and up to one third of 63-94 year olds are living 

with the condition. It is also the fourth leading cause of non-fatal burden in the world (World 

Health Organisation, 2002). The knee is the most common joint associated with the disease 

(Sharma et al., 1997).  Unfortunately for sufferers there are a number of debilitating effects of 

OA. Structural changes cause an increase in the regional load across articular cartilage in the 

joint and this negatively influences the material properties of the tissue and hence reduce the 

joint’s ability to withstand load (Pai et al., 1997). There is often reduced stability in the knee 

of OA sufferers potentially caused by changes in the bony geometry, muscular contraction 

patterns and ligament and capsule deficiencies in and around the joint (Pai et al., 1997). As 

anatomy of the knee changes with OA progression and this is thought to reduce proprioceptive 

ability, research has considered the effect of OA on knee proprioception using both JPS and 

TTDPM techniques.  

Research strongly suggests patients with OA have an increased threshold to detect passive 

motion (Pai et al., 1997, Sharma et al., 1997, Koralewicz and Engh, 2000, Collier et al., 2004, 

Lund et al., 2008, Hewitt et al., 2002, van der Esch et al., 2007, 2013, Cammarata et al., 2011, 

Chang et al., 2014, Sanchez-Ramirez et al., 2013). The severity of OA in these patients ranged 

from grade 1 to grade 4 (Kellgren/ Lawrence grading). Most studies used either a custom built 

machine or an IKD to collect flexion and/ or extension TTDPM data. However, Chang et al., 

(2014) considered valgus / varus movement. All studies used aged matched controls. 

Interestingly, studies that also included comparisons to the contralateral knee in OA patients 

reported a reduced TTDPM ability compared to external controls and no significant difference 

compared to the OA knee (Sharma et al., 1997). This suggests the undiagnosed knee may also 

have proprioceptive impairments.  

As well as differences between groups, studies also considered the relationship between 

kinaesthesia sensibility and other OA characteristics. For example, Cammarata et al., (2011) 

Hewitt et al., (2002) and van der Esch et al., (2007) found no correlation between TTDPM 

measures and stiffness, age, gender, pain or WOMAC (Western Ontario and McMaster 
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Universities Arthritis Index) scores. Koralewicz and Engh, (2000) found no relationship 

between severity of OA (measured by radiography) and TTDPM ability. However van der Esch 

et al., (2013) did find an inverse relationship between number of lesions in the knee of OA 

patients and TTDPM; that is as the number of lesions increased, kinaesthetic sense decreased. 

Furthermore TTDPM ability has been linked to functional tests such as single leg balance 

(Sanchez-Ramires et al., 2013), activity levels (Holla et al., 2012) and walking times (van der 

Esch et al., 2007). The relationship between TTDPM and function was stronger if muscle 

strength was added to the regression model (van der Esch et al., 2007).  

Studies have also considered the effect of OA on knee JPS (Garsden and Bullock-Saxton, 1999, 

Hurley et al., 1997, Mohammadi et al., 2008, Bayramoglu et al., 2007, Marks et al., 1993, 

Barrett et al., 1991b, Hassan et al., 2001, Bennell et al., 2003, Hall et al., 2006, Segal et al., 

2010, Felson et al., 2000, Sanchez-Ramirez et al., 2013). All JPS protocols involved target and 

reproduction angles. However, there are many differences in other measurement variables such 

as weight bearing / non weight bearing conditions (for example Marks et al., 1993), matching 

methods (for example visual analogue scale in Barrett et al., 1991b) or active matching (Marks 

et al., 1993, Hall, 2006), equipment (for example electrogoniometery in Mohammadi et al., 

2008) or IKD (Bayramogku et al., 2007). However, this variability did not appear to influence 

findings; the majority of research indicated patients with OA have reduced JPS ability. 

However Hall et al., (2006), Lund et al., (2008) and Bayramogku et al., (2007) did not find a 

difference in JPS between OA patients and age matched controls. They attributed this finding 

to a potential degeneration of the elderly control knees without diagnosis, lack of severe grade 

OA patients in the sample or lack of sensitivity of the measurement tool. Alternatively, it may 

be that JPS does not reduce with OA and the reduction in JPS ability preceded the disease 

(Lund et al., 2008). 

The effect of OA on JPS was also considered using regression analyses. There were no 

relationships between JPS ability and pain, clinical scores or walking speed, (Marks et al., 

1993, Bennell et al., 2003). Indeed Hassan et al., (2001) concluded the most significant 

predictors of OA progression were BMI and maximum voluntary quadriceps contraction. This 

is supported by Segal et al., (2010) who concluded knee JPS is not a valid predictor of OA 

condition alone. However, Felson et al., (2000) did find correlations between JPS and pain and 

WOMAC scores in OA patients that is as JPS ability got worse, so did pain and WOMAC 

scores across a 30 month period. It must be noted correlation analysis alone cannot provide 
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cause and effect and regression analysis only explains a certain amount of variance in the data, 

therefore findings must be generalised with caution.  

It may be joint effusion of OA knees that prevents optimal JPS performance. However, there 

is only limited evidence to support this. McNair et al., (1995) considered the effects of injected 

saline into uninjured knees and concluded the artificial effusion did not reduce JPS ability. 

Conversely Cho et al., (2011) concluded OA patients injected with saline did have reduced JPS 

ability, but only is non-weight bearing conditions. Therefore it is still unclear what effects, if 

any, joint effusion has on proprioception.  

Unfortunately, there are many negative consequences of OA. These include tenderness, limited 

range of motion, effusion or inflammation and most commonly, sustained joint pain (Kaya, 

2014). Radiographic analysis of the pathological joint can further reveal asymmetric joint space 

narrowing, cyst formation, osteophyte formation and subluxation effects of the disease (Kaya, 

2014). It is suggested the three consequences most likely to influence proprioception ability 

are impaired articular mechanoreceptors and hence modulated afferent discharge, muscle 

weakness that reduces gamma motor neurone activation and muscle sensitivity, inflammation 

/ effusion and injuries to other structures in the joint such as meniscus (Knoop et al., 2011). 

These variables may all contribute to modifying the articular afferent discharge and hence joint 

proprioception which in turn may reduce function. However the research discussed is that of 

retrospective design and it cannot be deduced if the disease caused the proprioceptive design 

or poor proprioceptive ability preceded the onset of OA. OA progression certainly has a linear 

relationship to degeneration of the articular tissues, hence it would follow articular 

mechanoreceptors would be damaged and afferent signals would be modulated (Lund et al., 

2008). This may reduce the sensitivity of the gamma motor neurones and then proprioception. 

On the other hand there is some evidence to suggest patients with OA may have had decreased 

proprioceptive ability prior to the disease diagnosis (Cammarata et al., 2011). Indeed 

contralateral knees and upper limb joints of OA patients have been shown to have decreased 

proprioceptive ability compared to uninjured matched controls (Sharma et al., 1997, Lund et 

al., 2008). Furthermore, it is thought up to a third of women with unilateral OA will have 

bilateral OA within two years of diagnosis (Garsden and Bullock-Saxton, 1999) and there is 

up to a 90% contralateral OA risk within 10 years (Jones et al., 2013). Despite these theories, 

a recent narrative review on proprioception and OA (Knoop et al., 2011) could not find any 

clear evidence to link impaired mechanoreceptors, reduced muscular strength and hence 

reduction in spindle sensitivity or inflammation in OA patients to the decline in joint 
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proprioception.  There has been some correlation analysis on proprioceptive ability and 

decreased functional ability; however the evidence is far from extensive.   

Whether the disease is in fact the cause or effect of reduced proprioception will need to be 

considered in more detail using longitudinal study designs in future research. However, 

importantly and in continuation of other sections in this literature review, the methodologies 

used to collect joint position sense and threshold to detect passive motion data were 

inconsistent; a wide range of equipment, angular displacements, angular velocities and angular 

directions were used to name but a few of the method variables. Importantly studies also found 

patients with OA were not always able to complete fully weight bearing testing. Therefore it is 

important a standardised method is identified to measure knee proprioception before these 

longitudinal studies can take place. There was also a lack of normative data on either knee joint 

position sense or threshold to detect passive motion.  

 

2.6 Thesis Aims and Hypotheses 

A flow chart below (see figure three) details the findings of each section of the literature review. 

This provides a rationale for each of the aims that follow. Some hypotheses can now also be 

made based on the available literature. There was no high quality literature available that would 

help predict the methodological aims, therefore the population aims are considered only.  
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Figure 3. A summary of findings from the literature review and the aims of the thesis.  

 

METHODOLOGICAL AIMS:
1. To establish a measurement technique that produces the 
best representation  of knee joint position sense ability. 
2. To establish a reliable, consistent and sensitive 

measurement of knee joint position sense. 
3. To establish a valid measurement technique for knee 
joint positioning.
4. To establish the number of trials required for consistent 
knee joint position sense.

POPULATION AIMS:
1. To collect normative knee joint position sense from a UK 
population.
2. To consider the effects of age, gender, BMI, physical activity 
and self-reported knee condition (including OA) on joint position 
sense. 
3. To compare the knee joint position sense of ACL deficient 
patients to matched controls.
4. To compare the knee joint position sense of patients with other 
knee injuries (not ligament) to matched controls.
5. To consider the effect of peripheral fatiguing exercise on JPS. 

Literature on age, gender, BMI, physical activity, 
knee condition, fatigue and knee proprioception
Aim: To state the current understanding of the effects of 
various independent variables on knee proprioception.  

Findings: Current literature does not consider large scale 
UK populations.  There is a lack of data on fatigue and 
knee proprioception using consistent measurement 
techniques.

Literature on knee proprioception measures

Aim: To state the current knee proprioception 
measurement techniques.

Findings: Although the literature offers a range of knee 
proprioception measurement techniques, there is not a 
comprehensive reliable and valid "gold standard" clinical 
method of knee JPS. 

Literature on knee proprioception

Aim: To relate propriception neurophysiology to the knee 
joint. 

Findings: There is evidence mechanoreceptors are present 
in the knee joint as well as musculature surrounding the 
joint. However, it is unclear how each anatomical area 
contributes to knee proprioception. 

Literature on proprioception

Aim: To define proprioception.

Findings: There is a complex neurophysiological 
explanation of static and dynamic proprioception. 
Mechanoreceptors in muscle, joint and skin may all 
contribute different afferent information to the CNS. 

The Effect of ACL injury on 
Knee Proprioception: A Meta Analysis 

Aim: To investigate the effect of ACL injury on knee 
proprioception.  

Findings: Two main proprioception measures are JPS and 
TTDPM. JPS are more consistent than TTDPM. However, 
measures are inconsistent, lacking in reliability and validity 
statistics and therefore results are difficult to summarise. 
Inconclusive. 
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Population Group Aims and Hypotheses 

Aim 1. To collect normative knee joint position sense from a representative sample of 

the UK population. 

Hypothesis 1. An absolute error score above 5° may indicate abnormal knee joint 

position sense.  

Aim 2. To consider the effects of age, gender, BMI, physical activity and self-

reported knee condition on knee joint position sense.  

Hypothesis 2. As age and BMI increase knee joint position sense ability will 

decrease. There will be no effect of gender on knee joint position sense. As physical 

activity and knee condition levels increase knee joint position sense ability will 

increase.   

Aim 3. To compare the knee joint position sense of anterior cruciate ligament 

deficient patients (both non-athletic and elite athletic) to an uninjured matched control 

group. 

Hypothesis 3. ACL patients will have reduced knee joint position sense ability.  

Aim 4. To compare the knee joint position sense of patients with any other knee 

injury (not including ligament damage) to an uninjured matched control group.  

Hypothesis 4. Knee injury patients will have reduced knee joint position sense.  

Aim 5. To consider the effect of peripheral fatiguing exercise on knee joint position 

sense. 

Hypothesis 5. Peripheral/ muscular fatigue will reduce knee joint position sense 

ability.  
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Chapter 3 Methodology 
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3.0 Introduction 

This chapter is divided into measurement and population studies in knee joint position sense. 

The preliminary studies considered the “optimum” method of knee joint position sense. The 

results of the meta-analysis (Relph et al., 2014) indicated joint position sense to be a more 

consistent measure of knee proprioception. Therefore, joint position sense (static 

proprioceptive ability) is considered in this thesis and TTDPM (dynamic proprioception) is 

not. Literature also suggested injured and elderly patients found it difficult to complete fully 

weight-bearing conditions in JPS data collection and therefore these studies recommended 

either partial weight-bearing or non-weight-bearing environments for JPS data collection 

(Bullock-Saxton et al., 2001, Petrella et al., 1997). Therefore, JPS data collected in a fully open 

chain or partially open chain environment were explored. These environments included sitting 

(Co et al., 1993, Beynnon et al., 2000), prone (Kramer et al., 1997) and a partially weight-

bearing condition with the participant in a supine position pushing against the wall on a sliding 

platform. This is a novel approach to JPS data collection that attempted to provide a realistic 

JPS data collection environment for all populations (including the elderly and injured) and 

incorporating an active-active protocol that may produce more ecologically valid results 

(Herrington, 2005, Ghiasi and Akbari, 2007, Stillman and McMeeken, 2001).  

The first study considered the test-retest reliability of knee joint position measurements in 

sitting, prone and semi-weight-bearing conditions. The second study examines the inter-rater 

and intra-rater rater reliability of the data analysis technique. The third study reported the 

learning effect in knee joint position sense measurements and hence determined the required 

number of trials for a consistent result. The fourth study considered the consistency, sensitivity 

and hence “optimum condition” for knee JPS by examining the effects of condition, leg, 

direction and target angle on the data. The final measurement study investigated the construct 

validity of knee joint position sense measurement. 

Following these initial studies, the optimal technique was used to collect normative knee JPS 

data on different populations. The first of this group of studies reported the normative knee 

joint position sense ability of a representative UK population. Included in this study was an 

analysis of age, gender, BMI, physical activity, self-reported knee condition (including OA) 

and knee JPS. Two further studies examined the effect of an ACL injury on knee joint position 

sense in non-athletic and elite athletic populations. In comparison, the next study reported the 
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effect of other knee injuries not including ligament damage on knee JPS. Finally, the effects of 

a peripheral or muscular fatigue protocol on knee joint position sense was reported.  
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3.1 The Test-Retest Reliability of Clinical Knee Joint Position Sense 
Measurement. 

Participants 

Ten healthy participants (five female; age 28.4±10.50 years, mass 59.4±5.86 kg, height 

1.63±0.03 m, BMI 22.7±2.56, General Practitioner Physical Activity Questionnaire (GPPAQ) 

score range Inactive – Active, Tegner 5.8±2.17, Knee injury and Osteoarthritis Outcome Score 

(KOOS) 99.9±0.27, Lysholm 98.0±4.47 and five male; 32.0±7.65 years, mass 83.7±18.73 kg, 

height 1.80±0.08 m, BMI 26.0±5.51, GPPAQ range Moderately Inactive – Active, Tegner 

4.8±3.03, KOOS 97.8±4.37, Lysholm 95±11.18) took part in the study using convenience 

sampling. All were free from lower extremity injury and neurological disease. Participants read 

an information sheet and provided written informed consent (see appendix two and three). This 

study was approved by the university ethics board (Ref 09/25).  

Procedures 

Participants wore shorts and removed their socks and shoes. The participants were prepared 

for data collection by placing markers on the following anatomical points; a point on a line 

following the greater trochanter to the lateral epicondyle, close to the lateral epicondyle 

(placement of a marker directly on the greater trochanter is difficult due to clothing), the lateral 

epicondyle and the lateral malleolus of both legs (following Andersen et al., 1995).  

Sitting Condition 

The researcher gave a demonstration of the JPS protocol before data collection to ensure the 

participant knew the detail of the protocol and hence felt comfortable being blindfolded during 

the testing. No warm-up was required as the procedure moved the leg through a “normal” 

(Palastanga and Soames, 2012) range of motion at a low angular velocity and hence it was felt 

there would be no risk of musculoskeletal injury. The participant was then seated on the end 

of a physiotherapy plinth (see figure 4) and blindfolded. Each leg was passively moved by the 

researcher through either 10°-30°, 30°-60° or 60°-90° of knee flexion (from a starting angle of 

0°) or knee extension (from a starting angle of 90°) to a target angle at an angular velocity of 

approximately 10°/s (Marks and Quinney, 1993). The order of the target angles was randomly 

allocated using randomly generated numbers. The participant then actively held the leg in this 

position for 5s. A photograph of the leg in the target position was taken (see figure four) using 

a standard camera (Casio Exilim, EX-FC100, Casio Electronics Co.,Ltd. London, UK) placed 
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3m from the sagittal plane of movement on a fixed level tripod (Camlink TP-2800, Camlink 

UK, Leicester, UK). The camera was set up following the British Association of Sport and 

Exercise Sciences (BASES) guidelines (Payton, 2008). Perspective error does not affect 

measurement of angles (Payton, 2008) however; the camera was positioned as far from the 

field of view as possible and zoomed to an appropriate image size (Payton, 2008). Parallax 

error was reduced by ensuring the camera lens was positioned orthogonally to the field of 

motion (Payton, 2008) using spirit levels, a plumb line and measurement of a 90° angle 

between the plane of motion and the centre of the camera lens (Payton, 2008). The leg was 

then passively returned to the starting angle and the participant was instructed to actively move 

the same leg to the target angle and instructed to hold the leg in this position. Another 

photograph was taken and the participant instructed to move their leg back to the starting 

position. The process was repeated 15 times for each target angle on both dominant and non-

dominant legs. The protocol was then repeated seven days later.  

 

Figure 4. Typical set up and measurement of knee joint angle for sitting JPS measurements. 

 

Prone Condition 

The researcher gave a demonstration of the JPS protocol before data collection to ensure the 

participant felt comfortable being blindfolded during the testing. No warm-up was required as 
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the procedure moved the leg through a “normal” (Palastanga and Soames, 2012) range of 

motion at a low angular velocity and hence it was felt there would be no risk of musculoskeletal 

injury. The participant was positioned prone on a physiotherapy plinth and blindfolded. Each 

leg was passively moved by the experimenter through either 10°-30°, 30°-60° or 60°-90° of 

knee flexion (from a starting angle of 0°) or knee extension (from a starting angle of 90°) to a 

target angle at an angular velocity of approximately 10°/s (Marks and Quinney, 1993). The 

order of the target angles was randomly allocated using randomly generated numbers. The 

participant then actively held the leg in this position for 5s. A photograph of the leg in the target 

position (see figure five) was taken using a standard camera (Casio Exilim, EX-FC100, Casio 

Electronics Co., Ltd. London, UK) placed 3m from the sagittal plane of movement on a fixed 

level tripod (Camlink TP-2800, Camlink UK, Leicester, UK). The camera was set up following 

the British Association of Sport and Exercise Sciences (BASES) guidelines (Payton, 2008). 

The leg was then passively returned to the starting angle and the participants were instructed 

to actively move the same leg to the target angle. Another photograph was taken and then the 

participant was instructed to return the leg to the starting position. The process was repeated 

15 times for each target angle on both dominant and non-dominant legs. The protocol was then 

repeated seven days later. 

 

Figure 5. Typical set up and measurement of knee joint angle for Prone Condition JPS 
measurement. 
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 Active Condition 

The researcher gave a demonstration of the JPS protocol before data collection to ensure the 

participant felt comfortable being blindfolded during the testing. The participants were 

positioned supine on a “Total Trainer” (Model TT2500P, Bayou Fitness, Louisiana, USA) (see 

figure six and seven) and blindfolded. The “Total Trainer” equipment was set at a level 1 

incline, providing 10% body weight (BW) resistance. This incline was selected after an initial 

pilot study revealed this incline provided an appropriate level of resistance for both flexion and 

extension trials. Each leg was actively moved by the participant through either 10°-30°, 30°-

60° or 60°-90° of knee flexion (from a starting angle of 0°) or knee extension (from a starting 

angle of 90°) using the sliding seat on the “Total Trainer” at approximately 10°/s (Marks and 

Quinney, 1993, Bullock-Saxton et al., 2001). The order of the target angles was randomly 

allocated using randomly generated numbers. For knee flexion trials, the participants were 

instructed to actively contract into flexion until verbally told to stop by the experimenter and 

hold in that position for 5s. For extension trials participants were told to actively contract 

against the wall and extend their leg until verbally told to stop by the experimenter and hold 

this position for 5s. A photograph of the leg in the target position (see figure seven) was taken 

using a standard camera (Casio Exilim, EX-FC100, Casio Electronics Co., Ltd. London, UK) 

placed 3m from the sagittal plane of movement on a fixed level tripod (Camlink TP-2800, 

Camlink UK, Leicester, UK). The camera was set up following the British Association of Sport 

and Exercise Sciences (BASES) guidelines (Payton, 2008). The leg was then returned to the 

starting angle by the participant using a verbal cue from the experimenter when to stop. Then 

the participant was instructed to actively move the same leg to the target angle without verbal 

cues. Another photograph was taken. The process was repeated 15 times for each target angle 

on both dominant and non-dominant legs. The protocol was then repeated seven days later.  
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Figure 6. The Total Trainer Pilates Equipment, model TT2500P and an example of a 
participant on the equipment during collection of knee JPS.  

 

Figure 7. Typical set up and measurement of knee joint angle for active condition JPS 
measurement.  

 

Data reduction 

Knee angles were measured using open access two-dimensional manual digitizing software 

(ImageJ, U. S. National Institutes of Health,, Maryland, USA, http://imagej.nih.gov/ij/, 1997-
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2012). Knee joint position sense was calculated from the average delta scores between target 

and reproduction angles across 15 trials, producing both real error scores (RES) in which 

magnitude and direction were measured and absolute error scores (AES) in which only 

magnitude was measured (Beynnon et al., 2000).  

General reliability can be defined as the reproducibility or consistency of a measure (Atkinson 

and Nevill, 1998). Hopkins (2000) states test-retest reliability is one of the most important 

aspects of research, critical to the understanding of measurement error. The definition of test-

retest reliability is concerned with the reproducibility of an individual’s values across repeat 

data collection sessions (Hopkins, 2000). Test-retest reliability has been used to assess the 

reliability of lumbosacral position sense in the past (Brumagne et al., 1999). Test-retest 

reliability was assessed in the current study using intra-class correlation coefficients 

(specifically ICC, 3, 1; Weir, 2005) with 95% Confidence Intervals (CI), Standard Error Mean 

(SEM) (calculated as standard deviation x √1 − 𝐼𝐼𝐼𝐼𝐼𝐼), and Smallest Detectable Difference 

(SDD) (calculated as 1.96 x √2𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) (Batterham and George, 2000, Weir, 2005)). An ICC 

analysis was selected as the more traditional Pearson’s product moment coefficients maybe 

biased towards small sample sizes (Hopkins, 2000) and has been discredited in previous work 

(Atkinson and Nevill, 1998). ICCs have the ability to differentiate among individuals and state 

the extent to which participants maintain their position in the sample across repeated trials 

(Batterham and George, 2000). The ICC model chosen in this study was ICC (3, 1), designated 

as a 2-way ANOVA mixed model for absolute agreement of a single measure to indicate the 

“relative reliability” (Batterham and George, 2000). SEM measures “real changes” in the 

context of measurement error, suggesting “absolute reliability” (Batterham and George, 2000). 

SDD is the minimum change required to be 95% confident that the change is real.  Shrout and 

Fleiss (1979) state ICC results greater than 0.75 are excellent, between 0.40-0.75 are modest 

and less than 0.40 are poor. 

Statistical analysis was completed using SPSS (Version 19, IBM Corporation, New York, 

USA). The Shapiro-Wilk test was used to examine normality of data, which was confirmed. 

Test-retest differences in scores and mean scores for all variables were correlated to examine 

for heteroscedasticity (Atkinson and Nevill, 1998). No significant correlation was found, 

indicating absence of heteroscedasticity, hence raw data was used for further analysis.  
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Results 

Sitting Condition 

Reliability analysis stated intra-class correlations coefficients ranged from 0.03-0.80 in RES 

data and 0.65-0.92 in AES data. ICCs, 95% confidence intervals, standard error of 

measurement and smallest detectable difference values are shown in tables six and seven. The 

results indicated that the most reliable test of knee JPS in the sitting condition may be from a 

starting angle of 0°, target angle through 60°-90°of flexion, using the dominant leg and AES 

variables.  

Prone Condition 

Reliability analysis stated interclass correlation coefficients ranged from 0.53-0.79 in RES data 

and 0.27-0.90 in AES data. ICCs, 95% confidence intervals, standard error of measurement 

and smallest detectable difference values are shown in tables eight and nine. The results 

indicated that the most reliable test of knee JPS in the prone condition may be from a starting 

angle of 0°, target angle through 30°-60°of flexion, using the dominant leg and  AES variables.  

Active Condition 

Reliability analysis stated interclass correlation coefficients ranged from -0.18-0.89 in RES 

data and-0.13-0.82 in AES data. ICCs, 95% confidence intervals, standard error of 

measurement and smallest detectable difference values are shown in tables ten and 11. The 

results indicated that the most reliable test of knee JPS in the sitting condition may be from a 

starting angle of 90°, target angle through 10°-30°of extension, using the non-dominant leg and 

RES variables.  

The test-retest reliability results indicate a large range of ICCs. The highest and hence 

“excellent” (Shrout and Fleiss, 1979) reliable measure of knee joint position sense was a sitting 

condition, dominant leg, from a starting angle of 0°, into flexion through 60°-90° of movement, 

calculating absolute error scores (ICC=0.92). The worst and hence measure of knee joint 

position sense with poor reliability was an active (“Total Trainer”) condition, dominant leg, 

from a starting angle of 90°, into extension through 10°-30° of movement, calculating absolute 

error scores (ICC=-0.18). Furthermore, the active condition presented the poorest level of test-

retest reliability, with only two out of 24 measures producing “excellent” (Shrout and Fleiss, 

1979) test-retest reliability results. This maybe contradictory to the theory that suggests active-

109 



 

active joint position sense measures may illicit better scores due to an increase of 

mechanoreceptor activity throughout the whole of the procedure, such as increased articular 

tissue strain in from adjacent joints (Fleming et al., 2001). However, this evidence may be true 

for fully weight-bearing tasks. The procedure in the current study required participants to lie 

supine and push off or lower towards a wall, not fully weight-bearing. This task was perhaps 

too abnormal for participants to become accustom to before data collection began.  
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Sitting Condition 

Table 6. Mean (°), standard deviation (SD), intraclass correlation coefficient (ICC), 95% 
confidence intervals (CI), standard error of measurement (SEM) and smallest detectable 
difference (SDD) values for the Real Error Score (RES). 1Session One Data; 2Session Two 
Data; Fl – Ex = Knee flexion into knee extension, Ex-Fl = Knee extension into knee flexion.  

Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Fl – Ex 
10°-30° 2.0 1.20 2.4 1.18 0.54 -0.08 0.86 0.82 2.26 

Fl – Ex 
30°-60° 2.0 1.83 1.5 2.25 0.78 0.36 0.94 0.96 2.65 

Fl – Ex 
60°-90° -0.1 1.50 -0.3 2.06 0.80 0.38 0.95 0.83 2.31 

Ex – Fl 
10°-30° -0.8 1.88 -1.2 1.27 0.03 -0.65 0.63 1.58 4.38 

Ex – Fl 
30°-60° -1.0 1.83 -2.0 1.91 0.67 0.09 0.91 0.94 2.59 

Ex – Fl 
60°-90° -1.7 1.53 -0.8 2.20 0.40 -0.20 0.80 1.45 4.02 

Non-dominant Leg 

Fl – Ex 
10°-30° 2.4 1.77 2.1 2.24 0.75 0.27 0.93 1.04 2.87 

Fl – Ex 
30°-60° 1.9 1.64 1.2 2.09 0.66 0.15 0.90 1.05 2.91 

Fl – Ex 
60°-90° 0 1.46 0 1.72 0.51 -0.18 0.86 1.14 3.17 

Ex – Fl 
10°-30° -0.2 1.83 -0.8 1.57 0.62 0.08 0.89 1.01 2.81 

Ex – Fl 
30°-60° -2.1 3.11 -2.1 1.79 0.58 -0.07 0.88 1.68 4.66 

Ex – Fl 
60°-90° 0.2 2.72 -0.9 2.00 0.30 -0.31 0.76 1.98 5.48 
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Table 7. Mean (°), standard deviation (SD), intraclass correlation coefficient (ICC), 95% 
confidence intervals (CI), standard error of measurement (SEM), and smallest detectable 
difference (SDD) values for the Absolute Error Score (AES). 1Session One Data; 2Session Two 
Data; Fl – Ex = Knee flexion into knee extension, Ex-Fl = Knee extension into knee flexion. 
Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Fl – Ex 
10°-30° 2.5 1.09 2.5 1.06 0.76 0.26 0.93 0.55 1.53 

Fl – Ex 
30°-60° 2.6 1.49 2.4 1.63 0.86 0.54 0.96 0.60 1.67 

Fl – Ex 
60°-90° 1.7 0.89 2.1 0.98 0.70 0.20 0.91 0.49 1.35 

Ex – Fl 
10°-30° 2.3 1.05 2.4 0.97 0.79 0.37 0.94 0.47 1.31 

Ex – Fl 
30°-60° 3.1 1.27 3.3 1.00 0.86 0.54 0.96 0.44 1.23 

Ex – Fl 
60°-90° 3.2 1.40 3.3 1.35 0.92 0.72 0.98 0.40 1.10 

Non-dominant Leg 

Fl – Ex 
10°-30° 2.9 1.45 2.8 1.84 0.73 0.22 0.93 0.88 2.45 

Fl – Ex 
30°-60° 2.4 1.27 2.4 1.34 0.87 0.55 0.97 0.50 1.38 

Fl – Ex 
60°-90° 1.9 0.82 2.0 1.27 0.76 0.31 0.76 0.53 1.47 

Ex – Fl 
10°-30° 2.2 0.64 2.2 1.04 0.65 0.05 0.90 0.52 1.45 

Ex – Fl 
30°-60° 4.0 1.80 3.6 1.54 0.79 0.38 0.94 0.75 2.09 

Ex – Fl 
60°-90° 3.8 1.89 3.5 2.08 0.84 0.50 0.96 0.80 2.23 
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Prone Condition 

Table 8. Mean (°), standard deviation (SD), intraclass correlation coefficient (ICC), 95% 
confidence intervals (CI), standard error of measurement (SEM), smallest detectable difference 
(SDD) values for the Real Error Score (RES). 1Session One Data; 2Session Two Data; Fl – Ex 
= Knee flexion into knee extension, Ex-Fl = Knee extension into knee flexion. 
Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Fl – Ex 
10°-30° 2.0 2.16 2.5 2.96 0.75 0.26 0.93 1.31 3.62 

Fl – Ex 
30°-60° 0.9 3.19 1.4 2.07 0.54 -0.09 0.86 1.82 5.05 

Fl – Ex 
60°-90° 0.4 1.55 0.6 1.69 0.53 -0.10 0.86 1.11 3.08 

Ex – Fl 
10°-30° -0.7 1.34 -1.2 1.34 0.67 0.12 0.91 0.77 2.13 

Ex – Fl 
30°-60° -2.6 3.74 -2.3 3.03 0.69 0.15 0.91 1.90 5.28 

Ex – Fl 
60°-90° -1.6 1.74 -2.3 1.67 0.68 0.12 0.91 0.97 2.69 

Non-dominant Leg 

Fl – Ex 
10°-30° 2.1 2.7 1.3 2.45 0.74 0.24 0.93 1.33 3.68 

Fl – Ex 
30°-60° 1.4 2.61 0.6 2.04 0.61 0.02 0.89 1.45 4.03 

Fl – Ex 
60°-90° -0.2 1.51 -0.4 1.94 0.74 0.24 0.93 0.89 2.48 

Ex – Fl 
10°-30° -1.5 1.50 -2.0 2.15 0.79 0.35 0.94 0.85 2.37 

Ex – Fl 
30°-60° -2.4 4.20 -1.7 5.61 0.60 -0.01 0.88 3.14 8.71 

Ex – Fl 
60°-90° -2.1 3.08 -1.8 3.03 0.58 -0.04 0.88 1.98 5.50 
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Table 9. Mean (°), standard deviation (SD), intraclass correlation coefficient (ICC), 95% 
confidence intervals (CI), standard error of measurement (SEM), smallest detectable difference 
(SDD) values for the Real Error Score (RES). 1Session One Data; 2Session Two Data; Fl – Ex 
= Knee flexion into knee extension, Ex-Fl = Knee extension into knee flexion. 
Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Fl – Ex 
10°-30° 3.0 1.54 4.1 1.86 0.75 0.27 0.93 0.86 2.37 

Fl – Ex 
30°-60° 3.4 2.10 3.5 1.56 0.74 0.26 0.93 0.94 2.60 

Fl – Ex 
60°-90° 2.0 0.83 2.0 0.86 0.44 -0.23 0.82 0.64 1.76 

Ex – Fl 
10°-30° 1.9 0.84 2.1 1.71 0.27 -0.40 0.75 1.15 3.20 

Ex – Fl 
30°-60° 5.0 2.35 4.5 2.03 0.87 0.56 0.97 0.79 2.19 

Ex – Fl 
60°-90° 3.7 1.53 3.8 1.38 0.61 0.01 0.89 0.91 2.53 

Non-dominant Leg 

Fl – Ex 
10°-30° 4.0 1.85 3.0 1.57 0.67 0.11 0.91 0.99 2.75 

Fl – Ex 
30°-60° 3.9 1.88 3.2 1.65 0.82 0.42 0.95 0.76 2.10 

Fl – Ex 
60°-90° 2.2 1.39 2.3 1.37 0.71 0.19 0.92 0.75 2.07 

Ex – Fl 
10°-30° 2.7 1.64 2.9 1.91 0.85 0.51 0.96 0.69 1.90 

Ex – Fl 
30°-60° 5.1 2.52 6.0 4.23 0.25 -0.42 0.74 3.02 8.37 

Ex – Fl 
60°-90° 5.2 2.02 4.7 1.77 0.90 0.66 0.98 0.59 1.65 
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Active Condition 

Table 10. Mean (°), standard deviation (SD), intraclass correlation coefficient (ICC) 95% 
confidence intervals (CI), standard error of measurement (SEM), and smallest detectable 
difference (SDD) values for the Real Error Score (RES). 1Session One Data; 2Session Two 
Data; Fl – Ex = Knee flexion into knee extension, Ex-Fl = Knee extension into knee flexion. 
 
Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Fl – Ex 
10°-30° 3.0 1.54 4.1 1.86 0.75 0.27 0.93 0.86 2.37 

Fl – Ex 
30°-60° 3.4 2.10 3.5 1.56 0.74 0.26 0.93 0.94 2.60 

Fl – Ex 
60°-90° 2.0 0.83 2.0 0.86 0.44 -0.23 0.82 0.64 1.76 

Ex – Fl 
10°-30° 1.9 0.84 2.1 1.71 0.27 -0.40 0.75 1.15 3.20 

Ex – Fl 
30°-60° 5.0 2.35 4.5 2.03 0.87 0.56 0.97 0.79 2.19 

Ex – Fl 
60°-90° 3.7 1.53 3.8 1.38 0.61 0.01 0.89 0.91 2.53 

Non-dominant Leg 

Fl – Ex 
10°-30° 4.0 1.85 3.0 1.57 0.67 0.11 0.91 0.99 2.75 

Fl – Ex 
30°-60° 3.9 1.88 3.2 1.65 0.82 0.42 0.95 0.76 2.10 

Fl – Ex 
60°-90° 2.2 1.39 2.3 1.37 0.71 0.19 0.92 0.75 2.07 

Ex – Fl 
10°-30° 2.7 1.64 2.9 1.91 0.85 0.51 0.96 0.69 1.90 

Ex – Fl 
30°-60° 5.1 2.52 6.0 4.23 0.25 -0.42 0.74 3.02 8.37 

Ex – Fl 
60°-90° 5.2 2.02 4.7 1.77 0.90 0.66 0.98 0.59 1.65 
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Table 11. Mean, standard deviation (SD), intraclass correlation coefficient (ICC), 95% 
confidence intervals (CI), standard error of measurement (SEM), smallest detectable difference 
(SDD) values for the Absolute Error Score (AES). 1Session One Data; 2Session Two Data; Fl 
– Ex = Knee flexion into knee extension, Ex-Fl = Knee extension into knee flexion. 
Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Fl – Ex 
10°-30° 1.8 0.52 1.6 0.49 -0.13 -0.68 0.51 0.54 1.49 

Fl – Ex 
30°-60° 3.0 1.49 3.0 1.02 0.41 -0.25 0.81 0.98 2.72 

Fl – Ex 
60°-90° 3.8 1.01 3.3 0.89 0.06 -0.56 0.64 0.92 2.56 

Ex – Fl 
10°-30° 3.2 1.27 2.3 0.84 0.42 -0.25 0.81 0.82 2.28 

Ex – Fl 
30°-60° 2.5 1.01 2.6 1.24 0.00 -0.60 0.60 1.13 3.14 

Ex – Fl 
60°-90° 1.7 0.58 1.8 0.62 -0.20 -0.72 0.46 0.66 1.83 

Non-dominant Leg 

Fl – Ex 
10°-30° 1.7 0.79 1.5 0.72 0.66 0.09 0.90 0.44 1.23 

Fl – Ex 
30°-60° 2.9 1.23 3.0 1.00 0.67 0.11 0.91 0.64 1.78 

Fl – Ex 
60°-90° 3.5 1.15 3.0 0.88 0.54 -0.09 0.86 0.69 1.92 

Ex – Fl 
10°-30° 2.8 1.05 3.0 1.15 0.82 0.42 0.95 0.47 1.31 

Ex – Fl 
30°-60° 2.7 0.52 3.0 1.10 0.22 -0.44 0.72 0.76 2.11 

Ex – Fl 
60°-90° 1.7 0.51 1.9 0.84 0.17 -0.48 0.70 0.63 1.76 
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3.2 Intra-Rater and Inter-Rater Reliability 

Intra-rater and inter-rater reliability was confirmed using intra-class correlation coefficients 

(ICC 2, 1), 95% Confidence Intervals and Cronbach’s Alpha (Field, 2005, Hopkins, 2000). 

Statistical analysis was completed in SPSS (Version 19, IBM Corporation, New York, USA). 

A randomly selected data set of 30 trials was analysed by the researcher and then by an 

independent rehabilitation practitioner; the ICC value between the two analyses was 0.98 and 

95% confidence intervals ranged from 0.96-0.99. The Cronbach’s Alpha value was 0.99. The 

researcher repeated the analysis of the randomly selected data set of 30 trials; the ICC value 

within the researcher was 0.96 and 95% confidence intervals ranged from 0.91-0.98. The 

Cronbach’s Alpha value was 0.98. Therefore it can be confirmed that the intra-rater and inter-

rater reliability of the analysis technique was at an acceptable level (Field, 2005, Shrout and 

Fleiss, 1979). 
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3.3 Learning Effect Analysis to Determine the Required Number of Trials for 

Clinical Knee Joint Position Sense Measurement in Three Conditions. 

Introduction 

Previous research has suggested between four and six trials are necessary for valid JPS 

measurement (Selfe et al., 2006). However, this research was conducted using an IKD and so 

the number of trials required using a clinical JPS measurement is unknown. The average of the 

first, middle and last five trials were calculated, following a similar method to Beynnon et al., 

(2000). Repeated measure ANOVAs were utilised to investigate the learning affect in all three 

JPS conditions (sitting, prone and active). 

Data Reduction 

Repeated Measures ANOVAs with three levels (Trials 1-5, 6-10 and 11-15) were used on each 

measure with “excellent” reliability (ICC>0.75, Shrout and Fleiss, 1979). This equated to 36 

variables (see tables five to ten for details). Due to multiple ANOVAs, a bonferroni adjustment 

was made (Field, 2005) to the acceptable alpha level. The alpha level was reduced from 0.05 

to 0.001 (0.05 / 36). All statistical analysis was completed in SPSS (Version 19, IBM 

Corporation, New York, USA).  

Results 

All JPS measures, except JPS measurements in the prone condition, non-dominant leg, into 

60°-90° of extension using absolute error scores, reported no significant differences between 

1-5, 6-10 and 11-15 trials (p>0.001). The single prone condition was significantly different 

between trials 1-5 and 6-10 only, so it may be concluded that for this measure, ten trials may 

be necessary. However it is suggested that five trials are adequate for all other JPS 

measurements with “excellent” reliability. 
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3.4 The Consistency, Sensitivity and hence “Optimum Condition” for Clinical 

Knee Joint Position Sense Measurement – The Effects of Condition, Leg, 

Direction and Target Angle. 

Introduction  

This analysis identified the effects of the following variables; error score (relative or absolute), 

condition (sitting, prone, active), leg (dominant or non-dominant), direction (flexion or 

extension) and range of motion (10°-30°, 30°-60° or 60°-90°) on JPS measurement. Hence, 

this analysis aimed to identify the optimal environment to collect consistent and sensitive knee 

joint position sense measurements. Previous research has identified poor correlation between 

different measures of knee proprioception (Grob et al., 2002, Kiran et al., 2010). It is therefore 

imperative practitioners use one consistent JPS measurement technique in rehabilitation and 

other clinical settings. 

Data Reduction 

 

Statistical analysis was completed in SPSS (Version 19, IBM Corporation, New York, USA). 

The effect of absolute or relative error scores, leg and direction of movement on JPS 

measurements was analysed using paired sample t-tests. Effect sizes were also calculated using 

the following equation –  

 

r = � 𝑡𝑡2

𝑡𝑡2  +𝑑𝑑𝑑𝑑
  (Field, 2005, p.294) 

where t is the t statistic and df is the degrees of freedom.  

  

The effect of range of motion and condition was analysed using one-way repeated measure 

ANOVAs. Effect sizes were also calculated using the following equation –  

 

ω2 =  
[ 𝑘𝑘−1𝑛𝑛𝑘𝑘  

(MSM−MSR) ]

MSR+
MSBG−MSR

𝑘𝑘 +[ 𝑘𝑘−1𝑛𝑛𝑘𝑘
(MSM−MSR) ]

 (Field, 2005, p.452)  

where k is the number of conditions, n is the sample size, MSM is the mean square for the 

model, MSR is the residual mean square and MSBG is the mean square between groups.  
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All alpha levels were accepted at p<0.05. Effect sizes were interpreted using Cohen’s (1992) 

classifications as follows; 0 – 0.1 is a small effect, 0.1-0.3 is a small to medium effect, 0.3-0.5 

is a medium to large effect and 0.5 and above is a large effect.  

 

Results 

 

Results of the statistical analysis are shown in Table 12. Absolute and relative error scores 

differ which was expected and as such data were kept separate. Leg dominance had a main 

effect on relative error scores (p=0.005, r=0.78) but not absolute error scores (p>0.05). 

Therefore data were pooled for AES data only. Range of motion had an effect on relative error 

scores (p= 0.032, ω2=19) but the effect size was small. Absolute error scores were not affected 

by range of motion (p>0.05). The direction of knee motion (flexion / extension) had an effect 

on relative and absolute error scores; p=0.02, r=0.81 and p=0.009, r=0.74 respectively. 

Condition (sitting, prone, active) was also a main effect for both relative (p=0.036, ω2=0.21) 

and absolute (p=0.001, ω2=0.37) error scores although effects sizes were small.  
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Table 12. Statistical analyses on the effects of relative or absolute error scores, leg, range of 
motion, direction and condition on knee JPS measurements.  
 

 

Summary  

In summary knee joint position sense measurements are more consistent and less variable using 

absolute error scores. Relative error scores were affected by leg dominance, range of motion, 

direction and condition. If practitioners were to select relative error score as a measurement in 

clinical practice this study would recommend data be collected from both legs, across low, 

medium and high ranges of motion, in both directions. This would have obvious time 

VARIABLE JPS(°) 
Mean±SD 

TEST RESULTS 

RES 
AES 

0.3±0.60 
3.0±0.97 

Paired t-test p=0.0001,  
r = 0.97 

Absolute and Relative 
Scores Differ. 

RES Dominant (D) 
RES Non-Dominant (ND) 
 
AES Dominant (D) 
AES Non-Dominant (ND) 

-0.3±0.83 
1.1±0.82 
 
 
3.0±1.12 
3.0±0.90 

2 x Paired t-test RES p=0.005,  
r = 0.78 
 
 
AES p=0.728,  
r = 0.12 

Leg choice affects RES 
scores but not AES 
scores. 

RES D Low-Range 
RES D Mid-Range 
RES D High-Range 
 
RES ND Low-Range 
RES ND Mid-Range 
RES ND High-Range 
 
AES Low-Range 
AES Mid-Range 
AES High-Range 

0.7±1.14 
-0.5±1.07 
0.9±1.18 
 
1.0±1.09 
1.9±1.64 
0.6±1.62 
 
2.7±0.84 
3.4±1.35 
3.0±1.03 

3 x One Way 
ANOVA 

RES D 
p=0.032 
ω2 = 0.19 
RES ND p=0.207 
ω2 = 0.06 
 
 
AES p=0.089 
ω2 = 0.05 

Range affects RES 
Dominant Leg, but not 
RES Non-dominant Leg 
or AES measures.  

RES Flexion 
RES Extension 
 
AES Flexion 
AES Extension 

1.5±1.12 
-1.5±1.41 
 
2.7±1.05 
3.4±1.00 

2 x Paired t-test RES p=0.02,  
r = 0.81 
 
AES p=0.009,  
r = 0.74 

Direction affects both 
RES and AES. 

RES Sitting 
RES Prone 
RES Active 
 
AES Sitting 
AES Prone 
AES Active 

1.0±0.97 
-0.3±1.03 
0.9±1.03 
 
2.7±0.84 
3.7±1.43 
2.3±0.92 

2 x One Way 
ANOVA 

RES p=0.036 
ω2 = 0.21 
 
 
AES p=0.001 
ω2 = 0.37 

Condition affects both 
RES and AES. 
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implications in practice. Therefore, it is recommended absolute error scores be used in future 

clinical measurements. The flow chart below explains each choice a practitioner should make 

when measuring clinical joint position sense.  
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3.5 Flow Chart to Illustrate the Decision Making Process to Ascertain the 
Optimum JPS Measurement Technique. 

The flow diagram below demonstrates the decisions made to ascertain the optimum conditions 
for knee joint position sense techniques. Each question is answered using the results of the 
previous studies. The diagram also demonstrates the number of issues practitioners would need 
to consider during clinical assessment of joint position sense.  
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Research Question 1: Which variables are reliable over time? 

 

 

 

 

Research Question 2: How many trials are needed to achieve a consistent JPS score? 

 

 

 

 

 

Research Question 3: Are there differences between RES and AES Scores? 

 

 

 

 

Research Question 4: Are there differences in JPS Scores between dominant and non-dominant 
legs? 

 

 

 

 

 

 

 

 

Test – Re-Test Reliability Analysis 

36 Dependant Variables with ICCs over 0.71. 

36 Dependant Variables with ICCs below 0.7 and discarded.  

 

 
72 dependant JPS variables including combinations of independent variables - 
legs, three conditions (sitting, prone and active), three ROMs (small, medium, 

large) and two directions (flexion and extension). 

  

 

 

Trial Analysis/ Learning Effect  

One Way Repeated Measures ANOVAs revealed no significant differences between 
the average scores from the first (1-5), middle (6-10) and last (11-15) trials for all 

except one (prone condition, left leg, 60°-90° of extension) of the 36 variables. This 
suggests the first five scores are no different from the middle or last five scores. 

Hence, five trials are deemed sufficient for most JPS measurement.  

 

 

Types of Error Score (RES and AES) 

Paired t-test revealed significant difference between RES and AES (p=0.0001). RES 
had a lower error score, but as direction was considered is expected.                            

RES and AES produce different JPS scores and must be kept separate. 

 

Legs (Dominant and Non-dominant). 

Paired t-tests revealed a significant difference in error scores between legs for RES 
(P=0.005) but not AES (P=0.728). Hence, dominant and non-dominant legs produce 
different relative error scores but not absolute error scores. If RES is used both legs 

must be measured, but only one leg can be measured if AES is used.  
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Research Question 5: Does the range of motion (ROM) in JPS measurement affect scores? 

 

 

 

 

 

 

 

Research Question 6: Does the direction in JPS measurement affect scores? 

 

 

 

 

 

Research Question 7: Does the condition in JPS measurement affect scores? 

 

 

 

 

 

 

 

 

Research Question 8: What is the final JPS method? 

 

 

 

 

 

Ranges of Motion - Low (10°-30°), Medium (30°-60°) and High (60°-90°). 

One-way Repeated Measure ANOVAs compared error scores between low, middle 
and high ROMs. 

RES –Significant differences in scores for dominant leg (p=0.032), but not non-
dominant leg (P=0.207). Therefore ROM affects RES. At this stage RES was 

discarded as a JPS variable2.  

AES – No significant differences in scores (p=0.089).  Hence, ROM does not 
affect AES; any range can be used in JPS measurement. 

 

 

Directions - Flexion and Extension 

AES - Paired t-tests revealed a significant difference in error scores between 
flexion and extension directions (p=0.009).Hence direction does affect error 

scores and both directions must be used in JPS measurement.  

 

 

Conditions - Sitting, Prone and Active 

One-way Repeated Measure ANOVAs compared error scores between sitting, prone 
and active conditions.  

Significant differences were found between all conditions (p=0.001).  

Prone had the highest mean error score and was discarded. Sitting and active had 
comparable error scores (difference of 0.2°). Therefore ICCs were considered.  

Sitting had more test-retest reliability (ICC>0.7) measures (12 out of 12) than active 
(1 out of 12). Therefore, active was discarded.  

 

FINAL METHOD 

Five trials, absolute error scores, dominant leg (best score3), medium range of 
motion (30°-60°) for extension, high range of motion for flexion (60°-90°) (highest 

ICCs4), both directions (flexion and extension) in a sitting condition.  
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1Interclass correlation coefficients over 0.7 provide “good to excellent” measures of 

reliability (Shrout and Fleiss, 1979).  

2At this stage, leg and range significantly affected RES. In order for RES methods to be 

consistent practitioners would need to take JPS from both legs and three ranges; this would 

not be possible in treatment settings. Therefore, RES was discarded.   

3For consistency, dominant legs will be used for JPS measures. Also, the dominant leg 

produced the best error score.  
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3.6 The Construct Validity of Clinical Knee Joint Position Sense Measurement 

Introduction 

In general, validity can be defined as the credibility and accuracy of the measurement tool 

(George et al., 2000). Concurrent or criterion validity is the process by which a clinical 

measurement tool is compared to a previously validated or “gold standard” measurement tool. 

Previous studies on knee JPS used a variety of measuring equipment including 2D video 

analysis, IKDs and purpose built lever systems (Beynnon et al., 2000). However, no study has 

compared a reliable clinical test to the “gold standard” method for joint angle measurement (an 

IKD) and hence tested the concurrent validity of a reliable JPS measurement.  

Participants 

Ten healthy participants (five female; age 28.0±13.29 years, mass 60.3±9.02 kg, height 

1.65±0.07 m, BMI 22.1±1.80, GPPAQ range Inactive – Active, Tegner 5.0±1.22, KOOS 

98.6±3.18, Lysholm 98.8±2.68 and five male; 29.6±10.74 years, mass 73.6±5.86 kg, height 

1.75±0.07 m, BMI 24.1±1.97, GPPAQ range Active, Tegner 7.8±1.30, KOOS 92.5±10.87, 

Lysholm 87.6±17.5) took part in the study and were recruited using a convenience sampling 

method. All were free from lower extremity injury and neurological disease. Participants read 

an information sheet and provided written informed consent (see appendix two and three). This 

study was approved by the university ethics board (Ref09/25).  

Procedures 

The study was a random cross-over design; hence participants were tested using both methods, 

a week apart. Participants wore shorts and removed their sock and shoe of their dominant leg. 

The participants were prepared for data collection by placing markers on the following 

anatomical points; a point on a line following the greater trochanter to the lateral epicondyle, 

close to the lateral epicondyle (placement of a marker directly on the greater trochanter is 

difficult due to clothing), the lateral epicondyle and the lateral malleolus of the dominant leg 

(following Andersen et al., 1995). 

Clinical knee JPS measurements were collected using the protocol determined as the most 

reliable by the previous study. The researcher gave a brief explanation of the JPS protocol 

before data collection to ensure the participant felt comfortable being blindfolded during the 

testing. The participants were then seated on the end of a physiotherapy plinth and blindfolded. 
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The dominant leg was passively moved by the researcher through 30°-60° of knee extension 

from a starting knee angle of 90° or through 60°-90° of knee flexion from a starting angle of 

0° to a target angle at an angular velocity of approximately 10°/s (Marks and Quinney, 1993). 

The order of the target angles was randomly allocated using randomly generated numbers. The 

participant then actively held the leg in this position for 5s. A photograph of the leg in the target 

position was taken (see figure four) using a standard camera (Casio Exilim, EX-FC100, Casio 

Electronics Co.,Ltd. London, UK) placed 3m from the sagittal plane of movement on a fixed 

level tripod (Camlink TP-2800,Camlink UK, Leicester, UK). The camera set up followed the 

British Association of Sport and Exercise Sciences (BASES) guidelines (Payton, 2008). The 

leg was then passively returned to the starting angle and the participant was instructed to 

actively move the same leg to the target angle and hold the leg in this position. Another 

photograph was taken and the participant instructed to move their leg back to the starting 

position. The process was repeated 5 times for each target angle on the dominant leg. 

Knee JPS measurements were also collected using an IKD (Humac Norm 776, CSMi, 

Massachusetts, USA). A specific protocol was written to ensure the IKD passively moved the 

participant’s dominant leg to the pre-determined target angles, therefore removing any 

researcher bias. Details of this protocol can be found in appendix four. Participants wore shorts 

and removed their sock and shoe from their dominant leg. The participant was then seated in 

the IKD chair, however, was not secured in to the chair as this may have introduced sensory 

feedback from the popliteal fossa, which was not present in the clinical trials. Once the centre 

of rotation of the dominant knee had been correctly aligned to the centre of rotation of the IKD 

lever axis, the leg was strapped to the lever and the participant blindfolded. The IKD protocol 

then passively moved the leg through 30°-60° of extension from a starting knee angle of 90° 

or through 60°-90° of flexion from a starting angle of 0° to a specified target angle at an angular 

velocity of 2°/s (Beynnon et al. 2000). Target angles were randomly selected across the range 

of motion (see appendix four). The leg was held in this position for 5s then returned to the 

starting angle. The participant was then instructed to move their leg to the target angle and 

hold, at which point the experimenter noted the knee angle using the IKD software. This 

process was repeated 5 times for both knee extension and flexion. 

 

Data Reduction 
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Knee angles from the clinical JPS testing were measured using two-dimensional manual 

digitizing software from the image capture data (ImageJ, U. S. National Institutes of Health,, 

Maryland, USA, http://imagej.nih.gov/ij/, 1997). Knee joint position sense was calculated 

from the average delta scores between target and reproduction angles across five flexion and 

five extension trials producing absolute error scores (Beynnon et al., 2000) Absolute error 

scores from IKD data were calculated by subtracting the reproduction angle from the target 

angle set in the protocol. The average of the five extension trials and five flexion trials were 

used for further analysis in each condition (clinical and IKD).  

All statistical analysis was completed in SPSS (Version 19, IBM Corporation, New York, 

USA). The Shapiro-Wilk test was used to examine normality of data, which was confirmed. 

Related samples t-tests were used to compare clinical and IKD absolute error scores. Pearson 

Correlation Coefficients were used to examine the relationship between clinical and IKD JPS 

AES. An alpha level was set at p<0.05. Significant relationships were defined using Cohen’s 

definitions; r=.10 (small relationship), r=.30 (medium relationship), r=.50 (large relationship) 

(Cohen, 1992).   

Results 

There was no significant difference between clinical AES (3.7°±1.40) and IKD AES 

(4.3°±1.83) knee flexion data (p= 0.263). There was also no significant relationship between 

these two variables (p=0.185, r=0.457). There was a significant difference between clinical 

AES (2.5°±0.72) and IKD AES (4.3°±1.90) knee extension data (p=0.016). The relationship 

between these two variables although large, was not significant (p= 0.740, r=0.120).  

These results suggest that clinical JPS measurements using knee flexion are valid against a 

gold standard knee angle positioning tool. However, JPS measurements using knee extension 

may not provide concurrent validity.  
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3.7 Normative Knee Joint Position Sense Based on a UK Adult Population.  

Introduction 

Current research does not provide normative levels of joint position sense. Callaghan et al., 

(2002) suggests “good” levels of knee proprioception to be below an absolute mean error score 

of 5°, however this figure appears arbitrary. No large scale JPS data exists on a knee injury 

population using a reliable measurement technique. 

Participants 

A sample size calculation was utilised to provide an appropriate sample size producing 90% 

power and alpha set at 0.05. The sample size was calculated in statistical software (G*Power, 

version 3.1.6, Germany) (Field, 2005) using data from the previous meta-analysis (Relph et 

al., 2014) on ACL injuries and JPS (see chapter 2). Using the independent t-test method, the 

effect size was calculated using the mean JPS scores and accompanying standard deviations 

from the fixed-effect meta-analysis data (Relph et al., 2014). Although this method is not ideal, 

previous JPS data were not available on a large-scale uninjured sample. The calculated sample 

size was 104. 

The 104 sample size was then divided into appropriate age groups, based on UK population 

statistics (National Population Projections, 2010-based reference volume: Series PP2, Office 

of National Statistics). This resulted in a target of 24 participants aged 15-29, 24 participants 

aged 30-44, 24 participants aged 45-59, 20 participants aged 60-74 and 12 participants aged 75 

and over. The participants were recruited using convenience but purposive sampling 

techniques. Table 13 details the sample. There were some initial difficulties recruiting 

participants over 60 due to the nature of the test, particularly the knee flexion test which 

requires adequate muscular strength to hold the leg unaided at 0° (full extension). However, 

the final sample size was 116 as more participants volunteered than expected. 

All participants were free from lower extremity injury and neurological disease. Participants 

completed four self-assessment surveys including; the Tegner Activity Survey, the General 

Practitioner Physical Activity Questionnaire, the Knee injury and Osteoarthritis Outcome 

Score (KOOS) and the Lysholm Knee Scale. Participants read an information sheet and 

provided written informed consent (see appendix two and three). This study was approved by 

the university ethics board (Ref09/25).
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Table 13. Participant details of study 3.7. 

Age 
Group 
(years) 

Gender Split Age 
(mean 
±SD 
years) 

Mass 
(mean±SD 
kg) 

Height 
(mean±SD 
m) 

BMI 
(mean 
±SD) 

KOOS 
(mean±SD) 

Lysholm 
Score 
(mean±SD) 

Tegner 
Score 
(mean±SD) 

GPPAQ 
Score (range) 

15-29 Males = 13 22±4.3 74.2±7.33 1.79±0.061 23.1±2.01 97.9±4.08 95±8.03 7.2±1.01 Active 

Females = 16 22±3.4 65.1±11.86 1.65±0.058 23.9±3.60 99.6±1.78 99.7±1.25 5.4±1.59 Inactive - Active 

30-44 Males = 13 37±4.8 84.3±14.39 1.79±0.081 26.2±3.28 92.2±18.54 94.92±10.45 5.2±2.12 Moderately 
Inactive - Active 

Females =12 39±3.5 70.8±16.24 1.65±0.084 25.7±4.22 94.9±10.15 93.7±11.81 4.5±1.93 Inactive-Active 

45-59 Males = 12 53±3.1 76.4±11.46 1.78±0.06 24.1±3.20 96.6±6.05 96.9±7.28 4.0±1.54 Inactive - Active 

Females = 13 52±4.8 65.4±14.70 1.64±0.049 24.3±6.15 90.7±14.49 90.6±13.50 4.2±1.68 Inactive - Active 

60-74 Males = 11 68±4.6 90.4±12.7 1.77±0.044 29.0±3.98 90.8±21.80 90.6±17.04 2.4±0.67 Inactive – Active 

Females = 15 64±3.2 75.1±26.00 1.60±0.090 29.4±10.49 92.5±13.53 91.3±12.23 2.6±0.63 Inactive – Active 

>74 Males = 5  76±1.2 84.8±15.51 1.73±0.132 28.9±8.54 80.4±20.50 77.4±20.77 2.2±1.30 Inactive – Active 

Females = 6 77±3.1 70.8±16.47 1.59±0.067 28.1±5.68 92.5±9.87 89.3±17.05 2.2±0.98 Inactive – 
Moderately 
Inactive 
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Procedures 

Participants wore shorts and removed the sock and shoe from their dominant leg. The 

participants were prepared for data collection by placing markers on the following anatomical 

points; a point on a line following the greater trochanter to the lateral epicondyle, close to the 

lateral epicondyle (placement of a marker directly on the greater trochanter is difficult due to 

clothing), the lateral epicondyle and the lateral malleolus of both legs (following Andersen et 

al., 1995).  

Clinical knee JPS measurements were collected using the protocol determined as the most 

reliable by the previous study. The researcher gave a brief explanation of the JPS protocol 

before data collection to ensure the participant felt comfortable being blindfolded during the 

testing. The participant was then seated on the end of a physiotherapy plinth and blindfolded. 

The dominant leg was passively moved by the experimenter through 30°-60° of extension from 

a starting knee angle of 90° or through 60°-90° of flexion from a starting angle of 0° to a target 

angle at an angular velocity of 10°/s (Marks and Quinney, 1993). The order of the target angles 

was randomly allocated using randomly generated numbers. The participant then actively held 

the leg in this position for 5s. A photograph of the leg in the target position was taken using a 

standard camera (Casio Exilim, EX-FC100, Casio Electronics Co.,Ltd. London, UK) placed 

3m from the sagittal plane of movement on a fixed level tripod (Camlink TP-2800,Camlink 

UK, Leicester, UK). The camera set up followed the British Association of Sport and Exercise 

Sciences (BASES) guidelines (Payton, 2008). The leg was then passively returned to the 

starting angle and the participant was instructed to actively move the same leg to the target 

angle and hold the leg in this position. Another photograph was taken and the participant 

instructed to move their leg back to the starting position. The process was repeated 5 times for 

each target angle on the dominant leg. 

Data Reduction 

Knee angles were measured using two-dimensional manual digitizing software (ImageJ, U. S. 

