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Background. Despite the widely-held understanding that the biological changes that lead to autism usually occur during prenatal
life, there has been relatively little research into the functional development of the brain during early infancy in individuals later
diagnosed with autism spectrum disorder (ASD). Objective. This review explores the studies over the last three years which have
investigated differences in various brain regions in individuals with ASD or who later go on to receive a diagnosis of ASD.Methods.
We used PRISMA guidelines and selected published articles reporting any neurological abnormalities in very early childhood in
individuals with or later diagnosed with ASD. Results. Various brain regions are discussed including the amygdala, cerebellum,
frontal cortex, and lateralised abnormalities of the temporal cortex during language processing. This review discusses studies
investigating head circumference, electrophysiological markers, and interhemispheric synchronisation. All of the recent findings
from the beginning of 2009 across these different aspects of defining neurological abnormalities are discussed in light of earlier
findings. Conclusions. The studies across these different areas reveal the existence of atypicalities in the first year of life, well before
ASD is reliably diagnosed. Cross-disciplinary approaches are essential to elucidate the pathophysiological sequence of events that
lead to ASD.

1. Introduction

1.1. Clinical Importance of Early Identification. Autism spec-
trum disorder (ASD) is a relatively common, neurodevelop-
mental disorder with onset of symptoms in the first few years
of life. ASD is characterised by difficulties in social communi-
cation and repetitive or restricted interests and behaviours [1].
ASDs have high heritability and an unclear aetiology inmany
cases [2]. ASD is diagnosed in around 1% of the population
[3, 4] and was once considered to be a rare psychological
disorder due to poor parenting [5]. Despite recent advances
in the ability to identify ASD earlier, diagnosis is frequently
not made prior to approximately three years. Currently, no
reliable predictors of ASD in infancy exist but characteristic
behaviours emerge during the second year which are used

to aid diagnosis [6–8]. Study into the neurological basis
of ASD before the age of three years is imperative [9, 10].
Reliable early identification of neurodevelopmental disorders
in childhood in primary care is important as it may improve
outcomes [11, 12]. Absence of robust biological markers for
identifying ASD has led researchers to focus on behavioural
anomalies in order to detect early symptoms of ASD [13].
A number of novel lines of investigation have been used
to this end, including retrospective coding of home videos
[14–16], prospective population screening [17–19], and “high
risk” sibling studies [20–22] as well as the investigation of
pre- and perinatal brain development and other biological
factors. Early social abnormalities are not easily identifiable
in the first year of life in infants who later receive a diagnosis,
since they may be present at subtle and subclinical levels.
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Motor abnormalities, in particular, may be one of the earliest
markers observable within the first year [23]. Recent reviews
(i.e., [24]) have found evidence for putative ASD biomarkers
including gastrointestinal factors [25], immune dysregulation
[26, 27], heavy metal toxicity [28–30], neurotransmitter
abnormalities [31–33], oxidative stress [34, 35], and elevated
levels of p-cresol in small children with ASD [36]. This
research suggests that ASD might best be considered to be
a multisystem disorder.

Prenatal life and the first three postnatal years are consid-
ered to be the optimal time in which to detect and examine
the earliest fundamental biological underpinnings of autism
[37]. This review specifically focuses on studies published
since the beginning of 2009 which investigated whether there
were neurological or pathophysiological abnormalities in the
first few years of life in individuals later diagnosed with
ASD. To our knowledge, this is the first review to focus only
on abnormalities within the first few years of life but there
have been recent reviews investigating neuroanatomical dif-
ferences in older children, adolescents, and adults [38, 39].We
will address structural abnormalities (e.g., atypical volume
of neural sites, morphology), functional abnormalities (e.g.,
atypical activation of neural sites), and abnormalities of head
circumference. Genetic or environmental aetiologies which
may underlie pathophysiological abnormalities are outside
the scope of this review [40, 41].

Our understanding of the neuralmechanisms that under-
lie the core symptoms of ASDs has advanced significantly
as a result of neuroimaging techniques [42, 43]. Magnetic
resonance imaging (MRI) affords the noninvasive in vivo
exploration of brain morphology [44] without any adverse
effects such as radiation exposure, a crucial feature, partic-
ularly when applied to young children [45]. Research on
older children through to adulthood with ASD has indicated
numerous differences in the neural structures compared to
typical developing children and adults. Particularly in the left
hemisphere regions, a substantial thinning of the cortex has
been observed in individuals with ASD [46] consistent with
earlier studies [47]. Increased grey matter in the primary and
associative auditory and visual cortex [48] and reductions
in regions within the corpus callosum [49] are just some
of the findings of brain morphological differences in older
individuals with ASD. Subtle differences in both behaviour
and brain structure have been discovered within the first
12 months in infants who are later diagnosed with ASD.
What is not known is whether any of these subtle differences
can be used as an early biomarker to identify infants at-
risk of a later ASD diagnosis [50]. Applying behavioural,
electrophysiological, and functional neuroimaging methods
during the first few years of life in individuals at risk of
ASD is essential [51]. The functional brain characteristics of
ASD during the time when the behavioural symptoms first
arise, around 8–36 months, are largely unknown. Functional
magnetic resonance imaging (fMRI) studies have primarily
been limited to studies using normal IQ adolescents and
adults with ASD [52].

