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Revisiting Variance Gamma Pricing: An Application to S&P500 Index Options 

 

Abstract 

We reformulate the Lévy-Kintchine formula to make it suitable for modelling the 

stochastic time-changing effects of Lévy processes. Using Variance-Gamma (VG) 

process as an example, it illustrates the dynamic properties of a Lévy process and revisits 

the earlier work of Geman (2002). It also shows how the model can be calibrated to price 

options under a Lévy VG process, and calibrates the model on recent S&P500 index 

options data. It then compares the pricing performance of Fast Fourier Transform (FFT) 

and Fractional Fourier Transform (FRFT) approaches to model calibration and 

investigates the trade-off between calibration performance and required calculation time.  

 

Keywords: Variance Gamma process, infinitely divisible distribution, Fast Fourier 

Transform. 
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1. Introduction 

In the seminal papers by Black and Scholes (BS) (1973) and Merton (1973) the 

underlying distribution driving the option price is the lognormal distribution, which itself 

reflects the underlying assumption that returns follow a Geometric Brownian Motion 

(GBM). However, the use of GBM as the benchmark process for describing asset returns 

in continuous time does not allow for some key features of stylized asset price behavior: 

in particular, it fails to allow for (i) asset price jumps, (ii) conditional skewness in returns, 

(iii) conditional excess kurtosis in returns, (iv) stochastic volatility or (v) any correlation 

between returns and their volatilities. These well-established features of empirical return 

process have encouraged researchers to develop alternative models in which GBM has 

been replaced with more sophisticated processes, including GARCH processes, stochastic 

volatility processes and Lévy processes, which are the focus of the present paper.  

 

Lévy processes can deal with each of these deficiencies, and therefore have considerable 

potential for option pricing: (i) Traditionally, jumps in asset prices have been modeled by 

the compound Poisson process which allows for a finite number of jumps within a finite 

interval.  However, we often observe that asset prices display many small jumps on a fine 

time scale, and this suggests that Lévy processes which allow infinite numbers of jumps 

to occur within a finite time scale may be more suitable for modeling jumps. (ii/iii) Lévy 

processes can easily accommodate both skewness and excess kurtosis in returns. (iv) 

Lévy processes can accommodate stochastic volatility by applying stochastic time change: 

this is the equivalent to stochastically altering the clocks on which the Lévy process is run.  

If we view the original clock as calendar time and the new random clock as the business 
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time, a more active business day implies a faster clock. (v) To model the correlation 

between returns and their volatilities, we let the innovations in the Lévy process be 

correlated with the innovations in the random clock on which it is run. When this 

correlation is negative, the clock tends to run faster when the Lévy process falls (Carr and 

Wu (2002)).  In summary, time-changed Lévy processes parsimoniously capture all five 

main deficiencies of Brownian motion. Furthermore, Lévy processes lead to analytically 

tractable models which simplifies parameter estimation and model calibration.  

 

In this study we seek to make a number of contributions to the Lévy option pricing 

literature. First, we reformulate the Lévy-Kintchine formula on which Lévy processes are 

based: this allows us to explicitly clarify how additional shocks to the Brownian motion 

dynamics can be regarded as the superpositions of compound Poisson and compensated 

compound Poisson paths. Our reformulation is helpful for modeling the time-changing 

effects, aids in both the simulation and parameter estimation of Lévy processes, and has 

ready applications to Lévy option pricing. Second, we use this reformulation to visit the 

earlier work of Geman (2002): we are able to demonstrate a misspecification in this work 

and provide a correct solution to it.  Third, using observed option prices based on the 

S&P500, we calibrate the BS model and its time-changed Lévy version, the Variance 

Gamma (VG) model. Fourth, we use two different Fourier techniques to value the options 

and contrast their performance with each other.  The two Fourier techniques considered 

are the Fast Fourier Transform (FFT) and Fractional Fast Fourier Transform (FRFT) 

suggested by Chourdakis (2005). In particular, we examine the trade-off between model-

fitting performance and required calibration time under FFT and FRFT methods. 
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This paper is organized as follows. Section 2 sets out the Lévy framework and provides a 

reformulated version of the Lévy-Kintchine formula. Section 3 shows how this 

reformulation can be used to derive the parameters of the VG model; this section also 

revisits the earlier work of Geman (2002). Section 4 sets out the risk neutral specification 

for the VG model which is used for pricing purposes. Section 5 outlines the FFT and 

FRFT approaches to option valuation, and section 6 sets out and discusses the empirical 

calibrations of the BS and VG model under FFT and FRFT, based on a weekly data set 

for 2007.  Section 7 concludes. 