National Institutes of Health,, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012). Knee 

joint position sense was calculated from the average delta scores between target and 

reproduction angles across five flexion and five extension trials producing absolute error scores 

in which only magnitude was measured (Beynnon et al., 2000). Means, standard deviations 

and 95% confidence intervals were presented where appropriate. Confidence intervals are 

provided to indicate the true boundaries in which a mean would fail, in this case, the 95% 
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boundary (Field, 2005). Confidence intervals present the results using the same data 

measurement as the mean and as such, can improve the clarity of true meaning of the sample 

data (Gardner and Altman, 1986). Confidence intervals at the 95% level were calculated using 

the following equation –  

 Lower boundary of confidence interval = 𝑋𝑋� − (1.96 𝑋𝑋 𝑥𝑥𝑥𝑥) 

 Upper boundary of confidence interval =  𝑋𝑋� + (1.96 𝑋𝑋 𝑥𝑥𝑥𝑥)  

(Gardner and Altman, 1986, p. 748) 

All statistical analysis was completed in SPSS (Version 19, IBM Corporation, New York, 

USA). The Kolmogorov-Smirnov test was used to examine normality of data, which was 

confirmed. Significant differences between JPS flexion and extension absolute error scores 

were tested using a dependent t-test with an alpha level set at p<0.05. The effect of age group 

(15-29 years, 30-44 years, 45-59 years, 60-74 years, >74years), gender and GPPAQ score 

(active, moderately active, moderately inactive and inactive) on JPS flexion and extension 

absolute error scores was tested using a multivariate general linear model (MANOVA, Field, 

2005) with an alpha level set at p<0.05. Significant correlations between JPS flexion and 

extension absolute error scores and age, mass, height, BMI, Tegner, Lysholm and KOOS scores 

were analysed using Pearson Product Correlation Coefficients for interval level data and 

Spearman’s Rank Correlation Coefficients for ordinal level data (Field, 2005) and alpha levels 

set at p<0.05. Significant relationships were defined using Cohen’s definitions; r=.10 (small 

relationship), r=.30 (medium relationship), r=.50 (large relationship) (Cohen, 1992).  
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3.8 Anterior Cruciate Ligament Deficient Knee Joint Position Sense in a Non-

Athletic Population. 

Introduction 

Previous research has stated that ACL injuries may significantly reduce knee joint position 

sense (see meta-analysis appendix 1a and chapter 2). However, the reliability of JPS 

measurement techniques has not been well reported. Therefore, this study compared an ACL 

deficient population to an uninjured population using a JPS measurement previously tested for 

reliability.   

Participants 

Twenty ACL deficient (ten male, ten female, age 30±4.5years, mass 77.4±4.76kg, height 

1.63±0.24m, Tegner 5.5±1.2, Lysholm 76±9.8, time since injury 11±2 months) took part in the 

study, recruited using purposive sampling methods. Diagnosis of their injury was confirmed 

by clinical laxity testing (anterior drawer test, Lachman’s test and pivot shift test), and further 

verified by either arthroscopic or Magnetic Resonance Image (MRI) examination. All patients 

suffered the injury through non-contact means and none of the patients had concurrent medial 

collateral ligament or meniscal injuries at the time of the ACL injury. Participants read an 

information sheet and provided written informed consent (see appendix two and three). This 

study was approved by the university ethics board (REP10/068) 

The data from 20 healthy participants matched to the ACL deficient participants by age, gender 

and physical activity (ten female; age 28.0±13.29 years, mass 60.3±9.02 kg, height 1.65±0.07 

m, BMI 22.1±1.80, GPPAQ range Inactive – Active, Tegner 5.0±1.22, KOOS 98.6±3.18, 

Lysholm 98.8±2.68 and ten male; 29.6±10.74 years, mass 73.6±5.86 kg, height 1.75±0.07 m, 

BMI 24.1±1.97, GPPAQ range Active, Tegner 7.8±1.30, KOOS 92.5±10.87, Lysholm 

87.6±17.5) were taken from the normative study (see section 3.7). The controls were matched 

in this way as previous literature has suggested knee JPS may be influenced by such variables 

(for more information see chapter 2). All were free from lower extremity injury and 

neurological disease.  

Procedures 

Participants wore shorts for data collection. Uninjured participants removed the shoe and sock 

from their dominant leg. ACL deficient participants removed both shoes and socks. Participants 
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were prepared for data collection by placing markers on the following anatomical points; a 

point on a line following the greater trochanter to the lateral epicondyle, close to the lateral 

epicondyle (placement of a marker directly on the greater trochanter is difficult due to 

clothing), the lateral epicondyle and the lateral malleolus of both legs for ACL deficient 

participants and dominant leg for uninjured participants (following Andersen et al., 1995).  

Clinical knee JPS measurements were collected using the protocol determined as the most 

appropriate for comparison to an ACL deficient population. Both bundles of the ACL are taut 

in 10°-30° of flexion and hence have maximal mechanoreceptor activity in this range of 

motion. Therefore, testing JPS in this range may allow participants to produce their 

“maximum” performance of knee joint position sense. Furthermore, the previous study on 

reliability of JPS measurement confirmed knee joint position sense measurements using this 

technique provided “excellent” reliability statistics (ICC=0.79, Shrout and Fleiss, 1979).  

The researcher gave a brief explanation of the JPS protocol before data collection to ensure the 

participant felt comfortable being blindfolded during the testing. The participants were then 

seated on the end of a physiotherapy plinth and blindfolded. The leg was passively moved by 

the experimenter through 10-30° of knee flexion from a starting angle of 0° to a target angle at 

an angular velocity of approximately 10°/s (Marks and Quinney, 1993). The participant then 

actively held the leg in this position for 5s. A photograph of the leg in the target position was 

taken using a standard camera (Casio Exilim, EX-FC100, Casio Electronics Co.,Ltd. London, 

UK) placed 3m from the sagittal plane of movement on a fixed level tripod (Camlink TP-

2800,Camlink UK, Leicester, UK). The camera set up followed the British Association of Sport 

and Exercise Sciences (BASES) guidelines (Payton, 2008). The leg was then passively returned 

to the starting angle and the participant was instructed to actively move the same leg to the 

target angle and hold the leg in this position. Another photograph was taken and the participant 

instructed to move their leg back to the starting position. The process was repeated 5 times. 

The ACL deficient group completed the test using both legs. The uninjured group used their 

dominant leg only.  

Data Reduction 

Knee angles were measured using two-dimensional manual digitizing software (ImageJ, U. S. 

National Institutes of Health,, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012). Knee 

joint position sense was calculated from the average delta scores between target and 

reproduction angles across five flexion trials producing absolute error scores (AES) in which 

135 



 

only magnitude was measured (Beynnon et al., 2000). Means, standard deviations and 95% 

confidence intervals were presented. Confidence intervals are provided to indicate the true 

boundaries in which a mean would fail, in this case, the 95% boundary (Field, 2005). 

Confidence intervals present the results using the same data measurement as the mean and as 

such, can improve the clarity of true meaning of the sample data (Gardner and Altman, 1986). 

Confidence intervals at the 95% level were calculated using the following equation –  

 Lower boundary of confidence interval = 𝑋𝑋� − (1.96 𝑋𝑋 𝑥𝑥𝑥𝑥) 

 Upper boundary of confidence interval =  𝑋𝑋� + (1.96 𝑋𝑋 𝑥𝑥𝑥𝑥)  

(Gardner and Altman, 1986, p. 748) 

All statistical analysis was completed in SPSS (Version 19, IBM Corporation, New York, 

USA). The Shapiro-Wilk test was used to examine normality of data, which was not confirmed. 

Log transformation of data did not solve the issue of normality, hence non-parametric statistical 

analysis was utilised. A related samples Wilcoxon signed rank test compared differences 

between the ACL deficient leg and the contralateral leg. Independent sample Mann-Whitney 

U tests were used to compare the differences between ACL deficient legs and external controls, 

and contralateral legs of the ACL deficient participants and external controls. The level of 

acceptable significance was set a p<0.05.  
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3.9 Anterior Cruciate Ligament Reconstructed Knee Joint Position Sense in an 

Elite Athletic Population. 

Participants 

Ten elite athletes (three male, seven female; age 22.4±3.75 years; three taekwondo competitors, 

three footballers, two netballers, one middle distance runner, one judo competitor) who had all 

undergone ACL reconstructive surgery (17.9±4.68 months since surgery; type of 

reconstruction; six hamstring, 4 bone-patellar tendon bone) took part in the study and were 

recruited using purposive sampling. All had returned to playing elite level sport (6.2±0.63 

months since return to play; Lysholm 94.2±1.69) at either a junior international (n=5) or senior 

international (n=5) level.  

The data from 10 healthy participants taken from the large scale normative study (see section 

3.7) (three male, seven female; age 22.1± 4.07years; Lysholm 100±0) acted as age, gender, 

physical activity and knee condition matched controls. The controls were matched in this way 

as previous literature has suggested knee JPS may be influenced by such variables (for more 

information see chapter 2). All were free from lower extremity injury and neurological disease. 

Participants read an information sheet and provided written informed consent (see appendix 

two and three). This study was approved by the university ethics board (REP10/068). 

Procedures 

Participants wore shorts and removed their socks and shoes. The participants were prepared 

for data collection by placing markers on the following anatomical points; a point on a line 

following the greater trochanter to the lateral epicondyle, close to the lateral epicondyle 

(placement of a marker directly on the greater trochanter is difficult due to clothing), the lateral 

epicondyle and the lateral malleolus of both legs (following Andersen et al., 1995).  

Clinical knee JPS measurements were collected using the protocol determined as the most 

reliable by the previous study. The researcher gave a brief explanation of the JPS protocol 

before data collection to ensure the participant felt comfortable being blindfolded during the 

testing. The participant was then seated on the end of a physiotherapy plinth and blindfolded. 

The leg was passively moved by the experimenter through 30°-60° of extension from a starting 

knee angle of 90° or through 60°-90° of flexion from a starting angle of 0° to a target angle at 

an angular velocity of 10°/s (Marks and Quinney, 1993). The order of the target angles was 
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randomly allocated using randomly generated numbers. The participant then actively held the 

leg in this position for 5s. A photograph of the leg in the target position was taken using a 

standard camera (Casio Exilim, EX-FC100, Casio Electronics Co.,Ltd. London, UK) placed 

3m from the sagittal plane of movement on a fixed level tripod (Camlink TP-2800,Camlink 

UK, Leicester, UK). The leg was then passively returned to the starting angle and the 

participant was instructed to actively move the same leg to the target angle and hold the leg in 

this position. Another photograph was taken and the participant instructed to move their leg 

back to the starting position. The process was repeated 5 times for each target angle on the 

injured and uninjured leg of the ACL group and the dominant leg of the control group. 

Data Reduction 

Knee angles were measured using two-dimensional manual digitizing software (ImageJ, U. S. 

National Institutes of Health,, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012). Knee 

joint position sense was calculated from the average delta scores between target and 

reproduction angles across five flexion and five extension trials producing absolute error scores 

in which only magnitude was measured (Beynnon et al., 2000). Means, standard deviations 

and 95% confidence intervals were presented. Confidence intervals are provided to indicate 

the true boundaries in which a mean would fail, in this case, the 95% boundary (Field, 2005). 

Confidence intervals present the results using the same data measurement as the mean and as 

such, can improve the clarity of true meaning of the sample data (Gardner and Altman, 1986). 

Confidence intervals at the 95% level were calculated using the following equation –  

 Lower boundary of confidence interval = 𝑋𝑋� − (1.96 𝑋𝑋 𝑥𝑥𝑥𝑥) 

 Upper boundary of confidence interval =  𝑋𝑋� + (1.96 𝑋𝑋 𝑥𝑥𝑥𝑥)  

(Gardner and Altman, 1986, p. 748) 

All statistical analysis was completed in SPSS (Version 19, IBM Corporation, New York, 

USA). The Kolmogorov-Smirnov test was used to examine normality of data, which was 

confirmed. Significant differences between the injured and uninjured legs of the ACL group 

were tested using a dependent t-test with an alpha level set at p<0.05. Significant difference 

between the injured or uninjured legs of the ACL group and the leg of the control group were 

tested using independent t-tests with an alpha level set at p<0.05. Effect sizes were also 

calculated using the following equation –  
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r =   � 𝑡𝑡2

𝑡𝑡2  +𝑑𝑑𝑑𝑑
  (Field, 2005, p.294) 

where t is the t statistic and df is the degrees of freedom.  
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3.10 Knee Injuries other than Ligament Injuries and Knee Joint Position Sense.  

Participants 

Fifteen participants with knee injuries other than ACL damage (four male, eleven female, age 

40.5±16.69 years, mass 80.8±26.44, height 1.7±0.09 m, BMI 28.3±10.88, GPPAQ range 

inactive – Active, Tegner 5.1±2.00, Lysholm 71.3±20.64, KOOS 75.4±18.81) took part in the 

study, recruited using a convenience sampling method during recruitment for the large scale 

normative study (see section 3.7). These injuries included three participants with patella re-

alignments, two with patellofemoral pain syndrome, two with the early stages (grade 1) of 

osteoarthritis, three with a cartilage tear, one with regular knee sprains, one with hypermobility 

and two with tibia fractures and re-structuring. All diagnoses were completed by a health care 

professional, either a physiotherapist or medical consultant. All participants had completed a 

full programme of rehabilitation and had been discharged by the medical professional at least 

four months earlier.  

The data from 15 healthy participants taken from the large scale normative study (see section 

3.7) (four male, eleven female, age 40.6±17.06 years, mass 67.2±12.14 kg, height 1.7±.0.08 m, 

BMI 24.0±2.98, GPPAQ range Inactive – Active, Tegner 4.6±2.13, KOOS 99.2±2.22, 

Lysholm 99.1±2.58) acted age, gender, physical activity and knee condition matched controls. 

The controls were matched in this way as previous literature has suggested knee JPS may be 

influenced by such variables (for more information see chapter 2). All controls were free from 

lower extremity injury and neurological disease. Participants read an information sheet and 

provided written informed consent (see appendix two and three). This study was approved by 

the university ethics board (REP10/068).  

Procedures 

Participants wore shorts and removed the sock and shoe from their dominant or previously 

injured leg. The participants were prepared for data collection by placing markers on the 

following anatomical points; a point on a line following the greater trochanter to the lateral 

epicondyle, close to the lateral epicondyle (placement of a marker directly on the greater 

trochanter is difficult due to clothing), the lateral epicondyle and the lateral malleolus of both 

legs (following Andersen et al., 1995).  
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Clinical knee JPS measurements were collected using the protocol determined as the most 

reliable by the previous study. The researcher gave a brief explanation of the JPS protocol 

before data collection to ensure the participant felt comfortable being blindfolded during the 

testing. The participant was then seated on the end of a physiotherapy plinth and blindfolded. 

The dominant leg was passively moved by the experimenter through 30°-60° of extension from 

a starting knee angle of 90° or through 60°-90° of flexion from a starting angle of 0° to a target 

angle at an angular velocity of 10°/s (Marks and Quinney, 1993). The order of the target angles 

was randomly allocated using randomly generated numbers. The participant then actively held 

the leg in this position for 5s. A photograph of the leg in the target position was taken using a 

standard camera (Casio Exilim, EX-FC100, Casio Electronics Co.,Ltd. London, UK) placed 

3m from the sagittal plane of movement on a fixed level tripod (Camlink TP-2800,Camlink 

UK, Leicester, UK). The leg was then passively returned to the starting angle and the 

participant was instructed to actively move the same leg to the target angle and hold the leg in 

this position. Another photograph was taken and the participant instructed to move their leg 

back to the starting position. The process was repeated five times for each target angle on the 

dominant or previously injured leg. 

Data Reduction 

Knee angles were measured using two-dimensional manual digitizing software (ImageJ, U. S. 

National Institutes of Health,, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012). Knee 

joint position sense was calculated from the average delta scores between target and 

reproduction angles across five flexion and five extension trials producing absolute error scores 

(AES) in which only magnitude was measured (Beynnon et al., 2000). Means, standard 

deviations and 95% confidence intervals were presented. Confidence intervals are provided to 

indicate the true boundaries in which a mean would fail, in this case, the 95% boundary (Field, 

2005). Confidence intervals present the results using the same data measurement as the mean 

and as such, can improve the clarity of true meaning of the sample data (Gardner and Altman, 

1986). Confidence intervals at the 95% level were calculated using the following equation –  

 Lower boundary of confidence interval = 𝑋𝑋� − (1.96 𝑋𝑋 𝑥𝑥𝑥𝑥) 

 Upper boundary of confidence interval =  𝑋𝑋� + (1.96 𝑋𝑋 𝑥𝑥𝑥𝑥)  

(Gardner and Altman, 1986, p. 748) 
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All statistical analysis was completed in SPSS (Version 19, IBM Corporation, New York, 

USA). The Shapiro-Wilk test was used to examine normality of data, which was confirmed. 

An independent t-tests were used to compare previously injured knees to matched controls 

absolute error scores with alpha levels set at p<0.05. 
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3.11 Peripheral / Muscular Fatigue and Knee Joint Position Sense 

Participants 

Twenty healthy participants (ten male, ten female, age 24.6±8.27 years, mass 72.1±11.65 kg, 

height 1.7±.0.10 m, BMI 23.9±3.15, GPPAQ range Inactive – Active, Tegner 5.5±1.19, KOOS 

100±0, Lysholm 100±0) took part in the study and were recruited using convenience sampling 

techniques. All were free from lower extremity injury and neurological disease. Participants 

read an information sheet and provided written informed consent (see appendix five and six). 

This study was approved by the university ethics board (reference DC/SB/13/25). 

Procedures 

Participants wore shorts and removed the sock and shoe from their dominant leg. The 

participants were prepared for data collection by placing markers on the following anatomical 

points; a point on a line following the greater trochanter to the lateral epicondyle, close to the 

lateral epicondyle (placement of a marker directly on the greater trochanter is difficult due to 

clothing), the lateral epicondyle and the lateral malleolus of both legs (following Andersen et 

al., 1995).  

Clinical Knee Joint Position Sense Measurement 

Clinical knee JPS measurements were collected using the protocol determined as the most 

reliable by the previous study. The researcher gave a brief explanation of the JPS protocol 

before data collection to ensure the participant felt comfortable being blindfolded during the 

testing. The participant was then seated on the end of a physiotherapy plinth and blindfolded. 

The dominant leg was passively moved by the experimenter through 30°-60° of extension from 

a starting knee angle of 90° or through 60°-90° of flexion from a starting angle of 0° to a target 

angle at an angular velocity of 10°/s (Marks and Quinney, 1993). The order of the target angles 

was randomly allocated using randomly generated numbers. The participant then actively held 

the leg in this position for 5s. A photograph of the leg in the target position was taken using a 

standard camera (Casio Exilim, EX-FC100, Casio Electronics Co.,Ltd. London, UK) placed 

3m from the sagittal plane of movement on a fixed level tripod (Camlink TP-2800,Camlink 

UK, Leicester, UK). The leg was then passively returned to the starting angle and the 

participant was instructed to actively move the same leg to the target angle and hold the leg in 

this position. Another photograph was taken and the participant instructed to move their leg 

143 



 

back to the starting position. The process was repeated five times for each target angle on the 

dominant leg pre and post fatigue exercise.  

Peripheral or muscular fatigue protocol 

A short warm-up involving five minutes self-paced cycling on a cycle ergometer (Wattbike, 

Wattbike Ltd, Nottingham, UK) and sub-maximal knee extension and flexion movements were 

conducted prior to data collection. Participants were given a familiarisation period prior to 

maximal testing (Dirnberger et al., 2012). In order to be certain participants reached a fatigued 

state maximum voluntary contraction of the included muscle groups was tested prior to the 

fatiguing exercises (Vollestad, 1997). Participants were seated on an adjustable chair and the 

trunk, hips and thigh were secured using the appropriate straps. The participant’s lateral 

femoral epicondyle was aligned to the dynamometer rotational axis following the manufactures 

guidelines (Cybex NORM, Humac, CA, USA). Individual range of motion was set for each 

participant and a gravity compensation procedure was completed prior to testing. Maximal 

voluntary contractions of the knee flexor and knee extensor muscle groups were taken at 60°/s 

on the IKD (Cybex NORM, Humac, CA, USA). The best score (torque measure) and hence 

“optimal performance” was taken from five maximal trials (following Impellizzeri et al., 

2008). The reliability of this maximal testing protocol has been previously reported by 

Impellizzeri et al. (2008); ICCs (2, 1) were 0.98 and 0.95 for extensor muscles and flexion 

muscles respectively. This provided a measure of “optimum performance” and the fatigued 

state was accepted at a percentage of this value.  It has generally been accepted performance 

on three consecutive trials at 50% or below the maximum performance indicates the presence 

of muscular fatigue (Vollestad, 1997, Hiemstra et al., 2001). Participants were asked to 

continually concentrically extend and flex their knee joint maximally at 60°/s until they reached 

this threshold on three consecutive trials in both flexor and extensor muscle groups.  

Data Reduction 

Knee angles were measured using two-dimensional manual digitizing software (ImageJ, U. S. 

National Institutes of Health,, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012). Knee 

joint position sense was calculated from the average delta scores between target and 

reproduction angles across five flexion and five extension trials producing absolute error scores 

(AES) in which only magnitude was measured (Beynnon et al., 2000). Means, standard 

deviations and 95% confidence intervals were presented. All statistical analysis was completed 

in SPSS (Version 19, IBM Corporation, New York, USA). The Shapiro-Wilk test was used to 
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examine normality of data, which was confirmed. Paired sample t-tests were used to compare 

pre and post fatigue absolute error scores with alpha levels set at 0.05.  
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Chapter 4 Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

146 



 

4.1 Normative Knee Joint Position Sense of an Adult UK Population 

Results of the large scale normative JPS study are detailed in table 14. In total 116 participants 

were included in the study, 54 males and 62 females. There was a significant difference 

between JPS flexion (3.6±1.61°) and JPS extension (2.9±1.47°) absolute error scores 

(p=0.0001, r=0.10, figure eight). However, there were no significant effects of age group (p= 

0.603 and p= 0.536) or gender (p=0.173 and p=0.948) on JPS flexion and extension absolute 

error scores respectively. There was also no significant effect of GPPAQ score on JPS flexion 

(p=0.691), however results indicated there was an effect of this exercise measure on JPS 

extension (p=0.04). Post-hoc analysis revealed a significantly greater absolute error score 

(p=0.017) for inactive participants compared to active participants (mean difference = 1.3°). 

There was a significant interaction between gender and GPPAQ score for JPS extension only 

(p=0.012) (see figure eight). 

There were no significant correlations between JPS flexion absolute error scores and age 

(p=0.540), mass (p=0.687), height (p=0.977), BMI (p=0.598), Tegner (p=0.860), Lysholm 

(p=0.906) and KOOS (p=0.968). However, JPS extension absolute error score were 

significantly correlated to age (r= 0.277, p=0.003), height (r= -0.191, p=0.040), BMI (r=0.204, 

p=0.028), Tegner (r=-0.321, p=0.0001), Lysholm (r=-0.254, p=0.006) and KOOS (r=-0.247, 

p=0.008), but not mass (p=0.415).  However, these correlations had a small to medium effect 

size (Cohen, 1992) at best.  

Table 14. Normative knee joint position sense values of an adult UK population.  

Age Group 
(years) 

Gender  
Split 

JPS  
Flexion  
(mean±SD°) 

95% CIs JPS  
Extension 
(mean±SD°) 

95% CIs 

lower upper lower upper 

15-29 Males (n=13) 3.6±1.65 2.7 4.5 2.6±1.32 1.9 3.3 
Females (n=16) 3.6±1.63 2.8 4.4 2.7±1.61 2.0 3.5 

30-44 Males (n=13) 3.5±1.60 2.6 4.4 2.3±1.02 1.7 2.9 
Females (n=12) 4.3±1.90 3.2 5.4 2.7±0.82 2.2 3.2 

45-59 Males (n=12) 3.5±1.19 2.8 4.2 2.7±1.31 2.0 3.4 
Females (n=13) 3.4±1.61 2.5 4.3 3.0±1.31 2.3 3.7 

60-74 Males (n=11) 3.3±1.10 2.6 4.0 3.3±1.91 2.2 4.4 
Females (n=15) 4.1±2.15 3.0 5.2 3.4±1.35 2.7 4.1 

75+ Males (n=5) 3.0±1.27 1.9 4.1 3.4±2.41 1.3 5.5 
Females (n=6) 3.1±1.30 2.1 4.1 4.3±1.62 3.0 5.6 

Mean  3.6±1.61 3.3 3.9 2.9±1.47 2.6 3.2 
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Figure 8. Mean and Standard Error JPS Flexion and Extension Scores for a normative 
population. **Flexion scores were significantly higher (p=0.0001) than extension scores.  

 

 
Figure 9. A significant interaction (p=0.012) between Gender and GPPAQ scores from JPS 
extension data.  
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.  

. Figure 10. Correlation (r = 0.271) between JPS extension absolute error scores and age. 
 

 

Figure 11. Correlation (r = -0.191) between JPS extension absolute error scores and height.  
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Figure 12. Correlation (r = 0.204) between JPS extension absolute error scores and BMI. 

 
Figure 13. Correlation (r = -0.247) between JPS extension absolute error scores and KOOS. 
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Figure 14. Correlation (r = -0.254) between JPS extension absolute error scores and Lysholm 
Score. 

 
Figure 15. Correlation (r = -0.231) between JPS extension absolute error scores and Tegner 
Score. 
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4.2 ACL injured Knee Joint Position Sense  

4.2.1 Non-athletic Population with ACL Deficiency 

Figure 16 illustrates JPS differences between non-athletic ACL deficient patients, their 

contralateral leg and an external control group. The average JPS error score in the ACL 

deficient group was 7.9°±3.6 (95% CI [6.3, 9.5]). In comparison, the contralateral leg and 

control group error scores were 2°±1.6 (95% CI [1.3, 2.7]) and 2.6°±0.9 (95% CI [2.2, 3.0]) 

respectively. Statistical analysis revealed significantly greater JPS ability in the control group 

(p=0.0001) and contralateral leg (p=0.0001) when compared to the ACL deficient leg. 

However, the external control group also had a significantly lower JPS ability than the ACL 

patient’s contralateral knee (p=0.02).  

  

Figure 16. Mean and Standard Error JPS Absolute Error Scores for a non-athletic ACL 
deficient and normative population. **Significantly different to contralateral leg and control 
group. *Significantly different to control group. 

4.2.2 Elite-athletic Population with ACL reconstructions 

Figures 17 and 18 display the JPS differences between elite-athletic ACL reconstructed 

patients, their contralateral leg and a matched external control group. The elite athletes 

demonstrated a greater mean error score of 8.1°±1.24 (95% CI [7.3, 8.9]) and hence lower 

joint position sense ability in knee flexion when compared to their contralateral leg mean 

score of 3.5°±0.72 (95% CI [3.1, 4.0]) (p=0.0001, r=0.98) and an external control group 

mean score of 3.1°±1.84 (95% CI [2.0, 4.2]) (p=0.0001, r=0.92). This finding was repeated in 
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knee extension JPS; athletes had poorer JPS compared to contralateral side (p=0.0001. 

r=0.98) and external controls (p=0.0001, r=0.91). The average error score on the 

reconstructed side was 7.2°±0.97 (95% CI [6.6, 7.8]) compared to the contralateral side mean 

error score of 1.9°±0.47 (95% CI [1.6, 2.2]) and the external control mean error score of 

2.8°±1.94 (95% CI [1.6, 4.0]). The contralateral leg of the injured athletes displayed similar 

JPS ability to external controls for both knee flexion and knee extension respectively 

(p=0.555, r=0.187).  

 

 

Figure 17. Mean and Standard Error JPS into flexion Absolute Error Scores for an elite-
athletic ACL reconstructed and normative population. **Significantly different to 
contralateral leg and control group.  
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Figure 18. Mean and Standard Error JPS into extension Absolute Error Scores for an elite-
athletic ACL reconstructed and normative population. **Significantly different to 
contralateral leg and control group. 

4.3 Other Knee Injuries and Knee Joint Position Sense 

Data from patients with other knee injuries excluding ligament damage did not demonstrate a 

reduced joint position sense ability for either knee flexion (p=0.638) or knee extension 

(p=0.861) compared to age and activity matched controls. The injuries included in this sample 

were early stage OA (Grade 1), patellofemoral pain syndrome, patella re-alignment, cartilage 

and/or menisci damage, knee laxity and tibial surgery. Results are included in table 15. 

Table 15. Mean and standard error JPS absolute error scores for knee injured patients and 
external matched controls. 

Direction Group Mean±SD (°) 95% Cis 
Lower Upper 

JPS Flexion Injured (n=15) 3.7±1.75 2.8 4.6 
External Control (n=15) 3.4±1.46 2.7 4.1 

JPS Extension Injured (n=15) 2.8±0.91 2.3 3.3 
External Control (n=15) 2.9±1.14 2.3 3.5 
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4.4 The Effect of Peripheral/ Muscular Fatigue on Knee Joint Position Sense. 

The mean (±SD) maximum voluntary contraction into knee flexion and extension was 78.7 

N.m (±22.8) and 177.1 N.m (±39.0) respectively. Results of the analysis revealed no effect of 

the fatiguing protocol on either JPS flexion (p=0.729) or JPS extension (p=0.492). In fact, the 

data suggested some participants’ JPS score actually improved following fatiguing; However 

on average JPS flexion error scores reduced by 0.17° and JPS extension error scores reduced 

by 0.14°. However, these decreases were not statistically significant (figure 19). 

 

 

Figure 19. Mean and Standard Error JPS Absolute Error Scores pre and post fatiguing 
protocol.  
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Chapter 5 Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

156 



 

5.0 Introduction 

The global aim of this thesis was divided into two sub-sections. The first aim involved 

measurement; to find the optimal condition to record knee joint position sense ability. This 

included the reliability, validity and learning effect of existing knee JPS methods. The second 

aim involved implementation of this tool to report the effects of various independent variables 

on knee joint position sense ability. These variables included age, gender, BMI, physical 

activity, self-reported knee condition, ACL injury and muscular fatigue. The results of each of 

these studies are discussed below.  

5.1 Optimum Environment for Knee Joint Position Sense Measurement 

Recently Suetterlin and Sayer (2014) stated that there has been little progress in the clinical 

assessment of proprioception. Specifically, there has been a lack of reliability and validity 

analysis of the current knee joint position sense measures. Therefore, the reliability and validity 

of knee joint position measurement was tested using appropriate statistical analysis. It was 

concluded five trials of knee joint position sense in the sitting position, with either leg (the 

dominant leg was used in this thesis), into flexion through 60°-90° of motion and into extension 

through 30°-60° of motion then calculating absolute error score is the most reliable method of 

establishing knee joint position sense. Validity of this method using an IKD was confirmed for 

knee joint position sense into flexion but not knee joint position sense into extension. These 

findings are discussed in the following two sections.  

5.1.1Test-Retest Reliability of Knee Joint Position Sense Measurement 

General reliability can be defined as the reproducibility or consistency of a measure (Atkinson 

and Nevill, 1998). Hopkins (2000) states test-retest reliability is one of the most important 

aspects of research, critical to the understanding of measurement error. The definition of test-

retest reliability is concerned with the reproducibility of an individual’s values across repeat 

data collection sessions (Hopkins, 2000). Clinical practitioners may use measures of JPS to 

monitor progress in a rehabilitation programme, or with athletes across a season. Therefore, 

the reliability of knee JPS is critical to representative results. The test-retest reliability of knee 

joint position sense was considered using ICC scores across two separate testing days a week 

apart. In addition, the effect of six independent variables, which represents the JPS 

methodological choices clinical practitioners must make when measuring knee JPS, were 

analysed. These included number of trials, type of error score (relative or absolute), leg 
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(dominant or non-dominant), range of motion (low, medium, high), direction (flexion or 

extension) and condition (sitting, prone or active).  

To the author’s knowledge there is only one previous paper that considered the learning effect 

and hence the number of trials necessary for consistent knee JPS scores. Selfe et al., (2006) 

investigated the effect of the number of JPS trials in patients with patellofemoral pain syndrome 

(PFPS). They concluded five trials are necessary for consistent absolute error score results. 

