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Abstract 

The Electrocardiogram (ECG) reflects the activities and the attributes of the human heart and 

reveals very important hidden information in its structure. The information is extracted by 

means of ECG signal analysis to gain insights that are very crucial in explaining and 

identifying various pathological conditions. The feature extraction process can be 

accomplished directly by an expert through, visual inspection of ECGs printed on paper or 

displayed on a screen. However, the complexity and the time taken for the  ECG signals to be 

visually inspected and manually analysed means that it‟s a very tedious task thus yielding 

limited descriptions. In addition, a manual ECG analysis is always prone to errors: human 

oversights.  

Moreover ECG signal processing has become a prevalent and effective tool for research and 

clinical practices. A typical computer based ECG analysis system includes a signal pre-

processing, beats detection and feature extraction stages, followed by classification. 

Automatic identification of arrhythmias from the ECG is one important biomedical 

application of pattern recognition. This thesis focuses on ECG signal processing using 

Independent Component Analysis (ICA), which has received increasing attention as a signal 

conditioning and feature extraction technique for biomedical application.  

Long term ECG monitoring is often required to reliably identify the arrhythmia. Motion 

induced artefacts are particularly common in ambulatory and Holter recordings, which are 

difficult to remove with conventional filters due to their similarity to the shape of  ectopic 
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beats. Feature selection has always been an important step towards more accurate, reliable and 

speedy pattern recognition. Better feature spaces are also sought after in ECG pattern 

recognition applications.  

Two new algorithms are proposed, developed and validated in this thesis, one for removing 

non-trivial noises in ECGs using the ICA and the other deploys the ICA extracted features to 

improve recognition of arrhythmias. Firstly, independent component analysis has been studied 

and found effective in this PhD project to separate out motion induced artefacts in ECGs, the 

independent component corresponding to noise is then removed from the ECG according to 

kurtosis and correlation measurement. 

The second algorithm has been developed for ECG feature extraction, in which the 

independent component analysis has been used to obtain a set of features, or basis functions 

of the ECG signals generated hypothetically by different parts of the heart during the normal 

and arrhythmic cardiac cycle. ECGs are then classified based on the basis functions along 

with other time domain features. The selection of the appropriate feature set for classifier has 

been found important for better performance and quicker response.  Artificial neural networks 

based pattern recognition engines are used to perform final classification to measure the 

performance of ICA extracted features and effectiveness of the ICA based artefacts reduction 

algorithm. 

The motion artefacts are effectively removed from the ECG signal which is shown by beat 

detection on noisy and cleaned ECG signals after ICA processing. Using the ICA extracted 

feature sets classification of ECG arrhythmia into eight classes with fewer independent 

components and very high classification accuracy is achieved. 
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Chapter 1               Introduction 

Many components of the measured electrocardiogram (ECG) signal originate from different 

and hypothetically independent sources, independent sources; the joint effect is a linear 

combination of them presented at the ECG electrodes. In the ECG signal processing there are 

several unsolved problems and many existing solutions that need optimisation, noise 

reduction/removal is one of them. There are several techniques for noise removal from the 

ECG which can be employed to give good performance results in the controlled environment. 

But in some cases to correctly identify the arrhythmia, long-term ECG monitoring is required, 

which is often acquired with ambulatory ECG usually recorded with Holter device, where it is 

difficult to obtain controlled environment setting. This makes the ECG recording more 

susceptible to different kind of noises not commonly witnessed at controlled environment. 

There are several filtering techniques that can be employed to remove some of the noises 

according to different frequencies, e.g. power interference baseline wandering, etc., but not 

electrode motion artefacts known in ECG studies as „em‟ noise which results from the motion 

of electrode on the patient‟s skin or due to the movement of the patient itself. The motion 

artefact is very difficult to be removed by conventional filters because of its ectopic in nature; 

it takes the shape of the wave which makes it difficult to be removed. ICA presents the 

solution for removing the motion artefact enabling further processing of ECG signals. Due to 

the different origination of the ECG and the motion artefact, the signals are independent of 

each other ECG having a super Gaussian distribution can be extracted from the noisy signal. 
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In this work ICA algorithm will be used for ECG signal processing. Firstly, to develop a 

method to detect, estimate and remove motion artefacts from the ECG. Secondly, to develop 

an algorithm for ECG arrhythmia classification using features extracted with ICA. A new 

feature set is developed which includes morphological and dynamic ECG features along with 

ICA extracted features. This makes a robust feature set for ECG arrhythmia classification. 

Comparison of classification accuracy, specificity and sensitivity with other state of the art 

method is done and its efficiency is proven. 

More Specifically 

 The aim of this thesis is to investigate the roles of Independent Component Analysis (ICA) in 

Electrocardiogram (ECG) signal processing. “Can the ICA be effectively used to mitigate 

noise from other sources and improve the performance of automatic classification?” is the 

research question. 

In order to accomplish this aim, the following objectives are to be fulfilled: 

 Identification and/or preparation of a suitable dataset to carry out an empirical study of 

the associated signal processing and machine learning algorithms. 

 Identification of suitable ECG data representation, alignment methods. 

 Identification of suitable ICA algorithms for ECG applications. 

 Developing signal probing acquisition technique methods 

 Developing a feature extraction set using ICA. 

 Developing related signal processing, machine learning algorithms. 

 Critically evaluating the method developed in this study and identifying its limitations. 

 



3 

 

The organisation of the thesis is as follows, Chapter 1 is the general introduction.  Chapter 2 

presents the background and literature survey, including the current state of art in ECG signal 

processing techniques.  Chapter 3 describes the anatomy of the heart, the generation of 

electric impulse from Sino atrial notes and ionic current and presents a summary of ECG 

techniques including signal detection, description, properties of ECG wave and noises in ECG 

along with summary of different arrhythmia in the ECG.  Chapter 4 describes the independent 

component analysis and various ICA algorithms.  Chapter 5 discusses the principal component 

analysis and its application in ECG .  Chapter 6 studies neural networks  with a view of 

different architectures, algorithms and activation function .  Chapter 7 present proposed 

method & hypothesis for noise removal and classification algorithms.   Chapter 8 summarises 

result of this work followed by a discussion. Finally, Chapter 9 contains a conclusion and 

future work. 
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Chapter 2               Background & Literature Review 

The occurrence and prevalence of cardiovascular diseases (CVD) have increased in recent 

years (Anand & Yusuf, 2011). As per the recent WHO report the overall death rate due to 

CVD in 2007 is 251.7 per 100,00 population. (De et al., 2009). This  increase  in death  rates  

due  to  CVD  in  the  modern  world  is  attributed  to  the increasing number of patients  of  

obesity,  diabetes  mellitus,  smoking habit  and  other  lifestyle  changes.  One  of  the  

complication  of  CVD among  many  others  is  atrial  and  ventricular  arrhythmias, which 

happen  due  to  cardiac  rhythm  disturbances.  Arrhythmia  is  a  collective  term  for  a  

heterogeneous  group  of  conditions  in  which  there would  be  an abnormal electrical 

activity.  There  are  many  causes  for arrhythmias,  most  of  which  are  related  to  CVD.  

Arrhythmias like  ventricular  fibrillation  and  flutter  are  life  threatening  medical 

emergencies  which  result  in  cardiac  arrest,  hemodynamic  collapse and  sudden  cardiac  

death. (Huikuri, Castellanos, & Myerburg, 2001). 

 Electrocardiogram (ECG) has become one of the important tools in the diagnosis of heart 

disease. Due to high mortality rate early detection and correct identification of ECG 

arrhythmia is very important. ECG signal processing is started with reduction of noise and 

artefacts to make ECG signal cleaner which can be interpreted easily by manual inspection or 

by automatic diagnosis machine. Then important hidden features are extracted which are not 

easily identified by manual inspection. These features are used for automatic ECG diagnosis, 

which classifies them into different classes of normal or irrational heartbeat. 

Electrocardiography has an important role in cardiology since it consists of effective, simple, 
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non-invasive, low cost way for the diagnosis of cardiac disorders which have a high rate of 

occurrence and are very relevant to their impact on patient life and social costs (Linh & 

Osowski, 2003). 

Noise Removal from ECG 

Noise and artefact removal is the first step for ECG signal processing (Wisbeck, Barros, Yy, 

& Ojeda, 1998) used ICA for removing breathing artefact with promising results which led 

them to apply ICA technique for more noise separation . (Barros, Mansour, & Ohnishi, 1998) 

presented their work by using well established MIT-BIT noise stress database. They proposed 

ICA based architecture for BSS separation of linearly mixed signals. The architecture 

consisted of a high-pass filter, a two-layer network based on ICA algorithm and a self-

adaptive step-size. The step-size is derived from the mean behaviour of output signals. The 

two layered algorithm provided fast convergence as compared to other algorithms which used 

whitening technique along with ICA algorithm.  

Independent component analysis can be implemented with different algorithms; each has its 

own merits, as they can be problem specific. For the case of noise and artefact removal from 

ECG (Sarfraz et al., 2011) , performed comparative  study of different ICA algorithms for 

ECG signal processing. Some motion artefact are ectopic in nature hence they cannot be 

easily detected by  conventional filters (I. Romero, 2011) used PCA-ICA based algorithms for 

motion artefact removal. Carrying the idea forward (Sarfraz & Li, 2013) used two lead design 

for motion artefact removal along with feature extraction of ECG using ICA , which was 

extension  to previous work. 



6 

 

(I. Romero, 2011; Inaki Romero, 2010) proposed the use of PCA and ICA for noise reduction 

and motion artefact removal, for ambulatory conditions where noise increases relative to 

activity , the signal quality is greatly reduced by motion artefact that are ectopic in nature. 

