
ESTIMATION AND INFERENCE UNDER ECONOMIC RESTRICTIONS

CHRISTOPHER F. PARMETER, KAI SUN, DANIEL J. HENDERSON, AND SUBAL C. KUMBHAKAR

Abstract. Estimation of economic relationships often requires imposition of constraints such as
positivity or monotonicity on each observation. Methods to impose such constraints, however, vary
depending upon the estimation technique employed. We describe a general methodology to impose
(observation-specific) smoothness constraints for the class of linear regression estimators using a
method known as constraint weighted bootstrapping. While this method has received attention
in the nonparametric regression literature, we show how it can be applied for both parametric
and nonparametric estimators. A benefit of this method is that imposing numerous constraints
simultaneously can be performed seamlessly. We apply this method to Norwegian dairy farm data
to estimate both unconstrained and constrained parametric and nonparametric models.

JEL Classification: C12 (Hypothesis testing), C13 (Estimation), C14 (Semiparametric and non-
parametric methods).

1. Introduction

“One of the most vexing problems applied economists have encountered in estimating flexible

functional forms in the production or consumer context is that the theoretical curvature conditions

that are implied by economic theory are frequently not satisfied . . . ” Diewert & Wales (1987, p.

43). So begins one of the seminal papers on imposing curvature conditions in applied economet-

ric settings. Nearly all empirical studies estimate models which face, to some degree, smoothness

restrictions provided by economic theory. These theoretical models often lay down numerous con-

straints that must be satisfied by the functional relationship of interest, such as monotonicity.

Although these theoretical properties are usually well understood in the sense that they are based

on microeconomic theory, empirical researchers quite often overlook them. For example, pro-

duction functions are monotonic in input quantities, yet when a translog production function is

estimated, very rarely is monotonicity enforced ex ante or checked ex post. Imposition and testing

of constraints is a key component of all empirical work; these constraints form the basis for the

underlying economic theory producing the relationship of interest.
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However, imposing constraints on empirical models presents its own challenge since it is tra-

ditionally more difficult to impose constraints on models which are more flexible whereas models

easier to impose constraints may not be flexible enough to capture the underlying relationship of

interest. In general, a tradeoff exists between estimating models which satisfy smoothness proper-

ties dictated by economic theory and models general enough to capture features of the unknown

(and typically unspecified) relationship. The standard set of flexible functional forms (translog,

Diewert, generalized McFadden, etc.) often violate theoretical properties given their capability of

approximating a wide range of underlying relationships. Imposition of constraints is, in general,

feasible, but might require the use of nonstandard methods or computational guile. Moreover, the

results from alternative econometric methodologies (parametric vs. nonparametric, say) which en-

sure theoretical consistency differ markedly. There does not exist a simple, yet general methodology

to impose smoothness constraints on econometric models across different estimation methodologies.

Our aim in this paper is to fill this gap by extending a technique from the nonparametric regres-

sion literature known as constraint weighted bootstrapping (CWB) to the class of linear regression

estimators.1

CWB has been used to impose monotonicity on an unspecified, univariate conditional mean

(Hall & Huang 2001) and to impose various ‘linear’ constraints in a multivariate nonparametric

setting (Du, Parmeter & Racine 2012).2 However, the insights of this technique are not specific

to estimation within nonparametric circles. We show that they hold for a much larger class of

estimators, most notably, linear regression estimators. This suggests that the CWB method can be

used in conjunction with standard parametric models to impose smoothness constraints. Typically,

we are concerned with the parameter estimates stemming from parametric estimation. However,

positivity, monotonicity and constant returns to scale, etc., are general restrictions on the overall

smoothness of the functional relationship being estimated. The use of CWB to impose these

conditions results in parameter estimates that are consistent with the desired economic theoretical

properties.

1See Ajgaonkar (1965) for a formal definition of linear estimators.
2See Henderson & Parmeter (2009) for a survey of various methods (including this one) to impose constraints on
nonparametrically estimated regression surfaces.
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The virtue of using CWB is that it requires nothing more than simple quadratic programming

techniques which are widely available in econometric software packages. Coupled with the ability to

use the same technique to impose constraints across estimation methodologies signifies that this is

a reliable and easily implementable method to impose smoothness constraints in empirical research.

Previous approaches to impose smoothness constraints parametrically include Diewert & Wales

(1987) who propose methods for introducing curvature conditions globally in a cost function setting;

Terrell (1996) who proposes Bayesian techniques to impose constraints at the observed data points

(instead of globally); Rambaldi & Doran (1997) who suggest the singular value decomposition

(SVD) to impose linear, time-varying constraints in a regression setting; and O’Donnell, Rambaldi

& Doran (2001) who implement the SVD insights in a Bayesian framework. Related closely to our

empirical context, O’Donnell & Coelli (2005) specifically discuss Bayesian estimation (incorporating

smoothness constraints) of output distance functions.

In this paper we show how CWB can be applied to impose smoothness conditions on linear

regression estimators. We then discuss a simple test for the conditions imposed. With these in-

sights described, we proceed to estimate an input distance function both parametrically, using the

translog functional form, and nonparametrically, using local-linear generalized kernel regression.

Both models are estimated with and without the constraints imposed to form a basis of compari-

son. As we will discuss later, our empirical application compares both restricted and unrestricted

estimates across econometric methodologies in a simple fashion. This opens the door for further

empirical work to estimate and test models of economic theory.3

Our empirical setting involves estimation of an input distance function which is dual to a cost

function. Thus, the input distance function satisfies a variety of smoothness conditions similar

to that of the cost function. Since the functional form for the underlying technology is generally

unknown, it is typical to employ a translog functional form to estimate an input distance function.

The other alternative is to estimate it nonparametrically without assuming a functional form. The

smoothness conditions on the estimated functions, whether parametric or nonparametric, need

to be satisfied to be consistent with microeconomic theory. In empirical applications researchers

3The recent work of Sauer (2006) also advocated for checking and testing for theoretical consistency, albeit in a
different setting.
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often check whether these smoothness regularity conditions are satisfied at the mean of the data,4

as opposed to being satisfied at every data point, and report results (scale economies, technical

change, etc.) evaluated at the mean. This practice defeats the purpose of using micro data.

Empirical findings may not be of much use for policy purposes if defined at the mean (which

may not represent any producer in the sample), and theoretical restrictions are violated for many

individual producers.

To showcase the method we consider a sufficiently general empirical application. Specifically,

we use farm-level panel data from the Norwegian Farm Accountancy Survey to estimate a model

(input distance function) with 4 outputs and 6 inputs both parametrically and nonparametrically.

The results from our exercise show that both approaches produced varying degrees of violations of

economic theoretical properties. For the translog model there were minimal violations in general,

but one gradient had nearly 11% of the estimates of the wrong sign. The nonparametric estimator

brought slightly increased percentages of violations. We used the constrained estimators to correct

these violations. In addition, we compare the estimator on a host of dimensions. For example, we

perform out-of-sample forecasts and show that the nonparametric model has better out-of-sample

predictions, especially when we look at the constrained estimators.

The remainder of the paper is organized as follows. Section 2 describes the CWB approach for

linear regression estimators. Section 3 discusses production theory and proposes an econometric

model with constraints. Section 4 describes the data. Section 5 presents both unconstrained and

constrained estimation results for both parametric and nonparametric models. Finally Section 6

concludes and offers several avenues for future research.

2. Constraint Weighted Bootstrapping for Linear Regression Estimators

We describe in detail the application of CWB for linear regression estimators. Previous work

(Hall & Huang 2001) has focused on imposing constraints for nonparametric estimators using CWB.

However, the method is not unique to nonparametric estimators and can be implemented in the

more general framework of a linear estimator for a regression model. The idea involves re-weighting

the response in a way that respects the theoretical constraints imposed by economic theory.

4This is not always a bad strategy as Ryan & Wales (2000) have shown that imposing a constraint at a single point
may result in that constraint being satisfied at many points.
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2.1. Estimation. To be precise, in what follows next, we need to introduce some notation. Let

{Yi, Xi}ni=1 denote sample pairs of response and explanatory variables where Yi is a scalar, Xi

is of dimension d, and n denotes the sample size. The goal is to estimate the unknown average

response g(x) ≡ E(Y |X = x) subject to constraints on gj(x), where j = 0, 1, . . . , d. For j = 0,

g0(x) represents the function itself; for j = 1, . . . , d, gj(x) represents the first order derivative of

g(x) with respect to the j-th continuous variable. In a parametric world, where g(x) is specified a

priori, we use the notation g(x;β).