 

2. The Lévy Framework and Asset Pricing 

  

We begin with the definition of a Lévy process and the Lévy-Kintchine formula for 

infinitely divisible distributions. 

 

Definition 2.1 A cadlag stochastic process X={Xt;t≥0}, on (Ω,F,P) with values in   is 

called a Lévy process if it satisfies the following properties: 

[L1] each 0 0 . .X a s  

 

[L2] Xt has independent and stationary increments, i.e. 

 

(i) for every increasing sequence of times ntttt  ...210 the random 

variables 
1010

,...,,



nn ttttt XXXXX  does not depend on t. 

(ii) ,htht

D

tht XXXX   i.e. the distribution of tht XX  does not depend 

on t. 

 

[L3] Xt is stochastically continuous, i.e. 



 5 

 

    0,lim
0




tht
h

XXP  

 

Condition [L3] implies that for a given (deterministic) time t the probability of having a 

jump at t is zero, i.e. discontinuities (jumps) do not occur at deterministic times and so 

must occur at random times. 

 

2.1. The Lévy-Kintchine Formula 

 

We now use the Lévy-Kintchine formula to derive distributional characteristics of a Lévy 

process. 

 

Theorem 2.1   1MF  is infinitely divisible if there exist scalars ba,  and a 

measure ν satisfying    00  and  
 

   dxx 
0\

2
1 such that for all s : 

 

                           







   dxxisxebsiass isx

F 1,1

22 1
2

1
exp        (1) 

 

Conversely any mapping of the above form is the characteristic function of an infinitely 

divisible probability measure on  . Thus the parameters "a", "b" and the measure “ν” 

characterize the distribution of the underlying infinitely divisible random variable and 

(a,b²,ν) is known as the characteristic triplet or Lévy triplet of the underlying infinitely 

divisible random variable. 

 

The derivation of equation (1) can be found in Sato (1999), Applebaum (2004) or Cont 

and Tankov (2004).  The last term in (1) can be written as: 

 

                               





 





   
dxedxisxe

x

isx

x

isx 
11

1exp1exp                            (2) 
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Following Applebaum (2004), we set    AFA    and equation (1) becomes: 

 

                           





 





   
dxFedxFisxe

x

isx

bj
x

isx

sj
11

1exp1exp                           (3) 

 

where “sj” and “bj” stand for small jumps and big jumps respectively.  

 

 

The last part of equation (3) is the characteristic function of “big” random jump sizes 

|x|>1, controlled by a compound Poisson distribution with intensity: 

 

                                                        


1x
bj dxF                                                       (4) 

 

and the jump distribution: 

 

                                     
   

  











1

11

1

x

x

bj

x

J
dxF

dxdx
dxF








                                      (5) 

 

where 
sjbj    and the random variable, J describing the jumps of all sizes (with 

intensity of jumps of all sizes       F ) has distribution F(x). Thus: 

 

  
  

 
1

1
1

1

1





 



x

J
dxF

x
xF




 

 

Consequently, the last part in equation (3) is the characteristic function of the Compound 

Poisson process   dxFCP
Jbj 1

,


 .  

 

For its part, the first part in equation (3) is intuitive and can be seen as a limit 

corresponding to 0i   as i  , viz.: 

 

  

exp 
sj


i eisx 1 isx





i
 x 1 F dx 

i










   
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 1 1exp 1J Ji ii i
F FisJ

sj sj

i

E e is E J       
     

 
                          (6) 

 

(since J is F-distributed)  

  

 exp 
sj


i eisx 1 isx



F


i
 x 1

dx  
i










  

  
 exp 

sj
eisx 1 isx



F dx 

x 1






 as i                      (7) 

 

where ........21  i

s js js js j

  is the overall intensity of small jumps. The limit in 

equation (7) is the characteristic function of a compensated (mean subtracted) square 

integrable random variable (see Kyprianou (2006)). For a general n each n

sj

 and 

 dxF
Jn 1

 are given respectively by: 

                                     

     1 nnsj xn             (8) 

 

 

 




















n

nn

nn

sj

x

x

dx
F









1

1

1
           (9) 

 

 

 

The overall intensity of small jumps with magnitude less than one is then: 

 

  


sj
  

1
< x 1 U 

2
< x 1 U...U 

n
< x 1 U... 