Despite being very much in its infancy, detailed exami-
nation of the postmortem brain from individuals with ASD

is an area of research which has substantially advanced our
understanding of the neurobiological underpinnings of this
disorder [53]. Most brain tissues examined have been from
adults with ASD, and so our knowledge of the characteristics
of the brain in young subjects with ASD is minimal [54].

2. Method

Internet-based bibliographic databases (PsycINFO and Web
of Knowledge) were searched to access studies which exam-
ined neurological differences in individuals with, or later
diagnosed with, ASD under the age of three years. Searches
were limited to references published from 2009 to the 21st
of November 2012 yielding 470 references. Search terms
used were “autis∗,” “infan∗,” “brain,” and “neuro∗.” Different
ordering of the search criteria entered into either database
did not result in any variations in the number of returned
abstracts. Duplicates were excluded prior to the retrieval of
references. Abstracts for each reference were obtained and
screened using the following criteria.

Inclusion criteria:

(1) human study population
(2) study must involve infants or toddlers under the age

of four.

Exclusion criteria:

(1) papers not published from January 2009 until 21st
November 2012

(2) paper not published in English
(3) dissertations
(4) book reviews.

The process of eliminating nonrelevant papers can be seen
in the flowchart (following PRISMA guidelines) later (see
Figure 1 for flowchart) [55]. We have reviewed studies which
contain a mixture of different diseases, albeit all presenting
with a somewhat similar autism phenotype.

3. Results

Table 1 includes all the studies which investigated neuro-
logical differences in individuals with ASD and provides
summary detail regarding study characteristics and findings.

3.1. AmygdalaAbnormalities in Individuals withASD. Intense
interest in the amygdala as the structure predominantly
underpinning ASD is not new. The function of the amygdala
is related to core clinical features of ASD such as emotion and
social behaviour. In addition to the abnormal developmental
trajectory of the amygdala, there is a concomitant early
overgrowth in ASD. Numerous studies demonstrate amyg-
dala abnormalities in individuals with ASD with increased
volumes [94–96] or decreased volumes [97–99] found. Other
studies have found no difference [100–102]. The association
between abnormalities of amygdala volume and attention to
eyes has been found in a study using a sample of older males
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Identification 

Screening 

Eligibility 

Included 

Number of references 
identified through 

database search—470 

Number of duplicates 
removed through reading

titles of abstracts—12 

Number of additional 
references identified 

through other sources—5 

Screened—463 

Number of full text 
articles assessed for 

eligibility—85

Number of full text articles excluded 
38

(14 sample too old. 1 was included for 
introduction. 16 were not relevant. 2 
were dissertations. 1 abstracts were 
from conference abstracts. 4 were 

books).

Number of papers 
unobtainable—7 (nonenglish 

 language journal)
Number of papers 

eligible—47 

Number of studies 
included in the 

qualitative synthesis—40

Number of references 
excluded—378 

(not looking at neurological  
abnormalities in the first 

three years). 

Figure 1: Flowchart showing the process for identifying the relevant studies for this systematic review.

[99]. Postmortem studies have found quantifiable abnormal-
ities in the amygdala of individuals with ASD [103, 104].

Recent research has emphasised that abnormal develop-
mental trajectory has been relatively under researched in
the early years and the age at which abnormal amygdala
enlargement begins remains unclear. Schumann et al. [56]
measured amygdala volumes onmagnetic resonance imaging
scans from 89 toddlers at one to five years of age (mean,
three years). Toddlers, later diagnosedwith ASD (32 boys and
nine girls), had a larger right and left amygdala compared
with typically developing toddlers (28 boys and 11 girls). In
boys, there was a significant positive relationship of amygdala
size with severity of clinical impairment. Enlargement in
right amygdala volume in males and females and left amyg-
dala volume in females is disproportionate to total cerebral
volume at three years. Unlike ASD males, the enlargement
in ASD females was associated with severity of social and
communication impairments.

Nordahl et al. [57] studied amygdala volumes and total
cerebral volumes at two time points in 132 boys (85 with
ASD and 47 control subjects with typical development (TD);
mean age, 37 months). A year later, longitudinal magnetic
resonance images were conducted on 70 participants (45 with
ASD and 25 TD controls) and one year growth rates were
calculated. Despite no difference in total cerebral volume
growth (although the total cerebral volume was significantly
enlarged at both time points in the ASD group), at both time
points, growth rate and amygdala volume were greater in
children with ASD, with enlargement found to be greater
at time two. Difference in amygdala volume between the
two groups was about 6%, increasing to approximately 9%
at time two. Mosconi et al. [58] investigated associations
between specific autism behaviours (joint attention) and
amygdala volume. Fifty ASD and 33 control (11 developmen-
tally delayed, 22 typically developing) children between 18
and 35 months (two years) of age followed up at 42 to 59
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months (four years) of age. Bilateral enlargement of amygdala
volume was found in children with ASD. Left amygdala was
enlarged proportionately to increases in total tissue volume.
A 5% increase in total tissue volume was found in the
ASD group and amygdala volumes were enlarged by 16%
compared to the control group at the ages of two and four.
Between the groups, no differences in the growth trajectories
between two and four years of age were found. Interestingly,
amygdala enlargement was associated with increased joint
attention at the age of four, and while only the right amyg-
dala volume was increased relative to total tissue volume
enlargement, the strength of the relationship did not differ
when the right and left hemispheres were analysed separately.
Lastly, one study emphasised the importance of taking into
consideration heterogeneity in studies investigating ASD
[59]. Children (between 18 and 42 months) with Fragile
x syndrome (FXS) and autism disorder had substantially
enlarged caudate volume and smaller amygdala volume.
Children with ASD without FXS (i.e., idiopathic autism) had
only modest enlargement in their caudate nucleus volumes
while enlargement of their amygdala volumes was more
pronounced.