Making it difficult to be removed by conventional filters. ECG is collected from the lumbar 

curve region where ECG signals are negligible. To design a completely automatic system for 

diagnosing ECG using PCA and ICA, kurtosis is used to identify signal from noise by putting 

a threshold value as a classifier. It would be interesting to see how other automatic component 

selection work in this case. 

ECG Feature Extraction 

Independent component analysis ((Hyvärinen, Karhunen, & Oja, 2001; Hyvärinen & Oja, 

2000a; Naik & Kumar, 2011; Owis, Youssef, & Kadah, 2002) which is a form of blind source 

separation method is a statistical signal processing technique used for separating a set of 

signals into mutually independent component signals. 

ICA for feature extraction (Huang, Hu, & Zhu, 2012; Hyvärinen et al., 2001; Jiang, Zhang, 

Zhao, & Albayrak, 2006b; S.-N. Yu & Chou, 2006, 2008) is a new area of research which has 

good potential for getting important features to be used by classifier for automatic ECG 

classification. Features which can be used for ECG classification can be categorized 

according to their selection process. (Afonso, Tompkins, Nguyen, & Luo, 1999; De Chazal, 

O‟Dwyer, & Reilly, 2004) used time domain methods, (R. Acharya et al., 2004; Al-Fahoum 

& Howitt, 1999) used transformation methods for feature extraction.(Kwak, Choi, & Choi, 

2001; Kwak & Choi, 2003) proposed a feature selection algorithm where output class 

information was included with input features; the added information about the class improved 
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the performance in the extraction of useful features for classification. Standard feed-forward 

neural network was used for classification stage, results are promising, but it fell short of 

applying this to dataset other than bio signals and multiclass issue was also not taken into 

consideration. 

(Owis et al., 2002) illustrates ICA as feature extractor for ECG. ICA was used to calculate 

independent components (ICs) of the selected ECG signal, ICs are then used as bases for 

extraction of important features, 219 ICs are used and 100% classification accuracy is 

achieved in normal beats classification and moderate accuracy is achieved in another four 

arrhythmia classification. Additionally computational time was also high and even more for 

larger datasets. Carrying the same idea  (Jiang et al., 2006b) introduced ICA feature extraction 

method joining ICA basis function coefficient and wavelet transform coefficient  forming an 

over complete feature vector. Mutual information feature selection algorithm(Hyvärinen & 

Oja, 2000b) is used to select important features. Classification is done by support vector 

machine algorithms varied accuracy for different beats is achieved 77 % for atrial flutter to 

98% for normal beats. 

(S.-N. Yu & Chou, 2007) applied ICA for feature extraction in time domain using minimum 

distance and bayes classifiers for classification of six different type of ECG beats. Switchable 

scheme was proposed using two ICA based features of different lengths. The selection 

between two algorithms is made using RR interval as an indicator. High accuracy was 

achieved with this approach. However only simple classifiers were studied and more than six 

types of beat classification were not covered. In the following year (S.-N. Yu & Chou, 2008) 

assessed the integration of independent component analysis  and neural network as classifier 
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for eight ECG beats classification. Only one bank of ICA classifier was used in time domain , 

which works as basic features for ECG signal representation. Two neural networks models a 

probalistic neural network and a back propagation network were studied and results were 

significant. Continuing their work further (S.-N. Yu & Chou, 2009) proposed novel ICs 

arrangement strategy based on the L2 norms of the rows of Demixing Matrix. To reduce the 

computational burden on the system and processing time, only important ICs features are 

selected to be part of feature vector. This process makes  smaller feature set while maintaining 

the desired accuracy level. Results were promising and further application of this algorithm or 

other data sets and different noise and artefact must be done for deeper analysis.  

(Y. Wu & Zhang, 2011) used redundancy and relevance optimization for feature selection 

criteria and support vector machine for classification with 14 heart beat types achieving stable 

accuracy of 90 % in all the cases as compared to (Jiang et al., 2006b) work where high 

accuracy is achieved in some cases. (Shen, Wang, Zhu, & Zhu, 2010) also used Independent 

component analysis and support vector machine for multi lead ECG classification. Unlike 

others they segmented heartbeat into three segments, P wave , QRS interval and ST segment) 

separate features for each segment are extracted using ICA then combined to form classifier 

for 11 heart beat types. Structure of training data and amount of data is identified as possible 

area for performance improvement. 

As claimed by some researchers that ICA performs better with more leads for better 

understanding of ECG features. (Zhu et al., 2008) examined 98-lead and 72-lead ECG data 

and by using ICA they were able to recover separate ECG feature of P wave, QRS and T 

wave. Thus high resolution data can used in detailed diagnosis. 
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However, all these methods have some drawbacks. Most  of  these  methods  were  tested  

only  on  limited  data  sets and  the  generalization  performance  of  these  methods  on  large 

databases  was not  tested. All  these  methods  are  tested  only  on  a few classes  of  ECG  

beats. There  is  a  need  to  test  the  methods  and  algorithms  on a  standard  classification  

scheme  of  arrhythmia  beats  such  as ANSI/AAMI  EC57:1998 (EC57, 1998; Martis, 

Acharya, & Min, 2013) 

A number of practical applications of ICA in source separation are mentioned in the literature. 

To mention some, ICA are used in finance industry for financial data feature extraction and 

forecasting of time series. (Cheung & Xu, 2001; Lu, Lee, & Chiu, 2009), (Bingham, Kuusisto, 

& Lagus, 2002; Kolenda, Hansen, & Sigurdsson, 2000; Pu & Yang, 2006) used ICA for 

analysis of document text.(Acernese et al., 2004; Cabras, Carniel, & Isserman, 2010) studied 

application of ICA in seismic monitoring for volcanic activity analysis and prediction.  

ECG Classification   

Neural nets are most suited for situations that bear no clear set of rules or relationships. 

Because neural nets learn from experience, they can do tasks that are otherwise hard to 

identify precisely. Neural nets can classify complex data. They are applied successfully to a 

wide range of application like biomedical signal analysis, financial time series forecasting and 

process control (Rosaria & Carlo, 1998)(Mark & Jansen, 1997) (Fikret, 1999; Hu, Xie, & 

Tan, 2004; S. Wu, Chow, & Using, 2004). 

(Guvenir, Acar, Demiroz, & Cekin, 1997) used Neural Networks for ECG classification 

problems. The Arrhythmia dataset of  UCI  (Bache & Lichman, 2013) was used The dataset 
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contained 279 traits, 206 of which were linear-valued and the rest were nominal. There were 

245 examples of normal ECG and 207 of 15 types of arrhythmia, including coronary artery 

disease, myocardial infarction, sinus tachycardia, sinus bradycardia, right bundle branch 

block, and atrial fibrillation. In order to treat the problem as a binary classification one, the 

207 examples of arrhythmia are combined in a single class. 

(Barro, Fernández-Delgado, Vila-Sobrino, Regueiro, & Sánchez, 1998) adopted multichannel 

adaptive resonance theory (MART) to classify the ECG patterns. Application results show 

that this classifier can classify normal and ventricular beats with an accuracy of more than 

90%. (Olmez, 1997) worked on classification of ECG waveforms using Restricted Coulomb 

Energy (RCE), neural networks and genetic algorithms. He detected 4 types of beat such as 

normal beat, left bundle branch block beat, premature ventricular contraction and paced beat. 

He obtained a classification accuracy of more than 94%. 

(Dokur & Ölmez, 2001) used multi-layer perceptron to classify ten arrhythmias with training 

accuracy of 78% using discrete fourier transform for feature extraction. This work is followed 

by (Güler & Übeyli, 2005; Güler, 2005) for ECG classification using discrete wavelet 

transform along with multilayer perceptron getting 97.98% training accuracy with five classes 

of arrhythmia.(Asl, Setarehdan, & Mohebbi, 2008a; Mohammadzadeh-Asl & Setarehdan, 

2006)(Asl, Setarehdan, & Mohebbi, 2008b) produced series of work for ECG classification 

using artificial neural network along with varied feature reduction techniques. Six classes of 

arrhythmia were identified; training accuracy of 98.22% was achieved using only multilayer 

perceptron. This work was followed by introduction of feature reduction technique of 
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principal component analysis and linear discriminant analysis in addition to MLP for ECG 

classification. 

Neural networks‟ origin can be tracked down to the domain of cognitive engineering, it is 

thought to be suitable to do complex jobs. They are particularly efficient at spotting patterns, 

sorting information, and processing noisy signals. Neural networks are loosely modelled on 

the networks of neurons in biological systems. Artificial neural networks (Haykin, 

1995)(Negnevitsky, 2005) are collections of mathematical models that emulate some of the 

observed properties of biological nervous systems and draw on the analogies of adaptive 

biological learning. An artificial neural net (ANN) is an information-processing paradigm 

inspired by the way the densely interconnected, parallel structure of the brain processes data. 

The key factor of the ANN model is the novel structure of the data processing system. It is 

composed of a large number of highly interconnected processing elements that are analogous 

to neurons and are bound together with weighted connections that are analogous to synapses. 

(Nazmy, El-Messiry, & Al-Bokhity, 2010) resents an intelligent diagnosis system using 

hybrid approach of adaptive neuro-fuzzy inference system (ANFIS) model for classification 

of Electrocardiogram (ECG) signals. Six types of ECG signals are classified. The results 

indicate a high level of efficiency of the tools used with an accuracy level of more than 97%. 

Five power spectrum features were extracted from the ECG signal at (4, 8, 12, 16 and 20 Hz). 