 

                               

 1
n

x


   

 
1x
F dx


 

                                                                                  

(10) 

 

Now consider an arbitrary summand in equation (6): 

 

                                   
  
    JEiseE

JEiseE

JiiJii

JiiJii

F

sj

isJF

sj

F

sj

isJF

sj

11

11

exp1exp

1exp   




















                            (11) 
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The first part in (11) corresponds to the characteristic function of a random variable 

  dxFCPJ
JsjJ

N

j j
i

i

ji
111

,~


 




  with n

sj

 and 
1 Ji

F


 given by equation (8) and 

equation (9) respectively (see Cont and Tankov (2000))). Here 

 i

sjPoissonN
~  and hence we obtain 

    JEJENEJE
JF

sj

F

J

N

j j
iiJi

ji

1

11

1 






  


 , implying that the second part in 

equation (11) is the characteristic function of a constant equal to the mean of 

  dxFCP
Jsj

i

i

1
,



 .  Hence equation (11) is the characteristic function of a compensated 

(mean subtracted) compound Poisson random variable of small jumps ( sj ), which we 

denote as   dxFCPJEJ
ji

ii

ji Jsj

cJF

J

N

j j 1

1

11
,~






 




 . Since this is true for each 

summand, equation (6) is the characteristic function of the sum of a possibly infinite 

number of compensated compound Poisson random variables: 

 

                    ...,...,,
111 2

2

1

1 


dxFCPdxFCPdxFCP
Js j

c

Js j

c

Js j

c

i

i











      (12) 

 

The compensation is required to obtain the convergence, as in equation (7), of numerous 

small jumps described by possibly infinite number of compensated compound Poisson 

random variables, to a compensated square integrable random variable whose 

characteristic function is exactly the first part of equation (3).  

 

Thus equation (1) characterizes the limiting distribution of the sum 

of          


i Js j

c

Jbj dxFCPdxFCPbNa
11

2

1

1 ,,,0


  where the rates and 

distributions of big and small jumps are as described above.   

 

2.2. The Lévy-Kintchine Formula in Asset Pricing 
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We now replace the noise process in the standard Black-Scholes dynamics with an 

arbitrary Lévy process Xt: 

 

                                                      t

t

t dXdt
S

dS
 ̂                                                   (13) 

 

where the usual volatility σ  is set to 1 for simplicity. Integrating on [t1,t2], we obtain an 

infinitely divisible random variable describing the random evolution of log returns on 

[t1,t2]: 

                       

 

   

2

2 1

1

2 1

2 1

2 1

ˆln

ˆ           

t

t t

t

D

t t

S
t t X X

S

  t t X






 
    

 
 

  

                              (14) 

 

by [L2](ii) in Definition 2.1. According to the Lévy-Kintchine formula the distribution of 

12 tt XX  is characterized by the characteristic function of an infinitely divisible random 

variable given by: 

 

                    
  
















  



0\
1,1

22

12 1
2

1
exp12 dxxisxebsiastteE isxisX tt           (15) 

 

Thus following section 2.1, we can rewrite (14) as: 

 

         

    

       

    

2

1

2

2 1 2 1 2 1 2 1 1

2 1 1

0

2

2 1 2 1 2 1 1

2 1 1

0

ˆln   N 0, ,

,

ˆ N 0, ,

,

lim

lim

i

i

i

i

i

i

D
t

bj J

t

c

sj J
i i

D

bj J

c

sj J
i i

S
t t a t t t t b CP t t F dx

S

CP t t F dx

t t t t b CP t t F dx

CP t t F dx













 



 





 





 



 
               

 

  
 

       
   

  
 





       (16) 
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where a ˆ . The rates 
bj and i

sj

 as well as the distributions  1J
F dx


 and 

 1i J
F dx
    

of big and small jumps, respectively, are as described in section 2.1. 

 

 

2.3. Changing Time through Subordinator Processes 

 

Subordinators are stochastic processes which are used to introduce randomness in the 

time axis. An intuitive interpretation of the purpose of such stochastic processes, 

replacing calendar spacing of time with ‘business’ spacing of time, is discussed in Geman 

(2002). The occurrence of events is then modeled using business time instead of calendar 

time. 

 

Definition 2.2 (Subordinator) Let {Xt;t≥0} be a Lévy process such that Xt has the Lévy 

triplet (a,b²,ν). Then Xt is an increasing process in t if and only if 

     
1

0

2 ,0,00, dxxb   and   0
1

0
  dxxad  . Such an increasing process 

is known as a subordinator. 

 

In this case Xt can be expressed as the sum of both its linear drift and its jumps over times 

0 to t: 

 

                           
 

  0,

1
0

,0
 





tXdtdxdsxJdtX

sX
ts

s
t

Xt                             (17) 

 

and its characteristic function is expressed as: 

 

                                           dxeidsteE isxisXt 1exp                                      (18) 

 

where   


1x
dxxad  . 
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Thus in the case of the subordinator drift being positive and there being no negative 

jumps in the time process, the diffusion component needs to be zero, since otherwise 

there will be a positive probability of a negative change in time over any interval. 