3.2. Cerebellum Abnormalities in Individuals with ASD. Pre-
vious studies have observed reduction in cerebellar grey
matter volume in girls with ASD aged between two and six
years [105] and increased cerebellar white matter volume
(increased by 39%), no enlargement of cerebellar gray matter,
and reduced vermis lobules VI-VII in two- and three-year-
old ASD children [106]. Sparks et al. [95] found an increase
of 7% in the volume of the whole cerebellum in three- and
four-year-old ASD children.

Recent research has also found evidence of cerebellum
abnormalities.Webb et al. [60] investigated specific cerebellar
vermal structures and their association with severity of
symptoms and cognitive functioning in children with ASD
aged three to four years and found reduced total vermis
volumes (vermis lobe VI-VII area) in the ASD children.
Neither severity of ASD symptoms nor verbal, nonverbal, or
full scale IQ was found to be in correlation with cerebellar
measurement. To our knowledge, no studies have investi-
gated cerebellumvolumetric differences in children under the
age of three within the last three years.

3.3. Frontal Cortex Abnormalities in Individuals with ASD.
Brain overgrowth is often found in ASD and such overgrowth
is commonly found in the prefrontal cortex (PFC) [107–
110]. Carper et al. [107] found an anterior-to-posterior gra-
dient of overgrowth, with frontal lobes showing the greatest
overgrowth in two to four year olds with ASD. Despite
PFC abnormality being considered to underlie some ASD
symptoms, the cellular defects that produce the abnormal
overgrowth have yet to be discovered.

Studies within the last three years are consistent with ear-
lier findings demonstrating abnormalities within the frontal
cortex in individuals with or later diagnosed with ASD.
Courchesne et al. [61] examined postmortem prefrontal
tissue from seven children with autism and six control male

children aged 2 to 16 years and found that children with ASD
had 67% more neurons in the PFC compared to controls,
including 79% more in dorsalateral-PFC and 29% more in
medial-PFC. Brain weight in the ASD cases differed from
normative mean weight for age by a mean of 17.6%, while
brains in controls differed by a mean of 0.2%.

Both attention and inhibition, previously shown to be
associated with frontal cortex activation, were explored in
nine to ten month old siblings of children who have been
diagnosed with ASD and low-risk control infants [62]. Par-
ticipants took part in the Freeze-Frame task where infants
are encouraged to inhibit looks to peripherally presented
distractors whilst looking at a central animation. A subset
of sibs-ASD infants had difficulty disengaging attention
from a centrally presented stimulus in order to orient to a
peripheral stimulus. Lastly, Santos et al. (2011) [63] examined
von Economo neurons (VENs) in the frontoinsular cortex
(FI), a region which has been put forward as the area
which is involved with the integration of internal sensations
of bodily arousal, emotional regulation, and goal-directed
behaviours. Using a stereological method, Santos et al. (2011)
[63] quantified VENs and pyramidal neurons in layer V of FI
in postmortem brains of four young patients (aged between
4 and 14 years) with ASD and three age-matched controls
and found a significantly higher ratio of VENs to pyramidal
neurons in the patients with ASD.

3.4. Temporal Cortex Abnormalities in Individuals with ASD.
Earlier studies have suggested that failure to develop normal
language comprehension is one of the most common early
warning signs that a toddler might be at risk for ASD [111, 112]
but the neural mechanisms underlying this signature deficit
or failure to develop language have yet to be identified. Earlier
studies have investigated this using fMRI performed during
natural sleep to investigate the brain regions which underlie
speech perception [113]. Decreased functional activity in
temporal cortices in a small sample (𝑛 = 12) of two to three
year olds with ASD compared with chronological (𝑛 = 12)
and mental age-matched groups (𝑛 = 11) was found.

A recent study also found lateralised abnormalities of
temporal cortex processing of language in ASD. Brain activity
in toddlers with ASD (𝑛 = 40) and typically developing
toddlers (𝑛 = 40), aged between 12 and 48 months, was
measured during the presentation of a bedtime story during
natural sleep [64]. Deficient left hemisphere response to
speech sounds and exhibited abnormally right-lateralised
temporal cortex response to language was found in at-risk
toddlers who later received a diagnosis of ASD.Thiswasmore
pronounced in the individuals with ASD when they were
three and four years of age. Failed development of language
comprehension, known to be one of the earliest markers in
ASD, may therefore be the result of very early defects in the
superior temporal gyrus which may persist throughout the
individual’s lifetime.

3.5. Differences across aWide Range of Brain Regions. Abnor-
mal growth was most pronounced in temporal grey matter
volumes consistent with earlier findings in childrenwithASD
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under the age of two [114] and over [95, 106]. Therefore,
abnormal early development of grey matter is linked with
ASD (i.e., [115]) in children between two and four years
old. Numerous conditions of atypical development can lead
to autism, in particular fragile X syndrome (FXS), which
is considered to be the most commonly known single-gene
cause of autism. Many individuals with FXS also exhibit
behaviours common to individuals with ASD.