This is supported by the results of the current reliability study; there were no significant 

differences between five, 10 or 15 trials. This is important information for clinicians and 

researchers, five trials is sufficient for representative knee joint position scores. Selfe et al., 

(2006) also considered relative and absolute error scores, indicating the type of error score used 

produces significantly different knee JPS results in PFPS patients. Olsson et al., (2004) also 

states relative and absolute error scores are significantly different in healthy patients. This is 

again supported in the current reliability analysis; relative error scores were significantly 

different to absolute error scores in uninjured populations. Relative error scores (RES) indicate 

magnitude and direction of error; either an over-estimation or under-estimation of the target 

angle. Whereas, absolute error scores only consider the magnitude of error. It should, therefore, 

be expected these calculations will elicit different results and clinicians should keep their 

choice of score consistent throughout assessments.  

Further analysis revealed relative error scores were affected by leg and range of motion, 

whereas absolute error scores were not. This may be because the direction of error aspect of 

the error score is more sensitive to differences in leg and range of motion. However, if 

clinicians wanted to make an assessment of knee joint position using RES they would have to 

measure both legs through three range of motions which would be significantly time 

consuming. It has also been suggested average relative error scores mask joint position sense 

ability, as the average of repeated trials can incorrectly reduce the error score (Olsson et al., 

2004). Furthermore, no literature to date has correlated direction of error (RES) and increased 

risk of a particular knee injury (Sterner et al., 1998), only that poor JPS may lead to increased 

risk of injury. Therefore it may not be necessary to measure the direction of error, just the 

magnitude of the error. Other limitations of relative error scores include poor reliability (Clark 

et al., 1995), occurrence of drift in scores over time (Wann and Ibrahim, 1992) and significant 

learning effects (Redding and Wallace, 1995).  Therefore, it may be concluded that AES should 

be used for clinical measures of knee joint position sense.  
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Absolute error scores were not affected by choice of leg (dominant or non-dominant), clinicians 

can use either leg to test knee JPS in uninjured populations. This has been supported in studies 

by Stillman (2000), Kiefer et al (1998), Beard et al., (1993), Ageberg et al., (2007), Boerboom 

et al., (2008) Euzet and Gahery (1995) and Herrington (2005). It is perhaps intuitive that the 

number of proprioceptors located in the muscle, joint and skin in the lower limbs may be 

comparable bilaterally and hence knee joint position sense may also be significantly similar 

between legs. Although, Han et al., (2013c) did report bilateral position sense of both upper 

and lower limbs and indicated non-dominant sides may have an increased ability when 

compared to the corresponding dominant joint. Non-dominant sides tend to have a stabilising 

role in most motor activities and hence have more experiences of position sense; this may 

explain the increased non-dominant side ability in the Han et al., (2013c) paper. As is the theme 

throughout this thesis, position sense ability was measured differently in all studies considering 

bilateral proprioceptive ability and may explain the discrepancies. However the current thesis 

was the first study to use a reliable and valid clinical method to compare side to side knee 

position sense and found no significant differences (p>0.05). Future work should use the 

validated and reliable method reported in this thesis to confirm bi-lateral symmetry of knee 

position sense.   

The range of motion did not significantly affect absolute error scores however there was a 

significant difference between flexion and extension directions. The most reliable (highest 

ICC) was attributed to a high-range of motion in to flexion and a mid-range of motion in to 

extension, this procedure should be used in knee joint position measurements. Range of motion 

may not affect JPS scores as it has been suggested receptors from joint, skin and muscle work 

together throughout the range of motion to produce one “final common output” (Johansson et 

al., 1991b). Therefore, although different receptors may dominate across the range of motion, 

for example muscles during mid-range and joint and skin during high-range, the output across 

the range of motion produces effective and comparable joint position sense. However, direction 

did affect joint position sense; specifically knee extension trials produced significantly higher 

joint position error scores than knee flexion trials and the effect size was large (0.74). The most 

reliable target angle into flexion was around the vertical position (i.e. between 60-90° of 

flexion). Rodier et al., (1991) also found this target position to produce maximal performance 

of knee joint position sense. They explain that the direction of gravitational forces orientates 

the coordinate system used to position joints in space, and further, this knee vertical joint 

position may be used as a basic reference value in human positioning (Reider et al., 1991). 

159 



 

Indeed this position allows balanced afferent input from both agonist and antagonist muscles 

and such may require less complex neural processing. This may allow for smaller reproduction 

errors than when compared to the most reliable extension position (between 30-60° from 90°).  

Three conditions were considered, sitting, prone and active (using a “Total Trainer, see figure 

6). The prone condition produced the highest error score, hence worst JPS. The most reliable 

JPS scores (highest ICC scores) were produced in the sitting condition, 12 out of 12 sitting 

variables were classed as having “excellent” reliability (Shrout and Fleiss, 1979). This is in 

comparison to the active, “Total Trainer” condition in which only one out of 12 variables was 

of “excellent” reliability (Shrout and Fleiss, 1979). Absolute error scores were significantly 

different between conditions; as such a sitting condition should be used when measuring knee 

joint position sense. Previous research has suggested closed chain trials and active – active JPS 

tests (such as the “Total Trainer” protocol)  reveal superior JPS measures as they replicate the 

body’s natural movement and planes and stimulates all involved mechanoreceptors (Andersen 

et al., 1995). It is also suggested this type of protocol can allow proprioceptive feedback from 

the surrounding joints (Ghaisi and Akabari, 2007) and hence provide a more “global” measure 

of JPS. It follows the active condition may have been thought would produce the best JPS 

score; however in this thesis this was not the case. The protocol design attempted to create a 

“semi-loaded” or “semi-active” environment as previous research suggests older participants 

can not complete fully weight-bearing JPS measurement protocols (Petrella et al., 1997). 

However, the protocol in this thesis involved participants pushing off a wall; this required 

appropriate muscle strength to control knee flexion and extension and may have affected 

results. The movement may be more “unnatural” than the standing protocols used in other 

closed chain active-active studies and therefore participants may not have been in an 

environment to produce their best joint position sense ability.  

Furthermore, it may be the sitting condition, stated as a passive – active protocol, may in fact 

be a semi-active – active protocol. Stillman’s (2000) experiment using EMG of the quadriceps 

and hamstring muscle groups demonstrated how difficult it is for participants to be totally 

passive in the passive positioning of a target angle. Stillman’s (2000) results illustrated both 

agonist and antagonist muscle groups were activated throughout all “passive” movements and 

clinicians were unable to identify this activation. Grigg (1994) states muscle tension increases 

proprioception ability. As such, the sitting protocol utilised in this thesis may afford 

participants the opportunity to activate receptors to a degree in a supported range of motion to 

the target angle then fully activate receptors in the matching movement. This should not be 
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seen as a limitation. Firstly, as Stillman (2000) demonstrates, it may be near impossible to ask 

participants to be truly passive in the positioning phase; therefore we should perhaps not aim 

for or claim this in JPS protocols. The supported active condition (called passive) may also 

provide greater ecological validity, participants would be using active receptors during normal 

movement, and thus it is valid for practitioners to encompass active receptors activity in the 

testing of JPS. This may explain why the sitting condition produced better JPS scores than the 

active condition; the protocol was in fact a semi-active – active protocol in a more natural 

position (sitting) than on the “Total Trainer”.  

An important observation from the reliability analysis is the smallest detectable differences 

were comparable to the mean error scores. For example, the protocol highlighted as best 

practice in this thesis had an absolute error scores of 3.3° during knee flexion and an 

accompanying smallest detectable difference score of 1.1° and absolute error scores of 2.5° 

during extension and an accompanying smallest detectable difference score 1.7°. This suggests 

33% and 67% of flexion and extension error scores respectively may in fact be measurement 

error. This is an important finding for clinicians as knee joint position sense ability during 

rehabilitation or pre-habilitation programmes may be masked by measurement error.  

The reliability of other joint position sense measures has been reported. Deshpande et al., 

(2003) reported excellent reliability of ankle position sense measurements. However 

Strimpakos et al., (2006) found poor to moderate at best for standing and sitting cervical joint 

position sense. This suggests each joint may require individual protocols and measurements to 

ensure results are reliable.  

5.1.2 Construct validity of knee joint position sense measurement 

Construct validity was confirmed for knee flexion joint position sense but not knee extension 

joint position sense. The IKD data provided significantly greater error scores than the clinical 

data when considering knee extension. It is possible in the IKD setting participants had to adapt 

to the addition of the lever arm increasing the mass of the leg and the torque required to extend 

the knee, thus, effort was not as natural when compared to the clinical setting. This may not 

have the same effect on knee flexion as the torque required in this direction would be assisted 

by gravity. Another feasible explanation was the seating in both tests. In the clinical test 

condition participants were seated on the edge of a plinth and hence were not conscious of a 

back rest and could use the pelvis to assist knee extension and the associated hamstring 
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lengthening. In the IKD setting participants were seated on the edge of the seat and although 

not supported by the back rest, may have been less likely to use the pelvis to assist knee 

extension and hence perhaps a less natural knee extension movement. Results of the validity 

study have important implications for clinicians. The clinical measurement of knee joint 

position sense produced similar (knee flexion) and improved (knee extension) absolute error 

scores compared to the IKD setting. Therefore knee joint position sense can be measured in a 

clinical setting, expensive IKD equipment or self-built pulley systems are not necessary.  

5.2 Normative Levels of Knee Joint Position Sense Measurement 

Normative data of knee joint position sense was collected across an age and gender 

representative sample of a large scale population. There is a shortage of normative knee joint 

position sense values; in fact no study to date has reported normative values using a reliable 

and valid measurement technique. Stillman (2000) has presented knee joint position sense 

values from 82 young healthy adults (53 females, 29 males, 20.2±1.6 years). Stillman used an 

ipsilateral knee flexion matching technique to a range of target angles from both dominant and 

non-dominant legs. Absolute errors ranged from 2.1° at 20° of knee flexion to 3.4° at 50° of 

knee flexion. The results of the current thesis are comparable to these values; in the groups 

aged between 15 and 29 years JPS flexion errors were 3.6° and JPS extension errors were 2.65°. 

Stillman (2000) also reported knee joint position sense absolute errors for a healthy older aged 

group (14 females, 11 males, 57.6±10.3 years). Four test positions were considered; 20°, 30°, 

40° and 50° of knee flexion, absolute error values were 2.5°, 2.6°, 3.3° and 4° respectively. 

These results are again consistent with findings in this thesis; the group aged 45-59 years had 

an average knee flexion absolute error score of 3.45° and knee extension score of 2.85° and the 

group aged 60-74 years had an average knee flexion absolute error score of 3.7° and knee 

extension score of 3.35°. Burgess et al., (1982) and Callaghan also suggested a more general 

value for “normal” joint position errors of error of less than 5°. It appears in this thesis that 

knee joint position sense absolute error scores normally range from 2.3° to 4.3° in uninjured 

populations. Practitioners may use this range when pre-screening athletes when identifying 

those more at risk due to abnormal knee position sense ability. Practitioners may also use this 

range during rehabilitation, if they would like to rehabilitate their patient back to a “normal” 

level. Although, this must be done with caution as large scale normative data on specific knee 

pathologies such as ACL injured patients has not been completed therefore, it is still unknown 

if this is possible.   
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Goble et al., (2010) provided pilot data for arm joint position sense values across the age groups 

(see figure 20). This data comes from the elbow joint using ipsilateral matching techniques to 

30 degrees in the preferred arm. Although exact data values are not provided, elbow position 

sense absolute error values range from approximately 3.6° in the young adult (20-30 years) to 

approximately 5.8° in the child group (8-10 years). As children were not considered in the 

current thesis, the next highest absolute error score will be considered; this was produced by 

the older people group (70 years and over) and was approximately 4.6°.  

  

Figure 20. Average absolute errors in the elbow ipsilateral matching of 30° targets for different 
cross sections of the human life span (taken from Goble et al., 2010). 

Again, these values are similar to the knee position sense measures reported in this thesis. It 

therefore might be suggested joint position sense is similar in the knee and elbow joint. 

However, alternative research (Li and Wu, 2014) presented a higher value for elbow flexion 

absolute error score for elderly groups (6.7°±5.71). Further, Li and Wu (2014) reported 

shoulder flexion (8.1°±5.70), shoulder adduction (10.7°±6.63) and wrist extension (12.6°±7.7) 

absolute error scores. These are also higher than the reported knee absolute error scores in this 

thesis. The greatest difference in position sense reported between joints was over 10° when 

comparing knee extension and wrist extension of participants aged 30-44 years (Li and Wu, 

2014). Han et al., (2013b, 2013c) compared joint positon sense differences between joints in 

the body to explore the presence of a general proprioceptive ability or site-specific 

proprioceptive ability. Results provided evidence for a site-specific proprioceptive ability; 

Pearson’s correlation coefficients were not significant for any relationships between ankle, 

knee, shoulder, spine and finger joint position sense. This is supported by Paschalis et al., 
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(2009) who demonstrated significant differences between proprioceptive ability (both position 

and movement sense) of the arms and legs; the arms had better proprioceptive ability than the 

legs. Burgess et al., (1982) also reported differences in joint proprioception between the elbow, 

knee and hip. It is, therefore, apparent joints have different position sense ability; in fact 

evidence suggests position sense tends to be better for the more proximal joints compared to 

distal ones (Herter et al., 2014, Semmler and Miles, 2006), this may be due to the distribution 

of muscle spindles spanning each joint.  

These results are important to the clinical practitioner. It is thought there is a greater risk of 

joint injury when there is a pre-existing and potentially genetic global proprioceptive deficit 

(Han et al., 2013b). However, the existence of a global genetic proprioceptive ability is rejected 

in favour of a site-specific ability (Han et al., 2013b, 2013c). Therefore, practitioners should 

not assume if patients do not have comparative knee absolute errors scores to the data provided 

in this thesis, then global “proprioceptive training” (e.g. Swanik et al., 1997) will improve this 

deficit. Future studies should aim to provide more normative proprioceptive data on all joints 

using a reliable and valid method. Furthermore, more specific “site-training” of proprioception 

could be developed. 

In addition to knee joint position measures, this thesis also provide the normative data of knee 

injury and osteoarthritis outcome scores (KOOS) for an injured UK population. Qualitatively, 

it is apparent none of the five age groups considered scored the predicted 100 defined as “no 

knee problems” (Paradowski et al., 2006). This will be discussed in section 5.2.5. The effects 

of movement direction (knee flexion and extension), age (15-19 years, 30-44 years, 45-59 

years, 60-74 years and 75+ years), activity level (GPPAQ and Tegner), BMI (mass and height) 

and knee condition (KOOS and Lysholm) were also considered in the thesis. The following 

sections discuss each variable individually.  

5.2.1 The Effect of Knee Flexion and Extension on Knee Joint Position Sense 

Measurement  

The normative population data revealed greater knee joint position error scores into flexion 

than extension. The improved knee position sense into extension may be attributed to the type 

of agonist muscle group involved in the movements. Knee extension may provide greater levels 

of afferent feedback due to greater muscle spindle and Golgi tendon organ activation in the 

larger quadriceps muscle group compared to the smaller hamstring muscle group contraction 
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during knee flexion. Hip extensor muscle groups are more dominant in knee extension and 

contribute to knee extension movements, potentially providing additional joint afferent 

information and hence a heightened joint position sense in this movement direction. 

Participants are also working against gravity in knee extension trials, which require greater 

torque than knee flexion and hence greater muscle contraction and muscle spindle activation 

which may result in greater proprioception feedback.  

The knee flexion protocol was also more dependent on muscular strength as the testing began 

at 0° and the participant had to move from a high torque position to a low torque target angle. 

This may have provided a more challenging test than the knee extension task; the participants 

may have become more concerned with maintaining 0° than the target angle.   

Previous research has considered direction of movement and proprioception. Proske et al., 

(2000) investigated the effects of joint direction and movement sense. Their results specified 

TTDPM tended to increase towards flexion, they suggested this is because afferent information 

is reduced when muscle spindles are shortened compared to lengthen. However their work did 

not consider joint position sense. Friden et al., (1996) also reported differences in TTDPM tests 

between flexion and extension but did also investigate knee joint position sense using an active 

reproduction protocol. Friden et al., (1996) reported lower error scores for knee flexion 

movements compared to knee extension, attributing this difference to superior hamstring 

afferent feedback. However different starting positions, target positions and angular velocities 

were used in comparison to the current study and therefore comparisons should be completed 

with caution. Drouin et al., (2003) also considered direction and joint position sense and found 

no significant differences between flexion and extension again using a different joint position 

sense protocol. Previous studies do not support data in this thesis where previous studies show 

knee extension trials produced significantly higher joint position error scores than knee flexion 

trials. However, the normative data set in this thesis came from a power calculation to provide 

an appropriate sample size producing 90% power and alpha set at 0.05 this result may be more 

representative than previous studies.  

There is a limited amount of research considering the effects of knee direction on joint position 

sense and hence it is difficult to practically apply the findings of the current study to 

practitioners. There may be a difference between knee flexion and extension joint position 

sense and hence both directions should be used in clinical joint position sense testing. However 

it is also important to consider the magnitude of this difference, the current study revealed an 
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average difference of just 0.7° difference between knee flexion and extension absolute error 

scores. It can be questioned as to how clinically significant less than one degree is to a patient. 

Therefore future research should consider the correlation between knee JPS ability and 

functional performance.  

5.2.2 The Effect of Age on Knee Joint Position Sense Measurement  

Results of this thesis reveal no significant differences between the five age groups in either 

knee flexion or extension absolute error scores (p= 0.603 and p= 0.536 respectively). This is 

in agreement with Pickard et al., (2003) who also did not find significant differences between 

young and old populations in joint proprioception. However, Pickard et al., (2003) did not state 

there was therefore not an effect of age on proprioception; rather the older group participated 

in regular physical activity which may have negated a proprioceptive decline.  Indeed, evidence 

has indicated regular exercise attenuates the decline of proprioception with age (see section 

2.5.3). The majority of participants in the elderly groups in the current study took part in some 

form of exercise; 45-59, 60-74 and 75+ years of age reported average Tegner scores of 4.1, 2.5 

and 2.2 respectively and some participants in each age group reported a GPPAQ score of 

Active. This may have improved JPS ability. However, there was a significant positive, 

although weak, correlation between joint position sense into extension and age (r= 0.277, 

p=0.003), specifically as age increased, joint position sense absolute error scores also increase 

showing as age increases knee JPS ability may indeed decrease.  

The effect of age on lower limb proprioception has been considered in previous research 

(Ribeiro and Oliveira, 2010, Hurley et al., 1998, Pai et al., 1997, Petrella et al., 1997, Pickard 

et al., 2003, Kaplan et al., 1985, Stillman, 2000, Tsang and Hui-Chan, 2003) with results 

supporting an age-related decline in ability. For example, most recently Ribeiro and Oliveira 

(2010) compared knee joint position sense of young (average age 20.6 years) and older 

(average age 72.2 years) male participants and concluded the elderly group had double the error 

scores in joint position measurements than the younger group. An increase in knee joint 

position sense in elderly groups is further reported by Attwater et al., (1996), Pai et al., (1997), 

Petrella et al., (1997) Kaplan et al., (1985) and Hurley et al., (1998) despite the use of 

inconsistent joint position sense measurement techniques.  

This apparent age-related decline can be attributed to changes in both peripheral and central 

levels (Ribeiro and Oliveira, 2010, Hurley, 1998, Horak et al., 1989). At peripheral levels, 

166 



 

there is evidence to suggest the dynamic response and the total amount of muscle spindles 

reduce with age (Miwa et al., 1995). Specifically, there may be a reduction in intrafusal fibres 

such as nuclear chain fibres and an accompanying increase in the spindle capsule thickness due 

to muscle denervation (Swash and Fox, 1972, Herter et al., 2014, Ribeiro and Oliveira, 2007, 

2010, Shaffer and Harrison, 2007, Miwa et al., 1995, Mynark and Koceja, 2001). The changes 

in muscle spindle architecture may also be due to an increase in collagen and fibrous tissue 

content arranged in the inner capsule (Swash and Fox, 1972, Miwa et al., 1995). There is 

evidence to suggest the fibrous tissue encapsulating extrafusal muscle fibres thickens with age 

(Swash and Fox, 1972). In addition, nerve conduction velocity decreases and hence muscle 

spindle sensitivity decreases (Tanosaki, 1999, Mynark and Koceja, 2001) and the net number 

of mechanoreceptors serving a joint is reduced (Herter et al., 2014, Aydoğ et al., 2006, Iwasaki 

et al., 2003) with ageing. Overall, there is evidence to suggest peripheral changes to the muscle 

spindle with age would be detrimental to joint position sense ability.  

The central component of proprioception is also altered with ageing, there is a reduction in the 

dendrite system in the motor cortex and hence a reduction of motor neurones in the central 

nervous system (Ribeiro and Oliveira, 2010, Horak et al., 1989, Mynark and Koceja, 2001). 

The motor neurones that remain are larger and have a reduced conduction velocity (Campbell 

et al., 1973). There has also been anecdotal evidence of a reduction in grey matter and hence a 

less effective central nervous system (Scheibel et al., 1975, Herter et al., 2014). For a summary 

of all potential effects of ageing on proprioception see table five.  

With all evidence considered it might be surprising a more obvious age-related reduction of 

knee joint position was not found in this thesis. However it is important to consider the potential 

limitations of the withstanding literature. Firstly, histological studies that suggest peripheral 

changes to various mechanoreceptors with ageing are indirect measurements of nerve function, 

typically from cadaver studies and therefore lack functional correlations. Further, the use of 

gold and silver chloride stains is not always accurate, vascular structures can be mistaken for 

mechanoreceptors, the classification of mechanoreceptors is also inconsistent and the 

identification alone of mechanoreceptors does not imply functionality (Johansson et al., 2000, 

McCloskey, 1978). It is possible architectural differences in older mechanoreceptors occur 

without functional changes. Secondly, there is not strong evidence to suggest changes to 

muscle spindles with age occur in all relevant muscles to joint position sense, the reductions in 

muscle spindle function could be muscle dependent (Shaffer and Harrison, 2007). As such, it 

is plausible muscle spindles which are not affected by ageing could compensate for the loss in 
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afferent information from other muscles. Indeed it is possible Type I muscle fibres remodel 

and regenerate lost Type II muscle fibres within damaged fibres to ensure continued effective 

movement (Faulkner et al., 2007). Indeed, this may well be why some research suggests age 

has no negative effects on static function or joint position sense (Mynack and Koceja, 2014). 

Thirdly, there is very little evidence to suggest cutaneous, articular and Golgi-like or Golgi 

tendon organs are negatively affected by age (Ribeiro and Oliveira, 2007). Again, these fully 

functioning mechanoreceptors may compensate for the loss in some muscle mechanoreceptor 

function. Fourthly, another compensatory mechanism may occur in the central nervous system. 

It is possible peripheral deficiencies do occur in the muscle spindle with ageing and also central 

reductions in total number of neurones and grey matter. However, older adults may atone for 

the loss in the peripheral and central system by enhancing the sensitivity of central encoding 

of the remaining afferent information; this can be seen in studies examining attention and focus 

(Ribeiro and Oliveira, 2007, Meeuwsen et al., 1993). Herter et al., (2014) and Suetterlin and 

Sayer (2014) reported that elderly participants increased the attention given to motor tasks and 

hence central activity which may in turn attenuate the age-related decline in joint position 

sense. Finally, elderly people may have a reduced pain response due to a reduction in the grey 

matter processing capacity in appropriate pain regions (Quiton, 2007). Therefore, if testing of 

knee positions sensitises free-nerve endings, the elderly may not process this nociceptive 

afferent information and continue sensations of position (Quiton, 2007).  

The results of this thesis demonstrated no obvious differences between the five age groups 

considered. However, knee extension position sense was positively correlated to age. This 

increase may be due to a combination of peripheral and central changes that may accompany 

aging. Clinical practitioners should use this information to inform proprioceptive treatment of 

elderly groups. It may be necessary to improve knee joint position sense to reduce the risk of 

injury. However, practitioners should not assume elderly or older age patients will have a 

proprioceptive deficit. Future work needs to consider how older age groups may make 

peripheral and central adaptations in order to compensate for age-related changes to 

proprioception.  

5.2.3 The Effect of Activity Levels on Knee Joint Position Sense Measurement 

The results of the current study indicate exercise levels (active, moderately active, moderately 

inactive and inactive), measured using the general practitioner physical activity questionnaire, 
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have no effect on knee joint position sense into flexion. This is contrary to the majority of 

previous research findings. However, exercise levels did affect JPS extension scores. In 

particular there was a significant difference between the active and inactive participants; active 

participants had lower absolute error scores by 1.3°. Correlation analysis revealed no 

relationship between Tegner activity scores and JPS flexion ability. Although there was a 

significant weak to moderate correlation coefficient between Tegner activity score and JPS 

extension ability (r= -0.321); as Tegner score increased (indicating a higher level of sports 

performance) absolute error score decreased. Therefore it would appear activity level may 

influence performance of knee joint position sense in to extension.  

The majority of previous research reports that participation in regular physical activity 

improves knee joint proprioception ability (Ribeiro and Oliveira, 2010, Ribeiro and Oliveira, 

2007, Petrella et al., 1997, Xu et al., 2004, Tsang and Hui-Chan, 2003, 2004). Ribeiro and 

Oliveira (2010) and Petrella et al., (1997) state populations who exercised three times a week 

for at least 45-60 minutes had improved knee joint position sense compared to non-exercisers. 

Elderly exercisers can achieve similar proprioception levels to healthy (but not necessarily 

active) young controls (Tsang and Hui-Chan, 2003, 2004). Research has also considered 

elderly populations and specific proprioception focused sports such as Tai Chi (for example 

Xu et al., 2004) and dancing (Schmitt et al., 2005). Tsang and Hui-Chan (2003) compared 

elderly Tai Chi practitioners to elderly activity based controls and found the Tai Chi group had 

significantly better knee joint proprioception. This is supported in work by Xu et al., (2004) 

and in addition this group compared elderly Tai Chi practitioners to an age-matched runners/ 

swimmers group and golfers and found no significant differences. Indeed there is some 

discussion as to whether specialised proprioception based exercise is the only type of activity 

to increase joint position sense. Schmitt et al., (2005) considered professional dancers and 

concluded they did not have heightened joint position sense when compared to more traditional 

exercisers. As well as sporting events, training programmes may also improve proprioception. 

Strength training (Thompson et al., 2003) and passive knee motion (Ju et al., 2011) has been 

shown to improve knee proprioception of both elderly and young healthy individuals. As has 

been demonstrated previously in this thesis, researchers used a range of proprioceptive 

measurements, which may explain any inconsistencies in research findings. However, it does 

appear exercise of any type may improve proprioceptive ability, not just exercise such as Tai 

Chi and dance.  
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Exercise may improve proprioception at both the peripheral and central levels (Hutton and 

Atwater, 1992). It is known that the total number of mechanoreceptors does not increase with 

exercise (Ashton-Miller et al., 2001). However, evidence suggests exercise reduces the loss of 

muscle spindle afferent ability which may occur during periods of sedentary behaviour 

(Ashton-Miller et al., 2001). Hutton and Atwater (1992) suggest regular exercise induces 

morphological adaptations at muscle spindle level, specifically reduction in the latency and 

increase in the amplitude of stretch reflexes. Furthermore, Petrella et al., (1997) explains 

exercise increases muscle strength which increases muscle control and hence proprioception 

ability, however this would obviously only be represented during active joint position sense 

testing. The repetition of a motor skill, as occurs in regular physical activity, can also increase 

the sensitivity of muscle spindle sensation and increase reliance of afferent information 

(Thompson et al., 2003, Ju et al., 2010, 2011) which again would improve proprioceptive 

acuity. 

At the central level exercise may increase gamma motor neurone signals which in turn could 

increase muscle spindle sensitivity (Ashton-Miller et al., 2001). Ribeiro and Oliveira (2010) 

further suggest exercise affords the opportunity to make plastic changes in the central nervous 

system, which can improve the strength of synaptic connections among neurones. It is believed 

continuation of exercise into retirement ages creates a compensation for the loss of peripheral 

changes, such as reduced number of muscle spindles, by enhancement of sensitivity of the 

central encoding of sensory input (Horak et al., 1989). However, further research is required 

to substantiate these theories. 

It is evident regular exercise could improve knee joint position sense, data from the current 

study provided support for this during knee extension results. However, there were no 

significant effects of exercise on knee flexion position sense. One possible explanation for this 

is the range of movement from 0° (unloaded) to a bent knee position is used less in sport and 

exercise than the extension movement from a bent knee to a midrange position commonly used 

in locomotion. Therefore physical activity may only enhance joint position sense in positions 

that are most commonly used in the movement. This raises an important methodological issue; 

joint position sense is a static measure of proprioception, but active or passive movement to 

that position cannot be avoided. Therefore, it may be incorrect to state the measurement of 

knee joint position sense is uniquely static, as it must always involve movement to and from 

the target position. This will be discussed further in the limitations section of this chapter.  
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A further issue to discuss is that the sample used in the current study may be representative of 

a more active population as it would appear even the participants over the age of 60 participated 

in some form of physical activity. The average Tegner scores for participants aged 60-74 years 

and 75 years and over were 2.5 and 2.2 respectively; this indicates participants were able to 

walk on uneven ground and participate in some physical activity. It should be noted here the 

Tegner scale has been shown to be reliable and valid and hence results can be trusted (Tegner 

and Lysholm, 1985). As previously discussed an increase in age can amount to a reduction in 

the number of motor units (Doherty, 1993), reduced excitability, cross-sectional area and fibre 

size and number of muscle mass (Vandervoort, 1992, Stalberg, 1989). For example by 80 years 

of age there is evidence to suggest the total number of muscle fibres will have decreased by 

50% compared to a 50 year old (Faulkner et al., 2007). Therefore it would be expected that 

older people have diminished proprioception. However, if older aged people continue or begin 

to participate in physical activity these muscle degeneration effects may be attenuated (Ribeiro 

and Oliveira, 2010) and muscle spindles may even be reinnervated by capturing neighbouring 

fibres that have become denervated (Vadervoot, 1992, Stalberg, 1989). This re-innervation of 

Type II muscle fibres to Type I fibres allow the cross sectional area to remain constant. 

Evidence further suggests potential reduction in the efficiency of the peripheral nervous system 

(muscle spindle) with age can be compensated for in the central nervous system; older people 

may enhance the sensitivity of central encoding of sensory information which has been 

reported as an increase in task attention (Ribeiro and Oliveira, 2007, Meeuwsen et al., 1993) 

and hence reduce errors in position sense. Therefore, if the sample used in the current study 

were relatively active then joint position sense declines may have been mitigated by this 

activity. This may explain why knee joint position sense measures were not significantly 

different between GPPAQ groups; the sample did not include the required variation in physical 

activity to identify differences in knee flexion joint position sense.  

Although, it is important to highlight, Briggs et al., (2009) collected Tegner scores from 448 

uninjured participants in the United States and in fact reported at average Tegner score of 4.6 

for the over 60s age group. So, in fact, the current study may not represent a normal population. 

However, another possible explanation is that Tegner and GGPAQ scores are not sensitive 

enough to detect differences in all knee joint position sense measurements. Future research 

may consider the relationship between position sense and a direct measure of fitness such as a 

maximal aerobic test.  
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In conclusion, it appears exercise of any type may improve proprioceptive ability into knee 

extension, not just kinaesthetic exercise such as Tai Chi and dance. In fact, it may be that 

clinical practitioners should consider physical activity level as a more important proprioceptive 

variable than age (Rikli and Busch, 1986). This has important implications for clinical 

practitioners practice; it may not be necessary to introduce what has traditionally been known 

as specific “proprioceptive exercises” in training programmes but simply exercise of any type. 

Section 5.2 suggests there is not a “general proprioceptive ability” as such. Therefore, it may 

be more appropriate to include regular physical activity to improve proprioception ability. 

However there is still further work to be done on exercise and position sense ability to ensure 

the most effective programmes are implemented. 