The term power spectrum means the amount of power per unit (density) of frequency 

(spectral) as a function of the frequency (Minami, Nakajima, & Toyoshima, 1999). 
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Other Bio Signals Application 

Event-Related  Potentials  (ERPs)  are  time  series  of voltages  in  the  on-going  

electroencephalogram  (EEG)  that are time and phase-locked into a set of similar 

experimental event. However due to overlapping of time courses  and  scalp projections  

ERPs  cannot  be easily  decomposed  into  functionally  distinct  components (Jung, Makeig, 

Lee, et al., 2000).  ICA  is  used  effectively to decompose multiple  overlapping  components  

from  sets  of  related ERPs (Makeig, Bell, Jung, Sejnowski, & others, 1996) (Jung et al., 

1998; Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997) using Infomax algorithm for 

detection of ERP. 

(Tichavskỳ, Zima, & Krajca, 2011) used ICA for artefact removal from EEG data of arbitrary 

length that have relatively short duration and exceed in the magnitude of the neighbourhood 

signal for examples eye blinks or occasional body movement artefacts. 

(Jung, Makeig, Westerfield, et al., 2000) used linear ICA to separate neural activity from 

muscle and blink artefacts in spontaneous EEG data. This work is followed by another study  

verifying that  the ICA can separate artefactual, stimulus locked, response-locked, and non-

event related background EEG activities into separate components (Jung et al., 2001). 

(Mishra & Singla, 2013) proposed a technique for the removal of eye blink artefact from EEG 

and ECG signal using fixed point or FastICA algorithm of Independent Component Analysis 

as a pre-processor for biometric recognition claiming that every individual has distinct EEG 

and ECG spectrum. 
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Surface Electromyography (sEMG) is the electrical recording of the muscle activity from the  

surface.  It  is  linked  to  the  strength  of  muscle  contraction  and  is  a  useful  to estimate 

the strength of contraction of the muscle. But the occurrence of artefacts, especially at low 

level of muscle activity make the recordings unreliable (Naik, Kumar, & Arjunan, 2010).  

Conclusion 

Ever since the invention of ECG by Willem Einthoven in 1903, it has been used as an 

important tool in diagnosis of heart. Noise removal from the ECG was the main theme of 

researchers working in this area as mentioned in the above studies. With the advent of modern 

computer technology automatic classification and long term ECG monitoring was the focus. 

Independent component analysis was effectively used for noise removal from ECG. But they 

did not address the removal of motion artefacts which take the shape of ectopic beat and 

cannot be easily removed with conventional filter. Also the use of ICA as feature extraction 

tool was not fully explored to reduce the computational burden and processing time for 

automatic classificati of ECG by selection of important features only. 
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Chapter 3               Heart and ECG 

The purpose of this chapter is to present basic facts about heart structure, its function and the 

basics of ECG measurement and to review the most common lead system used in 

electrocardiography. This will helps in understanding ICA applications on ECG in a better 

way. If the reader is familiar with heart and ECG they can skip this chapter. 

The heart is an efficient muscular organ that pumps blood throughout the whole body. It 

delivers oxygenated blood and other nutrients to body organs and take away metabolic waste 

from body organs back to the kidney and lungs respectively for excretion. The heart is a 

muscular pumping organ responsible for delivering oxygenated blood and other nutrients to 

body organs and removing deoxygenated blood from body organs to the lungs where the 

blood is again oxygenated.  

3.1       Heart Anatomy 

The heart consists of four chambers, the top two chambers are called atria and bottom 

chambers are the ventricles. Atria‟s are electrically isolated from the ventricles by a 

nonconductive fibrous tissue (Rajendra Acharya, 2007). The figure 3-1 shows a cross section 

view of heart, the four chambers and separating muscular tissue are clearly visible. The atria 

are separated with each other by a thin interatrial septum, while ventricles are separated from 

each other by a thick interventricular septum to get more pressure for pumping blood. The 

heart can be considered as double pump where the right side of the heart consisting of right 

atria receive deoxygenated blood delivered by veins called as superior and inferior venacava. 

It then pushes this blood to the right ventricle through tricuspid valve which checks the flow 

of blood in one direction only. Then the contraction of right ventricle pumps the blood into 
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the lungs where the blood is oxygenated. Likewise, the left side of heart consisting of left atria 

and left ventricle that also form a pump. Oxygenated blood from the lungs is received by the 

left atria through the pulmonary vein. It is then pushed into the left ventricle through the 

mitral valve. The contraction of left ventricle pushes the blood to other body organs. Blood 

flow in heart is regulated by valves which prevents the back flow of the blood. ECG can be 

used to identify faulty valve (Davie et al., 1996). 

 

Figure 3-1 Anatomy of the heart and associated vessels. 

(Figure Adapted from Malmivuo & Plonsey, 1995)  

This pumping process of heart is synchronized. Atria contract first to fill ventricle, then 

ventricle contract together to pump the blood into the lungs and other parts of the body. The 

period during which heart is filled with blood is called diastole, and contraction period of 
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ventricle is called as systole. In electrical terms these two phases are called as repolarization 

and depolarization. The heart muscles are made up of three layers with inner one as 

endocardium, middle layer as myocardium, outer layer is called as epicardium. In the right 

atrium there is an S-A node which is a network of pacemaker cells consisting of excitable 

tissue that initiates the conduction which travels down the pathways. 

Conduction system of surface electrode is used to detect the depolarization of excitable 

myocardium. When the depolarization propagates towards the positive electrode of the 

amplifier, the voltage detected is seen as positive and is represented by an upward deflection 

in the ECG. 

The heart can effectively pump the blood to the body organs only when the contraction of 

different chambers is synchronized. The atria must fill first and then the blood is pumped into 

the ventricle before the contraction of ventricle pumps the blood to the lungs and other parts 

of the body. This synchronisation is accomplished by an intricate electrical conduction system 

that contains the precise timing for the depolarizing of electrically excitable myocardium. 

This precise control starts with an intrinsic self-excited cardiac pacemaker, which controls the 

rate at which the heart beats. The pacemaker continuously generates regular electrical 

impulses, which then go through the conduction system of the heart and initiate contraction of 

the myocardium. This pacemaker is called the Sino Atrial node or (SA) node. 

3.2       Sino Atrial (S-A) Node 

The S-A node is located in the upper wall of the right atrium. It is the initial source of 

electrical excitation under normal conditions. The S-A node is a grid of pacemaker cells 
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which exhibit automaticity. Automaticity is a property of the cell to get depolarise without 

any external stimulus. The S-A node sends the depolarization wave to the nearby muscle 

cells. There are specialised band of tissues between right atrium and left atria known as 

Bachman‟s bundles, which provides a fast gateway for the depolarising signal from the right 

atrium. Due to this fast signal transfer the depolarisation of the right and left atrium occurs 

almost simultaneously. Automaticity of the S-A node can be affected by sympathetic and 

parasympathetic inputs or by medicines. There is another special type of tissue, which carries 

the depolarisation signal from the S-A node to AV node which is called as internodal tracts. 

The AV node is the starting point of the ventricular conduction system. 

3.3       Depolarisation 

Depolarisation is a change from negative membrane potential to positive membrane potential. 

Depolarisation allows the propagation of electrical signals through the cells. There is a 

potential difference across the cell membrane, due to different concentration of ion‟s 

particular Na
+
, K

+
, Cl

-,
 and Ca

2+
 internal and external cellular fluids. When an electrical 

impulse exceeding the threshold voltage arrives at the cell, the wall of cell membrane 

becomes permeable allowing the exchange of ions. Once a cardiac step is depolarised, the 

electrical stimulation is propagated to all the adjacent cells. At the end of depolarisation, the 

cell membrane again returns to the resting stage and exchange of ions is blocked. All the 

unwanted ions are pumped out through ion channel in the cell maintaining the ionic balance 

with the resting state, this process is called repolarization. This repolarisation process is 

described in figure 3-2 showing electrophysiology process of cardiac muscle cell. 
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Figure 3-2 Electrophysiology of the cardiac muscle cell 

(Figure adapted from Malmivuo & Plonsey, 1995) 

The heart muscles are made up of myocardial cells, which are interconnected with each other 

by the intercalated discs. There are areas on the intercalated discs which are called gap 

junctions. The gap junctions have low resistance, thus provide a path for rapid conduction of 

electrical impulses from one cell to another. Strong ionic current is generated due to 

depolarisation of heart muscles. This current when flows through the resistive body tissues 

generates a voltage drop which is detected by the electrodes on the skin. Normally it is about 

3 mV peak at the chest. Although there exists are other ionic currents due to nerve 

depolarisation but its magnitude is too low to be detected by the skin electrode. 
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3.4       Generation of Ionic Current 

The cells in the muscular tissue depolarise  and contract when triggered by electrical stimulus. 

At rest the cell membrane impermeable to ions. Let‟s take the potential voltage of interstitial 

fluid as 0 mV,  the potential of intracellular fluid will be around -90 mV. When the action 

potential arrives at the cell, it increases the potential beyond the threshold of -70 mV. At this 

stage the cell membrane becomes permeable and the exchange of ions takes place, Na
+ 

moves 

inside the cell, thereby raising the potential for a short duration to +20 mV. At that moment 

K
+
 ions start moving out of the cell, thereby decreasing the potential simultaneously.          

Ca
2+

 starts moving into the cell due to which the charge of the cell still remains same and a 

plateau is observed. Because of this a refractory period is achieved, which gives time to the 

cell to wait for another action potential. Before the refractory period the cell cannot be 

depolarized again as its potential is already positive. Then the Ca
2+ 

channels are closed, so 

there will be no more positive ions going inside the cell while K
+ 

ions are still moving out. 

This makes the inside of the cell more negative, so the membrane potential decreases further 

this phase is called repolarization. 

The action potential of pacemaker cells is of  different shape than that of myocardial cells. 