In a recent study, whole-brain morphometric patterns
were examined in young males diagnosed with FXS (𝑛 = 52;
mean age, 2.90 years) or idiopathic autism (iAUT) (𝑛 = 63,
mean age, 2.77 years) as well as typically developing (𝑛 = 31;
mean age, 2.55 years) and idiopathic developmentally delayed
controls (𝑛 = 19; mean age, 2.96 years) [66]. Overall, greater
volumewas evident in iAUT compared with controls, who, in
turn, had greater volume than FXS.Therefore, FXS and iAUT
may be associated with distinct neuroanatomical patterns,
emphasising the neurobiological heterogeneity of iAUT.

Brain enlargement has been observed in children with
ASD as young as two years of age. Hazlett et al. [65] looked
at early growth trajectories in brain volume (cerebral grey
and white matter) and cortical thickness. At about two
years of age, 59 children with ASD and 38 control children
were examined using magnetic resonance imaging (MRI).
MRI was carried out again approximately 24 months later
(when aged 4-5 years; 38 children with ASD; 21 controls).
Generalised cerebral cortical enlargement in individuals with
ASD at both two and four to five years of agewas found (being
9% larger in ASD group). There was no difference in the rate
of increase of cerebral cortical growth during this interval
between the groups, suggesting that brain enlargement in
ASD results from an increased rate of brain growth prior
to the age of two years. No cerebellar differences were
observed in children with ASD. Despite no difference in
cortical thickness, children with ASD had enlargement in
both grey and white matter volumes for all cortical lobes
(temporal, frontal, and parieto-occipital lobes). However,
disproportionate enlargement in temporal lobe white matter
was only found in the ASD group after controlling for total
brain volume.

Schumann et al. [67] found both cerebral grey and
white matter growth abnormalities in individuals with ASD
at two and a half years of age. Within cortex, the most
significant differences in volume and age-related change took
place in anterior regions of the brain (frontal, temporal,
and cingulate cortices). Posterior cerebral regions, on the
other hand, were less affected with respect to volume and
growth trajectory. Abnormal growth was most pronounced
in temporal grey matter volumes. Schumann et al. [67] also
observed significant gender differences in the longitudinal
growth trajectories in numerous brain regions. Compared to
controls, in males with ASD, frontal, and temporal lobe grey
matter volumeswere significantly enlarged and cingulate grey
matter grew at a nonlinear rate. Compared to controls, in
females with ASD, abnormal brain growth was more diffused
and severe with abnormal growth trajectories observed in
the total cerebrum, cerebral white, cerebral grey, frontal,
and temporal regions. In females with ASD only, there was

an enlargement of the cingulate grey supporting this research
group’s previous hypothesis that males and females with ASD
exhibit different “neuroanatomical profiles,” with pathology
being more pronounced in females [56]. It has previously
been suggested that, compared to females who are later
diagnosed with ASD, overgrowth may start earlier in males
with ASD.

Wolff et al. [88] prospectively examined white matter
fiber tract organisation from six to 24 months in high-risk
infants. At 24 months, 28 of the 92 infants met criteria for
ASDs. Microstructural properties of white matter fiber tracts
(considered to be related with ASDs) were characterised by
fractional anisotropy and radial and axial diffusivity. The
fractional anisotropy trajectories for 12 of 15 fiber tracts were
significantly different between the infants who developed
ASDs compared to those who did not. In the infants with
ASDs, development for the majority of fiber tracts was
characterised by higher fractional anisotropy values at six
months followed by slower change over time compared to
infants without ASDs [88].

One study investigated structural brain volumes using
magnetic resonance imaging across two time points (at
two to three and again at four to five years of age). Total
brain volumes and regional (lobar) tissue volumes were also
examined. The study included 53 boys 18 to 42 months of
age with fragile X syndrome (FXS), 68 boys with idiopathic
autism (ASD), and a comparison group of 50 typically
developing and developmentally delayed controls. Children
with FXS had larger global brain volumes compared with
controls but were not different than children with idiopathic
autism, and the rate of brain growth from two to five years
of age was similar to that observed in controls. Children with
idiopathic autism were found to have a generalised cortical
lobe enlargement, while children with FXS showed specific
enlargement in the temporal lobe white matter, cerebellar
grey matter, and caudate nucleus but a significantly smaller
amygdala [89].