We consider imposing arbitrary constraints on the estimate ĝ(x) or ĝ(x;β) of the form

(1) lj(x) ≤ ĝj(x) ≤ uj(x)

for arbitrary lj(·) and uj(·), which represents (local) lower and upper bounds, respectively. For some

applications, lj = 0, uj = 1, ∀j ̸= 0, would be of particular interest, say, when the partial derivative

represents a budget share and therefore must lie in [0, 1]. Or, j = 0 and lj = 0, uj = 1 might be

of interest when an outcome must be bounded. For example, ĝ0(x;β) could represent an estimate

of the linear probability model and hence must lie in [0, 1]. Or, lj(·) = uj(·) might be required

(i.e., equality rather than inequality constraints) such as when imposing adding up constraints,

say, when the sum of the budget shares must equal one, or when imposing homogeneity of a

particular degree, by way of example. The approach we describe holds for general linear regression

estimators. Until now, it has only been studied in strictly nonparametric frameworks (see Henderson

& Parmeter 2009). It is firmly embedded in a conventional regression framework (parametric or

nonparametric), and admits arbitrary combinations of constraints subject to the obvious caveat

that the constraints must be internally consistent.

Consider a linear estimator of the regression model

(2) ĝj(x) =

n∑
i=1

Aj,i(x)Yi,

where, without loss of generality, we have suppressed dependence on a parameter here for ease of

discussion. In the subsections to come, we discuss construction of Aj,i(x) for a variety of popular

estimators. Specifically, we show how to construct the Aj,i(x) components for the ordinary least-

squares (OLS) estimator, as well as kernel-based nonparametric estimators.
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The idea behind CWB is to recognize that the conditional mean estimator represents an equally

weighted average. This is seen by rewriting the estimator in (2) as

(3) ĝj(x) = n

n∑
i=1

Aj,i(x)n
−1Yi,

and letting n−1Yi denote our response observation. We can see that each of the n terms in our

average contribute equally. If, however, we accept that some terms are more important than others

with respect to preserving theoretically consistent smoothness assumptions, then we can allow

different points to contribute differently to the overall average. That is, by letting our weights

differ from the uniform 1/n (but still requiring them to sum to one) that is inherently imposed

in a general linear regression estimator, we can now manipulate the averaging in such a way that

smoothness constraints can be imposed in a straightforward fashion. Thus, we still keep n−1Yi as

the unit of observation for the response, but we let our weighting depend on the index. This is

done via the re-weighted estimator

(4) ĝj(x|p) = n

n∑
i=1

Aj,i(x)piYi,

where our uniform 1/n weighting mechanism has been replaced by observation specific weighting

in the form of pi. The weights are introduced to ensure that the constraints imposed on ĝj(x) are

preserved. A nice feature of this setup is that the smoothness of both ĝj(x) and ĝj(x|p) depends

on x through Aj,i(x) so the estimator can also be considered, as linear in p.

It may appear that there is a conflict between the ‘smoothness’ of the estimator and the constraint

weights. However, from our point of view these two issues are exclusive since we think of fixing

the smoothness prior to imposing any constraints. This is true whether we are in a parametric or

nonparametric setting given that one can think of selecting the functional form a priori as setting

the level of smoothing in the parametric setting. Hall & Huang (2001) and Du et al. (2012) both

require the bandwidth(s) for the nonparametric problem to have the optimal rate, irrespective of

the constraint weights.

Linearity in p is crucial for ease of implementation. With linear in p constraints and a qua-

dratic distance metric (to be discussed below), the constrained estimator can be implemented with
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nothing more than quadratic programming. As noted by O’Donnell & Coelli (2005, pgs. 495-

496) “. . .monotonicity constraints ... are easy to impose using linear programming, but difficult

to impose using traditional econometric approaches, especially since they need to be imposed at

each data point.” Linear in p constraints include positivity, monotonicity, concavity,5 supermod-

ularity, symmetry, and adding up constraints on any order of a set of derivatives. When we use

a distance metric that is not quadratic, or impose constraints that are not linear in p, we must

resort to nonlinear programming methods, such as sequential quadratic programming (Henderson

& Parmeter 2009, Section 3.1).

We now show how to impose particular restrictions on the estimator ĝj(x|p). Let pu be an n-

vector with elements 1/n and let p be the vector of weights to be selected. In order to impose our

constraints, we choose p to minimize some distance measure from p to the uniform weights pu as

proposed by Hall & Huang (2001). This is appealing intuitively since the unconstrained estimator

is that for which pi = 1/n ∀i, as noted above. Whereas Hall & Huang (2001) consider probability

weights (i.e., 0 ≤ pi ≤ 1,
∑

i pi = 1) and distance measures suitable for probability weights (power

divergence; Cressie & Read (1984)), it is possible to relax the constraint that 0 ≤ pi ≤ 1 and instead

allow for both positive and negative weights (while retaining
∑

i pi = 1).6 This requires the use of

an alternative distance metric, the well-worn L2 metric

(5) D(p) = (pu − p)′(pu − p).

Our problem therefore boils down to selecting those weights p that minimize D(p) subject to

lj(x) ≤ ĝj(x|p) ≤ uj(x) (and perhaps additional constraints of a similar form), which can be cast

as a general nonlinear programming problem.7 Constraints that are linear in p,8 can be solved

5It is feasible (but difficult computationally) to impose concavity in a linear in p setup using the ‘Afriat’ conditions
(Matzkin 1994); see Parmeter & Racine (2012) for details.
6To appreciate why it may prove necessary to allow for negative weighting, suppose we simply wished to constrain a
surface that has both positive and negative regions to be uniformly positive. This could be accomplished by allowing
some of the weights to be negative. However, probability weights would fail to produce a feasible solution as they are
all non-negative.
7A referee has correctly noted the tight link between CWB and empirical likelihood. However, in that setup one

minimizes
n∑

i=1

log (pi/pu) subject to a set of moment conditions. CWB as proposed here with a quadratic norm makes

solving the constrained problem easier to implement and offers (potentially) extra flexibility to satisfy the constraints
by allowing pi < 0.
8Other useful economic constraints that satisfy (in)equalities that are linear in p include additive separability, homo-
geneity, diminishing marginal returns/products, and bounding of derivatives of any order.
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using standard quadratic programming methods and off-the-shelf software. For example, in the R

language (R Development Core Team 2008) it is solved using the quadprog package.9 Even when n

is quite large, the solution is computationally fast.

2.2. Examples of Linear Regression Estimators. Here we present several examples of linear

regression estimators that fit into the framework of CWB. Consider a classical linear model and

follow standard matrix notation: Y = Xβ + u where Y is a response vector, X is a data matrix

whose rows are Xi, β is a parameter vector and u is a disturbance. To estimate the model via

OLS, we can write Aj,i(x) in (2) as Aj,i(x) = xj(X
′X)−1Xi, where xj , j = 0, 1, . . . , d, is the value

at which the function is to be evaluated. For j = 0, x0 consists of all the variables in a regression

function; for j = 1, . . . , d, xj consists of the first order derivatives of each of the element in x0 with

respect to the j-th continuous variable in x0.

Although they are often used to estimate nonlinear models, nonparametric kernels methods are

linear regression estimators. Consider a nonparametric model: Yi = g(Xi) + ui, where g(·) is some

unknown smooth function. To estimate the model using the local-constant kernel estimator, we

can write A0,i(x) as

(6) A0,i(x) =
Kγ(Xi,x)∑n
i=1Kγ(Xi,x)

,

where Kγ(·) is a generalized product kernel that admits both continuous and categorical data, and

γ is a vector of bandwidths (see Racine & Li (2004) for details).