Due to the slow leak of ions across the cell membrane, its action potential increases gradually 

with time. 
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3.5       Electrocardiogram 

The investigation of the ECG has been extensively used for diagnosing many cardiac 

diseases. The ECG is a real record on the direction and magnitude of the electrical co-motion 

that is generated by depolarisation and repolarisation of the atria and the ventricle. One 

cardiac cycle in an ECG signal consists of PQRST wave. Figure 3-3 Basic ECG wave shape 

with morphological featuresshows a sample ECG signal. The majority of the clinically useful 

information in the ECG is originated in the intervals and amplitudes defined by its features. 

The improvement of precise and rapid methods for automatic ECG feature extraction is of 

chief importance, particularly in the long recording where the patient is implanted with some 

device generally called as Holter device which records the patient's heart activity for a long 

duration of time which can be analysed by the doctor at a later stage. 

The isoelectric line is also called the baseline.  It is not perfectly straight, but wandering so it 

is also called as wandering baseline.  Which can be caused by patient movements, movement 

of electrode wires. The isoelectric does not have any positive or negative charge occurring. 

Any deflection above the isoelectric line is considered as positive, while deflection below the 

isoelectric line is considered as negative. When the electrical signal propagates towards the 

electrode, it shows up as positive deflection on the ECG. When the electrical signal travels 

away from the electrode it shows up as negative deflection on the ECG. The first positive 

deflection in the isoelectric line is called as a P wave and the first negative deflection 

following the P wave is Q wave. The next positive deflection after the Q wave is R Wave. 
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3.6        ECG Wave Description 

The ECG is described by waves, interval and segments. 

 Waves are labelled using the letters P, QRS, T and U. 

 Segments are defined as the time duration between different waves, for example S-T 

segment is the duration between S and T waves. This segment denotes the entire 

ventricular depolarization. 

 The intervals on the time durations that includes waves and segments for example Q-T 

interval represent the time for ventricular depolarization and repolarization. 

 

 

Figure 3-3 Basic ECG wave shape with morphological features 

 

PR INTERVAL 

QT INTERVAL 
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The ECG waves, interval and segments all form a feature class for the diagnosis. 

 P-waves represent the depolarisation of atrial myocardium that spreads from the S-

Anode to the entire atria (upper heart chamber muscles); it indicates the start of atrial 

contractions that pumps blood to the ventricle. The duration of the P wave is usually 

0.08 to 0.1 seconds.  

 PR interval indicates AV conduction time, it  is the time taken by the electrical 

impulse to travel from the sinus node through the AV node. Normally this interval is 

0.12 to 0.20 seconds. The length of this interval depends on the heart rate which could 

be shortened during physical exercise. 

 A QRS wave complex, which includes the Q, R and S waves, indicates ventricular 

depolarisation which results in contraction of the ventricle‟s that pumps blood to the 

lungs and other parts of the body. 

 S-T segment - represents the early part of ventricular depolarization, it is the kind of 

the QRS wave during which the entire ventricle is depolarized. It roughly corresponds 

to the plateau phase of the ventricular action potential. This segment is important in 

the diagnosis of ventricular ischemia is under those conditions. This segment is either 

depressed or elevated. 

 T wave - represents the repolarisation of the ventricular myocardium. It is longer in 

duration than depolarisation, and also slightly asymmetrical. 
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 Q – T interval corresponds to the time for both ventricular depolarization and 

repolarization. The duration of the QT interval is from the beginning of the QRS 

complex to the end of the T wave. Its normal range is from 0.2 to 0.4 seconds. The QT 

interval depends on patient gender, age and heart rate. 

3.7       ECG Lead Systems 

The ECG is a record of electrical activity generated by heart beats and measured from the 

surface of the body using special electrodes. It can be viewed, in a simpler term, as an 

electrical signature of heart behaviour. ECG signals are acquired by placing electrodes on the 

body surface at different prescribed locations and connecting the electrodes in different 

configurations to differential voltage amplifiers and a recorder. Three-lead ECG recording 

methods is based on an Einthoven Triangle named after (Malmivuo & Plonsey, 1995). Three 

leads are used to measure heart electrical activities, as shownin figure 3-4. 

 

Figure 3-4 Einthoven triangle and ECG limb leads definition 
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The Einthoven limb leads  are defined in the standard way as: 

                           
                         

                          

        ( 3-1) 

    

Where Φ refers to measured potential from the electrodes at related locations. According to 

Kirchhoff's law, these lead voltages have the following relationship: 

          VI + VIII = VII 
      ( 3-2) 

Therefore, only two of these three leads are independent.  

Ever since mid-1930s, a standard 12-lead ECG system comprises of  3 limbs leads, 3 leads in 

which the limb potentials are referenced to a modified Wilson terminal are shown in 

Figure 3-5, and 6 leads placed across the front of the chest are shown in Figure 3-6 and 

referenced to the Wilson terminal is the standard ECG used by clinicians is the 12-lead ECG. 

Limb Leads (Bipolar) – Leads I, II, III 

The limb leads have electrodes attached to the limbs. Three views are acquired from Leads I, 

II and III, commonly refer to bipolar leads as they use only two electrodes for measurement as 

shown in Figure 3-1. One electrode acts as the positive electrode while the other as the 

negative electrode. Right Leg (RL) electrode is not used for obtaining the ECG rather than it 

is used as a ground reference electrode and helps to reduce instrument common mode 

interference. Electrically, the placement of a limb electrode in any position along the arm is 

the same. The minor difference is in the extra impedance of tissue resistance, if the electrode 

is placed further from the heart. So, an electrode can be attached either to the wrist or to the 

chest near that same arm. 
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The Augmented Limb Leads - aVL, aVR, aVL 

The signals from the limb electrodes can be combined to give extra views of the heart and 

they are called the augmented leads. One of the limb electrodes acts as the positive electrode.  

 

Figure 3-5 Augmented lead placement  

(Figure adapted from Malmivuo & Plonsey, 1995) 

 The negative electrode is the average of the signals from the remaining two limb electrodes. 

In contrast to Leads I, II and III, the augmented leads are known as unipolar leads. In total, 

there are six views obtained from the limb leads, providing views from different angles along 

the frontal (anterior) plane. 

There are six chest electrodes V1, V2... V6 which gives six views of the heart signals across 

the front (ventral aspect) of the chest. The positive electrode is the chest electrode. The 

negative electrode is the Wilson Central Terminal (WCT). This is a virtual electrode with 
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potential obtained by averaging the signals from the three electrodes LA, RA and LL. The 

WCT is thus the electrical centre of the heart. These six leads are known as precordial leads 

and are unipolar leads. 

 

Figure 3-6 six chest electrodes placement for ECG 

(Figure adapted from Malmivuo & Plonsey, 1995) 

Skin or surface electrode is used to detect the depolarising signal from the excitable 

myocardium. When the depolarising way propagates towards the positive electrode of the 

amplifier, the voltage is recorded as positive and is represented by an upward deflection in the 

ECG. Atrial deep polarisation is recorded as positive P wave leads I due to the propagation of 

an impulse from the right atrium towards the left that is towards lead I. Repolarisation wave 

Ta is recorded as negative P wave in the same lead. However, for most of ECGs, QRS 

complex mask the atria repolarisation hence Ta wave is not distinct. 
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Figure 3-7 Different component of ECG during depolarization of atria and ventricle. 

(Figure adapted from Malmivuo & Plonsey, 1995) 

 The depolarisation of ventricular myocardium starts in the Inter ventricular septum from left 

to right generating the Q wave of the ECG. This is followed by the near simultaneous 

depolarisation of left and right ventricle. Although the direction of depolarizing muscles of 

left and right ventricle is opposite in direction,  the net direction along the horizontal axis is to 

the left of the heart because of the thick left ventricular wall generating large electrical 

potential as compared to the right ventricular wall. This depolarisation process in context with 

ECG is shown in figure 3-7. It has been mentioned earlier that the thick left ventricle wall 

generates more pressure to pump the blood throughout the body as compared to the right 

ventricle wall which pumps the blood to the lungs for purification. Repolarisation of ventricle 

starts in the opposite direction, resulting in the right T wave. 
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3.8       Ambulatory ECG 

Ambulatory ECG monitoring is used to measure electrical activity of heart while doing 

normal activities or walking (ambulatory). Small electrodes are placed onto chest. Wires from 

the electrodes are connected to a small, lightweight recorder (Holter monitor). The recorder is 

attached to a belt which makes it easy to wear around waist. Ambulatory ECG record the 

electrical activity for 24-48 hours. It is recommended for patients with transient symptoms, 

e.g., palpitations, light-headedness, or syncope, which are indicative of arrhythmias. Another 

group of patients are those at high risk of sudden death after infarction. Ambulatory 

monitoring is also used in patients who are on antiarrhythmic drugs and whose reaction to the 

therapy needs to be assessed. The reason for using ambulatory ECG is to detect arrhythmia, 

which in some cases lasts for only few seconds or minutes and can be easily go undetected 

because of nonappearance at clinic check-up. The ambulatory ECG recording technique is 

also referred as  Holter monitoring after its inventor Norman Holter, who introduced the first 

portable device to record an ECG (Holter, 1961). The Committee on Electrocardiography in 

The American Heart Association (AHA) had recommended the position of electrode 

placement for two-channel recording (Sheffield et al., 1985).  They proposed a five-electrode 

System, one of which is a ground electrode with the other two pairs of electrode each forming 

a bipolar lead. The P waves are often masked by noise and artefacts, which makes diagnosis 

of atrial arrhythmias using the ambulatory ECG difficult by using algorithms for P wave 

detection (Khawaja, 2006). 
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3.9       Heart Rhythms and Arrhythmias 

Arrhythmia is used as a collective term for all sorts of disorder in which normal sinus rhythm 

(NSR) is disturbed. NSR is the normal value is 60 to 100 beats per minute, with a regular R-R 

interval. Normal heart beat originate in the sino-atrial node, the heart‟s pacemaker. This is 

characterized with normal P wave occurrence before normal QRS wave. Any deviation from 

NSR is called as arrhythmias, which can be life threatening. If the heart rate is too slow, blood 

supply to body organ will be affected. On the other hand, if the heart rate is fast, the 

contraction of the ventricle occurs before getting completely filled. Thus low pumping 

efficiency and adverse perfusion can occur. In this study are eight arrhythmias discussed 

which are more frequent and all of these eight arrhythmias are used for feature extraction and 

classification. 