Recognising the neglect of research investigating the
neuroanatomical phenotype of female children with ASD
(ASDf), Calderoni, Retico, Biagi, Tancredi, Muratori, and
Tosetti [90] investigated the anatomic brain structures of a
sample entirely composed ofASDf (𝑛 = 38; two to seven years
of age;mean = 53months; SD= 18) compared to 38 female age
and nonverbal IQ matched controls. Whole brain volumes of
each group were compared using voxel-based morphometry
(VBM) with diffeomorphic anatomical registration through
exponentiated lie algebra (DARTEL) procedure, allowing the
authors to create a study-specific template. First, the between-
group whole-brain and brain-segment volume comparison
revealed a total intracranial volume (TIV) enlargement of
approximately 5% in female children with ASD with respect
to age andNVIQmatched controls. Second, the conventional
VBM analysis showed evidence of an increased GM volume
in a specific region of the left superior frontal gyrus of
ASDf. Third, the implementation of the SVM analysis on the
GM segments obtained in the VBM-DARTEL preprocessing
highlighted a more complex circuitry of increased cortical
volume in ASDf, involving bilaterally the SFG and the right
temporoparietal junction (TPJ), compared to controls [90].
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Lastly, some studies have found no evidence of abnormal-
ities across brain structure in individuals with ASD in the
early years. For instance, thirty-four childrenwithASDand 13
developmentally delayed children without ASD, between two
and seven years of age (matched on age and developmental
level), participated in an MRI study to investigate volumes
of cranium, total brain, cerebellum, grey and white matter,
ventricles, hippocampus, and amygdale [91]. No significant
differences in volumes of intracranium, total brain, ventricles,
cerebellum, grey or white matter or amygdala and hippocam-
pus between the ASD group and the developmentally delayed
group were found. The important suggestion arising from
these findings is that higher intellectual functioning was not
found to be associated with a relatively larger brain volume
in children with ASD, therefore relative brain enlargement
may not be beneficial to individuals with ASD [91]. This
merits further research in this area. Also, an MRI study
examining head circumference, brain volume and radiologic
abnormalities in a group of six-month-old infants at high
risk for autism (𝑛 = 98) compared to infants without family
members with autism (𝑛 = 36) found no significant group
differences [92].

3.6. Relationship between Increased Head Circumference (HC)
and Somatic Growth in ASD. Accelerated brain growth is a
well known and intriguing biological feature in children with
ASD [72, 116, 117]. A recent study suggested that, in fact, at the
total population level, macrocephaly is uncommon in ASD
[118]. Evidence of accelerated head circumference (HC) or
macrocephaly and body growth during infancy in children
with ASDs is well supported in the literature, although vari-
ation in the timing of acceleration across studies exists [106,
109, 119]. Such accelerated growth has even been suggested as
an early biological indicator of ASDwithin the first 12months
of life [120, 121]. Research investigating whether abnormally
large HC during the early years can be a reliable indicator
of ASD is supported by findings that HC during the early
years more accurately reflects brain volume than that during
adolescence and a crucial factor for the analysis of ASD
onset is the timing of the increase in HC in infancy and
toddlerhood [120, 122, 123]. Emergence of brain organisation
and connectivity differences in high risk infants occur at the
same time as observations of accelerated head growth have
been found in children with ASD [124]. Accelerated head
growth in ASD has been argued to be the result of an increase
in general body growth [123, 125, 126]. HC trajectories were
still accelerated in children with ASD even after correcting
for body length and height measurements [120, 123]. Despite
a large number of studies investigating head circumference in
young children with ASD, research carried out over the last
three years have produced mixed results.

More recent studies have investigated HC within the first
few years of life. Rommelse et al. [68] measured HC, height
and weight throughout the first 19 months of life in 129
children with ASD and 59 children with non-ASD psychi-
atric disorders. Fifty-nine children (46 male and 13 female)
with non-ASD psychiatric disorders (Psychiatric controls,
PC) also participated: 39 had a psychiatric disorder other

than ASD (such as ADHD, oppositional defiant disorder,
communication disorder), 12 had a diagnosis according to
the DC: 0-3R (2005; such as regulation problems), and eight
had mental retardation without any psychiatric comorbidity.
Similar abnormal patterns of growth compared to population
normswere found in both groups, especially regarding height
and HC in relation to height. Abnormal HC growth may
actually be common to psychiatric disorders, rather thanASD
specifically, questioning the use of HC growth as a marker
for ASD. However, the most apparent difference was that the
children with ASD only showed an increased HC relative to
height up to two months of age, an increase not found in the
PC group at this age.

Muratori et al. [69] used anthropometric measurements
(HC, body height, and body weight) obtained at birth (T0),
1-2 months (T1), 3–5 months (T2) and 6–12 months (T3) to
investigate HC development during the first year. At T2 and
T3, HC was significantly larger in the ASD group (𝑛 = 50)
compared to the typically developing group (𝑛 = 100).
Weight was significantly less inASD subjects from 1-2months
onwards. After controlling for weight and height, an excessive
rate of HC growth from birth was found in the individuals
with ASD consistent with an earlier study by Fukumoto et
al. [70] which compared 280 children with ASD. Increases
in HC growth from 3 to 12 months, in height from 3 to
9 months and in body weight from three-six months and
12 months were found in the males with ASD. Increases in
HC, body height, and body weight were only observed at
three months in the females with ASD. Only the HC in the
male ASD group were significantly increased from six to nine
months after birth, reaching a peak at six months after birth
after correcting for height, age and weight. Chawarska et al.
[71] examined whether HC growth in ASD is independent of
height and weight growth during infancy and also whether
there is any association between HC growth from birth to
24 months and measures of cognitive functioning (social,
verbal, cognitive and adaptive functioning) taken at two years
of age. Boys diagnosed as having autism disorder (𝑛 = 64),
pervasive developmental disorder (not otherwise specified)
(𝑛 = 34), global developmental delay (𝑛 = 13), and other
developmental problems (𝑛 = 18) and typically developing
boys (𝑛 = 55) were compared. Boys with ASD were
significantly longer by 4.8 months, had greater HC by age
9.5 months and weighed more by age 11.4 months, compared
to the typically developing boys. No other clinical groups
displayed overgrowth and boys with ASDwhowere in the top
10% of overall physical size in infancy exhibited more severe
social deficits and lower adaptive functioning at two years.