To estimate the nonparametric model via the local-linear kernel estimator, which can most easily

be thought of as fitting a line at each point of interest as opposed to fitting a constant (hence local-

constant versus local-linear), we can write A0,i(x) as

A0,i(x) =

 n∑
i=1

Kγ(Xi,x)

 1 (Xc
i − xc)

(Xc
i − xc) (Xc

i − xc)(Xc
i − xc)′

−1

Kγ(Xi,x)

 1

(Xc
i − xc)

 ,(7)

9Code in the R language is available from the authors upon request.
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where Xc is a vector of continuous regressors. The local-linear estimator yields consistent estimates

of the conditional mean as well as the d first-order derivatives of g(·) (Li & Racine 2007, Theorem

2.7).10

2.3. Imposing a Simple Constraint. To help the practitioner understand the estimator for a

specific setting, we show how to construct the A(·) matrix for a particular example using both the

OLS and nonparametric estimators. Suppose that we set g(x, β) = β0 + β1x1 + β2x2. To impose

monotonicity in the parametric setting using OLS (at a particular point), we would need to ensure

that ĝ1(x, β|p) ≥ 0 and ĝ2(x, β|p) ≥ 0. This is equivalent to imposing that β1 ≥ 0 and β2 ≥ 0. Our

first order differentiated version of Aj,i(x) would have

(8) A1,i(x) = x1(X
′X)−1Xi = (0, 1, 0)(X ′X)−1Xi

and

(9) A2,i(x) = x2(X
′X)−1Xi = (0, 0, 1)(X ′X)−1Xi.

If our unrestricted least-squares estimator produced slope coefficients that were already positive,

then there would be no need to use the restricted estimator. However, if one or both of the

estimates were negative, then the constraint weights would differ from the uniform weights to

ensure the constraints were satisfied.

Alternatively, suppose that we set g(x, β) = β0+β1x1+β2x
2
1. To impose monotonicity at a point,

we would need to ensure that ĝ1(x, β|p) ≥ 0. This is equivalent to imposing that β1 + 2β2x1 ≥ 0.

In constructing our first order differentiated version of A we would simply have

(10) A1,i(x) = x1(X
′X)−1Xi = (0, 1, 2x1)(X

′X)−1Xi.

If we wished to impose monotonicity in the simple univariate setting nonparametrically then

our first order differentiated version of A1,i(x) (assuming the use of a Gaussian kernel) would be,

10This methodology also works well with the general order local polynomial estimator as well as with spline regression.
We leave a full treatment of this for future research.
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recalling that in the local-constant least-squares setting A0,i(x) = nKi(x)/
n∑

i=1
Ki(x),

∂A0,i(x)

∂x
= A1,i(x) =

n∂Ki(x)
∂x

n∑
i=1

Ki(x)− nKi(x)
n∑

i=1

∂Ki(x)
∂x[

n∑
i=1

Ki(x)

]2
= A0,i(x)

[
n−1

n∑
i=1

Di(xs)A0,i(x)−Di(xs)

]
= A0,i(x)Ms(x),(11)

where Di(xs) =
(
Xc

1i−xc
1

γ2
c1

,
Xc

2i−xc
2

γ2
c2

, · · · , X
c
di−xc

d

γ2
cd

)′
is a vector where the c sub/superscript signifies only

the continuous variables (since we are differentiating).

2.4. Graphical Illustration. To further cement these ideas we provide a simple graphical illustra-

tion on how CWB works. Suppose that we wished to impose monotonicity on a conditional mean,

but our data are generated from Y = X3
1 + ε which is monotonic on the domain of interest, [−2, 2].

However, for a draw of 100 observations with X1 ∼ U [−2, 2] and ε ∼ N(0, 1), both traditional OLS

and the local-constant estimator produce conditional means which are non-monotonic. The band-

width for the local-constant estimator is selected via AICc (Hurvich, Simonoff & Tsai 1998) and is

used for both the unrestricted and restricted smooths. The parametric estimates are generated by

fitting a third order polynomial in the covariate. The restricted and unrestricted function estimates

are displayed in Figure 1. The parametric estimates appear in panel (a) while the nonparametric

estimates appear in panel (b).

We see that the noise induced from this particular sample has obscured the monotonic rela-

tionship. Both methods successfully mimic the monotonic behavior of the data generating process

when they are restricted via constraint weighted bootstrapping. To appreciate how the averaging

is re-weighted in order to constrain the estimator, Figure 2 plots out the original points against the

constraint weighted points for each estimator. This shifting of the unconstrained datum now allows

the fit of the function to preserve monotonicity. The idea is that the data is moved as little as

possible to uphold the constraint(s) imposed. The determination of how little to move the weights

from their uniform counterparts is dictated by the choice of distance metric.11 Notice that the

11Both Hall & Huang (2001) and Henderson & Parmeter (2009) argue that for the most part, the choice of distance
metric has relatively little influence on the weights and the resulting estimates.
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Figure 1. Restricted and unrestricted conditional mean estimates of Y = X3
1 + ε

where monotonicity is imposed, i.e., j = 1, ĝ1(x|p) ≥ 0, n = 100.

reweighted values of Yi differ across the two estimators. For the parametric estimator it appears

that points towards the end of the support of the data are reweighted while for the local-constant

estimator, it appears that points closer towards the middle of the support are reweighted. This

underscores the difference between a global parametric estimator and a local nonparametric esti-

mator. Both restricted estimators impose monotonicity on the conditional mean, but they reweight

the data in entirely different manners.

2.5. Inference. There exists a growing literature on testing restrictions. For example, Abrevaya

& Jiang (2005) test for curvature restrictions, Epstein & Yatchew (1985) develop a nonparametric

test of the utility maximization hypothesis and homotheticity, and Yatchew & Bos (1997) develop

a conditional moment test for a broad range of smoothness constraints. Aside from the test of

Yatchew & Bos (1997), most existing tests check for specific constraints. This is limiting in the

current setting as our main focus is on a smooth, arbitrarily restricted estimator.
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Figure 2. Restricted and unrestricted points used for estimation in Figure 1.

Here we adopt a testing approach similar to that initially proposed by Hall, Huang, Gifford

& Gijbels (2001) which is predicated on the objective function D(p̂). This approach involves

estimating the constrained regression function ĝ(x|p), based on the sample realizations {Yi, Xi}, and

then rejecting H0 that constraints are valid, if the observed value of D(p̂) is too large. We use a re-

sampling approach for generating the null distribution of D(p̂) which involves generating re-samples

for y drawn from the constrained model via wild residual re-sampling (Härdle & Mammen 1993),

which is robust to heteroskedasticity. These re-samples are generated underH0, hence we recompute

ĝ(x|p) for the bootstrap sample {Y ∗
i , Xi}, and obtain ĝ(x|p∗), which then yields D(p∗). We then

repeat this process a large number (B) of times. Finally, we compute the empirical p-value, PB,

which is simply the proportion of the B bootstrap re-samples D(p∗) that exceed D(p̂), i.e.,

(12) PB = 1− F̂ (D(p̂)) =
1

B

B∑
b=1

1(D(p∗) > D(p̂)),
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where 1(·) is the indicator function and F̂ (D(p̂)) is the empirical distribution function of the

bootstrap statistics. We can reject the null hypothesis if PB is less than α, the level of the test.

An outline of the testing procedure is as follows:

(1) Estimate the restricted model and obtain D(p̂).

(2) For i = 1, 2, . . . , n, generate the two-point wild bootstrap error ε̂∗i =
[(
1−

√
5
)
/2

]
ε̂i,

where ε̂i = yi − ĝ(xi|p) with probability r =
(
1−

√
5
)
/2

√
5 and ε̂∗i =

[(
1 +

√
5
)
/2
]
ε̂i with

probability 1 − r. Construct a wild estimate for Y using the original restricted regression

estimates (fitted values) and the re-sampled wild residuals. Call these new values Y ∗.

(3) Reestimate the restricted regression using the pairs {Y ∗
i , Xi} and obtain a new set of con-

straint weights, p̂∗. Calculate and store the value D(p̂∗).

(4) Repeat steps 2 and 3 a large (B) number of times.

(5) Calculate the bootstrapped p-value of the test statistic as in (12).

Before proceeding further, note that there exist three situations that can occur in practice: (1)

impose non-binding constraints (they are ‘correct’ de facto); (2) impose binding constraints that are

correct; (3) impose binding constraints that are incorrect. For the implementation of the test just

described, we only need to consider situations 2 and 3 since, as noted by Hall et al. (2001, p. 609),

“For those datasets withD(p̂) = 0, no further bootstrapping is necessary [. . . ] and so the conclusion

(for that dataset) must be to not reject H0.” The implication is simply that imposing non-binding

constraints does not alter the estimator and the constrained weights will still be p̂i = 1/n ∀i, hence

D(p̂) = 0 and the statistic is degenerate. Of course, in practice this simply means that we presume

people are imposing constraints that bind, which is a reasonable presumption. However, due to

inappropriate bandwidth selection, the presence of outliers, measurement errors in the data, etc.,

the estimated function may not immediately satisfy the theoretically consistent constraints. Thus,

in these cases testing will be warranted.