3.9.1    Right Bundle Branch Block (RBBB) 

Conduction system in the ventricle starts with the A-V node propagating through the Bundle 

of  His. From there it divide into left and right bundle branches. The whole conduction system 

may be affected by the block in conduction from the A-V node. Myocardium depolarization is 

delayed due to delay in arrival depolarizing impulse. The effect of this delay is entire 

ventricular depolarization takes longer time, reflected by wide QRS complex and abnormal 

shape. In the RBBB,  electrical impulse does not depolarise right ventricular myocardium due 

to blockage of signal in Purkinje network. Instead the electrical impulse, arrive at right 

ventricular myocardium from the side of left ventricular myocardium, which results in 

morphological change in QRS complex. The QRS complex widens more than 0.12 seconds, 
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in case of complete blockage. While during incomplete blockage it is around 0.10 to 0.11 

seconds. 

3.9.2    Left Bundle Branch Block (LBBB) 

In LBBB, the electrical impulse propagation to the left ventricular myocardium is blocked, so 

the depolarisation of left ventricular myocardium occurs in an abnormal way. The right 

ventricle is depolarized first, and then the impulse travel to the left ventricular myocardium.  

 

Figure 3-8 RBBB arrhythmia recorded by different leads 

(Figure adapted from Rajendra Acharya, 2007) 

The signal propagation through myocardium is slower visible in figure 3-8,  as compared to 

propagation through special conducting cells. 
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3.9.3    Premature Ventricular Contraction (PVC) 

Premature ventricular contractions (PVCs) are extra, abnormal heartbeats that begin from the 

ventricles. They are called as premature because of their earlier occurrence than the normal 

cycle. The extra pacemaker may either be in the Purkinje fibre network, Bundle of His or 

ventricular myocardium. The P wave maintains its rhythm and shape as seen in figure 3-9, 

PVCs do not depolarise the atria. 

 

Figure 3-9 Premature Ventricular Contraction 

(Figure adapted from Rajendra Acharya, 2007) 

If three or more consecutive PVCs appear then this is called as Ventricular Tachycardia (VT) 

which is characterized by unusual wide  QRS complex  > 0.14 seconds. The strange shape of 

the QRS complex is observed with different direction from the normal QRS complex. 

3.9.4    Paced Beat 

This is the beat from the artificial implanted pacemaker, which generate beat around 60 to 70 

per minute. It may vary according to the setting on the device. It is used by people with a 
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dangerously slow heartbeat. The electrode is placed on the top of the right ventricular cavity 

or the right atrium. The paced beat is characterized by narrow spike followed by P‟ wave.  

3.9.5    Atrial Premature Beat 

An atrial premature beat is characterised by the presence of P' wave, followed by a QRS 

complex and a T wave. This occurs because of an ectopic pacemaker generates impulse 

before the S-Anode. These impulses lead the S-Anode normal impulse and spread throughout 

the myocardium causing it to contract prematurely. If atrial premature beat occurs very early 

before the full repolarisation of bundle branches, it results in a broad QRS to bundle branch 

block. When three or more APBs focus simultaneously,  the rhythm is considered to be atrial 

tachycardia. The heart rate is fast from 160 to 240 bpm. 

3.9.6    Flutter Wave 

Flutter wave occurs in the atria of the heart and signifies an abnormal heart rhythm with beats 

ranging from 240 to 360 per minute. This rhythm is  common in patient having  history of 

cardiovascular disease, e.g. hypertension, coronary artery disease and diabetes. The P' wave 

appear quickly and regularly, and  the waveform  appears like a saw tooth wave. Cardiac 

blood output may reduce by as much as 25% due to incomplete filling of the ventricle. 

3.9.7    Ventricular Escape Beat 

Ventricular escape beat occurs due to delay in the rate of electrical impulses from the S-

Anode to the AV node. In VEB ectopic pacemaker in the bundle branches or Purkinje fibre 

network dominates at a rate of less than 40 bpm. Because of slow heart rate, the cardiac 
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output is also reduced, leading to hypotension and decrease blood supply to the brain and 

other vital organs which may result in fainting, shock or congestive heart failure. 

3.10       Noise in ECG 

Generally ECG signals are often contaminated with noise and artefacts of various sources . 

Noise is defined as presence of persistent contaminant (such as power line interference, 

muscle movements) while artefacts is defined as the presence of a transient interruption (such 

as electrode movement). (Clifford, Azuaje, & McSharry, 2006) (Rajendra Acharya, 2007) has 

classified various ECG noises and artefacts. 

1. Power Line Interference: Power line interference is comprised of 60/50 Hz pickup and 

harmonics that can be modelled as sinusoids and combination of sinusoids. 50 ± 0. 2 Hz 

mains noise (or 60 Hz in many datasets) with an amplitude of up to 50% of full scale 

deflection (FSD), the peak-to-peak ECG amplitude. 

2. Electrode Contact Noise: Electrode contact noise is transient interference caused by loss of 

contact between the electrode and the skin, revealing sharp changes which can be permanent 

or intermittent. The switching action can result in large artefacts since the ECG signal is 

usually capacitively coupled to the system. This type of noise can be modelled as a randomly 

occurring rapid baseline transition that decays exponentially to the baseline and has a 

superimposed 60 Hz component.   

3. Patient–Electrode Motion Artefacts: Movement of the electrode away from the contact area 

on the skin, leading to variations in the impedance between the electrode and skin, causing 
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potential variations in the ECG and usually manifesting themselves as rapid (but continuous) 

baseline jumps or complete saturation for up to 0.5 seconds; 

4. Electromyographic (EMG) Noise: Electrical activity due to muscle contractions lasting 

around 50 Ms between DC and 10,000 Hz with an average amplitude of 10% FSD level; 

5. Baseline Drift: Usually from respiration with an amplitude of around 15% peak-to-peak 

ECG amplitude at frequencies drifting between 0.15 and 0.3 Hz. Baseline drift cause 

difficulties in peak detection, as T peak could become higher than R peak and the peak 

detection algorithm take a T peak as R peak. Baseline drift should be removed from the ECG 

before feature extraction.  

6. Data Collecting Device Noise: Artefacts generated by the signal processing hardware, such 

as signal saturation; 

7. Electrosurgical Noise: Noise generated by other medical equipment present in the patient 

care environment at frequencies between 100 kHz and 1 MHz, lasting for approximately 1 

and 10 seconds; 

Conclusion 

Ths chapter provides introduction about the heart and ECG.for readers from other fields. The 

basic anatomy of heart is discussed along with the generation of ionic currents in the heart and 

their path. Various arrhythmias are discussed which were used for classification later in the 

thesis. Different kind of noise sources and their characteristics are also highlighted. QRS 

segment contains maximum information of ECG. For effective automatic ECG noise removal 
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and classification system feature extracted from QRS segment should be used for achieveing 

better results. 

 

  



36 

 

Chapter 4               Independent Component Analysis 

Independent Component Analysis (ICA) is a statistical methods that is used to identify 

underlying factors or component that are statistically independent (Hyvärinen & Oja, 2000a). 

In the last decade it has got wider attention for its application for feature extraction and blind 

source separation (BSS) in biomedical signal processing. The special aspect of ICA is to 

separate the signal mixture to its sources with no information about the original source or the 

mixing parameters. Though the source estimation with ICA have certain indeterminacies like  

4.1       Independence 

A key concept that constitutes the base of Independent Component Analysis is statistical 

independence. It can be understood more easily with the following example of a coin tossing. 

For an unbiased coin whose probability of getting tail Pt = 0.5, then the probability of getting 

two tails is 

 

         ∏  

 

   

 

( 4-1 ) 

 

= 0.5
2 

= 0.25 

Where the symbol П is standard notation for representing products, similarly the probability 

of obtaining exactly N tails from N coin tosses is  
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  ∏  

 

   

      
  

( 4-2 ) 

The probability of obtaining a number of tails can be obtained as the product of the 

probability of obtaining each tail only because the outcome of the coin tosses are independent 

events. To simplify the above discussion consider the two different random variables x1 and 

x2 . The random variable x1 is independent of x2. If the information about the value of x1 does 

not provide any information about the value of x2 and the same holds true the other way 

round, then it can be said that x1 and x2 could be random signals originating from different 

physical process that are not related to each other.   

 

Figure 4-1 ICA demonstration with Cocktail Party Problem 

The cocktail party problem is a classic example to understand blind source separation, where 

the objective is to separate the individual voice of the speaker from a sample of mixture of 

spoken voices recorded in the microphones. As shown in figure 4-1,  Given the conditions of 

the same number of sources as there are receivers. 
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    ( )        ( )        ( ) ( 4-3 ) 

    ( )        ( )         ( ) ( 4-4 ) 

Where x1 and x2 are the sound signals received by the microphone. The value of signals 

received by each microphone depends on certain variables and  in this case it is the distance of 

microphone from each speaker. Goal is to separate individual speaker voice from the voice 

mixture, with no information about the source available. Figure 4-2 demonstrate general block 

diagram of ICA as blind source separation technique. 