Rapid head growth has been suggested as a potential risk
factor for regressive autism [72]. Using a large sample of
two to four year old boys and girls with ASD (𝑛 = 53, no
regression (nREG); 𝑛 = 61, regression (REG)) and a control
group of age-matched typically developing controls (𝑛 = 66).
Retrospective measurements of HC from birth through to 18
months of age were reviewed and abnormal brain enlarge-
ment was most commonly found in boys with regressive
autism whereas brain size in boys without regression were
similar to controls. HC in boys with regressive autism was
normal at birth but deviated from normal growth trajectories
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(other groups) around the age of four to six months. No
brain size differences in girls with autism (𝑛 = 22, ASD;
𝑛 = 24, controls) were found. Nordahl et al. [72] argue that
distinct neural phenotypes are linked with different onsets of
ASD. For boys with regressive autism, divergence in brain
size occurs well before loss of skills are typically observed.
Investigating age-specific anatomical abnormalities in indi-
viduals with ASD, Courchesne et al. [37] measured age-
related changes in brain size in ASD and control participants
(between 12months and 50 years of age) based on the analyses
of 586 longitudinal and cross-sectional MRI scans. Findings
revealed evidence of overgrowth throughout infancy and
toddlerhood in both boys and girls with ASD which was
subsequently followed by an accelerated rate of decline in size.

While the studies discussed so far indicate abnormalities
in HC in individuals with ASD, numerous studies have found
no evidence of such differences. In a nationally representa-
tive, community-based sample of children with and without
ASDs, derived from the Early Childhood Longitudinal Study
Birth Cohort, Barnard-Brak et al. [73] followed about 9,000
children across three time points (9, 24, and 36months) to see
the HC growth trajectory over this time. No difference in HC
at any of the three time points in the children with ASDs were
found. Whitehouse et al. [74] were the first to examine foetal
HC growth prospectively in children with ASD (𝑛 = 14) who
were each matched with four control participants (𝑛 = 56)
on a variety of factors which can have an effect on foetal
growth. HC was measured using ultrasonography at about 18
weeks gestation and also at birth using a paper tape-measure.
Overall body size was indexed by foetal femur-length and
birth length. This study found no difference in HC at either
time-point between the groups.

A retrospective study obtained serial head orbitofrontal
circumference measurements taken from 48 sibling pairs in
which one (𝑛 = 28) or both (𝑛 = 20) siblings were affected
by an ASD and 85 control male sibling pairs over 15 time
points starting from birth to 36 months [75]. There was a
significant acceleration of head growth in individuals with
ASD compared to controls.The study also showed that infant
HG trajectory may be endophenotypic but was not a reliable
indicator of risk of ASD among siblings of ASD in this study.
Gray et al. [76] measured HC at birth and rate of change in
HC in young children with autism (𝑛 = 86) and children
with developmental delay without autism (𝑛 = 40) and
found no differences between the group of children with
both ASD and developmental delay compared with the group
with developmental delay alone. However, compared with
normative data, children with ASD had significantly smaller
HCs at birth and significantly larger HC at 18.5 months of
age with no difference in the HCs of children with ASD and
developmental delay and children with developmental delay
only indicating that HC measurement has limited reliability
in terms of its use as an early indicator for ASD. Lastly, in
the first study to examine head growth in children who later
lose their diagnoses of ASD, Mraz et al. [77] measured HC,
length, and weight growth during infancy for 24 children
who maintained their diagnoses, 15 children who lost their
diagnoses, and 37 typically developing controls. Compared
to controls, HC and weight growth were significantly larger

in both ASD groups (birth to 25 months) and there were no
significant differences between ASD groups.

3.7. Electrophysiological Functioning Differences in Individuals
with ASD. By around one year, infants at high risk for
ASD display behavioural deficits in social development at
increased rates compared to low-risk infants [127, 128].These
subtle brain function signatures (atypical neural electro-
physiological responses) in the first few years of life may
provide an early indicator to later development of complex
neurodevelopmental disorders such as ASD. Earlier research,
which primarily has been limited to older children, suggests
that early detection of abnormalities in electroencephalog-
raphy (EEG) signals may be used as an early biomarker for
developmental cognitive disorders [129]. Atypicalities in face
and object processing in children and adults with ASDs have
previously been shown in three to four year olds with ASD
[130] and adults with ASD [131]. Since indicators of brain
function may serve as potentially sensitive predictors of ASD
and atypical eye contact are characteristic of this syndrome
[132], studies have previously investigated whether neural
sensitivity to eye gaze during infancy is associated with later
autism outcomes [133, 134] and atypical eye gaze processing
in children and adults with ASD have been shown.

A more recent study investigated whether such atypi-
calities reflect an early genetically mediated risk factor [78]
by measuring cortical responses to face/object processing in
ten month old high-risk infants (siblings of an older sibling
diagnosed with ASD) using event-related potentials (ERPs).
Latencies and amplitudes of four ERP components (P100,
N290, P400, and Nc) were compared between 20 high-risk
infants and 20 low-risk control subjects. The low-risk group
displayed faster responses to faces compared to object stimuli
(P400) which was not observed in the high-risk group.
Conversely, faster responses to objects rather than faces
in high-risk but not low-risk infants (N290) were shown.
Responses to objects were also faster in high-risk compared
to low-risk infants (both N290 and P400). Overall there were
significantly less hemispheric asymmetries exhibited in the
high-risk compared to the low-risk group.