3. Production Theory and Empirical Models

In this section we provide an empirical application of our proposed methodology. Specifically,

we use Norwegian farm level dairy data to estimate an input distance function with 6 inputs and 4

outputs. Thus, our starting point is to specify a multi-output multi-input flexible transformation
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function and use appropriate normalizing constraints (normalizations) which gives the input dis-

tance function. Our departure from the usual specification of a distance function is that we do not

have to introduce inefficiency into our model; see Shephard (1953, 1970) and McFadden (1978),

among others. Input and output distance functions offer an attractive alternative towards the es-

timation of multi-input, multi-output production technologies without the necessity of explicitly

introducing behavioral assumptions of producers, and without using information on prices which

are often difficult to obtain. Consistent with economic theory, we constrain the gradients of nine

regressors simultaneously. Specifically, for each observation, we require that the gradients on the

inputs be non-positive and the gradients on the outputs to be non-negative.

In what follows, we first derive the input distance function starting from the transformation

function in microeconomic theory. This provides the basis for our empirical econometric model

(the input distance function). We then discuss the requisite economic theoretical constraints based

upon our use of the input distance function.

3.1. Transformation and Input Distance Functions. We assume that a producer uses Q in-

puts, X, to produce a vector of M outputs, Y .12 The functional relationship between X and Y

is expressed as f(Y,X, t) = 1, where f(Y,X, t) is the transformation function, and t represents

technology proxied by the time trend variable. Since distance functions are mostly used for esti-

mating inefficiency and our focus in this paper is not on efficiency, we start from the transformation

function representation of the production technology and show that the input and output distance

functions (plus some other formulations) can be derived from it by using appropriate normalizations

(Kumbhakar 2012).

If we assume that the transformation function is translog (TL), then it can be expressed as

ln f(Y,X, t) = α0 + αtt+
1

2
αttt

2 +
M∑

m=1

αm lnYm +
1

2

M∑
m=1

M∑
l=1

αml lnYm lnYl

+

Q∑
q=1

βq lnXq +
1

2

Q∑
q=1

Q∑
o=1

βqo lnXq lnXo +

M∑
m=1

Q∑
q=1

δmq lnYm lnXq

+

M∑
m=1

αmt lnYmt+

Q∑
q=1

βqt lnXqt,(13)

12Note that X and Y here does not denote regressor and regressand, respectively.
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where βqo = βoq and αml = αlm ∀q, o,m and l. If we rewrite (13) as

ln f(Y,X, t) = α0 + αtt+
1

2
αttt

2 +
M∑

m=1

αm lnYm +
1

2

M∑
m=1

M∑
l=1

αml lnYm lnYl +

Q∑
q=2

βq ln(Xq/X1)

+
1

2

Q∑
q=2

Q∑
o=2

βqo ln(Xq/X1) ln(Xo/X1) +

M∑
m=1

Q∑
q=2

δmq lnYm ln(Xq/X1)

+

 Q∑
q=1

βq

 lnX1 +

Q∑
q=1

[
Q∑

o=1

βqo

]
lnXq lnX1 +

M∑
m=1

 Q∑
q=1

δmq

 lnYm lnX1

+

M∑
m=1

αmt lnYmt+

Q∑
q=2

βqt ln(Xq/X1)t+

 Q∑
q=1

βqt

 lnX1t,(14)

and use the following normalizations
∑

q βq = −1,
∑

o βqo = 0 ∀ q,
∑

q δmq = 0 ∀m, and
∑

q βqt = 0,

we get the input distance function representation, viz.,

lnX1 = α0 + αtt+
1

2
αttt

2 +

Q∑
q=2

βq ln X̃q +
1

2

Q∑
q=2

Q∑
o=2

βqo ln X̃q ln X̃o

+

M∑
m=1

αm lnYm +
1

2

M∑
m=1

M∑
l=1

αml lnYm lnYl +

M∑
m=1

Q∑
q=2

δmq lnYm ln X̃q

+

M∑
m=1

αmt lnYmt+

Q∑
q=2

βqt ln X̃qt,(15)

where X̃q = Xq/X1, q = 2, · · · , Q. Note that the above normalizations make the transformation

function in (13) homogenous of degree 1 in X1 (Shephard 1953), and gives it an IDF representation

in (15).

Consequently, instead of discussing the properties of the transformation function, we can simply

refer to the properties of the input distance function (among others see Shephard 1953, McFadden

1978, Färe & Primont 1995, Kumbhakar & Lovell 2000). The properties of the IDF are: (i)

f(0, X, t) = +∞, f(Y, 0, t) = 0, (ii) f(Y,X, t) is homogeneous of degree 1 in X, (iii) f(Y,X, t) is

non-decreasing in X (i.e., f(Y, λX, t) ≥ f(Y,X, t) for λ ≥ 1), (iv) f(λY,X, t) ≤ f(Y,X, t) for λ ≥ 1,

(v) f(Y,X, t) is concave in X, and (vi) f(Y,X, t) is continuous. The properties in (iii) and (iv)

are monotonicity properties which along with the homogeneity property in (ii) will be our main

focus in the paper. These properties are similar to the properties of the cost function when X is
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the vector of input prices. Thus, the above properties of the IDF can also be derived from the

properties of a cost function.13

3.2. Econometric Model and Economic Constraints. Instead of starting from a parametric

transformation function, we can start from the implicit form, i.e., f(Y,X, t) = 1 and impose the

homogeneity property (ii) to write it as

(16) lnX1 = r(ln X̃2, . . . , ln X̃Q, lnY1, . . . , lnYM , t),

where X̃q = Xq/X1, q = 2, . . . , Q. Here the first input (X1) is used as a numeraire to impose the

linear homogeneity property in the transformation function. It does not matter which one of the

inputs is chosen as the numeraire (i.e., the results are invariant to the choice of numeraire). We

estimate r(·) in (16) using the kernel-based local-linear nonparametric method. Alternatively, since

(16) holds, all we need to do is assume a functional form for r (·) for the parametric model. Again

note that we do not need to assume the presence of inefficiency in the production process to obtain

the specification in (15).

The monotonicity conditions in (iii), based on the IDF in (15) are:

(17)
∂ lnX1

∂ ln X̃q

= βq + βqtt+

Q∑
o=2

βqo ln X̃o +
M∑

m=1

δmq lnYm ≤ 0, q = 2, . . . , Q.

Using the linear homogeneity (in X) conditions, we get

∂ ln f(Y,X)

∂ lnX1
= 1−

Q∑
q=2

∂ ln f(Y,X)

∂ lnXq
= 1−

Q∑
q=2

∂ lnX1

∂ ln X̃q

= 1−
Q∑

q=2

[
βq +

Q∑
o=2

βqo ln X̃o +

M∑
m=1

δmq lnYm

]
.

The monotonicity conditions in (iv), based on the IDF in (15), are :

(18)
∂ lnX1

∂ lnYm
= αm + αmtt+

M∑
l=1

αml lnYl +

Q∑
q=2

δmq ln X̃q ≥ 0, m = 1, . . . ,M.

When we employ local-linear generalized kernel estimation as discussed in Section 2.2, we are

able to simultaneously obtain the conditional mean estimate, along with first order derivatives,

∂ lnX1/∂ ln X̃q, ∀q = 2, . . . , Q, and ∂ lnX1/∂ lnYm, ∀m = 1, . . . ,M , which are also observation-

specific, and need to jointly satisfy the inequality constraints in (17) and (18). This results in

13See Färe & Primont (1995) and Kumbhakar & Lovell (2000) for more details on the properties of distance functions.
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Q+M − 1 monotonicity constraints being imposed simultaneously on each observation for either

the parametric or nonparametric input distance function. To control for individual effects, we can

also estimate a fixed effect model by putting a categorical individual id variable into r(·). In the

translog case, this variable becomes a set of dummy variables, while in the nonparametric case, it is

simply a single unordered discrete variable which can be smoothed through a kernel function (see

Racine & Li (2004) for details).

4. Data

Our data come from the Norwegian Farm Accountancy Survey. This is a farm-level panel data

collected by the Norsk institutt for landbruksøkonomisk forskning (NILF), an independent research

institute under the Ministry of Agriculture in Norway. It includes farm production and economic

data collected annually from about 1000 farms from different regions, farm size classes, and types

of farms. Participation in the survey is voluntary. There is no limit on the number of years a farm

may be included in the survey. Approximately 10% of the farms surveyed are replaced every year.