5.2.4 The Effect of Gender, Mass, Height and BMI on Knee Joint Position Sense 

Measurement 

Results of this thesis revealed gender did not affect knee joint position ability for either flexion 

or extension. This is comparable to Hertel et al., (2006), Harriell et al., (2010) and Schmidt et 

al., (2013) whom also reported no gender effects on knee proprioception. A limitation of the 

current study is that hormone levels and menstrual cycle phases were not recorded from the 

female participants as part of the data collection phase. Therefore, the theory that menstrual 

hormones can affect proprioception cannot be disregarded. However, the standard deviations 

between men and women in each age group were very comparable (see Table 13); if a hormonal 

effect was present you might expect more variation in proprioceptive ability from the female 

participants due to the potential effects of the menstrual cycle. However, this does not to appear 

to be the case. Therefore, there is no evidence that men and women have different joint 

positions sense ability and hence clinical practitioners should not use different treatment 

practices for men and women.  

There were some weak to moderate relationships between JPS into extension and height and 

BMI in the current study (see Section 4.1). One possible theory to explain the relationship 

between height and knee JPS into extension may be the length of the lever involved in knee 

extension. It would be logical to assume taller participants will have longer lower limbs; this 

would increase the torque produced (as torque = force x perpendicular distance from the axis 

of rotation) during knee extension (moving away from the axis into the mid-range target angle) 

compared to a shorter lower limb (assuming force is equal). This is turn may increase the 

“muscular sense” of the longer lever, indeed the mid-range target angle used in the knee JPS 

172 



 

extension protocol is within the range of maximum torque production. This may improve joint 

position sense. However, this is pure speculation and furthermore the correlation between knee 

joint position sense into extension and height was weak (r=-0.191) (Cohen, 1992); this cannot 

be attributed to an inadequate sample size as a power calculation was conducted prior to data 

collection. As such, this relationship may not be significantly relevant to clinical practitioners 

and practices should not be adapted dependent on height.  

Joint position sense extension absolute error scores were also positively correlated to BMI. 

Paschalis et al., (2013) considered the effect of BMI on knee joint position sense in three knee 

flexion target angles. Results revealed overweight (BMI>29kg/m2) participants had 

significantly lower joint position sense ability. This may be attributed to muscle atrophy in 

overweight participants (Paschalis et al., 2013) and a lower number of activated muscle 

spindles and hence reduced proprioceptive ability. Therefore, clinical practitioners may need 

to allow for some deficits in knee joint position sense when treating overweight patients. 

However, relationships do not provide cause and affect evidence; it may be the increased BMI 

was not the cause of the decrease in knee JPS scores. Furthermore, the relationship was only 

moderate at best (r=0.204) (Cohen, 1992).  Again, it is recommended clinical practitioners do 

not modify their treatment based on BMI alone.  

In addition, there was no relationship between JPS extension scores and mass or JPS flexion 

scores and any anthropometric data. The methods used in this study were reliable and valid. A 

sample size calculation also ensured the study had adequate statistical power. Therefore, we 

can be confident the results of this study can be generalised and used by clinical practitioners. 

This particular analysis provides evidence that mass, height and BMI may not be correlated to 

knee joint position. Therefore it may not be necessary to match control groups by mass, height 

and/ or BMI in future knee joint position sense research. Also, clinical practitioners do not need 

to modify their practice based on gender, height, mass or BMI.   

5.2.5 The Effect of Self-reported Knee Condition on Knee Joint Position Sense 

Measurement 

Participants in the normative sample were free from lower extremity injury. However, 

participants also completed a KOOS (knee injury and osteoarthritis outcome score) survey and 

a Lysholm survey to confirm they were truly free from lower extremity injury. Both scales 

have been shown to be valid and reliable (Collins et al., 2011, Lysholm and Gillquist, 1982). 
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The current results of the self-reported surveys suggested some participants, although verbally 

stating they did not have a current injury prior to data collection, may have knee problems not 

diagnosed by a health care professional. Indeed, no age group presented an average KOOS 

score of 100 (no knee problems) and the lowest KOOS score across the sample was 26.8 (male 

aged 69 years) despite no clinical diagnosis. This is supported in work by Paradowski et al., 

(2006) who completed a large scale (N=568) KOOS survey and concluded age and gender 

affected KOOS scores. Furthermore, Paradowski et al., (2006) failed to report any age group 

with an average KOOS score of 100 (no knee problems). Similarly, no age group in this thesis 

data produced an average Lysholm score of 100 (no knee problems). This implies it may be 

difficult to collect data from a truly “uninjured” i.e. no pain, swelling, stiffness or soreness in 

the knee, population.  The results of the normative study revealed significant weak to moderate 

negative relationships between JPS extension absolute error scores and KOOS and Lysholm 

scores, suggesting as knee problems increase JPS ability decreases.  

Pai et al., (1997) compared threshold to detect passive motion in patients with knee OA to 

elderly and young control groups. Results suggested the OA group had worse knee kinaesthesia 

than the other two control groups; the OA may have caused mechanoreceptor damage in the 

knee joint which reduces joint proprioception. However, this research needs to be repeated with 

joint position sense measurements. In future joint position sense research it may be important 

to match groups by KOOS and/ or Lyshom scores in addition to age and activity levels. If an 

injured group is compared to an uninjured group, KOOS and/ or Lysholm may also be used to 

check the uninjured group have no undiagnosed issues.  

 

5.2.6 Summary 

Normative values of knee joint position sense across five age groups and both genders were 

provided in study three of the thesis. This normative data may be used by practitioners to 

evaluate rehabilitation programmes and also screen patients for proprioception imbalances and/ 

or deficits. The study also investigated the effects of knee direction, age, activity levels and 

knee condition on joint position sense. In this sample, direction of movement affected the 

measurement of knee joint position sense and hence practitioners should measure both knee 

flexion and extension. Age and BMI may also influence joint position sense ability. As age 

increases JPS extension absolute error scores decreased, and as BMI increased JPS extension 
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absolute error increased. Therefore, practitioners should match controls to age and BMI. 

However, it is important to consider the knee joint position sense protocol used in this thesis 

measured the conscious outcome of afferent and efferent signals. There is no evidence to 

confirm a strong link between conscious and unconscious proprioception. It may be more 

sensitive protocols are necessary to identify the unconscious differences in peripheral and 

central commands in an individual in future studies.   

5.3 The Effect of Injury on Knee Joint Position Sense Measurement 

5.3.1 A Non-Athletic ACL population 

Two reviews on the risk factors of lower extremity injuries did not include joint proprioception 

(Neely, 1998, Murphy et al., 2003). This demonstrates researchers may not consider 

proprioception deficits are an important injury risk factor. However, data from study four of 

this thesis, suggests ACL deficient patients do have reduced joint position sense ability and 

hence it is important clinicians consider proprioception aspects in rehabilitation programmes. 

Specifically, ACL patients had knee joint position error approximately 60% higher than 

uninjured knees and external controls. Many researchers have provided evidence to support 

knee joint position sense deficiency following ACL injury (Bonfim et al., 2003, Roberts et al., 

2000, Rehm et al., 1998, Barrett 1991a, Carter et al., 1997 Corrigan et al., 1992, Ochi et al., 

1999, Katayama et al., 2004, Baumeister et al., 2008). However, the majority of previous 

research measured knee proprioception using protocols that were potentially unreliable and not 

validated. Therefore, the current study is the first to provide evidence of a joint position sense 

deficit following ACL injury.  

Over the last three decades authors have increasingly supported the notion that ligaments only 

play a supplementary role in proprioception (Burke et al., 1988). However, results of this thesis 

on ACL patients and knee joint position sense report the anterior cruciate ligament may provide 

more important primary afferent information. Articular receptors in the ACL can contribute to 

joint position sense of the knee (Johansson et al., 2000). The loss of these receptors following 

injury is thought to cause a deficit in the sensory information provided for accurate static 

proprioceptive ability (Marks et al., 2007, Barrack and Munn, 2000). ACL injury is also 

associated with menisci damage within 73% and 98% of patients (Marks et al., 2007). This can 

result in increased knee laxity and potentially poorer proprioceptive ability (Roberts et al., 

2004a). The results of this thesis suggest mechanoreceptors in the surrounding knee muscles 
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and adjacent joints are unable to compensate for the loss of ACL afferent input. It may well be 

the afferent information transmitted following an ACL injury is non-physiologically organised 

during the ensemble coding procedure and hence the central nervous system cannot process 

this information as accurately as pre-injury status (Marks et al., 2007).  

An interesting finding was patient’s uninjured limb had better knee joint position sense than 

external controls. Previous research has indicated the opposite to this finding; the contralateral 

limb of ACL patients having poorer knee proprioception than external controls (Arockiaraj et 

al., 2013). The improved ability in the contralateral leg in patients may be attributed to a 

training effect during rehabilitation. ACL injury rehabilitation may be focused on muscle 

strengthening and improved sensorimotor ability around the knee joint. The uninjured leg 

would therefore achieve muscle hypertrophy around the uninjured knee and perhaps increase 

muscle spindle activity and hence increase knee joint position sense. This may also be 

explained by compensation techniques used by ACL deficient patients. Due to a reduction in 

trust on the deficient side, patients subconsciously train the uninjured limb to dissipate higher 

loads during movements such as landing and gait and hence increase muscle tone on the 

uninjured side which in turn may increase proprioceptive ability.   

In summary clinical practitioners can now be more confident of a joint position sense deficit 

following ACL injury. This increase in position error appears to be 60% higher than uninjured 

knees. Therefore, it is important practitioners continue to develop rehabilitation programmes 

that aim to improve position sense in specific joints. However, it is not yet known how 

functionally significant this deficit would be to patients. Section 5.7 discusses this important 

point in more detail.  

5.3.2 An Elite Athletic ACL population 

It has been suggested that non-injured elite or high performing sports athletes have a heightened 

proprioceptive ability (Safran et al., 2001, Lephart et al., 1996, Barrack et al., 1984a, 1984b, 

Euzet and Gahery, 1995, Muaidi et al., 2009, Kiefer et al., 2013, Han et al., 2013, Waddington 

et al., 2013, Lin et al., 2006, Courtney et al., 2013). This may be because of innate 

characteristics that predispose them to participation in elite levels of sport (Euzet and Gahery, 

1995) and/or development of muscle spindles and central processing following long term 

training (Ashton-Miller et al., 2001). Despite this, it is clear from the plethora of literature 

available on athletic populations that athletes (even at the elite level) experience ACL injury 
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and may maintain a proprioception deficit even after rehabilitation causing secondary injuries 

(Ribeiro and Costa, 2001, Kamath et al., 2014). However, there is limited research on knee 

proprioception measures of elite athlete’s following ACL injury and repair. 

Results of study 4.2.1 indicate that elite athletes with previous ACL injury had reduced knee 

joint position sense in both flexion and extension when compared to external controls and their 

contralateral knee. Therefore, elite athlete’s increased proprioceptive ability may not 

predispose them from ACL injury, or not all elite athletes have higher proprioceptive acuity 

compared to controls. Stillman et al., (1999) reported no differences in knee joint position sense 

between elite Australian Rules footballers and non-athletic controls. As with the majority of 

injury-related studies, all data in this thesis is retrospective and therefore it is impossible to 

select the correct explanation for ACL injuries to elite athletes. Of course, injuries are multi-

factorial, so it may be another factor is the main cause. For example Wojtys and Huston (2000) 

reported muscle strength to be significant risk factor of ACL injury. Also, the knee joint has 

visco-elastic properties during physical activity; therefore knee laxity is known to increase with 

participation in sport (Dieling et al., 2014). For example, Nawata et al., (1999) demonstrated 

an increase in knee laxity following acute bouts of exercise that persisted up to 120 minutes 

after the task. This is supported in earlier work by Skinner et al., (1986b); exercise increases 

knee joint laxity which may reduce proprioceptive ability. Synthesis of this evidence on elite 

athletes provides a potential explanation for the continued rate of ACL injury in sports; firstly, 

if athletes do have an increased proprioceptive acuity, this may become reduced by the increase 

in knee laxity. Secondly, if some elite athletes do not have a heightened proprioceptive ability, 

an increased knee laxity could potentially reduce proprioceptive levels below normal non-

exercising people. Either way both theories will result in an increased risk of knee injury.  

It should be stated that there has been some acknowledgement of variability in the 

neuromuscular control in athletes. Indeed clinical practitioners will be aware of the so called 

“copers” and “non-copers” of ACL injuries (Herrington and Fowler, 2006). An athlete with an 

ACL knee injury can either continue participation in their sport, even at an elite level, or require 

almost immediate surgical reconstruction. Clinical practitioners should use the recommended 

measurement technique in this thesis to identify athletes with higher than average (>5°) knee 

joint position sense error. It may be these athletes are the “non-copers” and hence should be 

monitored closely. Furthermore, following ACL injury there appears to be a 60% increase in 

joint position sense error. Clinical practitioners need to consider the functional applications of 

this in future studies.   
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Results of the current study indicate elite athletes’ contralateral leg was no different to the 

external controls. In the non-athletic population the contralateral leg was actually better than 

external controls. It may well be that non-athletic populations improve JPS in the uninjured 

knee as they undergo intense rehabilitation and have no loss of articular mechanoreceptors, but 

also may be compensating more for the injured leg. Whereas the elite athlete’s contralateral 

leg may not need to compensate as much as the injured leg may have better proprioception 

compared to the non-athletic group. Also, we compared elite athletes to a non-elite athletic 

external control group which is a limitation of the study design.   

Unfortunately, elite athletes for whatever reason are still at risk of ACL injury. This thesis 

provides evidence of a reduced knee position sense following ACL injury using a reliable and 

validated protocol. Therefore, preventative measures should be included in training 

programmes. However, as yet, it is unclear what preventative measures should involve. Future 

research must research appropriate exercises that are site specific and evaluate these using 

reliable and valid measurements as provided in this thesis.  

5.3.3 The Effect of Additional Injuries on Knee Joint Position Sense 

Measurement 

Study 4.3 provided a small mixed-group population of participants with a variety of knee 

injuries not including anterior cruciate damage. The injuries reported in this sample included 

early stage OA, patellofemoral pain syndrome, patella re-alignment, knee laxity, cartilage 

and/or menisci damage and tibial surgery. Results of this study indicated knee injuries other 

than ACL damage may not reduce position sense ability in to either flexion or extension 

compared to age and activity level matched controls. The injured group differed to the control 

group by only 0.3° and 0.1° for knee flexion and extension respectively. In addition, standard 

deviations which may be used as an indication of variability (Field, 2005), were similar 

between the injured and control groups for both knee flexion error scores (mean difference of 

0.29°) and extension error scores (mean difference of 0.23°). Therefore the distribution of 

average error scores appeared to be unaffected by the range of knee injuries in the patient group 

compared to the normal variability levels in the uninjured group. There does not appear to be 

any secondary research on the effects of tibial surgery on knee proprioception. However, the 

sections that follow will discuss how knee injuries may or in this case may not affect knee 

static proprioception. 
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Research highlights a decline in proprioceptive acuity following knee injuries other than ACL 

damage. The largest area of research is in proprioception and knee osteoarthritis. There is 

evidence to suggest dynamic proprioception (threshold to detect passive motion) is reduced in 

OA patients (Pai et al., 1997, Sharma et al., 1997, Koralewicz and Engh, 2000, Collier et al., 

2004, Lund et al., 2008, Hewitt et al., 2002, van der Esch et al., 2007, 2013, Cammarata et al., 

2011, Chang et al., 2014, Sanchez-Ramirez et al., 2013). There has also been evidence to 

suggest joint position sense (static proprioception) reduces in OA patients (Garsden and 

Bullock-Saxton, 1999, Hurley et al., 1997, Mohammadi et al., 2001, Marks et al., 1993, Barrett 

et al., 1991b, Hassan et al., 2001, Bennell et al., 2003, Segal et al., 2010, Felson et al., 2000, 

Sanchez-Ramirez et al., 2013, Hurley, 1997). This decline in proprioceptive ability has been 

attributed to impaired articular receptors in the involved knee, a reduction in gamma motor 

neurone activation and reduced sensitivity in muscle spindles, inflammation and effusions and 

concomitant injuries to other knee tissues (Knoop et al., 2011, Lund et al., 2008). Therefore, a 

reduction in knee proprioception was predicted in the current study, but this was not the case.  

In contrast, Hall et al., (2006), Lund et al., (2008) and Bayramogku et al., (2007) failed to find 

any differences in JPS between OA patients and external controls which is similar to the result 

of the current study. Therefore, it is possible OA patients do not have static proprioception 

deficits due to the degeneration of knee tissues and effusions caused by the disease. It is 

plausible patients are able to compensate, perhaps via increases in muscle afferent input and 

central nervous system attention, and keep knee joint position sense similar to asymptomatic 

controls. It may also be the tissues that are most affected by knee OA do not play a primary 

role in knee joint position sense (such as menisci) and furthermore the potential benefits of 

articular afferents may have already been lost with age (Simmons et al., 1996, Attfield, 1996). 

Indeed there is evidence to suggest following total knee arthroplasty and knee replacement 

surgery in which large sections of tissue are completely removed, patients do not demonstrate 

a reduced static proprioceptive ability (Buz-Swanik et al., 2004, Attfield et al., 1996, Cash et 

al., 1996). Patients’ knee JPS may even improve following surgery (Isaac et al., 2007, Ohuchi 

et al., 2014, Attfield et al., 1996). The surgical techniques used in total knee arthroplasty or 

replacement may preserve mechanoreceptors in tissues such as the capsule, ligaments, fat pads, 

and perimeniscal tissue, promote regeneration of the sensory afferents and help modify 

protective reflex arcs but adjusting capsular tension (Safran et al., 1994). These considerations 

can reduce the pain and inflammation in the joint and restore the capsule joint space and along 

with an improvement in daily living and physical activity levels can actually improve 
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proprioception. However, there is also evidence that suggests surgical treatment impairs knee 

proprioception (Ishii et al., 1997, Pap et al., 2000, Weiler et al., 2000). Clinical practitioners 

should therefore be aware that some OA patients may benefit proprioceptively from surgery, 

whereas some patients may cope with OA (as appeared to be evident in this thesis) and will 

not need surgery.  

It is important to consider the error score values from the supporting literature. Hall et al., 

(2006) reported knee JPS error scores between 5° and 6.5° in their OA patients using a similar 

method to the current study; but failed to include a control group. As the contralateral leg may 

also be affected by OA (Sharma et al., 1997) it is difficult to conclude that OA did not decrease 

JPS acuity. Lund et al., (2008) reported JPS error scores between 5° and 6° in OA patients and 

4.6° and 6.5° in matched external controls using an active-active replication protocol using 

electrogoniometery. Furthermore, Bayramogku et al., (2007) reported even greater error scores 

between 4°and 9° in OA patients and 5° and 8° in matched controls using an IKD passive-

passive protocol. These ranges of knee JPS are higher than reported in the current study (range 

between 2.8° and 3.7°). Obviously, the reported studies only include OA patients, whereas the 

current study included all non-ligament knee injuries and therefore the effect of OA may have 

been masked by other knee injuries. However, standard deviation scores do not support this 

notion. The severity of OA in the current study was only early stage (Kellgren/Lawrence scale 

Grade 1 – minimal degenerative joint disease), so again the reduction in JPS ability may have 

been less evident. However, the external control groups in Lund et al., (2008) and Bayramogku 

et al., (2007) also had increased knee JPS than the current study, in some cases more than 

double. This may be due to the sensitivity of the protocols; Bayramogku et al., (2007) used a 

passive-passive protocol, thus eliminating much of the afferent information that is contributed 

by muscle spindles and hence decreasing position sense. The reliability and validity of JPS 

measurement was not reported in literature and therefore the higher values could be due to 

increased measurement error. The results of the current study were taken using a reliable and 

validated technique; therefore future studies may use this method when collecting OA patient 

JPS data. An additional problem with research in this area may be that external control groups 

are aged matched and thus these participants may also have degenerative knee JPS caused by 

other age related declines that are not clinically diagnosed (see section 5.2.2).   

Indeed, there is no evidence to support correlations between OA and functional performance 

measures (Marks et al., 1993, Bennell et al., 2003). The most significant predictor of OA 

progression may be BMI and maximum voluntary quadriceps contraction not proprioception 
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(Hassan et al., 2001, Segal et al., 2010). Although, this thesis provides some evidence of weak 

to moderate correlations between knee JPS into extension and Lysholm and KOOS self-

reported scores. Therefore research into OA and knee conditions and joint position sense is 

warranted in the future.  

Patellofemoral pain syndrome (PFPS) is a painful and unfortunately common injury in 

physically active people (Baker et al., 2002). As with OA patients there is evidence to suggest 

this knee problem will decrease static proprioceptive ability. In both weight bearing and non-

weight bearing conditions PFPS patients demonstrate poorer knee joint position sense than age 

and physical activity matched controls (Baker et al., 2002, Callaghan et al., 2008). This 

difference was attributed to the abnormal tissue stresses caused by an increase in the lateral 

tracking of the patella in PFPS patients (Callaghan et al., 2008). This could potentially “dis-

organise” the afferent signals at the peripheral level and create abnormal motor control patterns 

(Callaghan, 2011). However, research into PFPS is relatively scarce compared to OA and ACL 

injury and hence it would perhaps be premature to conclude PFPS does induce proprioceptive 

declines in all patients. Indeed in the current study no differences were found between knee 

injury patients including those with PFPS and matched controls. Further, Naseri and 

Pourkazemi (2012) failed to find a reduction in weight bearing and non-weight bearing knee 

JPS in PFPS patients when matched to controls. This could be due to the severity of the 

syndrome, it may well be, as with OA, greater severity of the knee disorder increases the 

proprioceptive problem (Naseri and Pourkazemi, 2012). As the syndrome is most common in 

physically active people, it could also be that this population have a heightened proprioceptive 

ability (see section 5.2.3) and the injury simply reduces their ability to the normal 

asymptomatic population. Alternatively, Callaghan (2008) proposes the argument for “copers” 

and “non copers” with knee injury. He states some PFPS may be able to “cope” with the injury 

by using the brain’s plasticity possibilities; the central nervous system is able to adapt and 

compensate for the misalignment of the patella whilst others are unable to “cope”. Clinical 

practitioners again as with OA patients cannot be overly confident in presuming patients with 

knee injuries, in this case PFPS, will have a proprioceptive deficit. Until a large scale study 

using the reliable and validated method of knee joint position sense is completed, it is unclear 

if practitioners need to focus specifically on this in rehabilitation. However, if any patient 

presents with knee JPS above 5°, it perhaps be advisable to monitor this patient more closely.  

Patella misalignment could also cause knee proprioceptive deficiencies (Jerosch and Prymka, 

1996) although there have been limited investigation into this area. Correlated to patella 
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misalignment is the effect of knee laxity on proprioception, which has been discussed in 

previous sections (see 5.3.1 and 5.3.2). Briefly, an increase in knee laxity can cause abrupt 

movements of the joint, which may alter ligament afferent signals and disrupt knee 

proprioception (Sharma, 2004). However, again there is very little evidence to support this 

theory in symptomatic populations (Smith et al., 2014). Recently, Smith et al., (2014) did 

report only minimal loss of joint position sense ability in patients with recurrent patella 

dislocations and consequently medial patellofemoral ligament reconstructions. Thus, this 

patient group may not have reduced static proprioception and clinical practitioners may 

therefore not need to prescribe specific proprioceptive exercises in rehabilitation programmes.  

Cartilage and meniscal injuries are some of the most common knee injuries in physical activity 

(Diaz, 2013). As discussed in chapter two; there is evidence to suggest there may be 

mechanoreceptors in the cartilage and menisci of the knee. The medial meniscus may contain 

more mechanoreceptors as it is attached to both ligament and capsule whereas the lateral 

meniscus is attached only to ligament (England et al., 2009). Therefore it follows that again 

damage to these structures would alter the afferent information relayed to the central nervous 

system which may disrupt proprioceptive signals.  However, this theory was not supported in 

the current study; knee static proprioception was not reduced in a mixed knee injury group 

compared to controls. Therefore, it may be tentatively concluded meniscus and cartilage tears 

are not significant enough alone to disrupt proprioception.  

The pain and possible inflammation induced through any knee injury would increase the 

afferent discharge from the small diameter type III and type IV (pain) receptors and thus 

potentially dis-organise neuromuscular control about the knee joint and cause abnormal 

proprioception responses (Baker et al., 2003, Capra and Ro, 2000). However, there is a lack of 

evidence to support the notion that pain in fact increases joint position sense error. Indeed 

Bennell et al., (2005) reported no decline in knee JPS when the joint was injected with 

hypertonic saline to induce pain. This suggests pain within the joint may not alter static 

proprioception alone; it is plausible the muscle and central nervous system can adjust to this 

pain accordingly (Bennell et al., 2005). However, although not the focus of this thesis, the 

individuality of pain pathways and pain thresholds and the correct method to measure pain are 

still not clearly understood. Therefore, clinical practitioners should acknowledge this in 

practice. Furthermore, practically all knee injury related research is retrospective; therefore it 

is impossible to study if the injury was caused by or is the cause of knee proprioceptive decline. 

This should be addressed using longitudinal research designs in the future.  
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5.3.4 Summary  

In a recent injury survey into high level athletes (National Collegiate Athletic Association 

division 1) ACL injuries were reported as still a worrying and potentially career ending injury 

(Kamath et al., 2014). Therefore, it is imperative clinical practitioners are aware of any 

potential risk factors to this injury. This thesis presents evidence for knee joint position sense 

as one of these potential factors. Further, once ACL damage is acquired, if the severity of the 

injury increases, proprioception ability may decrease (Glencross and Thornton, 1981). Thus 

practitioners should use the method stated in this thesis to both pre-screen athletes and evaluate 

rehabilitation programmes prescribed to athletic patients.  

Contrastingly, the cluster sample of other knee injuries did not demonstrate a reduction in knee 

joint position sense. These injuries included early stage OA, patellofemoral pain syndrome, 

patella re-alignment, knee laxity, cartilage and/or menisci damage and tibial surgery. 

Therefore, from these initial findings it may be suggested any injury that does not damage a 

knee ligament, may not cause a JPS deficit. It is possible the damage to alternative structures 

is compensated for by other mechanoreceptors in and around the joint. However, in future 

studies larger samples of each injury should be considered to validate these findings.  

5.4 The Effect of Fatigue on Knee Joint Position Sense Measurement 

It has been suggested that fatigue induces changes to both the peripheral and central processing 

of sensory information. One theory suggests motor units become desensitised in conjunction 

with a fatigued state (Rozzi et al., 2000, Paschalis et al., 2007, 2008, Ribeiro et al., 2008, 

Hiemstra et al., 2001, Hutton and Atwater, 1992, Lattanzio and Petrella, 1998, Fortier and 

Basset, 2012, Gregory et al., 2004, Hutton and Nelson, 1985, Djupsjöbacka et al., 1994, 

Hayward et al., 1991) and therefore joint position sense becomes less accurate. Further, the 

motor unit may become less efficient due to a reduction in the number of functioning 

sarcomeres in damaged muscle fibres and / or muscle acidosis and associated metabolites 

(Fortier and Bassett, 2012, Skinner et al., 1986a, Skinner et al., 1986b, Lattanzio et al., 1998, 

1997, Changela et al. 2012, Ribeiro and Oliveira, 2011, Hayward et al., 1991). The release of 

fatigue induced metabolites also appears to modify the gamma-motor neurone and gamma-

alpha co-activation pathways (Hutton and Nelson, 1985, Fortier and Bassett, 2012) which 

negatively affects the motor control of movement (Roberts et al., 2004b). Fatigue may also 

increase joint laxity and again disrupt the central processing of afferent information (Changela 
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et al., 2012, Roberts et al., 2004b, Skinner et al., 1986a, 1986b). Additionally, an increase in 

pain during fatigued states can induce nociceptor activation (Type III and IV afferents) and 

reduce motor cortex excitability (Ju et al., 2010, Fortier and Basset, 2012).  

However, in spite of these theories study 4.4 reported knee joint position sense did not reduce 

following an individualised local peripheral fatiguing protocol. In fact, positional errors into 

knee flexion and extension reduced by 0.17° and 0.14° for flexion and extension directions 

respectively after fatigue. These values are well within the corresponding standard error of 

measurement values. Other research has also failed to find a main effect of fatigue on knee 

proprioception (Rozzi et al., 1999b, Bayramoglu et al., 2007, Skinner et al., 1986a, Miura et 

al., 2004, Stillman et al., 1999, Marks et al., 1993, Dieling et al., 2014). Therefore, peripheral 

muscular fatigue may not be able to reduce proprioceptive ability and thus it may not be a 

reduction in joint proprioception that increases the risk of injury with fatigue (Hiemstra et al., 

2001). However, a complementary theory to explain the results regards the fatiguing protocols; 

were the methods used actually able to produce a fatigued proprioceptive state?  The 

neuromuscular system is highly adaptable to changing states such as fatiguing (Enoka and 

Stuart, 1992) and Burgess et al., (1982) states the fusimotor system appears to be relatively 

fatigue resistant. Furthermore it is unclear whether intrafusal muscle fibres can be driven to 

fatigue in the same way as extrafusal muscle fibres. Indeed, Hutton et al., (1992) demonstrated 

that intrafusal muscle became stiffer during fatiguing due to the persistence of actin and myosin 

binding and hence may enhance proprioceptive information. Hutton et al., (1992) also 

predicted static proprioception (JPS) would not be affected by fatigue as Ia and II sensitivities 

were relatively unchanged by fatigue. In addition other mechanoreceptors such as those 

situated in the Golgi-tendon organ, joint capsule and skin may in fact increase in sensitivity 

with fatigue and potentially compensate for any loss of afferent muscle spindle information 

(Hutton et al., 1992). Adjacent joints and their included muscle groups could also potentially 

compensate for the loss of peripheral information from the affected fatigued joint (Hunter et 

al, 1992) as would happen in kinematics of movement during a musculoskeletal injury.  

It is also important to consider the central modifications that occur during fatigue (Noakes, 

2012); isolated peripheral or muscular fatigue to knee flexor and extensor muscle alone may 

not significantly impose a central fatigue affect. Central fatiguing has been defined as “…an 

unwillingness to activate the motor pathway to the extent expected, anticipated or required to 

perform the task” (Macintosh and Rassier, 2002, p.43). Thus if central fatiguing did not occur 

in proprioceptive pathways it may be that central processing of afferent information remains 
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effective and even potentially compensatory (through increased attention to the task (Ashton-

Miller et al., 2001) and/or activating progressively greater numbers of moto-neurones and /or 

by increasing their discharge rate) following the fatiguing protocol (Noakes, 2012, Lorist et 

al., 2002) . Evidence even suggests muscle spindle discharge increases and hence the gain in 

motor neurone discharge is increased during initial fatigue to activate muscles more strongly 

and keep force production consistent (Hutton et al., 1992). It is plausible intrafusal muscle 

fibres do not fatigue until the later stages, once the extra-fusal fibres have declined. Thus, it 

may not be possible to “proprioceptively” fatigue one joint using peripheral fatiguing protocols 

such as isokinetic dynamometry alone due to the various potential compensatory mechanisms 

(i.e. adjacent mechanoreceptors and central processing modifications) and difficulty in 

reducing intrafusal spindle performance.  A torque or force production may reduce after 

peripheral/muscular fatigue but proprioception may well stay constant, further there is no 

evidence of relationship between strength force production and proprioception (Enoka and 

Stuart, 1992). A peripheral fatiguing protocol was used in this thesis to keep the focus isolated 

on the knee joint alone as is consistent with all the previous thesis’ studies. However, it would 

appear researchers should possibly reconsider the use of this type of fatiguing task if 

considering its effect on static proprioception.   