 

Figure 4-2 Blind source separation (BSS) block diagram 

4.2       Illustrative Example of ICA 

To explain the concepts discussed in the above section two simple illustrations of ICA is 

presented here. The results presented below are obtained using the FastICA algorithm 

(Hyvarinen, 1999). Other algorithms (Bell & Sejnowski, 1995) (Jean-François Cardoso & 

Souloumiac, 1993) could also be used but since this work is intend to use FastICA for artefact 

removal and classification in the later stage so  FastICA is the natural choice. 
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 In this illustration two independent signals, s1 and s2, are generated. Both the signals are of 

the same length and zero mean. These signals are shown in Figure 4-3. The independent 

components are then mixed according to mixing equation ( 4-3 )( 4-4 ) using an randomly 

chosen mixing matrix A, where 

    .
            
             

/   ( 4-5 ) 

 

Figure 4-3 ICA demonstration original source signal 

The mixing result is shown in Figure 4-4 ; it is clear from the figure that both figures are 

unrecognizable. 
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Figure 4-4 ICA demonstration mixed (observed) signal 

Finally, the mixtures x1 and x2 are separated using ICA to obtain s1 and s2, using estimated de-

mixing matrix W, the separated signals are shown in Figure 4-5. 

    .
             
               

/  ( 4-6 ) 
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Figure 4-5 ICA demonstration recovered source signal 

 

By comparing Figure 4-3 to Figure 4-5 it is evident that the independent components have 

been estimated accurately and that the independent components have been estimated without 

any previous knowledge of the components themselves or the mixing process. 

This example also provides a clear illustration of the scaling and permutation uncertainties 

discussed later. The scale of the corresponding waveforms in Figure 4-3 and Figure 4-5 are 

different. Thus the estimates of the independent components are some multiple of the 

independent components of Figure 4-3. The order of the independent components has been 

reversed between Figure 4-3 and Figure 4-5. These uncertainty problems are rather minor 

when compared with the usefulness of ICA. 
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Ambiguities & Assumptions in ICA 

There are certain inherent ambiguities in ICA model. 

1)  The variance (energies) and scale of the independent components cannot be 

determined. It could be explained by rewriting the mixing equation  

      ( 4-7 ) 

 

 ∑    

 

   

 ( 4-8 ) 

Where ai denotes the ith column of the mixing matrix A. Since both s and A being unknown 

any scalar multiplier in one of the source si could be cancelled by dividing the corresponding 

column ai of A the same scalar value. But this ambiguity can be dealt with easily by 

considering each source has a unit variance: E {si
2
} = 1. Then the matrix A will be adapted in 

ICA solution to consider this restriction. Secondly ambiguity regarding the signs of the source 

can be dealt easily by multiplying it by -1 without affecting the model and results. 

2) The order of independent components cannot be determined. Formally introducing a 

permutation matrix P and its inverse into the mixing model to give. Here the elements 

of Ps are the original independent component variables, but in another order. 
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Assumptions 

 The sources being considered are statistically independent 

The first assumption that is fundamental to ICA is statistical independence, which is the key 

feature that enables estimation of the independent components ˆ s (t) from the observations 

xi(t). 

 The independent components have non-Gaussian distribution 

The second assumption is necessary because of the close link between Gaussianity and 

independence. It is impossible to separate Gaussian sources using the ICA framework because 

the sum of two or more Gaussian random variables is itself Gaussian. That is, the sum of 

Gaussian sources is indistinguishable from a single Gaussian source in the ICA framework, 

and for this reason Gaussian sources are discouraged. This is not an overly restrictive 

assumption as in practice; most sources of interest are non-Gaussian. 

 The mixing matrix is invertible 

The third assumption is straightforward. If the mixing matrix is not invertible, then clearly the 

unmixing matrix estimation is not possible since it does not even exist. ((Hyvärinen & Oja, 

2000a; Naik & Kumar, 2011) 

4.3       Probability Density Function 

Probability density function (pdf) of a continuous random variable is a function that defines 

the probability that the random variable takes a value in a given interval 
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   ( )  

 

√    
     (

(   ̅) 

   
) ( 4-9 ) 

 

4.4       Central Limit Theorem 

The central limit theorem states that the mean of a sufficiently large number of iterates of 

independent random variables, each with a well-defined mean and well-defined variance, will 

be approximately normally distributed under certain conditions (Rice, 2007). 

If a set of signals s = (s1, s2... sN) are independent with means (µ1, µ2... µN) and variances 

(  
   ,   

   ,……   
   ) then, for a large number N of signals s, the signal  

    ∑    

 

   

 ( 4-10 ) 

 

Has a probability distribution function which is approximately Gaussian. The Central Limit 

Theorem does not place restrictions on how much of each source signal contributes to a signal 

mixture, so above description holds good even if the mixing coefficients are not equal to 

unity.  

    ∑    

 

   

 ( 4-11 ) 
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Where ai‟s are non-zero mixing coefficients. We can say that from a mixture formed using 

mixing coefficients a = a1 and b = b1 

x = as1 + bs2 

4.5       Moments 

Moments are measures that are used to study the distribution and  it provides a great deal of 

information in numerical form about the distribution.   

First Moment 

The first moment of pdf gives mean value  ̅ of the signal  . It is  a measure of central 

tendency sometime it is also called as location. 

 

  ,  -   ∫  
  

     

   ( ) 
    ( 4-12 ) 

 

Second Moment 

  ,  -   ∫  
  

     

   ( ) 
    ( 4-13 ) 

Third Moment 

  ,  -   ∫  
  

     

   ( ) 
    ( 4-14 ) 
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    ( 4-15 ) 
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Fourth Moment 

The fourth moment   ,  -  if the probability density function is 

  ,  -   ∫  
  

     

   ( ) 
    ( 4-16 ) 

 

The different moments discussed before needs an infinite number of signal values. For a finite 

number of N sampled points, these can be defined as  

The first moment E [x] of a signal x is calculated as the mean  

  ,  -    ̅ ( 4-17 ) 

 

  
 

 
∑  
 

   

 ( 4-18 ) 

 

  ,    -    ̅      ( 4-19 ) 

 

If the variable x has zero mean         ( ̅   ) then the second moment is equal to the 

variance 

  ,    -      ( 4-20 ) 
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The probability distribution function of x is approximately Gaussian. This implies that 

independent random variable is more non Gaussian than their mixture. Hence, non gaussianity 

is a measure of independence and forms one of the bases for independent component analysis. 

Non-Gaussianity is an important and essential principle in ICA estimation. To use non 

Gaussianity in ICA estimation, there needs to be a quantitative measure of non Gaussianity of 

a signal. Before using any measures of non Gaussianity, the signals should be normalized. 

Some of the commonly used measures are kurtosis and entropy measures. 

Kurtosis is the classical method of measuring Non Gaussianity (Naik & Kumar, 2011; 

Tanskanen, Mikkonen, & Penttonen, 2005). When data is pre-processed to have unit variance, 

kurtosis is equal to the fourth moment of the data. The Kurtosis of signal (s), denoted by Kurt 

(s), is defined by equation ( 4-21 ) 

     ( )   *  +   ( *  +)  ( 4-21 ) 

 

This is a basic definition of kurtosis using higher order (fourth order) cumulant; this 

simplification is based on the assumption that the signal has zero mean. To simplify things, it 

can be further assumed that (s) has been normalized so that its variance is equal to one: E {s
2
} 

= 1. Kurtosis has been widely used as measure of Non Gaussianity in ICA and its related 

fields because of its computational and theoretical simplicity (Naik and Kumar, 2011). 

Entropy is a measure of the uniformity of the distribution of a bounded set of values, such that 

a complete uniformity corresponds to maximum entropy. From the information theory 
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concept, entropy is considered as the measure of randomness of a signal. Entropy H of 

discrete-valued signal S is defined as  

  ( )     (    )    (    ) ( 4-22 ) 

 

One fundamental result of information theory is that Gaussian signal has the largest entropy 

among the other signal distributions of unit variance. Entropy will be small for signals that 

have distribution concerned with certain values or have a pdf that is very "spiky". Hence, 

entropy can be used as a measure of non-Gaussianity. In ICA estimation, it is often desired to 

have a measure of non-Gaussianity which is zero for Gaussian signal and nonzero for non-

Gaussian signal for computational simplicity. Entropy is closely related to the code length of 

the random vector. A normalized version of entropy is given by a new measure called 

Negentropy j which is defined as  

 ( )     (      )   ( ) 

Where        is the Gaussian signal of the same covariance matrix as (s). Above equation 

shows that Negentropy is always positive and is zero only if the signal is a pure Gaussian 

signal. It is stable, but some times it is difficult to calculate it. Hence approximation must be 

used to estimate entropy values. 

4.6       Preprocessing 

To simplify the ICA algorithms, the following Preprocessing steps, namely, Centering and 

Whitening/Sphering are used: 
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4.6.1    Centering 

Centering is a simple preprocessing operation that is commonly performed is to “centre” the 

observation vector x by subtracting its mean vector E {x}. New vector, xc, is obtained with 

equation ( 4-23 ) , where   ̅ is the mean of x. 