The farms are classified according to their main category of farming, defined in terms of the

standard gross margins of the farm enterprises. For example, the main share of the total standard

gross margin for farms categorized as dairy farms comes from dairy production. The dataset used

in this analysis is a large unbalanced panel with 4333 observations on 714 dairy farms observed

during 1993-2006. Dairy farms are usually involved in other farm production activities such as

beef, grain, machinery contracting work, etc.

We distinguish between four outputs: milk sold measured in liters (Y1), beef and cattle produced

(Y2), support payments (Y3), and other outputs (Y4). The last three outputs are converted from

nominal monetary values to real (2006 Norwegian Kroners – NOK) values. The variable beef

and cattle produced is also converted to 2006 values using the price index for cattle; the variable

support payments is converted using the consumer price index (CPI); and the variable other outputs

is deflated by the price index for other agricultural production. The beef and cattle production

comprises both sales of cattle for slaughter and livestock and the net increase of the livestock of

cattle. The support payments comprise various (more or less) decoupled farm supports. Other
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outputs represent farm products other than milk, beef, and cattle. Examples of other outputs are

livestock products such as pigs, sheep, goats, and crop products.

Our inputs are comprised of land measured in decares (1.0 decares = 0.1 hectare) (X1), own

and hired farm labor in hours (X2), purchased feed (X3), other variable costs (X4), cattle capital

(X5), and other capital (X6). The last four inputs are all measured in 2006 NOK. Purchased feed

is deflated by the purchased feed price index, other variable costs is converted to 2006 values by

the price index for other variable costs, cattle capital is deflated by price index for cattle, and

other capital is deflated by the price index for other agricultural production. Real outputs and

inputs prices are constructed by deflating aggregate accounts in nominal NOK with suitable price

indices. The price information is taken from the farm survey when available, and when not, from the

agricultural sector of the national accounts. The second source of price information is countrywide

price indices. Prices from the survey are aggregate values divided by aggregate quantities in certain

regions. The regions are NUTS4 and NUTS3 (counties).14

Aggregation of prices is conducted in terms of Fisher indices (Diewert 1992). All prices are

deflated to 2006 levels using the CPI published by Statistics Norway. An additional remark applies

for the user cost of capital. The price indices of capital represent investment prices which are

needed for deflation of capital stocks into real price measures. The user price is a proportion of the

investment price: interest and depreciation. Both proportions are extracted from the farm account

survey. Table 1 presents the descriptive statistics of the sample.

5. Estimation Results

The estimation results are given in Tables 5-4 and Figures 3-4. Table 5 presents the parameter

estimates for both the constrained and unconstrained translog model. Tables 2 and 4 summarize

the estimates of the gradient vectors for both the constrained and unconstrained parametric and

nonparametric models, along with the percentage of observations which violate the economic con-

straints for each unconstrained estimator for each constraint as well as the p-value of testing the

validity of the individual constraint. Table 3 reports the bandwidths used in the estimation of the

nonparametric model. Finally, in addition to the simple summary of gradients, Figures 3 and 4

14Nomenclature of Territorial Units for Statistics (NUTS) is a geocode standard, developed and regulated by the
European Union, for referencing the subdivisions of countries for statistical purposes.
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Table 1. Summary Statistics of the Variables

Symbol Variable Name Mean Sd. Min. Max.

X1 Land (decares) 209.8 89.2 40.0 685.0

X2 Labor (hours) 4.254 1.274 0.797 11.657

X3 Purchased Feed 129.7 60.8 3.0 533.7

X4 Other Inputs 242.2 96.7 35.2 919.9

X5 Cattle Capital 214.8 96.8 20.1 939.6

X6 Other Capital 1120.7 614.2 69.3 6692.0

Y1 Milk (Liters) 84.8 33.3 10.2 273.5

Y2 Beef and Cattle 137.3 86.2 0.0 1028.4

Y3 Support Payments 266.9 51.0 70.5 520.5

Y4 Other Outputs 47.7 66.4 0.0 1162.7

The variables are output and input indices.

plot the kernel density functions of the gradient estimates for the unconstrained and constrained

parametric and nonparametric models, respectively.

5.1. Translog.

5.1.1. Unconstrained Estimator. In Table 2 we analyze the gradients for the translog model.15

Specifically, we report the minimum, first quartile, median, mean, third quartile, and maximum

values, labeled as min, Q1, median, mean, Q3 and max, respectively, for each of the gradient

vectors along with their corresponding (wild) bootstrapped standard errors. It is promising to see

that each of the quartile values take their expected sign. However, not all observations take their

expected signs.

In order to get an idea of how many observations have estimated gradients which are of the wrong

sign, Table 2 also gives the percentage of violations for each of the gradients in the unrestricted

model. We generally do not observe many violations for each individual gradient and in one case

we have none. However, the final column shows that 10.52% of the gradient estimates for lnX4

are of the wrong sign. What is interesting is that there is nothing from Table 1 that would suggest

this variable is ill-behaved. This provides the motivation to consider a constrained estimator.

15See Appendix A for the estimates of the 65 parameters from our translog model.
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Table 2. Summary Statistics of Partial Derivatives: Translog

∂ lnX1
∂ ln X̃2

∂ lnX1
∂ ln X̃3

∂ lnX1
∂ ln X̃4

∂ lnX1
∂ ln X̃5

∂ lnX1
∂ ln X̃6

∂ lnX1
∂ lnY1

∂ lnX1
∂ lnY2

∂ lnX1
∂ lnY3

∂ lnX1
∂ lnY4

Unrestricted

Min -0.4182 -0.3015 -0.2592 -0.5118 -0.1449 -0.1810 -0.1521 -0.0860 -0.0307

(0.0548) (0.0238) (0.0276) (0.0766) (0.0154) (0.0120) (0.0415) (0.0111) (0.0069)

Q1 -0.1920 -0.1692 -0.1337 -0.2884 -0.0733 0.2519 0.0992 0.1343 0.0065

(0.0094) (0.0120) (0.0086) (0.0058) (0.0050) (0.0008) (0.0003) (0.0007) (0.0001)

Median -0.1637 -0.1453 -0.1122 -0.2695 -0.0581 0.3131 0.1202 0.1894 0.0133

(0.0007) (0.0005) (0.0004) (0.0003) (0.0003) (0.0013) (0.0004) (0.0011) (0.0001)

Mean -0.1641 -0.1435 -0.1117 -0.2702 -0.0578 0.3138 0.1188 0.1890 0.0128

(0.0026) (0.0024) (0.0017) (0.0041) (0.0010) (0.0050) (0.0018) (0.0032) (0.0002)

Q3 -0.1338 -0.1191 -0.0907 -0.2510 -0.0426 0.3785 0.1405 0.2443 0.0195

(0.0004) (0.0004) (0.0003) (0.0003) (0.0002) (0.0289) (0.0092) (0.0200) (0.0006)

Max 0.0446 0.1816 0.0544 -0.0986 0.0654 0.7473 0.2620 0.5390 0.0467

(0.0140) (0.0427) (0.0067) (0.0069) (0.0077) (0.0509) (0.0222) (0.0669) (0.0044)

Pct. Of Violation 0.12% 0.44% 0.25% 0.00% 0.42% 0.30% 0.44% 1.11% 10.52%

Restricted

Min -0.3457 -0.2209 -0.2325 -0.3642 -0.1279 0.0000 0.0000 0.0000 0.0000

(0.0232) (0.0147) (0.0179) (0.0175) (0.0109) (0.0018) (0.0010) (0.0061) (0.0003)

Q1 -0.1956 -0.1465 -0.1346 -0.2815 -0.0717 0.2616 0.0932 0.1496 0.0084

(0.0090) (0.0057) (0.0066) (0.0167) (0.0036) (0.0006) (0.0002) (0.0006) (0.0000)

Median -0.1720 -0.1333 -0.1166 -0.2667 -0.0577 0.3065 0.1105 0.1935 0.0107

(0.0006) (0.0003) (0.0004) (0.0003) (0.0003) (0.0010) (0.0004) (0.0009) (0.0000)

Mean -0.1722 -0.1322 -0.1162 -0.2668 -0.0574 0.3059 0.1089 0.1925 0.0107

(0.0028) (0.0020) (0.0018) (0.0040) (0.0009) (0.0048) (0.0017) (0.0032) (0.0002)

Q3 -0.1469 -0.1187 -0.0991 -0.2524 -0.0426 0.3523 0.1259 0.2348 0.0130

(0.0003) (0.0002) (0.0003) (0.0002) (0.0002) (0.0219) (0.0093) (0.0154) (0.0008)

Max 0.0000 0.0000 0.0000 -0.1726 0.0000 0.5686 0.1933 0.4328 0.0225

(0.0033) (0.0044) (0.0025) (0.0027) (0.0024) (0.0227) (0.0064) (0.0338) (0.0014)

p-value 0.3636 0.0000 0.4040 1.0000 0.0548 0.0101 0.0000 0.2828 0.0000

1. The numbers in the parentheses are standard errors. Standard errors are calculated using a wild bootstrap with
99 replications.
2. The p-value is the probability of rejecting the null that the constraint is valid when it is true.