This has been supported in research that considered more global procedures to fatigue such as 

cycling, running and match simulation (Roberts et al., 2004b, Bayramoglu et al., 2007, 

Lattanzio et al., 1997, Changela et al., 2012, Baharlue and Khayambashi, 2012, Miura et al., 

2004, Skinner et al., 1986a, Ribeiro et al., 2008). These protocols aimed to incorporate tasks 

that fatigue mechanoreceptors across multiple joints and the central nervous system. The 

majority of findings indicated a reduction in knee proprioception ability following the fatiguing 

protocol. Miura et al., (2004) attributed this reduction to a reduction in the efficiency of the 

central nervous system that reduced the precision of motor control and hence interrupted 

stabilising and controlling activities about the joint.  

The role of the central nervous system in fatigue is a relatively recent area of investigation 

(Taylor and Gandevia, 2008) as the more distal affects in the periphery have been the main 

focus for researchers. Recently, it has been suggested if central fatigue occurs there will be 

progressive supraspinal fatigue, changes in excitation and / or inhibition and potentially a 

reduced gain (the receptor output firing rate / magnitude of the input stimulus)  at the motor 

neuron pool (Taylor and Gandevia, 2008). However, it has also been proposed that peripheral 
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or muscular fatigue is governed by the central nervous system; the central components do not 

allow peripheries to become fully fatigued (Noakes, 2012) and in fact only allow a maximum 

of 60% of muscle mass to become activated during prolonged exercise (Sloniger et al., 1997a, 

b). This prevents the system from ever completely failing (Noakes, 2012). Further studies 

should investigate how central fatiguing affects joint proprioception. This has been completed 

to some extent in research on fatigue “sensation” or the sense of force (Enoka and Stuart, 1992, 

Enoka et al., 2011). This sensation is defined as the “…perceived effort associated with a 

task…derived from centrally generated motor commands that give rise to corollary 

discharges” (Enoka and Stuart, 1992, p1643). Fatigue may in fact be seen as a centrally driven 

sensation and this sensation may actually improve joint position sense (Noakes, 2012). Indeed 

Noakes (2012) states the effects of fatigue both begin and end in the brain. This will be 

discussed in more detail in section 5.6.   

In summary, results from the current study can inform clinical practitioners in two ways. 

Firstly, peripheral muscular fatigue may not induce static proprioceptive deficits; there was no 

main effect of fatigue on knee joint position sense. However, secondly, the peripheral muscle 

fatiguing protocol may not in fact induce proprioceptive fatigue. The actual measurement of 

the effects of peripheral muscular fatigue continues to focus on muscle contractile properties 

such as maximum torque output. However, this may oversimplify the processes involved in 

motor control. The measurements do not yet accurately consider central processes and may be 

oversimplified (Noakes, 2012). Furthermore secondary mechanoreceptors and central 

processing can adapt and compensate for the decline in extrafusal muscle damage and 

intrafusal muscle spindles may be relatively fatigue resistant. Future studies should consider 

central fatiguing using the reliable and validated knee joint position sense measurement 

technique identified in this thesis.  

5.5 Clinical and Functional Relevance 

This section will firstly discuss the clinical relevance of the reported joint position sense 

measures and link this to potential rehabilitation programmes. Secondly, it will explore the 

functional relevance of proprioception.  

The concept of proprioceptive exercises in rehabilitation programmes has been applied to a 

wide range of neurological, orthopaedic, arthritic and post-traumatic sport-related disorders 

(Stillman, 2000). However, the clinical significance of knee joint position sense data can be 
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considered in the context of the reported measurement errors in the reliability studies conducted 

in the thesis. Two knee joint position sense protocols are recommended in this thesis (see 

section 3.5). Both had excellent test-retest reliability (Cohen, 1992). However, other 

measurement error results are not quite as favourable. The standard error of flexion 

measurement was 0.4° and the standard error of extension measurement was 0.6°. This is equal 

to between 9% and 13% of the normative flexion error scores and 14% and 26% of extension 

error scores. Furthermore, in rehabilitation programmes it is also important to acknowledge the 

smallest detectable difference to ensure improvements are not masked by measurement error; 

for knee flexion the smallest detectable difference was 1.1° and for knee extension was 1.67°. 

If we relate these values to the normative values reported in study 4.1 it is apparent that the 

smallest detectable difference could constitute between 26% and 37% of the total absolute error 

score into flexion and 39% and 73% of the total absolute error score into extension. Clinical 

practitioners working in a pre-habilitation setting with uninjured normative participants would 

therefore potentially need to increase static proprioceptive performance by up to 73% of the 

patient’s current status to see a clinical improvement.  

It also follows that the statistical differences between ACL injured patients and their 

contralateral leg or external control groups may not have clinical relevance. Data from this 

thesis reveal knee joint position sense absolute error scores normally range from 2.3° to 4.3° 

in uninjured populations. A static proprioceptive error score of over 5° is thought be the 

minimum to indicate a clinically important difference (Callaghan et al., 2002 Burgess et al., 

1982). ACL patients from a non-athletic population had an average error score of 7.9° for the 

injured knee; this is between 3.5° and 5.6° higher than the normative data group. This 

difference is greater than both the standard error and smallest detectable difference for this 

measurement. Similarly elite athletes with an ACL injury had an average error score of 8.1° 

and 7.2° for knee flexion and knee extension respectively for their injured knee. Again, these 

values produce differences compared to the normative sample that are greater than the reported 

standard error of measurement and smallest detectable differences for the measurement 

protocol.  

Previously the magnitude of static proprioceptive abnormality necessary for a clinically 

discernible disturbance of functional knee capacity was unknown (Baker et al., 2002). 

However, both ACL groups had static proprioception scores above 5° and these values were 

taken using a reliable and valid tool. Therefore, this gives support to the previously arbitrary 

threshold for “poor ability” (Callaghan et al., 2002, Burghess et al., 1982). Clinical 
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practitioners may now be confident that ACL injury does reduce static proprioceptive ability. 

Thus, rehabilitation programmes may need to focus on improving this ability. Indeed a number 

of studies state proprioceptive training is an essential element of rehabilitation (Beard et al., 

1994, Caraffa et al., 1996, Cerulli et al., 2001, Lin et al., 2009, Soderman, 2000, Laskowski et 

al., 2000, Hewett et al., 2013, Swanik et al., 1997).   

Cerulli et al., (2001) define proprioceptive training as “…a series of exercises or situations 

that will elicit a response from the central nervous system in order to counteract external 

stimuli” (p.636). Furthermore, Swanik et al., (1997) states rehabilitation of proprioception 

ability must include four key steps; proprioceptive and kinaesthetic sensation, dynamic joint 

stability, reactive neuromuscular control and functional movement patterns. Examples of 

exercises included in proprioception rehabilitation programmes include balance training and 

closed kinetic chain exercises such as a single leg hops (Laskowski et al., 2000, Swanik et al., 

1997). These cause compressional loads in the knee and therefore it is believed to maximally 

stimulate articular mechanoreceptors as well as muscle spindles which may improve their 

function (Swanik et al., 1997).  

Clearly, clinical practitioners are aware of the importance of re-establishing proprioception 

after an ACL injury, but it is still unknown how and if rehabilitation exercises do in fact 

improve proprioceptive ability. Indeed there appears to be very little evidence “proprioception 

exercises” such as “wobble” and balance board tasks do actually improve proprioceptive ability 

(Stillman, 2000, Ashton-Miller et al., 2001).  There is some limited evidence that ankle 

proprioception improves following wobble board training (e.g. Waddington and Adams, 2004). 

Also Hurley and Scott (1998) reported knee joint position sense improvements in OA patients 

following five weeks of rehabilitation. However, the programme included strength training, 

cycling and functional training as well as “proprioceptive” balance board tasks and as such it 

is impossible to conclude which aspect resulted in the increase in knee JPS. Friemert et al., 

(2006) did provide evidence that continuous active motion movements improve knee joint 

position sense following ACL reconstructive surgery. However, again this exercise may not be 

seen as a true “proprioceptive” exercise. Joint position sense may also be improved if both 

visual and proprioceptive feedback is provided during the rehabilitation programme (Brindle 

et al., 2009). Although, it is clear these rehabilitation exercises can also improve muscular 

strength around the injured joint (e.g. Lin et al., 2009). Indeed, most clinical practitioners 

include more than only proprioception exercises into rehabilitation (Ingersoll et al., 2008, 

Swanik et al., 1997). These include strengthening, reflex-training and neuromuscular 
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activation patterns. Much of this would also help improve proprioception. Therefore, it is very 

difficult to attribute any potential proprioception improvements to the appropriate component.  

Clinical practitioners must remember balance is not synonymous with proprioception. It is also 

important to acknowledge balance based exercises may not be true tests of proprioception (e.g. 

Westlake and Culham, 2007, Perrin et al., 1999) as vestibular and visual systems are involved 

in this motor task (Ashton-Miller et al., 2001). Balance tasks may not in fact improve 

proprioception rather distribute more dependence to the visual and vestibular systems (Paillard 

and Brouchon, 1974, Brindle et al., 2009). Furthermore, Ashton-Miller et al., (2001) and 

Meeuwsen et al., (1993) propose balance training may not actually modify afferent information 

from the peripheral areas but more improve attention given by the CNS to the tasks and this 

improve central processing of the relayed afferent information. It is unclear if balance tasks 

modify the sensory or motor aspects of balance ability (Ashton-Miller et al., (2001). 

Furthermore, it is suggested balance ability is highly variable and unreliable (Brouwer et al., 

1998), another reason not to use this measurement as an indication of proprioceptive ability.  

Previous research investigating the effectiveness of proprioceptive exercises is the evaluation 

techniques; either the evaluation is completed using static and dynamic proprioception tests 

that have not be checked for reliability and validity (Cooper et al., 2005) or the evaluation does 

not include specific proprioceptive measures such as JPS or TTDPM (Ashton-Miller et al., 

2001) and/or the evaluation is the on the number of acquired injuries before and after the 

intervention (Soderman et al., 2000, Hewett et al., 1999, Caraffa et al., 1996). The latter issue 

has obviously limitations; injury occurrence is multi-factorial and hence this variable alone 

cannot identify any potential changes caused by the proprioceptive exercises. However, this 

does not mean proprioceptive exercises within rehabilitation programmes do not have an 

impact on proprioceptive ability especially since there is now strong evidence for sensorimotor 

plasticity and proprioceptive learning (Ostry et al., 2010). Indeed in earlier research Laszlo and 

Bairstow (1983) proposed children’s kinaesthetic sensitivity (measured using drawing tasks) 

can be improved providing their kinaesthetic awareness had been established during training. 

It may well be researchers as yet are not using the correct evaluation tools and/or proprioceptive 

exercises to optimise a potential cause and effect. The complex interactions and relationships 

between the individual components of the sensorimotor system make it very difficult to 

evaluate specific improvements of one of these components following rehabilitation.  
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If a proprioception deficit is present in some people, it is unknown as to when this deficit will 

begin to affect functional performance with either uninjured or previously injured people. 

Hurley et al., (1998) did find a moderate significant correlation between JPS acuity measured 

using a similar open chain sitting protocol to this thesis and functional time score, suggesting 

function declines with JPS ability decline. However, the time score was accumulated from “get 

up and go”, timed walk, stair ascent and stair descent tasks, thus may not be seen a valid 

functional tests for younger and healthy participants. Further, Gokeler et al., (2012) completed 

the most recent review into proprioceptive ability and functional performance following an 

ACL injury. The review considered any paper with sufficient quality that correlated JPS and/or 

TTDPM measures to strength, gait, knee laxity, hop tests, balance and/or patient-reported 

outcome scores. None of the functional tests had strong correlations to either JPS or TTDPM, 

the majority of correlation scores were low to moderate at best. Furthermore, the overall mean 

effect size of the correlations was just 0.4 which again shows a small correlation strength. The 

authors interpret this result in two ways; the first being the patients included in the review paper 

did not have a proprioceptive deficit large enough to cause functional declines. Indeed ACL 

patients produced a mean average error score of just 0.8° - 0.5°. This is much lower than the 

ACL patients in the current thesis (7.2° - 8.1°). The second interpretation being measurement 

tools were not sufficiently tested for reliability and validity and hence studies had low 

methodological quality. As discussed previously in this section, measurement error may then 

mask true proprioceptive ability. Gokeler et al., (2012) call for new proprioceptive 

measurement tools be developed and used to compare to functional performance.  

Other papers have further attempted to link proprioceptive ability to functional performance. 

Foch and Milner (2013) considered the relationship between both weight bearing and non-

weight bearing knee and hip joint position sense to running performance (specifically peak 

stance knee and hip angles). Out of the four relationships considered, only one had a moderate 

correlation. In summary, it would appear there is no strong evidence to relate proprioceptive 

ability to functional performance.  

However, there is significant evidence (see section 5.2.3) to suggest regular physical activity 

can have a positive impact on knee joint position sense. Perhaps specific proprioceptive 

rehabilitation or pre-habilitation programmes are not needed. It may be more affective to 

simply keep people physically active. Tsang and Hui-Chan (2004, 2003) reported significant 

correlations between knee joint position sense ability and limits of stability; thus elderly 

participants with better proprioceptive acuity had better dynamic balance. Dynamic balance is 
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a key factor in successful motor control. Therefore particularly in the elderly population there 

may be a more important link between knee JPS and function that is yet to be reported.  

5.6 Limitations  

This section will discuss the limitations of this thesis; divided into four sections. The first will 

discuss the effects of muscle history, known as thixotrophy, on knee joint position sense. The 

second will discuss the sense of effort or force on knee joint position sense. The third will 

discuss the current view of static proprioception measures. Lastly, the fourth section will 

discuss muscular strength.  

Thixotrophy 

One potential limitation of this thesis is the lack of acknowledgement of a well-known muscle 

characteristic called thixotrophy. Thixotrophy is described as the dependence of a muscle’s 

passive properties on the previous contraction and length change history (Weiler and Awiszus, 

2000, Gandevia, 2014). Thixotrophy properties are present in both intrafusal and extrafusal 

muscle fibres (Cordo et al., 2002). This characteristic can cause slackness or stiffness 

(depending on the direction of the prior movement) in the muscle due to previous contractions 

which results in a change in the resting discharge of the spindles; this specific reaction is known 

as length-dependent muscle conditioning (Proske, 2006). Further, if a muscle is conditioned in 

a flexed position prior to movement to a target angle in joint position sense measures the muscle 

will become stiffer and increase resting discharge rate (Proske, 2006, Gandevia 1014). 

However, the opposite occurs if the muscle is extended prior to positioning; the muscle 

becomes slacker and the resting discharge rate reduces (Proske, 2006). Thus, thixotrophy may 

negatively affect joint position sense (Gandevia, 2014); it has been suggested that an increase 

in 1° of error for every 2-3 imp.s-1 of resting discharge rate change (Gregory et al., 1988).  

However, it is important to note that even the most current research into thixotrophy and joint 

position sense (Tsay et al., 2014) was studied on the elbow joint; there is no research to consider 

the lower limb or knee joint. Furthermore, the major effects of thixotrophy occur during passive 

positioning and passive repositioning protocols, when there is limited formation of cross-

bridges due to the absences of active contraction (Proske, 2006). The knee JPS technique 

involved in the current thesis involved passive and active motion. Therefore, thixotrophy may 

be more important to consider in threshold to detect passive motion measurements, where the 

protocol only includes passive motion. Participants were given practice trials to become 
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familiar to the protocol and the direction of movement was randomised. Furthermore it is 

known thixotrophy effects reduce over time, hence the effect of thixotrophy may have been 

removed by the time data collection occurred (Tsay et al., 2014). This, this issue, although 

acknowledged, would not have significantly affected the results of the thesis.    

Sense of effort  

During experiments into the effects of thixotrophy on passive position sense, authors such as 

Proske (2006) and Gandevia et al., (2006) began to consider if there were any effects during 

active voluntary contraction and if not why not?  One aspect of the answer is an area of 

proprioception that has been relatively ignored in research with comparison to position and 

displacement sense, the sense of effort. A sense of effort was first suggested by Ekbolm and 

Goldbarg in 1971 during work on the validity of the Borg scale or Rate of Perceived Exertion 

(RPE); it appeared participants had different senses of effort from different body parts and 

exercise types during similar intensity exercise. Early work presented evidence of this 

additional sense during joint proprioception testing; Gandevia  et al., (1993) induced total body 

paralysis to participants, however they still reported a sense of ankle movement when asked to 

plantarflex this joint despite this being impossible. Later work by the same research group 

(Gandevia et al., 2006) blocked just the hand from all afferent and motor fibres using a pressure 

cuff and anaesthetic. Results indicated the participant could still sense the position and 

movement of the hand up to 20°. Both results were attributed to a sense of effort produced by 

the motor command itself (Gandevia et al., 2006). Future studies added that effort sense was 

available whenever afferent signals were present and even during isometric contractions (Smith 

et al., 2009). Thus during active, voluntary contractions the central nervous system generates 

an effort sensation alongside the motor command signal (Walsh et al., 2004). Therefore, the 

sense of position may well arise from both afferent peripheral proprioceptors but also from 

centrally driven signals (Semmler and Miles, 2006).  

This additional sensation is thought to enhance positional sense; but may not be thought of as 

a proprioceptive signal in its own right (Proske, 2006). Moreover the sense of effort may be 

the outcome of a central calculation made using the efference copy; this being the difference 

between the re-afferent (all the afferent signals from generated by fusimotor impulses) and ex-

afferent (response due to environmental stimulus) components of the total spindle system 

which equates to the conscious perception of the movement (Winter, 2005). Therefore the 
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sense of effort may contribute optimally at normal voluntary contractions without additional 

load, but with cues taken from the effects of gravity.  

The role of gravity in joint position sense has been considered (Proske, 2005). In environments 

with micro-gravity or macro-gravity the sense of effort is altered and thus active proprioception 

ability declines (McIntyre et al., 1998, Young et al., 1993, Harris et al., 2014). For example in 

a 2g environment participants found completing an ascending stepping task required 

“unusually great effort” (Matthews, 1988, p.437). The proprioceptive ability is further 

hampered in the absence of both gravity and vision (Young et al., 1993). Also, when torque 

about the limb is manipulated, position sense declines (Worringham and Stelmach, 1985). 

Furthermore, it is important to report the findings of position sense measures in the horizontal 

plane and hence gravity-neutral positions; the elbow for example has reduced position sense 

errors and hence increased static proprioception ability in the horizontal compared to the 

vertical plane (Walsh et al., 2006). This may explained by the absence of additional cues from 

gravity, and a potential reduction in the contribution of the sense of effort.  

Studies investigating the effect of fatigue, muscle conditioning and vibration on joint position 

sense contribute to our understanding of the sense of effort. For example studies have reported 

that when the sense of effort is removed by supporting the limb, position error increases 

(Winter et al., 2005, McCloskey, 1973, Horch et al., 1975, Gregory  et al., 1988). Indeed 

Goodwin et al., (1972) over 40 years ago reported position errors of between 12-15 degrees if 

the limb was held by the researcher. Evidence also shows that the decrease in matching error 

when the limb is not supported is not due to an increase in muscle spindles activity, as an 

increase in load on the limb does not reduce the error further (Winter et al., 2005).  

In addition, the sense of effort may be more resilient to fatigue than position sense as it is driven 

by the central nervous system and not the peripheral components (Hunter et al., 2004). This 

may provide another explanation for the results of study 4.4 in which peripheral / muscular 

fatigue did not reduce joint position sense; the protocol did not have any negative effect on the 

sense of effort. Therefore, following the fatiguing protocol there may have even been an 

increase in the sense of effort contribution (as the CNS contribution increases) and therefore 

this compensated for any potential losses of peripheral damage and hence position sense. 

Indeed previous research has found fatigue can increase the sense of effort (Proske, 2005, 

Enoka and Stuart, 1992) which may improve position sense. Fatigue is now seen as a centrally 

driven state or even an emotion or sensation (Noakes, 2012). Thus, it is clear the effects of 

193 



 

fatigue on joint position sense must consider the central components in addition to the 

peripheral affects (Ament and Verkerke, 2009, Noakes, 2012).  

In summary, the sense of effort may provide the “…absolutely essential service of informing 

the CNS of the over-all state of the muscular system and the ability of muscle to provide desired 

contractions” (Cafarelli, 1982, p.388). Therefore it is becoming increasingly evident a 

component of joint position sense may be derived from the motor command that generates the 

movement (Proske, 2006, McCloskey, 1978). Ultimately, this sense may be essential to the 

homeostasis of muscular performance and is hence another aspect of the body’s survival 

mechanisms (Cafarelli, 1982). Swart et al., (2012) recently proposed a task effort and 

awareness scale (TEA) to begin the measurement of this sense. Thus, future work may consider 

measurement of both position sense and the sense of effort to give a more optimal idea of 

proprioceptive ability.  

As an additional note, readers should not confuse the sense of effort with the sense of force; 

they are separate entities (Enoka and Stuart, 1992, Brockett et al., 1997). It is thought the sense 

of force is a combination of the sense of effort and the force production output (Jones, 1986). 

A good example of this is to consider the relationship between perceived effort and force; it is 

clear perceptions of force are apparent at much lower thresholds that perception of effort 

(Enoka and Stuart, 1992). Furthermore, it is suggested the sense of force is peripherally driven, 

whereas the sense of effort is centrally driven (Brockett et al., 1997, Ament and Verkerke, 

2009). Sense of force can be measured using matching force tasks based on the individual’s 

maximum voluntary contraction. Future studies might also consider this measurement.  

Proprioceptive measurement  

Knee joint position sense and threshold to detect passive motion are the two most common 

measures of knee proprioceptive ability; however this does not mean they are the most optimal 

techniques for illustrating proprioceptive ability. In this thesis a sitting, open kinetic chain, 

protocol was used for JPS data collection. The benefits of this technique are three-fold; 1.) All 

populations are able to complete the testing due to minimal joint loading therefore large scale 

normative data collection is possible; 2.) The knee joint can be isolated, so practitioners can be 

more confident they are measuring static knee proprioception without input from adjacent 

joints; 3.) The testing requires minimal participant training prior to data collection hence it is 

relatively quick and easy to complete. However, there are potential limitations to using passive-

active, open-chain JPS protocols. It has been suggested that active-active, closed-chain 
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protocols are more ecologically valid for collecting JPS ability as the movements and joint 

loads are more similar to everyday movement (Herrington, 2005, Ghiasi and Akbari, 2007, 

Stillman and McMeeken, 2001). Although, interestingly, current research has failed to provide 

strong evidence to support a relationship between joint position sense data (from any protocol) 

and functional activity (Marks et al., 1993, Bennell et al., 2003, Lee et al., 2009). For example 

Lee et al., (2009), Marks et al., (1993) and Bennell et al., (2003) did not find a significantly 

correlation between knee joint position sense and functional lower limb tests. Roberts et al., 

(2007) did find a relationship between a joint position sense index and single leg hop distance 

in ACL deficient patients, however, the calculation of an index of static proprioception is not 

a common variable and hence we cannot be certain this finding would hold true using other 

more popular measurements. To summarise, a sitting protocol similar to the one used in this 

thesis may have limitations to ecological validity. But further research is needed to provide 

evidence of a link between clinical JPS measurement and functional movements, and then 

ecological validity can be confirmed or rejected.  

In addition to the issue of ecological validity, the measurement error and hence practical 

usefulness of the reported JPS protocol should be briefly discussed here (see section 5.5 for a 

more detailed analysis). Smallest detectable differences were reported to be up to 67% of the 

absolute error score, this has obvious limitations. Further, the effect sizes of the normative 

correlation data were small to moderate. Therefore, JPS measurement may have practical 

limitations if taken from an uninjured population, for example when screening a sports team. 

However, effect sizes were large when considering the ACL patient groups; hence it may be 

more relevant to use JPS measurement with these populations. Further research needs to 

consider larger ACL patient groups and other injured populations to develop our understanding 

of joint position sense and injury.  

It is also evident that other protocols have been developed. For example Al-Othman et al., 

(1998) presented a weight-bearing knee raise test that focussed on accuracy in returning the 

foot to the same position on ground contact. This attempt to involve one complete movement 

from initiation, to a target position, back to the starting position may represent the more cyclical 

motions of human movement, therefore a more functional and ecologically valid test of 

proprioception positioning. However, no reliability or validity of this novel measurement 

analysis was reported. It may also be more appropriate to collect knee joint-position-sense 

using an active-active method, as it is again more ecologically valid (Lin et al., 2006, Kalaska, 

1994). Han et al., (2014) stated tasks in sensory measurement should be stimulus-response 
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compatible (i.e. as natural a movement as possible). The active-active protocol in this thesis 

had poor reliability and could not be implemented in the additional studies. Future studies 

should aim to develop this protocol, perhaps incorporating a more individualised set-up and a 

familiarisation session to improve reliability scores.  

The majority of knee joint position sense is collected in the sagittal plane. However ACL injury 

occurs as a combination of movements in sagittal, frontal and longitudinal planes. Therefore, 

more recently Mir et al., (2014) considered knee position sense in knee valgus and varus 

positions, thus in positions more similar to that during ACL injury. Reliability was reported as 

an ICC of 0.74 in the ACL risk position, which is moderately high. Also, position error was 

significantly higher in an at-risk position than a normal position. Therefore researchers may 

wish to incorporate JPS in this plane in the future.  Further, it is importantly noted that joint 

proprioceptive ability may differ from joint to joint (Matthews, 1987, Horch et al., 1975, 

Proske, 2006). For example it has been suggested that kinaesthesia ability is higher in proximal 

compared to that of distal joints (Proske, 2006). Practitioners should not generalise the methods 

used in the thesis to other joints.  

The validity of any measurement relies on our knowledge of the systems that control that 

measure. Figure two attempted to illustrate the required knowledge to design valid joint 

position sense measures. It has been suggested if proprioception was a simple afferent – 

efferent or input – output system errors in motor control would be much greater (see Burgess 

et al., 1982, McCloskey and Torda, 1975, Kalaska, 1994). Indeed it is well known motor 

performance decreases if efferent (McCloskey and Torda, 1975) or afferent (Marsden et al., 

1984, Mott and Sherrington, 1895) is provided in isolation. As such Ashton-Miller et al., 

(2001) presents a model in figure 21 that appreciates the roles of both afferent and efferent 

information and builds on the detail of these processes.   
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Figure 21. Taken from Ashton-Miller et al., (2001) p.130. A more detailed scheme of the 
pathways and functions of proprioception. INT indicates mathematically integration. See text 
for more detail.  

The lower box in figure 21 explains the autonomous aspect of proprioception below the brain 

stem. This is similar to the lower sections of figure two, however provides more detailed 

information on the hierarchical role of the mechanoreceptors. The muscle spindles are centrally 

modifiable and hence may have a more prominent role in afferent and efferent processing. 

Efferent signals via the alpha motor neurone pathway are integrated into joint positional 

information using segment mass, joint acceleration and joint velocity from the skeleton. The 

force and mass aspect of this diagram incorporates the sense of force discussed earlier. This 

detail is not appreciated in figure two.   

The upper box details the conscious higher nervous system components of proprioception. The 

novel detail in this Ashton-Miller et al., (2001) figure is the complex appreciation and 

integration of attention and motivation in proprioception, which contribute to the sense of 

effort. Attention may be critical to proprioceptive ability as this may be the neuropsychological 

process that decides which afferent information is relevant (Ashton-Miller et al., 2001, 
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Kalaska, 1994). There has been extensive research in the area of attention and motor tasks, 

however not much of this literature considers proprioceptive ability (Han et al., 2014). This is 

evident when patients are being rehabilitated following knee injury; they have to pay more 

attention to body movements to be successful. Figure 21 also highlights the significant role of 

the cerebellum, particularly in feed-forward processes; to combine and control all sensory 

inputs. The cerebellum may control muscle stiffness around the knee joint, in preparation for 

impending loads (Ashton-Miller et al., 2001). Schmidt (1971) critically identified the need for 

anticipatory responses in motor control, which may be the cerebellums important role in 

proprioceptive processing. This is supported in commentary from Boisgontier and Swinnen 

(2014) who support the notion that active movement to a target angle in joint position sense is 

improved because of feed-forward predictive models provided by the cerebro-cerebellar loop. 

Therefore, clinical practitioners should include active movement when measuring joint 

position sense to ensure the cerebellum is included in processing as would be during normal 

activity.   

The additional elements to the proprioceptive processes have yet to be confirmed by extensive 

primary research. However, in future studies it may be necessary to attempt to appreciate and 

even measure the possible contributions of attention, motivation and feedforward/ predictive 

modelling to understand an optimal proprioceptive state. Therefore, in comparison to figure 

two it is apparent proprioception may have been overly simplified in previous understandings 

and hence the measurement of knee joint position sense may need to be re-designed to take 

into consideration the various higher processing factors not appreciated in previous studies.  

Rehabilitation and pre-habilitation programmes may therefore improve both peripheral and 

central processes of proprioception; 1.) Increases in the fusimotor drive to spindles in 

challenging tasks 2.) Increases in the gain of the spinocerebellar and dorsal column-medial 

lemniscal pathways receiving afferent information 3.) Improve attention to relevant afferent - 

information. (Ashton-Miller et al., 2001).  

The Ashton-Miller et al., (2001) model clearly attempts to incorporate a more detailed picture 

of proprioception. However back in 1988 Matthews identified key problems with modelling 

and measuring what he called “complex messages” from proprioceptors and the accompanying 

“complex processing” of afferent information.  Thus, future proprioceptive measurements may 

be limited die to these problems. The first issue is the complexity of proprioceptor firing rate; 

this is based on the relationship between length and contraction type and can also be affected 
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by both primary and secondary receptor inputs. Thus, no one receptor gives one clear linear 

variable but rather a range of information based on many variables (Gandevia, 2014). The 

second problem again regards firing rates, but specifically when the limb is static. The afferent 

information from the involved limb in this condition is not only based on the current position, 

but the direction in which the limb travelled to this position (shortening or lengthening of 

muscles) and the length of time in this position; the path to the target position contributes to static 

appreciation of position sense (Horch et al., 1975). In the thesis this was only appreciated by keeping 

the angular velocity during passive placement of the knee constant and the target angle within a 30° 

area. Thirdly, joint position sense measurement techniques must appreciate afferent information 

comes from both agonist and antagonist muscle groups; hence theoretically any injury effect 

on JPS may be masked/ compensated by the opposing muscle group. Further, the distribution 

and density of spindles within and between muscles is not uniform (Gandevia, 2014). Making 

things even more complex is the evidence to suggest spindle density is not correlated to 

proprioceptive performance (Gandevia and Burke 1992a). Finally, the classification of joints 

may also impact JPS ability; what may appear a simple hinge joint with one degree of freedom 

may indeed have muscles crossing more than this joint that contribute to multiple position 

senses.  

Figure 21 does go some way in addressing Matthews’ (1988) issues. The complexity of 

proprioceptor firing rates, specifically the muscle spindles, with the appreciation of the skeletal 

contributions to position sense and also external perturbations in the lower section of the model. 

However, the model does not identify the differences between joint position sense and 

kinaesthesia that has been suggested (McCloskey, 1978). Furthermore, all proprioception tests 

are global –as yet they cannot directly measure a specific ligament (such as the ACL) 

proprioception ability (Pincivero et al., 2001, Gokeler et al., 2012).  

Recently Gandevia (2014) and Boisgontier and Swinnen (2014) commented proprioception is 

still poorly understood and we have made little progress on Sherrington’s work in 1906. 