Consequently, positive jumps are the only source of randomness and finite variation 

ensures that small jumps are summable. This implies that the usual compensation of 

small jumps in the Lévy-Kintchine formula (to ensure the integrability of the Lévy 

measure) is not needed and the compensation part can be adjusted with the drift of the 

process to give a new drift. (Further details can be found in Cont and Tankov (2004) and 

Sato (199)).)  

 

The following theorem shows that when a Lévy process modeling return dynamics is 

subordinated by a subordinator (modeling time change) then the resultant process is still a 

Lévy process. Moreover it shows how to obtain the characteristics of the resultant process. 

 

Theorem 2.3 Let Tt be a subordinator with Lévy measure ~ , drift d. Its distribution at 

time t, 
tTP  is characterized by the equation (18) and let 

1TP . Further assume that Xt  

is a  -valued Lévy process with Lévy triplet (a,b²,ν). Its distribution 
tXP , at t>0 is 

characterized by equation (1) and let 
1XP . Then provided the processes Xt and Tt are 

independent, the process defined as 

 

                                                     
 
  ;0       tXY

tTt 


                                          (19) 

 

is also a Lévy process. The distribution of Yt is given by: 

 

                                           


BdsBBYP ts

t   ,
0

                                   (20) 
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The Lévy triplet  yyy ba ,, 2 of Yt is given by: 

 

                                                 




10

~.
x

s

y dxxdsada                 (21) 

                                             
22 .bdby        (22) 

                                                  0\    ,~.
0

 


BdsBBdB s

y    (23) 

 

The proof of the above theorem can be found in Sato (1999). We now explore VG 

process using theorem 2.3 to relate its dynamics to equation (16). 

 

3. Revisiting Variance-Gamma as a Time-Changed Process 

 

The Variance Gamma (VG) process introduced by Madan et al. (1998) involves time-

changing Brownian motion by an increasing gamma process. Gamma random variables 

are infinitely divisible and so, according to the Lévy-Kintchine formula, a gamma process 

can be obtained such that: 

 

                                




















1
, generalin   

1
,

t
T

s
TT ttst                             (24) 

 

where   ,  has the density: 

 

                                      
 

0,0,0;1 


  


 


xexxf x                                  (25) 

 

(see Cont and Tankov, [2004]). 

 

We now note the following two lemmas: 

 

Lemma 3.1 The generating triplet for the   ,  distribution is (0,0,υ
s
), where the Lévy 

measure υ
s
 is given by: 

                                               0,   xdxe
x

dx xs 
                                                (26) 
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It then follows that the gamma process Tt  in equation (24) with  1  and  1  is a 

subordinator with triplet (0,0,tυ
s
). 

 

Lemma 3.2 If Kp is a modified Bessel function of third kind, then: 

 

                                        







 

 

 pxdtte
x

xK pt

x
t

p

p ,0;
22

1 1

0

4

2

                              (27) 

                        
 
 

  




















 








n

i

ix

n
x

iin

in
exxK

1

2

1

2
!!

!
1

22
1


                             (28) 

 

The derivation of the above Lemma can be found in Watson [1944]. 

 

 

Now consider the process tBX tt   , where Bt is a standard Brownian motion with 

volatility and drift parameters 0   and  >0. The VG process is then defined as 

the process Y subordinated to X by the Γ-subordinator T: 

 

                                               ttTt TBXY
t

 :                                                 (29) 

 

The gamma process is characterized as in equation (24) so that it ensures the mean rate t 

and variance γt with the probability density: 

 

                                            
 
 








xt

t

t
exxf

tT






1
1

                                                (30) 

 

With this parameterization the Laplace transform of the gamma subordinator is: 

 

                                           
t

t seE
sT 

 1                                                (31) 

 

Equation (29) shows that, conditional on a jump of size Tt = s in the time change, the 

change of the process Yt is normally distributed with mean θs and variance σ²s. The 
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characteristic function of the VG process is then obtained by conditioning on the 

subordinator, viz.: 

 

 

   

   

 

2 21
2

0

0

2 21
2

      |

      

      1     

T tt

t

T tt

t

T tt

t

t

is B T

Y

is B T

t T

is u s u B T

T

E e

E e T u f u du

e f u du

s is


 

 

   

  



 

  

  
  

  
  



    





 

(using equation (31)) 

        
2 21

2

1

1

t

is s



 

 
  

  
                                                        (32) 

 

Applying Theorem 2.3 then yields the Lévy triplet of the VG process. From equation (21): 

 

                 vga  = [drift subordinator][drift subordinate]    
1

1

0 1
. s

Bdx yP dy 





   

                        = 0.[drift subordinate] 
 

 
1

1
1

0 1
.

x
s

Be dx yP dy
x




 

 




   

(using Lemma 3.1) 

   2

22

1
1

0 1

1
.