       ̅ ( 4-23 ) 

In Geometrical terms, subtracting the mean is equivalent to moving the centre of coordinates 

to the origin. The mean can be re-added to the final result at the end. After the unmixing 

matrix has been estimated using the entered data, the next step is to obtain the actual estimates 

of the independent components using the equation ( 4-24 ) 

  ̂( )     (     ̅) ( 4-24 ) 

4.6.2    Whitening 

Whitening operation removes all linear dependencies in a data. It involves linearly 

transforming the observation vector such that its components are uncorrelated and have unit 

variance  (Karhunen & Oja, 2001; Meyer, 2000; Stone, 2004). Let    Indicate the whitened 

vector, then it satisfies the following equation: 

  *    
 +    ( 4-25 ) 

where the covariance matrix of     is given by*    
 + , whitening is also termed as 

sphering, where whitening maps the data into a spherically symmetric distribution. (Meyer, 

2000) proposed a simple method to perform the whitening by using the eigenvalue 

decomposition (EVD) of matrix . By using EVD covariance matrix   can be modified as 

  *    
 +       ( 4-26 ) 
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 where V is the eigenvector matrix of *    
 + , and D is the diagonal matrix of 

eigenvalues.       *   *        +  , whitened vector is given by equation ( 4-27 ) 

      
        ( 4-27 ) 

Whitening transforms the mixing matrix into a new one, which is orthogonal 

      
         =     ( 4-28 ) 

   

Whitening can be expressed as  

              ( 4-29 ) 

 

 

Figure 4-6  Whitening Process  

Adapted and modified  from (Shlens, 2014) 
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The process of whitening a data set can be explained as a series of two linear operations. Data 

is projected on the principal components, as shown in figure 4-6.  Each axis is then scaled so 

that every direction has unit variance; the arrow indicates the transformation of the 

eigenvector with largest variance. 

4.7       ICA Algorithms 

This section provides description of various ICA algorithms used in this study. Key points 

related to ICA application in noise removal from ECG  are discussed here for more details 

reader can go to the references discussed in this section. 

4.7.1    Infomax ICA 

The methods used to find the de-mixing differentiate the ICA algorithms. Infomax ICA and 

FastICA are the two major types of ICAs according to their distinctive mechanisms of 

operation. 

 Infomax algorithm attempts to separate signals through minimizing mutual information or 

maximizing entropy in outputs signals via unsupervised learning. The algorithm is often 

deemed as a single layered neural network. The ICA neural networks are unsupervised 

models for separating statistically independent signals and are previously applied to speech 

separation problems by Bell and Sejnowski (Bell & Sejnowski, 1995).  

The mutual information measures how far the two variables are from statistical independence. 

The multi information, a generalization of mutual information, measures the statistical 

dependence between multiple variables (Shlens, 2014). 
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  ( )  ∫ ( )    
 ( )

   (  )
   ( 4-30 ) 

 

It is a non-negative quantity, which has a minimum value of zero only in the case when two 

variables are statistically independent. The objective now is to find a rotation matrix V such 

that I ( ̂)   . V is a rotation matrix and in two dimensions V has the form 

   [
    ( )      ( )
    ( )     ( )

] ( 4-31 ) 

 

Only free variable is the rotation angle                 

The learning objective of Infomax ICA algorithm is to minimize the mutual information 

between the outputs as illustrated in Figure 4-7. 

 

Figure 4-7 Learning objectives of Infomax ICA algorithm 

Two independent sources, s1 and s2, are linearly mixed by arbitrary coefficients a11, a12, a21, 

and a22 to give the mixture x1 and x2 according to Equations 4-3 and 4-4. When written in a 
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matrix format        , where the input vector is T
21 ]s,s[S  , the mixture vector is  

T
21 ]x,x[X  and the mixing matrix A is   

   0
      
      

1 ( 4-32 ) 

 

Figure 4-8 Mixing and de-mixing model 

The ICA to find a de-mixing matrix W as shown in the figure 4-8, so that u1 and u2, which are 

recovered versions of s1 and s2, can be obtained by  

      ( 4-33 ) 

 

Where the de-mixing matrix is  

   0
      
      

1 ( 4-34 ) 

And the recovered vector is 

   ,       -
  ( 4-35 ) 
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This is achieved by minimising mutual information found in u1 and u2 by using an 

unsupervised neural network with only one linear summation layer as depicted in Figure  4-8. 

The two neurons have linear summation basis functions, but may have different types of 

activation functions. The following activation function proposed by (Madhuranath & Haykin, 

1998), is used as a starting point. The activation might be optimized, as per the requirement 

and condition of the signal.  

 
 ( )  

 

 
     

 

 
      

  

 
      

 

  
       

   

 
               

  
   

 
       

( 4-36 ) 

 

Where z is used to represent the summed input signals being sent to the activation function. 

The training follows weight updating formula . 

  (   )   ( )    ,   ( ( ))  ( )-   ( ) ( 4-37 ) 

Where α is the step size.  

4.7.2    FastICA Algorithm 

FastICA developed by Hyvärinen, 1999. (Hyvärinen, 1999) is another possible algorithm for 

independent component analysis.  It uses maximum non-Gaussianity as a criterion of 

statistical independence.  The algorithm is based on the central limit theorem which is used as 

a measure of independence. FastICA is a fixed point ICA algorithm that employs higher order 

statistics for the recovery of independent sources. FastICA can estimate ICs one by one or 

simultaneously (symmetric approach). FastICA uses simple estimates of Negentropy based on 

the maximum entropy principle to measure non gaussianity. This can be defined as: 
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  ( )    ( )   ( ) ( 4-38 ) 

 

Where X is a random vector known to be non-Gaussian, ( ) is the entropy and   ( ) is the 

entropy of a Gaussian random vector whose covariance matrix is equal to that of( ). For a 

given covariance matrix, the distribution that has the highest entropy is the Gaussian 

distribution. Negentropy is thus a strictly positive measure of non-Gaussianity. (Hyvärinen & 

Oja, 2000b) proposes some modification of the above methods for calculation of negentropy 

  ( )   ( ( ) 
 )    ( ( ) 

 )
 
 ( 4-39 ) 

Where V is a standardized non-Gaussian random variable (zero mean and unit variance), U a 

standardized Gaussian random variable and  ( ) a non-quadratic function (generally Tanh (.). 

After some modifications FastICA algorithm can be explained in these steps. 

1. Let i = 0 initialize the weight vector: w = w(0) 

2. Increment i; i = i + 1 

3. Adjust w  (   )   *  (  
  )+    *   (  

  )+     

4. Normalize  (   )   
 (   )

‖ (   ) ‖
 

5. If convergence is not achieved return to step 3 

6. After getting convergence find independent component       

Where Z =             is whitened signal matrix and   Y =              are estimated 

independent components. 
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4.7.3    JADE Algorithm 

The JADE algorithm is originally developed and implemented by Jean-Francois Cardoso and 

Antoine Souloumiac (Jean-François Cardoso & Souloumiac, 1993; Jean-Francois Cardoso & 

Souloumiac, 1996). JADE has been successfully applied to the processing of real data sets, 

such as found in mobile telephony and in airport radar as well as in bio-medical signals (ECG, 

EEG, and multi-electrode neural recordings) (Jean-Francois Cardoso & Souloumiac, 1996; 

Cichocki, Amari, Siwek, Tanaka, & Phan, 2003). 

The JADE algorithm uses the second and fourth order cumulant in order to separate the 

source signals from mixed signals. The second order cumulant is used to ensure the data is 

“white” (i.e. decorrelated). This produces a whitening matrix  ̂ and the whitened sources. A 

set of cumulant matrices is estimated from the whitened sources. The JADE contrast function 

is the sum of squared fourth order cross cumulant.  

 Estimation of whitening matrix. 

 Estimate a maximal set * ̂+ 
  of cumulants matrices. 

 Optimize an orthogonal contrast. Find the rotation matrix  ̂ Such that the cumulant 

matrices are as diagonal as possible, that is, achieved by solving 

 ̂              (    ̂ 
  ). 

 Estimate        ̂   ̂    or estimate the components as   ̂   ̂   . 
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 (Matei, 2000) concludes FastICA algorithm has better performance as compared to JADE. 

(Li, Powers, & Peach, 2000) also demonstrated that the fixed-point algorithms are the fastest 

than the JADE algorithm, and tended to produce better SNR. 

Conclusion 

In this chapter the basic principle behind the independent component analysis technique is 

discussed. The contrast functions for different routes to independence are clearly depicted. 

Different existing algorithms for ICA are briefly illustrated and are critically examined with 

special reference to their algorithmic properties. The ambiguities present in these algorithms 

are also presented. Comparision of different ICA algorithms is made with explanation for the 

selection of FastICA algorithm for noise reval and feature extractin  in this study.  Some of 

the futuristic works on ICA technique which need further investigation are development of 

nonlinear ICA algorithms and improvement of permutation and scaling ambiguities existing 

in present ICA. 
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Chapter 5               Principal Component Analysis 

Principal Component Analysis (PCA) is a method which is commonly used in multivariate 

statistical analysis. Its objective is to reduce the number of dimensions from a multi variable 

measurement. Due to this dimensional reduction, this PCA looks for simplifying a statistical 

problem with the minimal loss of information. This method is also used in signal processing 

for  separating  a  linear  combination  of  signals  generated from  sources  that  are  

statistically  independent (Castells, Laguna, Sö, Bollmann, & Roig, 2007; Inaki Romero, 

2010).  Where data are represented in a new coordinates having maximum variance with each 

other. 

Many researchers have compared the capabilities if ICA and PCA for removing artefacts from 

various signals EEG , ECG etc. (Jung et al., 1998) in their pioneer work in removing 

electroencephalographic artefacts with PCA and ICA concludes that ICA appears to be   a 

generally applicable and  effective method for removing a wide variety of artefacts from EEG 

records , giving the  preference to ICA because of it is generally applicable to removal of a 

wide variety of EEG artefacts . In nearly every case, ICA preserves and recovers more brain 

activity than PCA in both simulated and real EEG data. 

For ECG noise and artefact removal (Chawla, 2009) compared PCA and ICA processing 

methods for removal of artefacts and noise in electrocardiograms. Chawla observed that PCA 

removes, the noise and artefacts contained in the ECG signals to a great extent by 

decorrelation and dimension reduction process but noise and artefacts of the original and the 

corrected ECG signals are better understood using combined PCA de-noising and ICA 

cleaning methods. The results conclude that higher order statistical tool like ICA and its 
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various versions can be effectively used for morphological feature extraction of ECG better 

than PCA technique by the clinicians and researchers. 