Gandevia (2014) proposes this is due to the multi-disciplinary nature of proprioceptive 

research; this includes areas of physiology, neurology, structural biology, anatomy, 

rehabilitation, motor control to name but a few. Furthermore, Gandevia states this cross-

discipline but separate research has for too long “…overemphasized the apparently separate 

perceptual (and other) effects due to activity in one anatomical class of receptor…rather than 

those orchestrated effects that their usual combination evokes” (2014, p.200). 
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This may be the reason why proprioceptive measurement in the clinical setting appears to have 

ignored much of the central processes; it may be too complex to measure (Matthews, 1988, 

Gandevia, 1992, Boisgontier and Swinnen, 2014). It is still very difficult to measure 

proprioception, not least because we are largely unaware of the signals generated by our own 

movement (Proske and Gandevia, 2009) and yet we ask subjects to become conscious of our 

proprioception when testing our ability. Furthermore, during movement and only during 

movement, action-related signals are copied, stored and made accessible however erased when 

movement ceases (Proske, 2006). Both issues present significant challenges to the 

measurement of joint position sense. To date the majority of joint position sense measures 

eliminate any visual and vestibular input. However, including this information in addition to 

mechanoreceptor afferents may provide the optimal proprioceptive performance (van Beers et 

al., 1999). Therefore future studies may incorporate this into their measurements of joint 

position sense to see if ability does indeed improve.  

This thesis has identified the most reliable, valid and sensitive method for knee joint position 

sense. However, knee joint position sense is currently one of the most popular methods of knee 

joint proprioception but not necessarily the best. We may not have developed the “best” test 

for proprioception, which may need to incorporate more appreciation of the central processes 

of proprioception and until then we may not be able to assess the full extreme of clinical and 

functional significance of proprioception. 

Muscular Strength 

Another potential limitation of this thesis is the lack of inclusion of muscular strength 

measurements. Since joint proprioception is in part reliant on muscle spindle input, it may be 

intuitive to believe there is a relationship between muscle strength and proprioceptive ability. 

There is certainly much literature on the effects of age on muscular strength. For example, in 

early work Vandervoort (1992) and Stalberg et al., (1989) demonstrated a decline of up to 45% 

in muscular knee strength in older adults (greater than 70 years). There is also much evidence 

to support the total number of motor units reduces with age (for example; Faulkner et al., 2007, 

Doherty et al., 1993). However, there is very limited evidence to link a reduction in motor unit 

function, from either age, injury or fatigue, to a reduction in proprioceptive ability. Indeed, 

Segal et al., (2010), Espanha et al., (2012) and van der Esch et al., (2007) could not find any 

significant relationships between lower limb strength and knee JPS ability in OA patients. Lund 

and Juul-Kristensen (2010) also considered OA patients and could not find a relationship 
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between knee proprioception and knee strength. However, some weak correlations were found 

between muscle strength in the triceps brachii and dynamic proprioception over the elbow joint. 

Although, no clear explanation is provided for this result in knee OA patients.  Further, there 

may be a weak relationship between abdominal strength and trunk position sense, but this 

correlation was only highlighted in chronic lower back pain patients, not healthy controls 

(Yılmaz et al., 2010). Levinger et al., (2012) found improvements in lower limb strength 

following knee replacement surgery but not knee proprioception, again suggesting the two 

variables are not directly related and one can improve without impacting on the other.  So, it 

appears there is very little evidence to support a link between knee proprioceptive acuity and 

muscular strength performance.  

This may be explained with consideration of the proprioceptive process; although joint 

proprioception process does involve integration of muscle spindle action, it is not wholey 

reliant on muscular contraction as a stimulus. Contributions from  

As results of study 4.4 confirm, muscular fatigue does not appear to reduce proprioceptive 

ability. Again, this may be due to the additional components of proprioception; including 

central processing, sense of effort and joint mechanoreceptors, compensating for muscle unit 

function decline. Hence, this explains the lack of evidence for a muscular strength and 

proprioception relationship. Future research might consider muscular strength, proprioception 

and their relationship to function.  
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Chapter 6 Conclusion 
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6.0 Conclusion 

The overall aim of this thesis can be divided into two sub-sections. The first aim involved 

measurement; to find the most optimal condition from three most popular protocols to record 

knee joint position sense ability. The second aim involved implementation of this tool; to report 

the effects of various independent variables on knee joint position sense ability. The different 

components of each aim will be concluded individually in the section below.  

The reliability and validity of knee joint position sense measurement techniques was reported 

in the first section of the thesis. The most reliable, in terms of test-retest, inter-rater and intra-

rater reliability, JPS method was identified as follows; a sitting position, either leg, knee flexion 

through 60°-90° from a starting position of 0° and knee extension through 30°-60° from a 

starting angle of 90°. Five trials were adequate for consistent results and absolute error scores 

were more reliable than relative error scores. The results of a construct validity analysis 

revealed the use of an IKD may not be necessary, clinical environments using image capture  

provided statistically similar (knee flexion) or increased (knee extension) joint position sense 

ability. Between practitioner validity was also confirmed, therefore multiple practitioners can 

analyse JPS images if required. Clinicians may adopt this method when measuring knee joint 

position sense.   

A large scale (N= 116) study based on the UK population provided normative knee joint 

position sense measures across five age groups. The values of knee JPS into flexion were 3.6°, 

3.9°, 3.5°, 3,7° and 3.1° for ages 15-29, 30-44, 45-59, 60-74 and 75+ years old respectively. 

The normative values for knee JPS into extension were  2.7°, 2.5°, 2.9°, 3.4° and 3.9° for ages 

15-29, 30-44, 45-59, 60-74 and 75+ years old respectively. Clinicians or sports therapists may 

use these normative values when screening uninjured patients or athletes for any increased risk 

of injury, for example if the patient is more than two standard deviations above the normative 

value or has an absolute error score above 5° this may be a cause for concern. The direction of 

movement did affect error scores and hence both flexion and extension should be used in any 

knee JPS measurements. There were also some significant correlations between knee joint 

position sense and age, BMI, activity levels and knee condition. Specifically, as age and BMI 

increased, JPS into extension worsened and as activity level and knee condition increased, JPS 

into extension improved. Therefore clinicians should acknowledge that each of these variables 

may be related to the knee joint position sense ability of the patient. However, as these 

relationships were mild to moderate, application of these findings should be done with caution.   

203 



 

A non-athletic ACL deficient population had poorer joint position sense ability compared to 

their contralateral leg and an external control measured using the recommended knee joint 

position sense method. The ACL patients had a knee JPS error score of 7.9° compared to the 

contralateral knee score of 2° and external control group score of 2.6°. ACL injury and then 

reconstruction also significantly reduced the knee position sense ability of an elite athletic 

population when compared to the uninjured knee and external controls. The injured knee 

produced knee error scores of 8.1° and 7.2°, the uninjured knee produced 3.5° and 1.9° of error 

and the external controls produced 3.1° and 2.8° of error into knee flexion and extension 

respectively. This may be due to the loss of functional mechanoreceptors in the knee joint 

following ACL damage The results of an initial cluster analysis of patients included knee 

injuries other than ligament damage did not have reduced joint position sense ability. 

Therefore, clinical practitioners should pay particularly attention to improving proprioception 

when treating patients with ACL injury.  

The final study in this thesis considered the effects of peripheral / muscular fatigue on knee 

joint position sense. The results suggested peripheral/ muscular fatigue alone may not reduce 

joint position sense of the knee. A peripheral fatiguing protocol may not be successful in 

fatiguing and hence debilitating all components of static proprioception. Other types of 

mechanoreceptors situated in the joint, skin and tendons may compensate for the loss of 

effective muscle receptors during fatigue. Furthermore, evidence suggests it is very difficult to 

fatigue intrafusal muscle fibres and hence these may well continue to provide afferent 

information as extrafusal muscle fibres are fatigued. Importantly, peripheral/ muscular fatigue 

measured using torque output does not indicate a reduced function in the central mechanisms 

of proprioception. Thus the spinal cord, brain stem, cerebral cortex and cerebellum may 

compensate for the fatigue in muscle spindles around the knee joint by increasing task 

attention, motor neurone activity and the sense of effort. This is not to say fatigue does not 

affect static proprioception, rather clinical practitioners and researchers should consider central 

fatiguing protocols and knee joint position sense in the future.  

The clinical application of the results in this thesis is that patients with ACL injury are likely 

to have reduced knee joint position sense ability. However, it is noteworthy that high smallest 

detectable difference values were reported in the reliability analysis and therefore clinical 

practitioners should acknowledge this when recording knee JPS progression. Furthermore, 

researchers need to address the suitability of proprioceptive exercises in rehabilitation and 

evaluate their effects using reliable and valid measurement techniques. There is also need for 
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studies into the functional relevance of knee joint position sense, as yet there is limited evidence 

that proprioception is related to functional performance.  

The reliability and validity of knee joint position sense in the frontal and axial planes is required 

along with joint position sense studies in other joints. The development of an active-active 

protocol that is appropriate for all ages should also be considered. In addition researchers 

should consider including a measurement of the sense of effort and/ or sense of force in studies. 

There is also a need to approach proprioceptive research from an inter-disciplinary viewpoint. 

This will enable a better understanding of the central processes involved in proprioception 

including task attention, motivation and anticipation. Ultimately we may then be able to 

discover if and how proprioceptive ability can be modified.  
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Appendix 1a: The Effects of ACL Injury on Knee Proprioception: A Meta-

Analysis 
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Appendix 1b: The scoring system used in the Meta-Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

217 



 

 

Authors  

Article Title  
Source  
Years/Volume/Pages  
Institute affiliation & 

Contact address 

 

 

 

Do not proceed if one of the following six categories is not adhered to:- 

 

 Yes 

Human Study  

English Language  

All participants adults / teenagers   

Were all subjects ACL deficient and/or reconstructed or acting as a healthy control group?  

Were ACL participants categorised into ACL-D, ACL-R or ACL-R pre and post op?  

Was at least one OM a direct measure of proprioception, either TTDPM or JPS?   

 

 

POPULATION 

 

A. Confirmation of ACL Deficiency 

Was ACL deficiency confirmed by:  

 Score 

Not stated 0 

Arthroscopy or MRI OR clinical examination using Lachmans, pivot shift test or knee 

arthrometer 

1 

Arthroscopy or MRI AND clinical examination using Lachmans, pivot shift test or knee 

arthrometer 

3 
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B. Representation of Population 

Were the ACL participants classified into -  

 Score 

A sub-group of deficient or reconstructed patients recruited (e.g. those who are 

undergoing or have completed rehab or copers/ non-copers/ adapters, or limited by 

age, sex, activity)  

1 

ACL deficient or ACL reconstructed groups only 3 

People with all types of ACL problem (deficient and reconstructed)  5 

 

 

Were ACL-R classified according to:  

 Yes No 

Type of surgery stated 1  

Type and number of complications stated 1  

Same surgeon for every ACL-R participant 1  

Assessment of laxity pre and post-surgery 1  

 

 

Did any ACL participant (ACL-D or ACL-R) have any of the following:- If authors do not mention a 
previously reconstructed ACL assume the answer is ‘no’.  

 Yes No 

Previous Injury to ACL Knee  2 

Concurrent damage to ACL knee during ACL injury  2 

Injury to the ankle or hip on ACL injury side  2 

Injury to contralateral leg  2 

Rehabilitation prior to the point of assessment  2 

 

 

C. Representation of Sample 

Was the recruitment strategy -  

 Score 

Not stated in the text 0 

Stated in the text 1 

Based on convenience sampling (e.g. physio department, surgical list, sports club) 3 
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Based on comprehensive sampling (e.g. recruitment of ACL-D and ACL-R across different 

populations) 

5 

 

 

D. Homogeneity of Participants 

Was a control comparison used?  

 Score 

No 0 

Contralateral leg 1 

Separate control group (true control) 3 

 

 

 

Were the following factors similar or comparable between the controls and ACL injury group?  

 True Control Contralateral Knee 

Age 2 1 

Sex 2 1 

Pre-injury levels of activity 2 1 

 

 

E. Sample Size 

 

Was a justification of sample size given (power calculation or accuracy/minimal detectable difference 
of the measurement tool)?  

Yes No 

10 0 

 

 

Were the numbers of participants between:- 

 

Number of participants in each group 

Control Group ACL injury 

group 1 

ACL injury 

group 2 

Score 

0-5    0 

6-10    1 
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11-15    2 

16-20    3 

21-25    4 

>26    5 

TOTAL     

 

 

 

 

METHODOLOGICAL QUALITY 

F. Study Design 

Was the study design clearly described?  

Yes No 

1 0 

 

Was the data collection -?  

 Yes 

Retrospective 0 

Prospective 3 

 

 

 

G. Assessor Blinding / Bias 

Were the outcome assessors blind to the type of participants?  

Yes No 

5 0 

 

 

 

H. Statistical Analysis 
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Were the correct statistics used for data analysis in accordance to the type of data collected (i.e. 
parametric/ non-parametric)? NOTE: if parametric tests were used, was normality of the data 
assessed?  

Yes No / no statistics used 

5 0 

 

 

 

 

Was the level of significance appropriate and analysis correctly interpreted? -   

No  0 

Level was appropriate only 1 

Level was appropriate and correct interpretation was made 3 

 

 

Were the OMs tested for inter-tester and test-retest reliability?  

 Score 

No evidence of reliability testing 0 

Reliability was reported using results from external studies  1 

Yes, reliability tested within the study and ICC / Kappa yielded good results 

(>.07) 

3 

 

 

Were the OMs tested for sensitivity to change? 

 Score 

No evidence of sensitivity to change testing 0 

Sensitivity to change was reported using results from external studies  1 

Yes, effect size / MDC yielded good results (>.07) 3 

 

 

 

 

TOTAL SCORE:       /88 
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Appendix 1c: The characteristics of studies excluded from the meta-analysis
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Studies concluding ACL injury does reduce knee joint position sense.  
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Study Design  Participants Rebab? Equipment JPS Method and Outcome 
Measures 

Reliably or 
Validity 
Statistics? 

Results 

Carter et 
al., (1997) 

ACL-D JPS Cross 
Sectional Study.  
 

50 ACL-D (Servicemen). Yes Isokinetic 
dynamometer.  

Passive- Visual Analogue Scale 
JPS. Target angle “between 0°-
90°”.  
 
Absolute mean error score (°) 

No JPS impaired in ACL-D 
knee compared to 
contralateral knee.  

Rehm et 
al., (1998) 

Comparison study of 
ACL-D copers, 
ACL-D non-copers 
and control.  

17 Control, 10 ACL-D 
copers, 20 ACL-D non-
copers.  

N/S Purpose built 
proprioception 
device. 

Passive-Visual Analogue Scale 
JPS. From 0° to 10°-60°. 
 
Absolute mean error score (°)  

No Non-copers had 
significant higher error 
scores than two other 
groups.  

Katayama 
et al., 
(2004) 

Relationship study 
between 
proprioception and 
performance. 

32 ACL-D (17M, 15F, 
mean 25.6yr).  

Yes Biodex 
Machine 

Passive – Passive (hold button) 
JPS. From 90° to 85° - 65° at 
10°/s. 
 
Absolute mean error score (°) 

No JPS impaired in ACL-D 
knee compared to 
contralateral knee. 

Barrett 
(1991a) 

ACL-D JPS Cross 
Sectional Study. 

10 ACL-D, 45 ACL-R 
(33M, 12F, mean 26.4 
years), 20 Control. 

Yes Modified 
Thomas Splint 
as 
Proprioception 
device (no 
motor). 

Passive – Visual Analogue Scale 
JPS. No other details.  
 
Absolute mean error score (°) 

No ACL-D knees impaired 
when compared to ACL-
R and Control.   

Ochi et al., 
(1999) 

Cross-sectional study 
of JPS in ACL-D, 
ACL-R and Controls. 
JPS taken pre and 
post-surgery.  

32 ACL-D (16M, 16F, 
mean 25.5years), 23 ACL-
R (13M, 10F, mean 
27.8years) and 14 Control 
(9M, 5F, mean 22.9 years).   

N/S No detail of 
Proprioception 
device.  
 
 

Passive-Active JPS. From 90° to 
5°-25° at approximately 10°/s.  
 
Absolute mean error score (°) 

No ACL-D knees impaired 
when compared to ACL-
R and Control.   

Wada et 
al., (2002). 

Cross-sectional 
comparison study of 
JPS in ACL-R (total 
knee arthroscopy) 
and controls. 

38 ACL-R (3M, 35F, mean 
72.6years). 23 Controls 
(2M, 21F, mean71.5 years).  

N/S Electro- 
goniometer  

Active-Active JPS. From 90° to 
60° to 40°.  
 
Absolute mean error score (°) 

ICCs.  ACL-R knee impaired 
when compared to 
controls.  
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Iwasa et 
al., (2000).  

Longitudinal design 
measuring JPS across 
24 months post-
surgery.  

38 ACL-R (18M, 20F, 
mean 28.4 years).  

Yes Cybex II 
Dynamometer.  
 

Passive-Active JPS. From 90° to 
85°-65° at approximately 10°/s.  
 
Absolute mean error score (°) 

No JPS was significantly 
improved following 18, 
21 and 24 months of 
rehab compared to pre-
operative levels.   

Fremerey 
et al., 
(2001) 

Longitudinal 
comparison of JPS in 
2 surgical 
reconstruction 
techniques used on 
ACL-R patients.  

29 ACL-R. 15 endoscopic 
(8M, 7F, mean 25.8yrs). 14 
open (8M, 6F, mean 
27.3yrs).  

Yes Purpose built 
proprioception 
device.  

Passive-Passive JPS. From 0° to 
0°-20° , 40° -60°  or 80° -100°  
at 0.5° /s.  
 
Absolute mean error score (°) 

Accuracy 
device 
reading of 
0.1°. 

Pre-operative all ACL-R 
knees impaired 
compared to uninjured 
side. 
 
3 months all ACL-R 
knees impaired 
compared to uninjured 
side. 
 
6 months & 4yrs all 
ACL-R knees impaired 
compared to uninjured 
in mid-range only.    

Zhou et al., 
(2008) 

Longitudinal 
comparison of ACL-
D and controls.  

36 ACL-R (30M, 6F, mean 
26years). 13 Controls 
(11M, 2F, mean 26.4years).  

Yes Biodex system 
3. 

Passive-Passive (hold button) 
JPS. From 0° to 0°-20° , 40° -
60°  or 80° -100°  at 0.5° /s. 
 
Absolute mean error score (°) 

No ACL-R knee impaired 
when compared to 
controls. 

Baumeister 
et al., 
(2008) 

Cross-sectional 
comparison study of 
JPS in ACL-R and 
controls. 
 

10 ACL-R (7M, 3F, mean 
27years, 181cm, 76kg). 12 
controls (9M, 3F, mean 
25years, 181cm, 76kg).  

Yes Electro-
goniometer. 

Active-Active JPS. From 90° to 
40°.  
 
Absolute mean error score (°) 

No  ACL-R knee impaired 
when compared to 
controls. 
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Studies concluding ACL injury does not reduce knee joint position sense. 
 
 

Study Design  Participants Rebab? Equipment JPS Method and Outcome 
Measures 

Reliably or 
Validity 
Statistics? 

Results 

Remedios 
et al., 
(1998) 

Cross-sectional 
comparison study of 
ACL-R and Controls.  

28 ACL-R (28F, 25 years), 
28 Controls (28F, 23 years) 

Yes Electro-
goniometer.  

Passive-Active JPS (match 
angle with contralateral leg, 
ACL-R leg passive, contralateral 
active.) From 90° to 15° or 60°. 
 
Absolute mean error score (°) 

Device was 
within 2° of 
accuracy 

No difference in JPS 
between ACL-R and 
Controls.   

Good at 
al., 
(1999) 

Cross-sectional JPS 
study on ACL-D 
patients. 

18 ACL-D (10M, 8F, 
median 28years).  

N/S Electronic tilt 
sensors. 

Passive-active and active-active 
JPS (passive or active move 
from 0° to 30° or 70°) 
 
Real and absolute error score (°) 

Accuracy 
of tilt was 
<0.1°. 

No differences in JPS 
between ACL-D knee 
and contralateral 
control.  

Harter et 
al., 
(1992) 

Cross-sectional JPS 
study on ACL-R 
patients. 

48 ACL-R (30M, 18F, 
28years).  

N/S Cybex 
Dynamometer 

Passive-Active JPS. From 90° to 
15 - 30° at 10-15°/s).  
 
Absolute mean error score (°) 

No No differences in JPS 
between ACL-R knee 
and contralateral 
control. 

Hopper et 
al., 
(2003) 

Cross-sectional JPS 
study on ACL-R 
patients. 

9 ACL-R (5M, 4F mean 
29.3years). 

N/S Peak motion 
system. Video 
Camera. 

Active – active JPS. From 30°-
40° to 0-30° flexion or 
extension.  
 
Absolute mean error score (°) 

No No differences in JPS 
between ACL-R knee 
and contralateral 
control. 

Dvir et 
al., 
(1988) 

Cross-sectional JPS 
study on ACL-R 
patients. 

25 ACL-R (21M, 4W) 
Aged 17-37years.  

N/S Purpose built 
proprioception 
device. 

Passive-Passive JPS and 
Passive-Active JPS from 90° 
and 0° 20°-40° and 50°-70°.  
 
Absolute mean error score (°) 

No No differences in JPS 
between ACL-R knee 
and contralateral 
control. 
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Studies concluding ACL injury does reduce threshold to detect passive motion. 

 

Study Design  Participants Rebab? Equipment TTDPM Method and 
Outcome Measures 

Reliability 
and Validity 
Statistics? 

Results 

Valeriani et 
al., (1999).  

Cross-sectional comparison 
of ACL-R pre and post-
surgery.  

19 ACL-R (mean 
28years). 15 Controls 
(8M, 7F, mean 
29years).   

N/S Purpose built 
proprioception 
device. 

  

TTDPM from 40°. 

 

Distance before 
detection (°) 

No ACL-R had decreased 
TTDPM ability 4years 
after surgery. 

Borsa et al., 
(1997) 

Cross-sectional comparison 
of ACL-R to contralateral 
knees. 

29 ACL-D (15M, 14F, 
mean 28.7years). 

Yes Purpose built 
proprioception 
device.  

TTDPM from 15° and 
45° into flexion and 
extension at 0.5°/s. 

 

Distance before 
detection (°) 

ICCs ACL-R had decreased 
TTDPM ability 
compared to 
contralateral knee.  

Beynnon et 
al., (1999) 

Cross-sectional comparison 
of ACL-D to contralateral 
knees.  

20 ACL-D (13M, 7F, 
mean 40years). 

N/S Purpose built 
proprioception 
device. 

TTDPM from 45° into 
flexion or extension. 

 

Distance before 
detection (°) 

 

No 

ACL-D had decreased 
TTDPM ability 
compared to 
contralateral knee. 

Friden et al., 
(1999) 

Cross-sectional comparison 
of ACL-D to contralateral 
knees and external controls.  

16 ACL-D (11M, 5F, 
mean 26years) 

Yes Purpose built 
proprioception 
device. 

TTDPM from 20° and 
40° into flexion and 
extension at 0.5°/s. 

CIs ACL-D had decreased 
TTDPM ability 
compared to 
contralateral knee and 
controls. 
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Distance before 
detection (°) 

Courtney et 
al., (2005) 

Cross-sectional comparison 
of ACL-D to contralateral 
knees and external controls. 

17 ACL-D (7M, 10F, 
mean 34.5years), 7 
Control (1M, 6F mean 
27years).   

N/S Purpose built 
proprioception 
device  

TTDPM from 40° at 
0.5°/s. 

 

Distance before 
detection (°) 

No ACL-D had decreased 
TTDPM ability 
compared to 
contralateral knee and 
controls. 

Courtney et 
al., (2006) 

Cross-sectional comparison 
of ACL-D to contralateral 
knees. 

15 ACL-D (5M, 10F, 
34 yrs). 7 Control (26 
years).  

N/S Purpose built 
proprioception 
device. 

TTDPM from 40° into 
flexion at 0.5°/s. 

 

Distance before 
detection (°) 

No ACL-D had decreased 
TTDPM ability 
compared to 
contralateral knee. 

Ageberg et 
al., (2005) 

 

 

Correlation study between 
laxity, proprioception, and 
muscle strength in ACL-D.  

36 ACL-D (18M, 18F, 
mean 26years).  

Yes Purpose built 
proprioception 
device.  

TTDPM 20° and 40° 
into flexion and 
extension at 0.5°/s. 

 

Distance before 
detection (°)  

No Poor TTDPM and high 
muscle strength were 
associated with low 
average speed in 
women. Low amplitude 
correlates with better 
function.  

MacDonald 
et al., (1996) 

Cross-sectional comparison 
of ACL-D to ACL-R and 
external controls.  

10 ACL-D, 16 ACL-R, 
6 Control 

Yes Dynamometer TTDPM from 30°-
40°at 0.5°/s. 

 

Distance before 
detection (°) 

No ACL-D and ACL-R had 
decreased TTDPM 
ability compared to 
contralateral knee. 
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Lephart et al., 
(1992) 

Cross-sectional comparison 
of ACL-D to contralateral 
knees. 

12 ACL-R (4M, 8F, 
mean 23.3years).  

Yes Purpose built 
proprioception 
device.  

TTDPM from15° and 
45 at 0.5°/s. 

 

Time before detection 
(°) 

Test – 

re-test 
Reliability 
of device (r 
= 0.92) 

ACL-R had decreased 
TTDPM ability 
compared to 
contralateral knee.  

Valeriani et 
al., (1996) 

Cross-sectional comparison 
of ACL-D to external 
controls. 

7 ACL-R. N/S Purpose built 
proprioception 
device 

TTDPM from 40° into 
flexion. 

 

Distance before 
detection (°) 

No ACL-R had decreased 
TTDPM ability 
compared to controls. 
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Studies concluding ACL injury does not reduce threshold to detect passive motion. 
 

 

Study Design  Participants Rebab? Equipment Outcome Measures Error? Results 

Risberg et al., 
(1999) 

Comparison study of TTDPM 
between ACL-D and controls. 

20 ACL-R (8M, 12F, 
35yr), 10 controls (5M, 
5F, 33yr). 

Yes Purpose built 
proprioception 
device. 

TTDPM from 15° 
into flexion or 
extension at 0.5°/s.  

No No TTDPM differences 
between groups or 
knees.  

 

Pap et al., 
(1999) 

 

Comparison study of TTDPM 
between ACL-D and controls. 

20 ACL-D (14M, 6F, 
mean 24.5yrs).15 
Control (mean 25.3 
years).  

No KT-1000 
arthrometer, 
purpose built 
proprioception 
device.  

Threshold for 
perception of start 
of movement 
(TPSM, °) and 
Threshold for 
perception of end 
of movement 
(TPEM, °) From 
45°. 

No No TTDPM differences 
between groups.  
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Studies investigating the effect of ACL injury on both JPS and/or threshold to detect passive motion. 

 

Study Design  Participants Rebab? Equipment Methods and Outcome Measures 

Corrigan et al., 
(1992) 

 

Correlation between proprioception and 
muscle strength.  

 

 

 

 

20 ACL-D (mean 30years). 17 
Control (17M, mean 28years) 

No Purpose built 
proprioception device. 

 

TTDPM at 0.3°/s.  

Distance before detection (°) 

 

Passive-Active JPS. From 35° 
at 10°/s.  

Absolute mean error score (°) 

Friden et al., (1996) Cross-sectional comparison study of 
proprioception on ACL-D and controls, 
specifically in the nearly extended knee.  

19 control (14M, 5F, mean 
25years), 20 ACL-D (14M, 6F, 
mean 26years). 

N/S Purpose built 
proprioception device. 

TTDPM from 20° and 40° to 
flexion and extension at 0.5°/s. 

Distance before detection (°) 

 

Passive-Visual Analogue 
Scale JPS From 60° into 30° 
of flexion and 30° to 30° of 
extension at 0.5°/s. 

 

Passive-Active JPS  

232 



 

From 60° into 30° of flexion 
and 30° to 30° of extension at 
10°/s.  

Absolute mean error score (°) 

Friden et al., (1997) Longitudinal study of proprioception and 
ACL-R. 

16 ACL-R (11M, 5F, mean 
26years) 

Yes Purpose built 
proprioception device 

TTDPM from 20° and 40° to 
flexion and extension at 0.5°/s. 

Distance before detection (°) 

 

Passive-Visual Analogue 
Scale JPS From 60° into 30° 
of flexion and 30° to 30° of 
extension at 0.5°/s. 

 

Passive-Active JPS  

From 60° into 30° of flexion 
and 30° to 30° of extension at 
10°/s.  

Absolute mean error score (°) 

Roberts et al., (1999) Cross-sectional study on proprioception 
in ACL-R.  

17 ACL-D (Copers) (10M, 7W 
mean 28.8years), 20 ACL-D 
(Non-copers) (14M, 6W mean 
26.6years).   

Yes Purpose built 
proprioception device. 

TTDPM from 20° and 40° to 
flexion and extension at 0.5°/s. 

Distance before detection (°) 
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Passive-Visual Analogue 
Scale JPS From 60° into 30° 
of flexion and 30° to 30° of 
extension at 0.5°/s. 

 

Passive-Active JPS  

From 60° into 30° of flexion 
and 30° to 30° of extension at 
10°/s.  

Absolute mean error score (°) 

Roberts et al., (2000) Cross-sectional comparison of 
proprioception in ACL-D, ACL-R and 
Controls.  

20 ACL-R (15M, 5F, mean 
27years). 19 Controls (14M, 
5F, mean 25years).  

Yes Purpose built 
proprioception device. 

TTDPM from 20° and 40° to 
flexion and extension at 0.5°/s. 

Distance before detection (°) 

 

Passive-Visual Analogue 
Scale JPS From 60° into 30° 
of flexion and 30° to 30° of 
extension at 0.5°/s. 

 

Passive-Active JPS  

From 60° into 30° of flexion 
and 30° to 30° of extension at 
10°/s.  
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Absolute mean error score (°) 

Reider et al., (2003) Longitudinal study comparing 
proprioception before and after ACL 
Reconstruction.  

26 Controls (18M, 13F, 
25years) ACL-R (15M, 11F 
25years). 

Yes Electro-goniometer. TTDPM from 15° flexion to 
flexion or extension at 3°/s.  

Distance before detection (°) 

 

Passive Active JPS from full 
extension.  

Absolute mean error score (°) 

Muaidi et al., (2009) Comparison study of proprioception in 
the transverse plane between ACL-D, 
ACL-R and controls.  

20 ACL-R (14M, 6F, 30years) 
and 20 Controls (14M, 6F, 
29years).  

Yes Purpose built 
proprioception device. 

Passive identification of joint 
angle (just-noticeable 
difference JND),  

Bonfim et al., 
(2003).  

Comparison of proprioception in ACL-R 
and controls.  

10 ACL-R (7M, 3F, mean 24.4 
years). 10 Control (7M, 3F, 
mean 24.4years).  

Yes Purpose built 
proprioception device.  

TTDPM Distance before 
detection (°)  

 

Passive-Visual Analogue 
Scale JPS  

Absolute mean error score (°) 
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Studies concluding ACL injury does not reduce JPS and/or threshold to detect passive motion. 

 

Study Design Participants Rehab? Equipment Methods and Outcome 
Measures 

Reliability 
and 
Validity 
Statistics? 

Results 

Wright et al., 
(1995) 

Cross-sectional comparison 
study between ACL-D and 
control group. 

8 ACL-D and 1 ACL-
R, 15 Control. 

N/S Purpose built 
proprioception 
device 

TTDPM from 40° into 
flexion at 0.5°/s 5°/s. 

Distance before 
detection (°) 

No No significant 
differences between 
ACL group and control 
or other knee.  

Fischer-
Rasmussen et 
al., (2001). 