2

y s
x

se dx y e dy
x s



 


 


 


                                                    (33) 

 

From equation (22): 

 

             vgb   [drift subordinator][drift subordinate] =0                          (34) 

 

also using Lemma 3.1.  

 

From equation (23): 

                            vg  [drift subordinator].[drift subordinate]+    
10

s

BP dx ds  


  

                                 

 2

22

0

1
0

2

x s

s se e ds
ss



 

 


 

    

[with 1/   and 1/   using Lemma 3.1] 

                                
 2

3
22 2

0

1

2 2

x s

s sdx e s e ds
s



 

   


                                                  (35) 
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Since 

 

                  

1
22

2

22

2

222

2




















 







s
xx

s

sx s
s eeee 









 


 we now use (35) to obtain: 

 

    


 









0

1

22

0

2

2

2

2
2
3

2

2
3

22

2

exp
2

     

2
 

dsssdxe

dsesedx

s
x

s

vg

x

s

sx

























                        (36) 

 

To evaluate the integral in equation (36) we need to use equation (27). We then set 

 22

   and ss   and rearrange the integrand in equation (36) to obtain: 

 

                                         

 

3 2

2
2

2

23

2

1

22

2

1

2

2

0

2
2

0

1

22

2

1
exp

4

exp
4

2 1

2 2

 

x

x

x

s
s ds

s

s s ds
s

x
K













 









 



   
            

  
  

      
  

   

             
     




                                    (37) 

Consequently (36) becomes: 
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 

 

2

1 2
2 2

1

22

2

1

22

2
2

1

22

2

2

2

1
2

2

2

2

1
2

2

2

2 2

  
2

2

1

     
2

2

    exp 2

1 2
    exp

xx

vg

x

xx

x

K
e dx

e dx

xx
dx

x

xx
dx

x

























 





 

 




 

   


  
  
  
   




  
  
  
   

 
  

 

 
   

 
                                          (38) 

 

The last equality follows by plugging back the value of κ with β = 1/γ. 

 

 

The drifted Brownian motion, without time change, describes the assets log return 

through two parameters μ and b as in equation (16) (without compound Poisson parts). As 

equation (29) shows, the VG is a Brownian motion with a change of calendar time to 

business time made by a gamma process. The parameters aνg and bνg play the same role 

for the VG process as parameters a and b in equation (16) for a general Lévy process. 

However, bνg being zero, equation (16) shows that the dynamics of the log returns have 

no diffusion but only jumps. Furthermore ννg completely describes the rate and 

distribution of both small and big jumps, as explained in section 2.1. 

 

3.1. Geman’s misspecification  
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The derivation of the Lévy measure in the previous section helps us recognize that with 

the specification of the parameters in Geman (2002), the form of the Lévy measure 

mentioned therein is not correct (although her numerical work was not affected by this 

error). We now derive the expression of Lévy measure as used by Geman and report the 

correct specification of the parameters.  

 

Geman et al. (2001) show that the VG process may be expressed as the difference of two 

independent gamma processes: 

 

                                                         n

t

p

tt GGY                                                        (39) 

 

where p

tG  and n

tG are interpreted as the price changes from positive and negative shocks 

respectively. Given equation (39), equations (31) and (32) then suffice to demonstrate 

that: 

 

                                  

 

2 21
2

2

1 1 1

1 1 1

1
                           

1

p n

p n p n

is s is is

is s

    

   

   
          


  

                            (40) 

which is equivalent to: 

 

                                                  np                                                       (41) 

                                                    
2

2
 np                                                        (42) 

 

 

Geman [2002] specified the solutions of (41) and (42) as: 

 

                                          

224

222

1





p

                                              (43) 

                                          

224

222

1





n

                                               (44) 
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She went on to argue that with these specifications the Lévy measure of the VG process 

can be written as: 

 

                                            















0 if  

0 if  

xdxC

xdxC
dx

x
e

x
e

g Gx

Mx

                                           (45) 

 

where 
pn

MGC

111 ,,  . 

 

However using the derived form of Lévy measure (see equation (38)), one can see that 

solutions (43) and (44) do not yield the expression of the Lévy measure (45). Moreover 

(43) and (44) do not even satisfy (41) and (42).  