Luyster et al. [79] investigated whether high-risk infants
might also exhibit atypical neural responses to social stimuli.
The face-sensitiveN290/P400 complex and theNc, associated
with the allocation of attention, were studied. Thirty-two 12-
month-old infants at high risk of ASD and 24 low-risk control
infants were presented with familiar and unfamiliar faces.
There were no significant group differences in the neural
response to faces. A more negative Nc to unfamiliar faces
than to familiar ones across both groups were displayed, thus
indicating that infants recruited more attentional resources
when presented with an unfamiliar face compared with a
familiar one.This lack of differentiation between familiar and
unfamiliar stimuli in high-risk infants is consistent with the
findings reported earlier by McCleery et al. [78].

In light of previous findings demonstrating atypical eye
gaze processing in children and adults with ASD, Elsabbagh
et al. [80] recently examined the neural correlates of direct
and averted gaze in infant siblings of children diagnosed
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withASD (Sib-ASD). Nineteen siblings of children diagnosed
with ASD (sib-ASD) were compared with 17 control infants
with no family history of ASD (mean, ten months) on their
response to direct versus averted gaze in static stimuli. Pro-
longed latency of the occipital P400 event-related potentials
component in response to direct gaze was exhibited in the
sib-ASD group compared to control infant. However, there
was no difference between the groups in the P400 latency for
averted gaze.TheN290 is also a component sensitive to atten-
tional modulation in infants [135]. While the control group
showed no difference in latency values between Direct and
Averted gaze, the sib-ASD group had a tendency to respond
faster to the Averted relative to the Direct gaze condition.
Neural sensitivity to eye gaze in infancy may therefore serve
as an early predictor of ASD later in toddlerhood. Elsabbagh
et al. [8] examined whether neural sensitivity to eye gaze
during infancy is associated with later diagnosis of ASD and
outcomes. Infants at high familial risk for ASD (𝑛 = 54) and
a comparison group of infants at low risk (𝑛 = 50) took
part in a study which recorded electrophysiological brain
responses (ERPs) while six to ten month old infants viewed
faces with dynamic eye gaze directed either towards them or
away from them. Characteristics of ERP components evoked
in response to dynamic eye gaze shifts during infancy were
associated with ASD diagnosis at 36 months. Despite the
rarity of observing behavioural symptoms or signs of ASD
in the first year, atypical brain function during this first year
distinguished the group of infants who were later diagnosed
with ASD [8].

In another study the usefulness of two methods, regu-
larised discriminant function analyses and support vector
machines, were shown by reanalysing an ERP dataset of
infants from a study discussed earlier in this section [80].
Stahl, Pickles, Elsabbagh, Johnson, andThe BASIS Team [87]
found supportive evidence that these classification methods
can increase the discriminative power of ERPmeasurements.
Using cross-validation, both methods successfully discrimi-
nated at above chance levels between groups of infants at high
and low risk of a later diagnosis of autism. However, infants
could only be discriminated in the direct gaze condition, not
in the averted gaze condition [87].

One study investigatedwhether infant siblings of children
with ASD (sibs-ASD) process familiar and novel faces dif-
ferently from typical infants [81]. ERPs were recorded in 35
infants, approximately nine months 15 days old (20 typical
infants, 15 sibs-ASD) using an oddball paradigm presenting
photographs of infants’ mothers and an unfamiliar female.
No differences were revealed in the distribution, number,
or duration of fixations between the groups. Both groups
differentiated betweenmothers and strangers.However, there
was a delayed ERP response to the stranger face (as evidenced
by the latency of the P400 response) in the typical infants
only. Another eye tracking study in two to four year old
toddlers with ASD found atypical face scanning to become
more pronounced with age [83]. Toddlers with ASD looked
increasingly away from faces with age (from testing at two
years and again at four years) and atypically attended to key
features within the face and demonstrated impaired ability to
recognise faces at both ages.

Key and Stone [82] examined whether, on average, nine
month old infants, compared to infants at high risk for
ASD, process facial features (eyes, mouth) differently and
whether such differences were related to the infants’ social
and communicative skills. Eye tracking and visual event-
related potentials (ERPs) were recorded in 35 infants (20
average-risk typical infants, 15 high-risk siblings of children
with ASD) while they viewed photographs of a smiling
unfamiliar female face. On 30% of the trials, the eyes or
the mouth of that face was replaced with corresponding
features from a different female. No group differences in the
number, duration, or distribution of fixations were evident
and all infants looked at the eyes and mouth regions equally.
Findings from ERP analysis showed that all infants detected
eye and mouth changes but did so using different brain
mechanisms. Facial feature changes were related to changes
in activity of the face perception mechanisms (N290) for the
average-risk group only. For all infants, correlations between
ERP and eye-tracking measures indicated that larger and
faster ERPs to feature changes were associated with fewer
fixations on the irrelevant regions of stimuli. Size and latency
of the ERP responses correlated with parental reports of
receptive and expressive communication skills.