To view the entire set of estimates for the unconstrained translog model, we plot the kernel

density estimates of the gradients in Figure 3. The dashed density in each panel is the kernel

density estimate for the translog model without constraints. A vertical line is drawn at zero for the

plots without constraints. The shaded area highlights the violations in the unconstrained models.

We can clearly see that the density for the gradients of lnY4 crosses into the negative region.
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Although the signs of the gradients are relatively well behaved, we should also look at other

measures of interest. One measure of economic importance is returns to scale. Specifically, in

this context, the returns to scale (RTS) is calculated as the reciprocal of
∑4

m=1
∂ lnX1
∂ lnYm

. For our

unconstrained estimator, the median RTS is 1.5701 with standard error 0.0024. This value is

relatively high as we would typically expect a RTS in the neighborhood of unity. Given that we

are adding together negative gradient estimates the estimated RTS is low. The constrained model

will likely change this estimate.

5.1.2. Constrained Estimator. Given that we have some violations of economic theory, we con-

sider constrained estimation of our translog function. The parameter estimates of the constrained

translog function are also given in Table 5.16 Here, 25 slope coefficients are significant at the

10% level. The signs of the significant coefficients are the same across the unconstrained and con-

strained models. The goodness of fit of this model is also high, with the constrained estimator

having a squared correlation coefficient between the actual and fitted values are the same (as the

unconstrained model) to four decimal places.

Again, with this many coefficients, it is difficult to examine economic relevance. Therefore we

present the gradients in Table 2 and Figure 3. It is obvious from Figure 3 that the constrained

estimators have smaller spread than the unconstrained counterpart for each gradient.17 Note that

the estimates that were of the wrong sign are not simply set to zero. There also does not appear

to be a uniform shift in the estimates. It is also important to note that even in the cases where

none of the gradients violate economic theory (ln X̃5), there are still minor changes in the gradients.

This is because in the translog model the gradients are functions of coefficients which need to be

augmented in order to satisfy separate constraints. This typically impacts every gradient estimate,

even those which are not violated.

Now that all of our gradients have the appropriate sign, we reconsider the problem associated

with RTS. One problem in the unconstrained case is that we were summing gradients some of which

16Our unbalanced panel includes n ≡
∑N

i=1 Ti = 4333 total observations and we want to impose nine inequality
constraints. In cases such as this, a relatively powerful computer in terms of speed and memory space is needed.
For example, with a single constraint, the linear regression estimator is expressed as a n × n dimensional matrix.
Our problem required three gigabytes of memory for the parametric model and four gigabytes for the nonparametric
model.
17We use the Silverman reflection method to construct the densities for the constrained gradients.



22 CHRISTOPHER F. PARMETER, KAI SUN, DANIEL J. HENDERSON, AND SUBAL C. KUMBHAKAR

Figure 3. Gradient estimates from the unconstrained and constrained
translog model
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were negative. With the constrained estimator we do not have this particular problem. However,

the median RTS in the constrained model is still relatively high (1.6131 with standard error 0.0022).

In summary, the translog function produced estimates which had violations in all but one gradi-

ent. The number of violations in one case was nearly 11%. The constrained estimator fixed these



CONSTRAINED REGRESSION 23

violations. Considering this as well as possible functional form misspecification, it is worthwhile to

consider nonparametric methods.

5.2. Nonparametric.

5.2.1. Unconstrained Estimator. Before rushing to the gradient estimates, we first examine the

bandwidths from the local-linear least-squares procedure. Recent research has shown that cross-

validation procedures can remove irrelevant variables as well as detect linearity. Here the band-

widths are not simply nuisance parameters, but they can be helpful in uncovering the true underly-

ing structure of the data. For example, the bandwidth on a categorical variable goes between 0 and

1. If the estimate is 1, then the variable is deemed irrelevant in the prediction of the left-hand-side

variable as all observations are given equal weight. When the bandwidth is 0, it effectively means

that the sample is being split based on that particular category. If the categorical variable is a

typical dummy variable, and its bandwidth is equal to zero, in effect, two separate regressions are

being estimated. In the case of a continuous regressor, the bandwidths go from zero to infinity. A

bandwidth of infinity (or a sufficiently large value in practice) means that a variable enters in lin-

early. However, this linearity does not imply separability and hence heterogeneity in the gradients

may still arise.

For both our constrained and unconstrained local-linear least-squares estimators, all bandwidths

are selected via least-squares cross-validation criteria. The bandwidths are given in Table 3. Again,

we have one categorical variable (farm id) and ten continuous variables. The most striking feature

is that the bandwidth on the categorical variable is relatively small. This means that we are

putting less weight on other farms to estimate the result for a particular farm. In terms of the

continuous regressors, the bandwidths on ln X̃2, lnYm,m = 1, . . . , 4 and t are less than two times

their respective standard deviations (rule of thumb for linearity) and hence they enter in nonlinearly.

On the other hand, the bandwidths for ln X̃5 and ln X̃6 are slightly larger than two times their

respective standard deviations while ln X̃5 and ln X̃6 have very large bandwidths. It can be argued

(to different degrees) that these variables enter the model linearly. We want to note that nonlinearity

does not exclude the translog model as it allows for quadratics and interactions. We will perform

a formal test for correct parametric specification later.
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Table 3. Bandwidth Summary

Variable Bandwidth Upper Bound Interpretation

Continuous

ln X̃2 0.575 +∞ nonlinear

ln X̃3 0.916 +∞ likely linear

ln X̃4 0.758 +∞ likely linear

ln X̃5 5288.754 +∞ likely linear

ln X̃6 7059.638 +∞ likely linear

lnY1 0.443 +∞ nonlinear

lnY2 0.597 +∞ nonlinear

lnY3 0.103 +∞ nonlinear

lnY4 2.511 +∞ nonlinear

t 3.002 +∞ nonlinear

Categorical

id 0.006 1 relevant

Bandwidths are selected via least-squares cross-validation
using local linear least squares.

The gradient estimates for the unconstrained nonparametric estimator are given in Table 4.

Similar to the parametric estimates, we do not see violations in the quartile values. Although there

appear to be more violations than in the parametric model, the fit of the model is slightly higher

(0.9973).

To get a better feel for the estimates, we plot their kernel density estimates in Figure 4. There

are at least two points worth mentioning with regard to the unconstrained estimates (dashed lines).

First, there is substantially more variation in the estimates than we saw with the parametric results,

a common finding when comparing parametric and nonparametric models given the lack of structure

placed a priori on the problem by nonparameric methods. These differences are likely exacerbated

by the bandwidth on id. Second, there appears to be a larger percentage of observations for

which the estimated gradients have the wrong sign. In fact, it appears that each of the gradients

have violations. In fact, Table 4 shows that the percentage of violations from the nonparametric

model are generally greater than for the parametric model. This example shows that if we wish
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to use nonparametric methods for the estimation of distance functions, we likely need to employ a

constrained estimator.