 

To show the correct approach, we now solve equation (41) and (42) separately for ηp and 

ηn. For ηp we write equation (41) as   np . Then from equation (42) we obtain: 

 

                                           

 

 

224
                  

4

842-
          

2

222

222

2


















n

nn

 

 

Then again from equation (42) we obtain: 

 

                                            
2 2 2

2

1

2

4 2 2

p
    

 


 

  
 
 

                             (46) 

 

For ηn we write equation (41) as   pn .  Equation (42) now implies: 
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 

 

224
                  

4

842-
          

2

222

222

2


















p

pp

 

 

Then once again from (42) we obtain: 

 

                                           

  


n


1

2

 2

 2 2

4

 2

2



2











                               (47) 

 

Our solutions satisfy equation (40). Moreover using equation (38), we now prove that our 

solutions produce the form of Lévy measure mentioned by Geman. 

 

From equation (38) for x>0 we obtain: 

                            

 

0,           

224

2
exp

1
            

21
exp

1

222

2

2

2

2































































x
x

e
C

dxx
x

dxx
x

dx

Mx

g
















                        (48) 

 

where 
p

MC

11 ,  with ηp given by equation (46). 

 

Similarly from equation (38), since for x<0;∣x∣=-x i.e. x=-∣x∣, we obtain: 

 

 

 

0,           

224

2
exp

1
            

21
exp

1

222

2

2

2

2































































x
x

e
C

dxx
x

dxx
x

dx

xG

g
















                  (49) 
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where 
n

GC

11 ,  with ηn given by equation (47). Equation (48) and (49) together 

imply (45). QED. 

 

4. Risk-Neutral Specifications 

 

To price the option we use the risk-neutral characteristic function. To obtain the latter, we 

start with the characteristic function of the VG model under the real measure, given by 

equation (32), rewritten as: 

 

                  
















 



22

2

1
1lnexp sis

t
s

tY                                  (50) 

 

We can extract two parts from equation (50): the drift part μ = 0 and the non-drift part 

   


22

2
11ln siss t  . The drift part under the risk-neutral measure can now be 

obtained (see Shiryaev, [1999]) as: 

 

                
 

strist
t

i
risrn

























 
 




 2

2

1
1ln

1
                      (51) 

 

 

The risk-neutral characteristic function can then be obtained as: 

 

    

      













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


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






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


















222

2

1
1ln

2

1
1ln

1
exp          

exp

sis
t

stri

sss rnrn

Yt

      (52) 

 

Similarly, the real measure characteristic function of the Black-Scholes Brownian motion 

 ttNBt  ,~  is: 

 

                                       tstiss
tB

22

2
1exp                                            (53) 
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and its risk-neutral equivalent is  

 

 
















 tsstrisrn

Bt

222

2

1

2

1
exp                                    (54) 

 

Our empirical study is conducted under the risk-neutral measure utilizing the risk-neutral 

characteristic functions (52) and (54). 

 

5. Pricing with FFT and FRFT 

 

Now consider  lnt ts S  and  lnk K
 
where K is the strike price of the option. As in 

Carr and Madan (1999), the value of a European call with maturity T is expressed as a 

function of k: 

 

                                                dssqeeekC T

ks

k

rT

T  



                                         (55) 

 

 

where ( )Tq s  is the risk-neutral density of the log of the prices. To overcome the non-

square integrability of CT(k), Carr and Madan (1999) introduced modified call prices: 

 

               0,   kCekc T

k

T                                                (56) 

 

 

where α is known as the dampening factor. Following Carr and Madan (1999) an analytic 

expression for the pricing formula (55) can be obtained as: 
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e

kC T

iuk
k

T 











0

                                           (57) 

 

 

where ψT has the following analytic expression: 
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                                          
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1
22 









                                           (58) 

 

and where Ф is the characteristic function of the model for which prices are computed. 

Using a suitable numerical integration technique, e.g. the trapezoidal rule, the integral 

appearing in equation (57) can be approximated as: 

 

                                         jT

N

j

kiu

T

iuk ueduue j ~
1

0
0







                                       (59) 

 

where 
T

~  is exactly as ψT with weights attached by the integration rule, and η is grid 

spacing such that uj = ηj  where the upper limit of integration is N. 