Bosl et al. [84] adopted modified multiscale entropy
(mMSE) computed on the basis of resting state EEG data,
to determine whether typically developing children can be
distinguished from a group of infants at high risk for ASD
(older sibling with ASD). To the author’s knowledge, this is
the first study to look into connectivity changes across time
in young children at high risk for developing autism. It shows
differences in resting brain state entropy, possibly indicating
a biomarker for risk for a complex neurodevelopmental
disorder. Classification was computed separately within each
age group from six to 24 months. Data was collected from
a total of 143 sessions and from 79 individuals. Multiscale
entropy appears to go through a different developmental
trajectory in infants at high risk for ASD than it does in
typically developing controls with differences being most
marked at ages nine to 12 months. Lastly, Webb et al. [85]
investigated neural responses to familiar and unfamiliar faces
in twenty-four children with ASD (18 to 47 months old)
compared with responses of thirty-two typically developing
children (12 to 30 months old). Delayed development in the
individuals with ASDwas indicated since neural responses to
faces in this group of children resembled those observed in
younger typically developing children. Interestingly, electro-
physiological responses to faces were associatedwith parental
report of adaptive social behaviours for children with ASD
and typically developing children.

Lastly, in a large case control study, a stable pattern of
EEG spectral coherence was found to distinguish children
with ASD from neurotypical controls in the subgroup aged
between two and four years [93].

3.8. Interhemispheric Synchronisation in Individuals with
ASD. Connectivity studies during the very early years in
ASD are few in number. Using fMRI data, Dinstein et al.
[86] found disrupted synchronisation in the spontaneous
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cortical activity of 29 naturally sleeping toddlers with ASD
(1–3.5 years old) which was not evident in the toddlers with
language delay or the typical development group. In toddlers
with ASD, significantly weaker interhemispheric synchro-
nisation (weak “functional connectivity” across the two
hemispheres) was revealed in the inferior frontal gyrus (IFG)
and superior temporal gyrus (STG), two areas commonly
associated with language production, and comprehension.
There was also a significant inverse relationship between
interhemispheric synchronisation strength and autism sever-
ity. Strength of interhemispheric synchronisation was posi-
tively correlated with verbal ability. Investigation of neural
synchronisation may be useful as a diagnostic measure to aid
growing efforts of identifying ASD during infancy [9].

4. Future Directions

Further research delineating the neurological mechanisms
underlying ASD is of clinical importance [43]. Within the
last decade in particular, there has been a substantial increase
in research focused on understanding the biological mech-
anisms underlying ASD; however, many fundamental issues
remain. For instance, the causes of ASD, the specific brain
regions most impacted by ASD, and why are there more
males with ASD and what are the underlying mechanisms
involved that produce neurological gender differences [54].
Given that behavioural markers of ASD within the first
year of life are subtle in nature, it may be that neurological
methods may prove to be more sensitive at this early stage
in identifying and quantifying risk. Research investigating
whether a combination of risk markers early in infancy is
more effective than individual markers of risk in predicting
diagnostic outcomes for ASD is necessary [7].

Due to the numerous factors which could be contributing
to brain volume, further research is needed to explain
what is involved in producing the unusual amygdala growth
trajectory as well as other areas which have been found to
be enlarged in individuals with ASD. What we do know
is the importance of taking into account both the age
and gender of the individual when interpreting findings in
volumetric studies of ASD [56]. Behavioural correlates of
different amygdala growth trajectories is another potentially
interesting avenue for research. One hypothesis would be that
children with ASD who exhibit accelerated amygdala growth
might show higher anxiety levels [57].

Further research investigating the association between
HC growth rates and ASD is necessary since the majority
of research so far has been limited by small sample sizes
and by an absence of necessary group comparisons, such
as developmentally delayed children. Characteristics of the
subgroup of children who exhibit accelerated head growth
within the first 18months of life needs to be investigated using
a longitudinal approach [42]. Future studies are required
to examine whether impaired interhemispheric synchro-
nisation in putative language areas plays a causal role in
generating autism behavioural symptoms [86].

Despite the advances in our knowledge of neurological
abnormalities in the brain of individuals withASD, numerous

challenges still remain, for instance, the heterogeneity of
symptoms, symptom severity, differences in IQ, total brain
volume, and psychiatric comorbidity [42]. Lastly, research
into the plasticity in autism has yet to be carried out but it
would be invaluable to our understanding of the possibility of
altering the course of brain development in individuals with
ASD [136].

5. Conclusion

With growing interest in identifying earlier methods for
detecting ASD, these studies are paving the way towards the
development of noninvasive, brain-based screening methods
that could potentially detect differences prior to behavioural
emergence [137] which would constitute an important sci-
entific breakthrough [138]. Cross-disciplinary advances have
contributed to a “more optimistic outcome” for individuals
with ASD [139] and the development of new methods for
early detection and more effective treatments [11]. Since we
are still not aware of the protective factors, ethical issues con-
cerning the implementation and clinical recommendations
based on biomarkermeasures need to be carefully considered
[140]. The importance of cross disciplinary research, in
particular combining findings from the behavioural and
neurological fields, is emphasised by Happé et al. [141] when
they stated that “abandoning the search for a single cause for a
single entity of autism may also mean abandoning the search
for a single “cure” or intervention.”
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