Reliability of TTDPM and JPS 
in Controls and proprioception 
of ACL-Deficient. 

15 controls (mean 
27.7years) 10 ACL-D 
(6M, 4F mean 
27.3years).   

No Purpose built 
proprioception 
device. 

 

 

 

 

 

 

 

TTDPM from 20° at  
0.5°/s. Distance before 
detection (°) 

 

Passive – active JPS. 
From 25° to15°, 25°, 
35° or 60°.  

 

Active- Active JPS. 
From 60° to 5° of 
flexion at 0.5°/s with 
20% MVC.  

Absolute mean error 
score (°) 

CoV No significant 
differences between 
ACL-D injured and non-
injured side.  
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Jensen et al., 
(2002) 

Cross-sectional comparison 
study of proprioception with 
ACL-D copers and ACL-D 
non-copers.  

7 ACL-D copers (6M, 
1F, mean 31.1years), 7 
ACL-D non-copers 
(3M and 4F, mean 
30.1years). 

N/S Purpose built 
proprioception 
device.  

TTDPM from 20° at 
0.5°/s. Distance before 
detection (°) 

 

Passive-active JPS. 
From 60° into 35°, 
25°, 15° of flexion. 

 

Passive-passive JPS 
without muscle tension 
(vel 5°/s),  

 

Active-active JPS 
(20% or 50% MVC).  

Absolute mean error 
score (°) 

No Majority of differences 
between ACL-D group 
and control group in 
proprioception variables 
were non-significant.  

Co et al., 
(1993) 

Comparison of knee 
proprioception and heel strike 
transient between ACL-R and 
controls.  

10 ACL-R (5M, 5F, 
mean 27 years. 10 
Controls (5M, 5F, 
mean 24years).  

Yes Purpose built 
proprioception 
device. Force 
plate. Isokinetic 
Dynamometer.  

TTDPM at 
0.5°/s.Distance before 
detection (°) 

 

Passive-passive 
(contralateral leg) JPS 

No Majority of differences 
between ACL-R group 
and control group in 
proprioception variables 
were non-significant. 
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from 40° to 
10°,20°,25° of motion.  

 

Passive-active JPS 
from 40° to 5°-25° of 
motion.  

 

Absolute mean error 
score (°) 

Nishiwaki et 
al., (2007) 

Relationship between 
muscular strength after ACL-
R. 

16 ACL-R (6M, 10F, 
mean 28years, 
163,6cm, 62.9kg).  

Yes Isokinetic 
Dynamometer.  

TTDPM from 15° and 
45° at 0.5°/s. Distance 
before detection (°) 

 

Passive-Passive JPS 
(hold button) from 90° 
to 5°, 10°, 15°, 20°, 
25° and 30° of 
extension at 10°/s.  
Absolute mean error 
score (°) 

Accuracy 
0.28°. 
Mean 
variation 
of 6.1 
3.4°,  

CIs 

No significant 
differences between 
ACL-D injured and non-
injured side. 

Fonseca et al., 
(2005).  

Cross-sectional comparison of 
proprioception between ACL-
D and controls. 

11 ACL-D (9M, 2F, 
mean 26.45years).  11 
Controls (9M 2F, 
mean 27.35 years)  

Yes Isokinetic 
dynamometer. 

TTDPM from 35° into 
extension at 2°/s. Time 
before detection (°) 

No No significant 
differences between 
groups.  
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Passive-Passive (hold 
button) JPS. From 90° 
to 35°at 10°/s. 

 

Passive-Active JPS 

Absolute mean error 
score (°) 
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Appendix 1d: Inter-examiner, intra-examiner and test-retest reliability of 
clinical knee joint position sense measurements using an image capture 

technique. 
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Inter-examiner, intra-examiner and test-retest reliability of clinical knee joint 

position sense measurements using an image capture technique. 

Context: Knee joint position sense (JPS) plays a critical role in controlled and stable joint 

movement.  Poor ability to sense position of the knee can therefore increase risk of injury. 

There is no agreed consensus on JPS measurement techniques and a lack of reliability 

statistics on methods. Objective: To identify the most reliable knee JPS measurement 

technique using image capture. Design: Inter-examiner, intra-examiner and test-retest 

reliability of knee JPS measurements. Setting: Biomechanics laboratory.  Participants: 

Ten asymptomatic participants. Interventions: None. Main Outcome Measures: Relative 

and absolute error scores of knee JPS in three conditions (sitting, prone, active) through 

three ranges of movement (10-30°, 30-60°, 60-90°), into two directions (flexion and 

extension) using both legs (dominant and non-dominant) collected during 15 trials and 

repeated seven days after the first data collection. Results: Statistical analysis by intraclass 

correlations revealed excellent inter-examiner reliability between researchers (0.98) and 

intra-examiner reliability within one researcher (0.96). Test-retest reliability was highest in 

the sitting condition from a starting angle of 0°, target angle through 60°-90°of flexion, 

using the dominant leg and AES variables (ICC = 0.92). However, it was noted smallest 

detectable differences (SDDs) were a high percentage of mean values for all measures. 

Conclusions: The most reliable JPS measurement for asymptomatic participants has been 

identified. Practitioners should use this protocol when collecting JPS data during pre-

screening sessions. However, generalizability of findings to a class/group of clients 

exhibiting knee pathologies should be done with caution.  
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Joint position sense (JPS) is defined as the static awareness of limb position in space1.  Poor 

knee JPS may result in an increased risk of injury2. The use of JPS in a clinical setting is 

used to identify patients that may be more at risk of injury due to poor JPS ability3.  It is 

vital clinicians are confident the data is reliable and results are not masked by measurement 

error.  

Practitioners use a range of equipment to measure JPS, such as isokinetic dynamometer1, 

however, this is not considered the most viable or reliable equipment to measure knee JPS3. 

Other techniques include image capture and electrogoniometery1. A review3 evaluated the 

reliability of these knee joint position assessment methods and concluded reliability was 

highly variable between all techniques. Each method may measure a different aspect of JPS 

therefore techniques should not be used interchangeably. However, image capture 

techniques appear to have the highest feasibility and most consistent knee JPS results3.  

In addition to equipment selection, JPS protocols must also be considered. The most 

common method of JPS is that of the passive position of a target angle then active reposition 

to identify knee JPS ability4. There are additional variables to consider, such as position of 

the patient, selected starting and target angles and direction of movement. Previous studies 

have yielded conflicting results regarding the most representative JPS protocol, due to the 

apparent inconsistencies in methodological details. For example it has been suggested 

weight-bearing closed chain tests are more ecologically valid than non-weight-bearing open 

chain tests as they provide maximal afferent information from adjacent joints and 

structures5. However, not all literature produced optimal JPS performance in weight-bearing 

conditions6. Given the total number of variables practitioners must consider when selecting 
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a JPS protocol it is unsurprising that a comprehensive reliability analysis is absent from the 

literature. There is a need for a study to consider a large range of dependent variables with 

the same participants3.  It is stated “while the importance of proprioception as a clinical 

outcome measure is becoming well recognised, the best measurement techniques have yet 

to be define”4 (p.128). There is no previous data on the reliability of JPS measurement using 

image capture within a range of protocols. Therefore the aim of the current study is to 

identify the most reliable, in terms of test-retest, intra-examiner and inter-examiner, knee 

JPS measurement technique using image capture equipment.  

Methods 

Using a repeated measures design, ten participants (age 30.2±8.87years, mass 

71.5±18.30kg, height 1.71±11.23m, Tegner 5.3±2.50) took part in the study. All were free 

from lower extremity injury and neurological disease. Participants provided written 

informed consent and the study was approved by institutional research ethics committee.  

Procedures 

Markers were placed on anatomical points; a point on a line following the greater trochanter 

to the lateral femoral epicondyle, close to the lateral femoral epicondyle, the lateral femoral 

epicondyle and the lateral malleolus of both legs. Testing was conducted in three conditions, 

sitting, prone and active. The sitting and prone conditions took place on an orthopaedic 

plinth with the participant blindfolded. Each leg was passively moved through either 10°-

30°, 30°-60° or 60°-90° of knee flexion (from a starting angle of 0°) or knee extension (from 

a starting angle of 90°) to a randomized target angle at an angular velocity of approximately 

10°/s. The participant was instructed to focus on the position of the knee and actively hold 
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the leg in this position for 5s. A photograph of the leg was taken using a camera (Casio 

Exilim, EX-FC100, Casio Electronics Co.,Ltd. London, UK) placed 3m from the sagittal 

plane of movement on a fixed level tripod (Camlink TP-2800, Camlink UK, Leicester, UK). 

The leg was then passively returned to the starting angle and the participant was instructed 

to actively move the same leg to the target angle and hold the leg in this position whilst 

another photograph was taken.  

For the active condition, the participant was positioned supine on a “Total Trainer” (Model 

TT2500P, Bayou Fitness, Louisiana, USA; see Figure 1) and blindfolded. The equipment 

was set at level 1 incline, providing 10% body weight (BW) resistance. Each leg was actively 

moved to the same random order range of target angles as in the previous conditions using 

the sliding seat on the “Total Trainer” at approximately 10°/s. The participants were 

instructed to actively contract into flexion or extension until verbally told to stop by the 

experimenter and hold that position for 5s whilst a photograph was taken. The participant 

then returned the leg to the starting position and was instructed to actively move the same 

leg to the target angle without verbal cues. Another photograph was taken. The process was 

repeated 15 times for each target angle on both dominant and non-dominant legs in all three 

conditions. The protocol was repeated seven days later.  

 

FIGURE 1 NEAR HERE 

 

Analysis 
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Knee angles were measured using open access digitizing software (ImageJ, U. S. National 

Institutes of Health,, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2013). Knee JPS was 

calculated from the average delta scores between target and reproduction angles across 15 

trials, producing real (magnitude and direction) error scores (RES) and absolute (magnitude 

only) error scores (AES) 4.  

 

Statistical analysis used SPSS (Version 19, IBM Corporation, New York, USA). The 

Shapiro-Wilk test examined normality of data, which was confirmed. Inter-examiner and 

intra-examiner reliability was confirmed using intra-class correlation coefficients (ICC 2, 

1), 95% Confidence Intervals and Cronbach’s Alpha7. A randomly selected data set of 30 

trials was analysed by the researcher and then by an independent rehabilitation practitioner. 

The researcher repeated the analysis of the randomly selected data set of 30 trials. 

 

Test-retest reliability was assessed using intra-class correlation coefficients (specifically 

ICC, 3, 1). Standard Error Mean (SEM) (standard deviation x (95% Confidence Intervals 

(CIs) (1.96xSEM) and Smallest Detectable Difference (SDD) (1.96x. ICC results greater 

than 0.75 are excellent, between 0.40-0.75 are modest and less than 0.40 are poor8.  

 

Results 
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The ICC value corresponding to inter-examiner reliability was 0.98 and 95% CIs ranged 

from 0.96-0.99. Cronbach’s Alpha value was 0.99. The ICC value for intra-examiner 

reliability was 0.96 and 95% CIs ranged from 0.91-0.98. Cronbach’s Alpha value was 0.98. 

 

Tables one-three display all data. ICCs ranged from 0.03-0.80 in RES data and 0.65-0.92 in 

AES data in the sitting condition. In the prone condition ICCs ranged from 0.53-0.79 in RES 

data and 0.27-0.90 in AES data. For the active condition ICCs ranged from -0.18-0.89 in 

RES data and-0.13-0.82 in AES data. Furthermore, SDDs ranged from 2.26°-5.48° in RES 

data and 1.10°-2.45° in AES data in the sitting condition. In the prone condition SDDs 

ranged from 2.37°-8.71° in RES data and 1.65°-8.37° in AES data. For the active condition 

SDDs ranged from 0.85°-5.39° in RES data and 1.23-3.14 in AES data. The results indicated 

the test of knee JPS with the highest ICC value is the sitting condition from a starting angle 

of 0°, target angle through 60°-90°of flexion, using the dominant leg and calculating 

absolute error scores.  

 

Tables 1-3 near here 

 

Discussion 

This is the first study to comprehensively consider reliability of knee JPS using image 

capture data acquisition techniques. The inter-examiner reliability results were “excellent” 

indicating it may be appropriate for different practitioners to analyze images collected during 
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JPS testing. The test-retest reliability results indicate a large range of ICCs. The highest ICC 

score and hence “excellent”  reliability measure of knee JPS was tested in a sitting condition, 

dominant leg, from a starting angle of 0°, into flexion through 60°-90° of movement, 

calculating absolute error scores (ICC=0.92). Practitioners should adopt the techniques with 

“excellent” levels of test-retest reliability when using JPS to screen asymptomatic 

populations.  

The sitting condition provided the most reliable position for JPS data collection, 11 out of 

24 JPS measurements had “excellent” ICC scores. However, the active condition presented 

the poorest level of test-retest reliability, with only two out of 24 measures producing 

“excellent” test-retest reliability results. It has been suggested active positioning-active 

repositioning weight-bearing JPS measures may illicit maximum JPS performance due to an 

increase of mechanoreceptor activity across the kinetic chain9. However, authors have 

criticised weight-bearing conditions as it is not a true representation of isolated knee JPS10. 

Therefore we aimed to create a “semi-weight bearing” condition in which the participant 

was under 10% body weight in order to increase ecological validity, but still isolate knee 

joint proprioceptors by minimizing movement in adjacent joints. However, the motor control 

needed to complete this procedure may require greater learning time before data collection 

begins.  Longer practice sessions and also individualised loading rates may be necessary to 

ensure participants are accustomed to this JPS protocol.  

 

Results suggest absolute error scores were more consistent than relative error scores in all 

three conditions. Therefore practitioners should use absolute error scores in asymptomatic 

JPS testing. This is perhaps unsurprising due to the additional dimension provided by 
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relative error scores (direction of error), consistency is harder to attain. There is little 

evidence to suggest direction in which the error occurs will influence an increased injury 

risk. For example we do not know if over estimating the position of a limb in any worse than 

underestimating. It has also been suggested average relative error scores mask JPS ability, 

as the average of repeated trails can incorrectly reduce the error score11. Therefore, it is 

appropriate to use magnitude of error (AES) only in JPS testing.  

 

An important finding in this study was the high SDD scores within all JPS measurements. 

The most reliable measurement had a SDD value which was 34% of the AES and some 

SDDs were more than the mean scores. To our knowledge SDD scores for JPS testing using 

image capture techniques have not been previously reported. Previous research12 reported 

standard error of measurement values of up to 50% of the mean knee JPS error score, 

however testing was completed using a perturbation protocol not reproduction of an angle 

as in the current study. Future studies need to confirm SDD values so practitioners can be 

confident athlete progression in screening programmes is not masked by measurement error.  

 

A limitation of this study is the sample did not include symptomatic patients. Therefore 

results should not be generalized to knee pathology groups. Future research should collect 

normative JPS data from both uninjured and injured populations. However, practitioners 

should use the results to review reliability of their chosen knee JPS measurement 

technique. It is suggested a method that seats the patient, uses a starting position of 0° , 

through flexion to a target angle between 60°- 90° will yield the highest test-retest 
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reliability data.  It is also recommended AES be used rather than relative error scores to 

collect consistent data. However, practitioners should consider the high SDD figure if 

using measurements of knee JPS in longitudinal screening. It may be that measurement 

error masks true improvement of JPS acuity. The results of this study indicate the type of 

JPS protocol using image capture techniques that provide excellent reliability are in a 

sitting position, passive then active knee positioning to a target near the end range of 

movement at approximately 10°/s.  
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Figure 1. The Total Trainer Model TT2500P, Bayou Fitness, Louisiana, USA 

 

 

 

 

 

 

Table 1. Mean (°), standard deviation (SD), 95% confidence intervals (CI), standard error of measurement 
(SEM), smallest detectable difference (SDD) and intraclass correlation coefficient (ICC) values in a sitting 
condition.  

Relative Error Scores (RES) 

Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 
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Dominant Leg 

Extension 
10°-30° 2.0 1.20 2.4 1.18 0.54 -0.08 0.86 0.82 2.26 

Extension 
30°-60° 2.0 1.83 1.5 2.25 0.78 0.36 0.94 0.96 2.65 

Extension 
60°-90° -0.1 1.50 -0.3 2.06 0.80 0.38 0.95 0.83 2.31 

Flexion 10°-
30° -0.8 1.88 -1.2 1.27 0.03 -0.65 0.63 1.58 4.38 

Flexion 30°-
60° -1.0 1.83 -2.0 1.91 0.67 0.09 0.91 0.94 2.59 

Flexion 60°-
90° -1.7 1.53 -0.8 2.20 0.40 -0.20 0.80 1.45 4.02 

Non-dominant Leg 

Extension 
10°-30° 2.4 1.77 2.1 2.24 0.75 0.27 0.93 1.04 2.87 

Extension 
30°-60° 1.9 1.64 1.2 2.09 0.66 0.15 0.90 1.05 2.91 

Extension 
60°-90° 0 1.46 0 1.72 0.51 -0.18 0.86 1.14 3.17 

Flexion 10°-
30° -0.2 1.83 -0.8 1.57 0.62 0.08 0.89 1.01 2.81 

Flexion 30°-
60° -2.1 3.11 -2.1 1.79 0.58 -0.07 0.88 1.68 4.66 

Flexion 60°-
90° 0.2 2.72 -0.9 2.00 0.30 -0.31 0.76 1.98 5.48 

Absolute Error Scores (AES) 

Test Mean1  SD1 Mean2 SD2 ICC  95% CI SEM SDD 

Dominant Leg 

Extension 
10°-30° 

2.5 1.09 2.5 1.06 0.76 
 

0.26 0.93 0.55 1.53 

Extension 
30°-60° 2.6 1.49 2.4 1.63 0.86  0.54 0.96 0.60 1.67 

Extension 
60°-90° 1.7 0.89 2.1 0.98 0.70  0.20 0.91 0.49 1.35 

Flexion 10°-
30° 2.3 1.05 2.4 0.97 0.79  0.37 0.94 0.47 1.31 
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Flexion 30°-
60° 3.1 1.27 3.3 1.00 0.86  0.54 0.96 0.44 1.23 

Flexion 60°-
90° 3.2 1.40 3.3 1.35 0.92  0.72 0.98 0.40 1.10 

Non-dominant Leg 

Extension 
10°-30° 2.9 1.45 2.8 1.84 0.73  0.22 0.93 0.88 2.45 

Extension 
30°-60° 2.4 1.27 2.4 1.34 0.87  0.55 0.97 0.50 1.38 

Extension 
60°-90° 1.9 0.82 2.0 1.27 0.76  0.31 0.76 0.53 1.47 

Flexion 10°-
30° 2.2 0.64 2.2 1.04 0.65  0.05 0.90 0.52 1.45 

Flexion 30°-
60° 4.0 1.80 3.6 1.54 0.79  0.38 0.94 0.75 2.09 

Flexion 60°-
90° 3.8 1.89 3.5 2.08 0.84  0.50 0.96 0.80 2.23 

 

1Session One Data; 2Session Two Data 
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Table 2. Mean (°), standard deviation (SD), 95% confidence intervals (CI), standard error of measurement 
(SEM), smallest detectable difference (SDD) and intraclass correlation coefficient (ICC) values in a prone 
condition. 

Relative Error Scores (RES) 

Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Extension 
10°-30° 2.0 2.16 2.5 2.96 0.75 0.26 0.93 1.31 3.62 

Extension 
30°-60° 0.9 3.19 1.4 2.07 0.54 -0.09 0.86 1.82 5.05 

Extension 
60°-90° 0.4 1.55 0.6 1.69 0.53 -0.10 0.86 1.11 3.08 

Flexion 10°-
30° -0.7 1.34 -1.2 1.34 0.67 0.12 0.91 0.77 2.13 

Flexion 30°-
60° -2.6 3.74 -2.3 3.03 0.69 0.15 0.91 1.90 5.28 

Flexion 60°-
90° -1.6 1.74 -2.3 1.67 0.68 0.12 0.91 0.97 2.69 

Non-dominant Leg 

Extension 
10°-30° 2.1 2.7 1.3 2.45 0.74 0.24 0.93 1.33 3.68 

Extension 
30°-60° 1.4 2.61 0.6 2.04 0.61 0.02 0.89 1.45 4.03 

Extension 
60°-90° -0.2 1.51 -0.4 1.94 0.74 0.24 0.93 0.89 2.48 

Flexion 10°-
30° -1.5 1.50 -2.0 2.15 0.79 0.35 0.94 0.85 2.37 

Flexion 30°-
60° -2.4 4.20 -1.7 5.61 0.60 -0.01 0.88 3.14 8.71 

Flexion 60°-
90° -2.1 3.08 -1.8 3.03 0.58 -0.04 0.88 1.98 5.50 

Absolute Error Scores (AES) 

Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Extension 
10°-30° 3.0 1.54 4.1 1.86 0.75 0.27 0.93 0.86 2.37 

Extension 
30°-60° 3.4 2.10 3.5 1.56 0.74 0.26 0.93 0.94 2.60 

xiv 

 

 



 

Extension 
60°-90° 2.0 0.83 2.0 0.86 0.44 -0.23 0.82 0.64 1.76 

Flexion 10°-
30° 1.9 0.84 2.1 1.71 0.27 -0.40 0.75 1.15 3.20 

Flexion 30°-
60° 5.0 2.35 4.5 2.03 0.87 0.56 0.97 0.79 2.19 

Flexion 60°-
90° 3.7 1.53 3.8 1.38 0.61 0.01 0.89 0.91 2.53 

Non-dominant Leg 

Extension 
10°-30° 4.0 1.85 3.0 1.57 0.67 0.11 0.91 0.99 2.75 

Extension 
30°-60° 3.9 1.88 3.2 1.65 0.82 0.42 0.95 0.76 2.10 

Extension 
60°-90° 2.2 1.39 2.3 1.37 0.71 0.19 0.92 0.75 2.07 

Flexion 10°-
30° 2.7 1.64 2.9 1.91 0.85 0.51 0.96 0.69 1.90 

Flexion 30°-
60° 5.1 2.52 6.0 4.23 0.25 -0.42 0.74 3.02 8.37 

Flexion 60°-
90° 5.2 2.02 4.7 1.77 0.90 0.66 0.98 0.59 1.65 

 

1Session One Data; 2Session Two Data 
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Table 3. Mean (°), standard deviation (SD), 95% confidence intervals (CI), standard error of measurement 
(SEM), smallest detectable difference (SDD) and intraclass correlation coefficient (ICC) values in an active 
condition.  
 

Relative Error Scores (RES) 

Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Extension 
10°-30° 0.8 0.59 0.5 1.16 -0.18 -0.71 0.47 1.00 2.78 

Extension 
30°-60° 1.5 1.59 1.1 2.13 0.49 -0.16 0.84 1.34 3.71 

Extension 
60°-90° 0.2 2.30 -0.1 2.16 0.24 -0.42 0.74 1.94 5.39 

Flexion 10°-
30° -1.4 1.97 -0.8 1.57 0.33 -0.34 0.78 1.46 4.04 

Flexion 30°-
60° -1.4 1.60 -1.3 1.77 0.36 -0.31 0.79 1.35 3.74 

Flexion 60°-
90° -0.7 0.92 0.1 0.89 0.14 -0.50 0.69 0.84 2.32 

Non-dominant Leg 

Extension 
10°-30° 0.9 1.03 0.4 0.80 0.89 0.62 0.97 0.30 0.85 

Extension 
30°-60° 1.1 1.67 1.8 2.11 0.26 -0.40 0.75 1.64 4.54 

Extension 
60°-90° 0.6 1.62 0.4 1.19 0.03 -0.59 0.62 1.40 3.89 

Flexion 10°-
30° -1.9 1.51 -1.6 1.84 0.37 -0.30 0.80 1.33 0.85 

Flexion 30°-
60° -1.5 1.29 -1.2 1.51 0.37 -0.30 0.80 1.11 4.54 

Flexion 60°-
90° -0.8 0.83 -0.5 1.30 0.51 -0.13 0.85 0.76 3.89 

Absolute Error Scores (AES) 
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Test Mean1  SD1 Mean2 SD2 ICC 95% CI SEM SDD 

Dominant Leg 

Extension 
10°-30° 1.8 0.52 1.6 0.49 -0.13 -0.68 0.51 0.54 1.49 

Extension 
30°-60° 3.0 1.49 3.0 1.02 0.41 -0.25 0.81 0.98 2.72 

Extension 
60°-90° 3.8 1.01 3.3 0.89 0.06 -0.56 0.64 0.92 2.56 

Flexion 10°-
30° 3.2 1.27 2.3 0.84 0.42 -0.25 0.81 0.82 2.28 

Flexion 30°-
60° 2.5 1.01 2.6 1.24 0.00 -0.60 0.60 1.13 3.14 

Flexion 60°-
90° 1.7 0.58 1.8 0.62 -0.20 -0.72 0.46 0.66 1.83 

Non-dominant Leg 

Extension 
10°-30° 1.7 0.79 1.5 0.72 0.66 0.09 0.90 0.44 1.23 

Extension 
30°-60° 2.9 1.23 3.0 1.00 0.67 0.11 0.91 0.64 1.78 

Extension 
60°-90° 3.5 1.15 3.0 0.88 0.54 -0.09 0.86 0.69 1.92 

Flexion 10°-
30° 2.8 1.05 3.0 1.15 0.82 0.42 0.95 0.47 1.31 

Flexion 30°-
60° 2.7 0.52 3.0 1.10 0.22 -0.44 0.72 0.76 2.11 

Flexion 60°-
90° 1.7 0.51 1.9 0.84 0.17 -0.48 0.70 0.63 1.76 

 

1Session One Data; 2Session Two Data 
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Appendix 1e: Criterion-related validity of knee joint position sense 
measurement using image capture and isokinetic dynamometry. 
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Appendix 1f: Relph, N., & Herrington, L. (2015). The Effect of Peripheral 
Fatigue on Knee Joint Position Sense. Paper presented at the International 

Society of Biomechanics Conference, Glasgow, UK.                                                                          
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Appendix 2: Participant Information Sheet for Clinical JPS Testing 
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Information To Participate In A Research Project 

You are invited to take part in a research study which could provide important information 

for the measurement of knee position sense.  

What is the project all about? 

The study is looking at knee joint position sense in uninjured participants, as this may be 

linked to predicting knee injury risk in athletes.  

What will I have to do? 

You will be required to participate in a knee joint angle measurement task that requires 

you to move your knee to a predetermined angle, set by the researcher, in a controlled 

laboratory environment at the University of Salford. The testing will not involve any 

exertion that you are not accustomed with through your current activity levels and will be 

conducted in sessions lasting 30mins maximum. 

Is there any risk involved? 

There is an inherent risk with any type of testing, however the testing for this study will be 

in a controlled laboratory environment and therefore any risks are minimal. 

Who will see my details and results? 

A photograph of your leg only will be taken. All personal information will be kept strictly 

confidential. The final results of the study will be available to you, and may be published. 

You are free to decide not to be in this trial or to drop out at any time.  
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Please feel free to ask any further questions about the nature or demands of the project at 

any time.  

Many thanks for your participation. 

 

Nicola Relph 
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Appendix 3:  Participant Informed Consent Form for Clinical JPS Testing 
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Participant Informed Consent Form 

1. Nicola Relph, who is a Postgraduate research student at the University of Salford, has 
requested my participation in a research study. My involvement in the study and its 
purpose has been fully explained to me.  

 

2. My participation in this research will involve trials that involve movement of the knee 
joint to set target angles.  

 

3. I have been informed that this research does not involve any additional risk that does 
not occur normally during everyday activity. 

 

4. I understand the requirements of the study and my involvement and the possible benefit 
of my participation in this research  

 

5. I have been informed that I will not be compensated for my participation. 
 

6. I understand that the results of this research may be published but that my name or 
identity will not be revealed at any time. In order to keep my records confidential, 
Nicola Relph will store all information as numbered codes in computer files that will 
only be available to her. 

 

7. I have been informed that any questions I have at any time concerning the research or 
my participation in it, will be answered by Nicola Relph and I can contact her at: 
Nicola.Relph@Cumbria.ac.uk 

 

 
8. I have read the above information. I understand the nature, demands, risks and benefits 

of the project and I agree to participate in this research. However, I understand that I 
may withdraw my consent and participation at any time without objection from the 
researcher. 

 

Signed:         Date: 

Name: 

Witnessed:         Date: 
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Appendix 4: Isokinetic Dynamometer Protocols 
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IKD Protocol from 0° into Flexion 

Action Angle (°) Hold Time (s) 
Passive  90/ 80/ 70/ 90/ 75 5 
Passive 0 2 
Active Replication 5 
Passive 0 Back to step 1 
 

 

IKD Protocol from 90° into Extension 

Action Angle (°) Hold Time (s) 
Passive  30/ 45/ 60/ 45/ 45 5 
Passive 90 2 
Active Replication 5 
Passive 90 Back to step 1 

 

 

Note. “Passive” action defines IKD lever movement. “Active” motion defines participant muscular 
contraction.  
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Appendix 5: Participant Information Sheet for Peripheral Fatigue Study 
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Information To Participate In A Research Project 

You are invited to take part in a research study which could provide important information on the 

effects of fatigue on knee joint position sense, an aspect of knee proprioception.  

What is the project all about? 

The study is looking at knee joint position sense and fatigue in uninjured participants, as this may 

be linked to predicting knee injury risk in athletes. The test will be conducted on one occasion.  

What will I have to do? 

You will be required to participate in a knee joint angle measurement task that requires you to 

move your knee to a predetermined angle, set by the researcher, in a controlled laboratory 

environment at the University of Cumbria. A photograph of your knee will be taken at each set 

angle to measure your positioning. You will then be asked to extend and bend your knee joint at a 

set speed to measure you maximum strength performance and be asked to repeat this task until you 

are fatigued. The testing will be conducted in one session, taking no longer than 30 minutes. 

Is there any risk involved? 

There is an inherent risk with any type of testing, however the testing for this study will be in a 

controlled laboratory environment and therefore any risks are minimal. You will complete a sub-

maximal warm up prior to data collection and the leg will be unloaded, lowering the risk of any 

injury.  

Who will see my details and results? 

All personal information will be kept strictly confidential. The final results of the study will be 

available to you, and may be published. 

You are free to decide not to be in this trial or to drop out at any time. Please feel free to ask any 

further questions about the nature or demands of the project at any time.  

 

Many thanks for your participation.          

Nicola Relph 
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Appendix 6: Informed Consent Form for Peripheral Fatigue Study 
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Informed Consent Form 

 

1. Nicola Relph, who is lecturer at the University of Cumbria, has requested my participation in a 

research study. My involvement in the study and its purpose has been fully explained to me.  

 

2. My participation in this research will involve trials that involve movement of the knee joint to 

set target angles. A photograph of the knee will be taken at each set angle to measure 

positioning. My leg will then be fatigued. Then my knee position will be recorded again.  

 

3. I have been informed that this research does not involve any additional risk that does not occur 

normally during everyday activity and exercise. 

 

4. I understand the requirements of the study and my involvement and the possible benefit of my 

participation in this research. 

 

5. I have been informed that I will not be compensated for my participation. 

 

6. I understand that the results of this research may be published but that my name or identity will 

not be revealed at any time. In order to keep my records confidential, Nicola Relph will store all 

information as numbered codes in computer files that will only be available to her. 

 

7. I have been informed that any questions I have at any time concerning the research or my 

participation in it, will be answered by Nicola Relph and I can contact her at: 

Nicola.Relph@Cumbria.ac.uk 

 

8. I have read the above information. I understand the nature, demands, risks and benefits of the 

project and I agree to participate in this research. However, I understand that I may withdraw 

my consent and participation at any time without objection from the researcher. 

 

Signed:         Date: 

Name: 

Witnessed:         Date 
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