 

For some integrable function f, the spirit of FFT lies in approximating the continuous 

Fourier Transform by its discrete version: 

 

   

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The usual approach in the literature is to fine-tune equation (59) and (60) and then obtain 

the option prices through equation (57). The usual technique is to consider only the useful 

log-strikes near log-spots:  
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where λ here is the grid length of equidistant log-strikes. For Lévy models assuming 

10 S
 
and then assuming 

2
Nb   equation (61) ensures that log-strikes range between -b 

to b.. We can then write the sum in equation (59) as: 
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With the following notation we obtain equation (62) in the form of equation (60) which is 

suitable for applying FFT on the vector f with components f(ui): 
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Out of the three parameters η, λ and N, two can be chosen arbitrarily and the other should 

satisfy equation (64), the so called FFT condition. For decent accuracy both η and λ have 

to be small; equation (64) then forces N to be large. This implies a trade-off between 

accuracy and the number of strikes (and hence computational time).  

 

FRFT was first introduced by Bailey and Swartztrauber (1991) and was recently 

incorporated into option pricing by Chourdakis (2005). It was developed to avoid the 

restrictive condition (64) and so provide greater flexibility in the choice of all three 

parameters: it allows us to choose smaller N, so substantially reducing substantial 

computational time requirements; it also allows us to calibrate the grid spacing 

parameters η and λ for greater accuracy. In effect, FRFT is a fast and easy way to 

compute sums of the form: 
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for a suitable value of the fractional parameter ε, where the special case  N
1   yields the 

usual FFT. Once one chooses the values of N, of upper integration limit a and of the log-

strike bound b, the grid spacing and fractional parameters can then be obtained as: 
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In our empirical study we use a = 64, b = 0.3 and N = 32. (A consistent way of choosing 

FRFT parameters and related issues are discussed in Lee [2004].) To compute N-point 

FRFT for a vector x, Bailey and Swartztrauber (1991) suggest defining 2N-point vectors 

as: 
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where ε is as given by equation (68). The FRFT is then computed as: 
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where   stands for element wise multiplication, Dj(.) is the discrete Fourier transform 

computed with the usual FFT procedure as in equation (60) and D⁻¹ is the inverse Fourier 

transform. 
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Our closed form Black-Scholes prices, used in comparison, are calculated under the risk-

neutral measure using the following celebrated result due to Black and Scholes (1973):  
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6. Empirical Analysis 

 

We calibrate the models separately assuming FRFT and FFT as different models and do 

so on weekly S&P500 traded options data over the sample period January 2007 to 

November 2007. For out-of-sample assessment, we consider market prices of options 

traded on the last week of December 2007. For calibrating the models with different 

specifications we minimize the RMSE defined as: 

                                                 
2
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ii CC
n
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[TABLE 1 APPROXIMATELY HERE] 

 

Table 1 reports the calibration results. We see that the FRFT reduces calculation time by 

97-98% relative to the FFT. This result is consistent with existing literature. We also note 

that this increase in speed comes at a small cost to accuracy at least when compared to the 

Black-Scholes model.   

 

Figure 1 shows the VG fit and Figure 2 shows the Black-Scholes fit both for FRFT and 

FFT, for in-sample prices. Figure 3 and Figure 4 show the corresponding fits for out-of-

sample prices. All figures show that both FRFT and FFT approaches yield very similar 

plots thus graphically illustrating that both models lead to much the same calibration fits. 
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[FIGURE 1 APPROXIMATELY HERE] 

[FIGURE 2 APPROXIMATELY HERE] 

 [FIGURE 3 APPROXIMATELY HERE] 

 [FIGURE 4 APPROXIMATELY HERE] 

 

6.1. Cross-Maturity and Cross-Strike Investigation 

We now investigate the pricing errors for four model specifications BS(FRFT), BS(FFT), 

VG (FRFT) and VG (FFT), across maturity and strike, relative to the closed-form Black-

Scholes prices.  Our motivation is to examine the impact of the FRFT and FFT valuation 

methods and the impact of the underlying models (BS vs. VG) on the option price.  

 

To reveal cross-strike features of FRFT and FFT under the time changed and original 

processes we express pricing errors as functions of strikes only, holding the maturity 

constant. We consider three different maturities observed in the market: minimum, mean 

and maximum corresponding to short, medium and long term options respectively: 

 

                                tKPtKPKERROR i

BS

ii ,,modelmodel                            (74)                

 

 

Similarly, to reveal cross-maturity features of FRFT and FFT we express pricing errors as 

function of maturities only, holding the strike constant. Three different strikes are 

considered: minimum, equal to asset and maximum of the observed strikes in the market; 

these correspond to ITM, ATM and OTM options respectively: 
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BS
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We plot cross-strike (left) and cross-maturity (right) errors, for different specifications, in 

Figure 5 using illustrative market data for the last week of July 2007. Figure 6 plots error 

surfaces across all ranges of strikes and maturities. 