Table 4. Summary Statistics of Partial Derivatives: Nonparametric

∂ lnX1
∂ ln X̃2

∂ lnX1
∂ ln X̃3

∂ lnX1
∂ ln X̃4

∂ lnX1
∂ ln X̃5

∂ lnX1
∂ ln X̃6

∂ lnX1
∂ lnY1

∂ lnX1
∂ lnY2

∂ lnX1
∂ lnY3

∂ lnX1
∂ lnY4

Unrestricted

Min -0.5812 -0.6271 -0.5065 -0.6737 -0.3296 -0.2155 -0.0841 -0.4989 -0.1017

(0.1004) (0.1369) (0.0968) (0.0624) (0.0642) (0.0174) (0.0149) (0.0244) (0.0336)

Q1 -0.1921 -0.2312 -0.1364 -0.3628 -0.0689 0.3422 0.1572 0.2556 0.0043

(0.0152) (0.0250) (0.0066) (0.0237) (0.0046) (0.0005) (0.0006) (0.0025) (0.0001)

Median -0.1500 -0.1963 -0.0947 -0.3101 -0.0505 0.3974 0.2055 0.4070 0.0128

(0.0009) (0.0010) (0.0008) (0.0011) (0.0004) (0.0011) (0.0008) (0.0033) (0.0002)

Mean -0.1538 -0.1913 -0.0959 -0.3077 -0.0502 0.3884 0.1979 0.4043 0.0131

(0.0026) (0.0032) (0.0018) (0.0048) (0.0010) (0.0061) (0.0032) (0.0073) (0.0003)

Q3 -0.1141 -0.1556 -0.0551 -0.2551 -0.0307 0.4424 0.2477 0.5518 0.0214

(0.0006) (0.0005) (0.0006) (0.0008) (0.0003) (0.0282) (0.0267) (0.0392) (0.0006)

Max 0.1565 0.1257 0.3446 0.3944 0.1697 0.7532 0.5182 1.3801 0.1026

(0.0156) (0.0402) (0.0813) (0.1020) (0.0321) (0.0675) (0.0539) (0.0995) (0.0173)

Pct. Of Violation 1.80% 1.20% 6.97% 0.39% 6.72% 0.37% 1.71% 3.69% 15.62%

Restricted

Min -0.5300 -0.6275 -0.4052 -0.5748 -0.2299 0.0000 0.0000 0.0000 0.0000

(0.0918) (0.1465) (0.0382) (0.0172) (0.0259) (0.0425) (0.0131) (0.0038) (0.0082)

Q1 -0.1890 -0.2232 -0.1454 -0.3548 -0.0761 0.3404 0.1576 0.2662 0.0098

(0.0159) (0.0212) (0.0123) (0.0239) (0.0072) (0.0006) (0.0005) (0.0021) (0.0001)

Median -0.1495 -0.1895 -0.1058 -0.3052 -0.0591 0.3924 0.2047 0.4112 0.0175

(0.0007) (0.0010) (0.0007) (0.0011) (0.0004) (0.0011) (0.0010) (0.0034) (0.0002)

Mean -0.1526 -0.1850 -0.1099 -0.3019 -0.0597 0.3843 0.1986 0.4131 0.0187

(0.0026) (0.0029) (0.0019) (0.0047) (0.0010) (0.0059) (0.0033) (0.0074) (0.0003)

Q3 -0.1146 -0.1505 -0.0690 -0.2500 -0.0408 0.4352 0.2457 0.5501 0.0252

(0.0005) (0.0005) (0.0006) (0.0007) (0.0002) (0.0280) (0.0245) (0.0476) (0.0020)

Max 0.0000 0.0000 0.0000 0.0000 0.0000 0.8556 0.5031 1.1353 0.1262

(0.0315) (0.0518) (0.0071) (0.0017) (0.0053) (0.1556) (0.0440) (0.0516) (0.0410)

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1. The numbers in the parentheses are standard errors. Standard errors are calculated using a wild bootstrap with
99 replications.
2. The p-value is the probability of rejecting the null that the constraint is valid when it is true.

Although we find larger percentages of violations, the nonparametric model is not without its

merits. In addition to a larger goodness-of-fit, the nonparametric model produces more reasonable

estimates of median RTS (0.9802 with standard error 0.0020).18 Even with the violations included,

18We will consider more formal comparisons in Section 5.3.



26 CHRISTOPHER F. PARMETER, KAI SUN, DANIEL J. HENDERSON, AND SUBAL C. KUMBHAKAR

the density has a median value near unity which is more consistent with expectations. That being

said, there is non-trivial variation in the estimates.

Figure 4. Gradient estimates from the unconstrained and constrained
Nonparametric model
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5.2.2. Constrained Estimator. In comparison to the parametric model, it may be more necessary

in the nonparametric model to impose constraints given the additional violations present in our

application. Therefore we employ the CWB procedure on the nonparametric estimates. We use
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the bandwidths calculated by the unconstrained model and then employ our constrained estimator

using those bandwidths. The summary of the gradients for the constrained nonparametric estimator

are also given in Table 4. By construction, each of these values takes the appropriate sign and are

significant. Again, we do not see a uniform trend in terms of the magnitude change in the gradients.

In order to get the full picture for the gradient estimates, Figure 4 plots the kernel density

functions of the constrained gradient estimates (solid lines). The densities for the constrained

gradients are again plotted using the Silverman reflection method. We see that with the constrained

model we have masses near zero, especially for the gradients of ln X̃4, ln X̃6, lnY3 and lnY4. One

other difference is with respect to the estimates which did not violate economic theory. Here the

constrained and unconstrained estimators do not differ as much. In short, we see a lot of the negative

estimates moved just to the other side of zero and relatively small changes in the other gradient

values (say, from lnY2 to lnY4). This difference occurs because the nonparametric estimator is a

local as opposed to a (parametric) global estimator. The local estimator allows us to only modify

the function in the area where the assumptions are violated and leaves the other results virtually

unchanged. This is exactly what we saw in the graphical illustrations.

The non-negligible bumps at the boundaries of the constrained kernel density estimates could

potentially represent an underlying feature of the data generating process with respect to the

theoretical constraints (for example the density of the gradient for lnY4). However, for many of the

smaller bumps, we feel that these are nothing more than artifacts of the reflection method and the

corresponding bandwidth (for example the density of the gradient for lnY2). Notice that the largest

‘spikes’ at zero are for the constrained gradient estimates from the nonparametric model with the

highest percentage of violations. We also mention that the violations and subsequent spikes at zero

are inherently linked to the level of smoothing deployed prior to enforcing the constraints.

It was argued previously that the negative gradients from the unconstrained estimator may falsely

provide intuitive estimates of RTS. However, even though there is a slight shift to the right in the

density, the median RTS is 0.9759 with standard error 0.0020, slightly lower than the unconstrained

counterpart. The constrained estimates did not affect this intuitive result.

In summary, the unconstrained nonparametric estimator brought increased percentages of vi-

olations of economic theory. This likely resulted from the increased level of flexibility as well as
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the bandwidth on the farm id variable. However, the results for RTS were more in line with the

popular view and the in-sample fit is higher for the nonparametric model. Finally, we saw that the

nonparametric model (effectively) only changed the function where it was violated, thus leaving

the “well-behaved” points as they were.

5.3. Comparison of Methodologies. The previous sub-sections did not produce a clear dom-

ination by any particular estimator: parametric or nonparametric, unconstrained or constrained.

Therefore we will consider formal tests as well as out-of-sample predictive performance. We first

employ the Hsiao, Li & Racine (2007) test for correct parametric specification and then perform

out-of-sample predictions by taking a subset of the data out of the sample and then try to predict

on it using the remaining data.

5.3.1. Specification. To test for correct parametric specification, we employ the test by Hsiao et al.

(2007) which allows for mixed categorical and continuous data. The null hypothesis is that the

unconstrained parametric model is correctly specified (H0 : Pr [E(y|x) = g(x;β)] = 1) against the

alternative that it is not (H1 : Pr [E(y|x) = g(x;β)] < 1). The test statistic is based on In ≡

E
(
E (ε|x)2 f(x)

)
, where ε = y− g(x;β) represents the residuals from the parametric model under

investigation and n ≡
∑N

i=1 Ti is the sample size, where N is the number of cross-sectional units,

and Ti is the number of time periods for the i-th cross-sectional unit. In is non-negative and equals

zero if and only if the null is true. The standardized test statistic Ĵn = n(γ̂c1 . . . γ̂cq)
1/2În/

√
σ̂J →

N (0, 1) in distribution under the null; γ̂c1 . . . γ̂cq denote bandwidths of continuous regressors; The

statistic În = n−1
∑n

i=1 ûiÊ−i(ui | xi)f̂−i(xi) was independently proposed by Fan & Li (1996)

and Zheng (1996), where ûi is the parametric null model’s residual and Ê−i(ui | xi)f̂−i(xi) is

a leave-one-out kernel estimator. Finally, σ̂2
J =

2(γ̂1···γ̂qc )
n2

∑
i

∑
j ̸=i û

2
i û

2
jK

2
γ(Xi, xj). Hsiao et al.

(2007) advocate the residual-based wild bootstrap method to approximate the null distribution

of Ĵn. From the wild bootstrap residual {u∗i }ni=1, we generate y∗i = g(xi, β̂) + u∗i . We then use

the bootstrap sample {y∗i , xi} to obtain a least-squares estimator of β. The bootstrap residual is

given by û∗i = y∗i − g(xi, β̂
∗). The bootstrap test statistic Ĵ∗

n is obtained from the same formula

for Ĵn, with ûi being replaced by û∗i . We repeat the above steps B = 399 times, the original test

statistic Ĵn plus the B bootstrap test statistics give us the empirical distribution of the bootstrap

statistics, which is then used to approximate the finite-sample null distribution of Ĵn. Using the
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wild bootstrap gives a p-value that is zero to four decimal places. In other words, we reject the null

that the unconstrained translog model is correctly specified.19

5.3.2. Prediction. Even though we reject the parametric model and find that the nonparametric

model has a better in-sample fit, it is not necessarily the case that the nonparametric model results

in better out-of-sample prediction. Nonparametric models are often criticized for overfitting the

data.

In order to compare the prediction performance of the two estimators we present the results

from the following exercise. Recall that we have a unbalanced panel data with N = 701 farms and

each farm is measured for Ti years. We chose the first Ti − 1 years of data for each farm as our

training data. We then forecast over the remaining year. For the translog model, the predicted

MSE for the unconstrained model was 0.00626 and this number was 0.00625 for the constrained

model. In other words, for the translog model, the out-of-sample prediction is (slightly) better for

the constrained model. That being said, the difference is only seen at the fifth decimal place. For

the nonparametric model, the predicted MSE for the unconstrained and constrained estimators

are 0.0065 and 0.0052, respectively. Here we see improvement in terms of out-of-sample prediction

for the nonparametric model (on the magnitude of 25%). This suggests that the unconstrained

estimator may be modeling noise and the constrained estimator is better at modeling the true

underlying process.

In terms of the comparison between the nonparametric and parametric models, the parametric

model does a slightly better job at out-of-sample prediction for the unconstrained model (i.e., the

predicted MSE are 0.0063 vs. 0.0065). However, the nonparametric model does a better job for

the constrained model (i.e., the predicted MSE are 0.0052 vs. 0.0063). We note here that this

outcome is not necessarily true for all nonparametric models as there are examples of both better

(Henderson & Kumbhakar 2006) and worse (Henderson & Millimet 2008) out-of-sample prediction

as compared to parametric models in the existing literature.

5.4. Testing. Looking at the percentage of violations is relevant, but it is important to formally test

for the presence of violations. We present a method to test for the null hypothesis of monotonicity

19We are also interested in testing the null that the constrained translog model is correctly specified. Unfortunately,
it is unclear how to perform the HLR test in this scenario. We expect that this model will also be rejected, as the
deviations from the unconstrained model are minimal, but we do not make a formal claim at this time.
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in our gradient estimates. Using a similar methodology, we also consider a test for constant returns

to scale (CRS). Although it is not required by theory in this application, it is interesting to see if

a model that imposes CRS would be appropriate. This requires us to constrain the sum of four of

our gradients to be equal to unity. We report the monotonicity test results first.

5.4.1. Monotonicity. As mentioned before, we constrain the gradients of nine regressors simulta-

neously. Specifically, for each observation, we require ∂ lnX1

∂ ln X̃q
≤ 0 for q = 2, . . . , 6, and ∂ lnX1

∂ lnYm
≥ 0

for m = 1, . . . , 4.

We again note that we have nine joint constraints to impose over 4333 observations. This

is rejected at the 1% level for the nonparametric model. This is not surprising given there are

violations for each variable in Table 4. It is also not surprising that this null is also rejected for the

translog model at the 1% level as there were also gradients with substantial violations.

We also tested each of these constraints individually. Tables 2 and 4 report the p-values of testing

if the individual restriction is valid. It turns out, in the nonparametric model, that we reject the

null hypothesis of each constraint holding everywhere at the 1% level individually. This is perhaps

surprising given that some of the gradients had very few violations. These results can be reconciled

with intuition. The constrained model imposes the monotonicity constraint everywhere and the

findings of the test could be driven by only a few points where the gradients are substantially

negative, leading to a dramatic difference between the uniform weights and the constraint weights.

Even if there is a small number of violations (as is the case with the parametric translog model),

the violations could require the perturbation of the uniform weights such that the test rejects the

null hypothesis. It is not that a larger percentage of violations must produce a smaller p-value, it

is how the weights have to change to ensure that the constraints are violated. Notice from Table

4 when the gradient estimates are of the wrong sign they are quite distant from zero, the binding

case. Thus, our rejection of monotonicity of the estimated IDF in each dimension is more likely a

product of the common symptoms underlying most economic data rather than an indictment on

the underlying theory.

Contrast the rejection of each individual constraint with the results from the translog model

in which we have six cases where we fail to reject the null of monotonicity at the 1% level. It

should come as no surprise that one of them is for the monotonicity constraint on the gradients
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of ln X̃5 since we did not have a single violation in the translog model. We also fail to reject the

monotonicity in ln X̃2, ln X̃4, ln X̃6, lnY1, and lnY3, individually, at the 1% level. We do, however,

reject the monotonicity in ln X̃3, lnY2, and lnY4 at the 1% level, with zero (to four decimal places)

p-values. The likely insensitivity of the individual constraints to minor violations in the translog

model relative to the nonparametric model stems from the fact that this estimator is global and the

constraint weights are less influenced by a few deviant gradients than the nonparametric method.

5.4.2. Constant Returns to Scale. A separate constraint of interest in many economic production

models is the assumption of constant returns to scale (CRS). This is a common assumption in many

models and we seek to test it for our particular application. This constraint is different from the

constraints imposed previously as we look to a combination of gradient vectors. Specifically, CRS

holds in our model if
∑4

m=1 ∂ lnX1/∂ lnYm = 1. We note that while this is different in principle

from the other constraints, it requires minimal additional effort in terms of computational need.

These partial derivatives are still linear in p meaning that they can easily be incorporated with our

previous constraints.

The results for the parametric models are as expected. The null of CRS is rejected at the

1% level for both the unconstrained and constrained models. The same null is also rejected for

the nonparametric models. Although the median estimates were near unity, there was enough

variation in the RTS estimates and hence we reject the null. Recall that CRS is generally rejected

for a technology with more than two inputs and the null is that CRS holds for all observations.

Hence, at least some of the observations have non-unity returns to scale. Here we have evidence of

why it may be näıve to solely examine the data at a mean value.

6. Conclusion

Estimating regression models consistent with economic theory are crucial for providing sound as-

sessment of economic phenomena. Methods to guarantee that the conditions set forth in theoretical

models often are limited to a particular style of estimation or involve rigorous computational de-

vices to impose the constraints of interest. In this paper we set forth a general methodology for the

imposition of smoothness constraints on economic relationships using linear regression estimators

with a technique known as constraint weighted bootstrapping. While known in the nonparametric
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regression literature, this methodology can also be used in parametric regression. To investigate

the validity of the constraints, we propose a test of the smoothness constraints imposed that allows

for heteroscedasticity and is easily implementable.

We employ these methods to study a multi-input, multi-output unbalanced panel data set of

Norwegian dairy farms. We found violations of economic constraints in both our parametric and

nonparametric estimators and employed the techniques in the paper to correct for these violations.

The nonparametric model, not surprisingly, had more violations of monotonicity that the parametric

model, however, the parametric model had an uncharacteristically high assessment of returns to

scale over the nonparametric model, especially given that both models fit the data well.

While the unconstrained nonparametric model produced numerous sign violations of the esti-

mated gradients, the constrained methods did not alter the data dramatically enough to change

the overarching insights from the distance function. This is comforting given that the constrained

methods could have overly restricted the flexibility of the nonparametric model to ensure the sign

constraints were satisfied, but this did not appear to be the case. Given that the fit of the con-

strained nonparametric model was not adversely impacted from imposition of the constraints, this

lends further credence to these methods. When comparing across the two methods we found that

we were able to reject the parametric functional form and that we had improved out-of-sample

prediction with the nonparametric model, especially when employing the constrained estimator.
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A. Translog Parameter Estimates

The parameter estimates for the unconstrained translog model with fixed effects are given in

Table 5. Excluding the farm effects, we first note that 33 out of the possible 65 parameter estimates

(excluding intercepts) are significant at the 10% level. We also note that the fit of the model is very

high with a squared correlation coefficient between the actual and fitted values equal to 0.9845.
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