 

Three points stand out from these Figures. First, there is relatively little difference 

between the FRFT and FFT estimates of the BS option prices. Second, FRFT and FFT 

estimates of the VG option prices are often similar in pattern, but there are some notable 

differences; moreover, the differences between FRFT and FFT estimates of VG option 

prices seem to become more pronounced as we move down Figure 5 toward longer-term 

options (on the left hand side) and OTM options (on the right). Third, there are (as we 

would expect) pronounced differences between the BS and VG option prices. Put another 

way, if the VG model is correct then the BS model will often give poor valuations: these 

pricing errors are related (in complicated ways) to the options’ maturities and strikes or 

moneyness.  

 

[FIGURE 5 APPROXIMATELY HERE] 

[FIGURE  6 APPROXIMATELY HERE] 

 

7. Conclusion 

In this study we have demonstrated how the standard Lévy–Kintchine formula can be 

interpreted as a series of shocks superimposed on a normal distribution, and how it can be 
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used to value options using an illustrative example of a Variance-Gamma process. Using 

this derivation we have also been able to offer a correct solution to the mis-specification 

in the Lévy measure for the VG model derived by Geman (2002). We also calibrated the 

VG and BS models using weekly options data using both FFT and FRFT methods. We 

found that the FRFT is much faster than the FFT approach, economizing on 97-98% of 

the calculation time at the cost of small pricing errors; we also found that there are 

important differences between BS and VG option values, implying that the inappropriate 

use of the BS in a context where the true process was VG can lead to major pricing errors. 

These findings have important implications for the calibration of options models and for 

options risk management in general. This said, our work is limited in so far as we have 

only considered the application of the Lévy–Kintchine formula to a relatively simple VG 

process. Its application to more complex Lévy processes remains a topic for future study. 
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Table 1: Calibration results under different specifications of Black-Scholes and Variance 

Gamma. We consider weekly traded options on S&P500 from January 2007 to November 

2007. The estimates reported are the averages of dynamic weekly calibrations over this 

sample period. The standard error of each estimate appears in parentheses. The average 

(over 44 weeks) weekly calibration time is also reported.  

 

                                                Calibration Results 

Specifications RMSE Average time (second) σ θ η 

VG(FFT) 2.6931               20.97 0.1294 -0.1802 0.0786 

 

 

VG(FRFT) 

 

 

2.7234 

 

 

3.1765 

 

 

3.2447 

 

 

3.1764 

 

 

               0.45      

 

 

             11.27 

 

 

               0.29 

 

 

             0.063            

 

 

 (0.0393) 

 

0.1232 

(0.0268) 

 

-0.1837 

(0.0221) 

 

0.0839 

 

 

BS(FFT) 

 (0.0505) 

 

0.1320 

(0.0313) (0.0276) 

 

 

BS(FRFT) 

 

 

BS(closed form) 

 (0.0360) 

 

0.1308 

(0.0362) 

 

0.1320 

(0.0360) 
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Figure 1: In-sample Variance Gamma fit under FFT(left) and FRFT(right). 0(market), 

*(model) and different colors are for different maturities as red(23dtm), blue(58dtm), 

green(86dtm), ceylon(149dtm), yellow(240dtm) and black(331dtm) 
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Figure 2: In-sample Black-Scholes fit under FFT (left) and FRFT (right). 0 (market), 

*(model) and different colors are for different maturities as red (23dtm), blue (58dtm), 

green (86dtm), Ceylon (149dtm), yellow (240dtm) and black (331dtm) 
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Figure 3: Out-of-sample Variance Gamma fit under FFT (left) and FRFT (right). 

0(market), *(model) and different colors are for different maturities as red (23dtm), blue 

(51dtm), green (86dtm), Ceylon (114dtm), yellow (177dtm), black (268dtm), magenta 

(359dtm) 
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Figure 4: Out-of-sample Black-Scholes fit under FFT (left) and FRFT (right). 0 (market), 

*(model) and different colours are for different maturities as red (23dtm), blue (51dtm), 

green (86dtm), Ceylon (114dtm), yellow (177dtm), black (268dtm), magenta (359dtm) 
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Figure 5: Cross strike (left) and cross-maturity (right) features of FRFT and FFT under 

Variance Gamma and Black-Scholes models, based on data for the last week of July 2007. 

Cross strike features are presented for short (top), medium (middle) and long (bottom) 

term options. Cross maturity features are presented for ITM (top), ATM (middle) and 

OTM (bottom) options. The average spot was 1518.09 
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Figure 6: FRFT and FFT features under Variance Gamma and Black-Scholes models 

based on data for the last week of July 2007. The average spot was 1518.09 

 

 

   