PCA is a linear transformation that transforms the data to a new coordinate system such that 

the greatest variance by any projection of the data comes to lie on the first coordinate (called 

the first principal component), the second greatest variance on the second coordinate, and so 

on(Smith, 2002). Let   be the original data set, where each column is a single sample. In the 

  is an m × n matrix where m = number of observations and n = all measurements from one 

particular observation. Let   be another m × n matrix related by a linear transformation P.   

is the original recorded data set and Y is a new representation of that data set. 

      ( 5-1 ) 

Where   is a matrix that transforms X into Y 

General method adopted to calculate PCA is 

 Data Collection 

 Mean Subtraction to get zero mean  

 Calculation of covariance matrix 

 Calculating the eigenvectors and eigenvalues of the covariance matrix 

 Selecting  components and forming a feature vector (such that the eigenvector with the 

highest eigenvalue is the principle component of the dataset) 

     [

  
  
  
] ,      - ( 5-2 ) 
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 ( 5-3 ) 

 

It  can be noted that each element of each column of    is a dot product with the 

corresponding row in  , thus, the rows of   form a new set of basis vectors for representing 

of columns of  . 

PCA utilizes the first and the second moments of the measured data, hence relying heavily on 

Gaussian features.  ICA exploits inherently non-Gaussian features of the data and employs 

higher moments. 

 

Figure 5-1 Demonstration of difference between PCA and ICA 

To explain more clearly the difference between PCA and ICA consider the data distribution in 

Figure 5-1. The red coloured axis are principal components and blue coloured are independent 

components. The axes with the largest variance do not correspond to the best solution but 

PCA condition for finding orthogonal axis causes  it to fail. Whereas there is no such 
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condition with independent components to be orthogonal, but to be with maximum variance 

for which ICA is best suited. 

(Asl et al., 2008a) used PCA along with multi-layer perceptron for ECG classification into six 

classes of arrhythmias with training accuracy of 96.93%.  More elaborate study is conducted 

by (Martis et al., 2013) for ECG beat classification using PCA ,LDA and ICA with the 

application  of  PCA 99.00%  accuracy is achieved. Using  PNN  classifier  of  spread  

parameter  as  0.40.  Also  the  LDA  has  achieved  98.59%  of  accuracy  with  NN  

classifier.  However  the ICA  yielded  the highest performance  with 99.28%  accuracy, using  

PNN  classifier  with  a spread parameter  of  0.03. 

In this study, principal components are selected to form a feature set along with dynamic 

features for arrhythmia classification. Firstly the ECG  signal  from  MIT  BIH  arrhythmia  

database  is  subjected  to  QRS  complex  detection  using  Pan-Tompkins  method.  After 

QRS  complex  detection,  200 data point sample with 100  data points  from  the  right  of  

QRS  peak, 99  data points  to  the  left  of  QRS  complex  and  the  QRS  peak  itself is  

chosen  as  a  segment  of  ECG  beat.  The  choice  of  200  data points  around  the  R  peak  

as  a  signal  window  length  is   such  that it  consists  almost  one  cycle  of  cardiac  activity. 

This  duration  is  used  in  author‟s previous  studies  as  well (Sarfraz, Li, & Khan, 2014; 

Sarfraz & Li, 2013). 100 samples of various arrhythmias are selected for extraction of 

principal components. The detailed procedure of PCA is explained below 
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 Computing the covariance matrix of the data 

   (   ̅)(   ̅)  ( 5-4 ) 

Where X is the data matrix of 100 X 200 dimensions,  ̅ represents mean vector of X 

 Computing the eigenvector matrix V an eigenvalues diagonal matrix D with an 

equation (5-5) 

         ( 5-5 ) 

 The  eigenvectors  in  V  are  arranged  in  the  descending  order of  eigenvalues  in  D  

and  the  data  is  projected  on  these  eigenvector directions  by  taking  the  dot  

product  between  the  data  matrix and  sorted  eigenvector  matrix  with an equation 

(5-6) 

 

                 ,  (   ̅) -  ( 5-6 ) 

Where  V  is  of  200  ×  200  dimensions,  each  row  of  it  is  an  eigenvector.  The  

first  fifteen  columns  of  the  projected  data  are  considered as  the  fifteen  features  

for  later  classification. 
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 Conclusion 

In this chapter, the basic principle behind the principal component analysis technique was 

discussed. Important work in ECG noise removal and classification using principal 

component analysis were discussed. The different between the principal component analysis 

and independent component analysis was explained. The general method adopted for 

estimation of principal components is mentioned. The limitation of principal component 

analysis in utilising only first and second moments and their effect in selection of important 

features is also discussed. The higher order statistics used in ICA make it more robust than 

PCA for data reduction and finding direction of maximum variance vector. 
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Chapter 6               Artificial Neural Network 

An Artificial Neural Network (ANN) is an information processing model adapted on the line 

of biological nervous system. The basic unit of ANN is neuron, which form a highly 

interconnected grid to solve problems. ANN have been successfully used to perform various 

roles in various fields of application including vision, speech control, classification, 

identification, pattern recognition, control system and robotics. 

Some characteristic of artificial neural network are 

 Adaptive learning: 

 Self-organization: 

 Real time operation 

A neuron is an electrically excitable cell that processes and transmits information through 

electrical and chemical signals. It consists of three parts cell body (soma), axon and dendrites. 

The signals are collected from another neuron through dendrites, which are thin structures of 

the cell body. The neuron sends out spikes of electrical activity through a long, thin cellular 

extension known as axon which splits into branches. At the end of each branch, a structure 

called synapse permits a neuron (or nerve cell) to pass an electrical or chemical signal to 

another cell (neural or otherwise). This electrical signal can excite or inhibit the activity in the 

connected neuron. If the excitatory input received is larger than in inhibitory input, the neuron 

responds to it by issuing a new pulse which travels along its axon on the other hand if the 

excitatory input is less than the threshold the neuron remain inactive. Learning occurs by 

changing the effective synaptic strength between neurons so that the influence of one neuron 
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on other changes. These features are simulated in artificial neural network model.Figure 6-1 

shows general layout of ANN.  The most common type of artificial neural network consists of 

three groups  or layers  of units: a layer of “input” units which is connected to a layer of 

“hidden” units, which is connected to a layer of “output” units. The activity of the input units 

represents the raw information that is fed into the network. The action of each hidden unit is 

defined by the activities of the input unit and the weights on the links between the input and 

the hidden units. The behaviour of the output units depends on the activity of the hidden units 

and the weights between the hidden and output units. 

 

Figure 6-1 Layout of ANN 

 

6.1       Network Performance Analysis 

The performance of neural network in classification is estimated by following indices. 

 Classification accuracy 

 Sensitivity 
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 Specificity  

 Positive predictive accuracy 

6.2       Back Propagation Network 

There are two types of learning algorithms: supervised and unsupervised. In the supervised, 

learning the system weights is randomly allotted at the start; and progressively modified in the 

light of desired outputs for a set of training inputs. The difference between the desired output 

and the actual output is calculated for every input, and the weights are modified in proportion 

to the error factor. The procedure is carried on until the system error is brought down to an 

acceptable limit. 

 

Figure 6-2 Three layer back-propagation neural network 

In the figure 6-2 the indices i, j and k here refer to neurons in the input, hidden and output 

layers, respectively. Input signals             are propagated through the network from left 
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to right, and error signals            from right to left. The symbol     indicates the weight 

of the connection between neuron i in the input layer and neuron j in the hidden layer, and the 

symbol      indicates the weight between neuron j in the hidden layer and neuron kin the 

output layer. 

In the back propagation algorithm, objective is to reduce the overall system error to a 

minimum. The weight increment is directed towards the minimum system error and therefore 

termed as „gradient descent‟ algorithm. There is no single rule to select the step size for the 

weight increment; but the step length certainly has an effect on the speed of convergence. It 

has been observed that for good speed, the step size should neither be „too large‟, nor „too 

small‟. In the present case, a near optimum learning constant η =0. 9 (which controls the step 

size), is chosen by trial and error. Since the weight increment is accomplished in small steps, 

the algorithm also bears the name „Delta Rule‟ 

The entire operation of updating the weight matrix is a slow due to small incremental step 

movement towards a global minimum of a system error function. Sometimes the system gets 

stuck in local minima and unable to come out of it. To avoid  such a scenario, the algorithm 

incorporates a „momentum term‟ into its update increment (Qiu, Varley, & Terrell, 1992; C.-

C. Yu & Liu, 2002). The term is a fraction of an increment of its previous step; this term tends 

to push the present, increment in the same direction as that of the previous step. This term 

helps to get out of „small‟ dips in the path. 

     ( )         (   )        ( )     ( )  ( 6-1 ) 
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The equation ( 6-1 ) is a generalised delta rule (Rumelhart, Hinton, & Williams, 1986) where 

    ( ) is the weight correction at pth  iteration,   ( )  is the error gradient at network k in 

the output layer , β is a momentum constant  (0 ≤  β  < 1) , generally the momentum constant 

is set to 0.95. 

The outputs of the hidden layer (   
 ) and output layer (  

 )  are given by the equations 

   
   (∑    

  
 

   

      
 ) ( 6-2 ) 
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 ) ( 6-3 ) 

 

Where     
 and     

   represent the weights corresponding to the hidden and output layers 

respectively and   
  and   

  are the biased terms of hidden and output layers respectively. 

While the k
th

 component of the output error vector (ek) and hidden layer error (ej) vector: 

The update equations of the output and hidden layers are given as 

      
  (   )       

       
    ( 6-4 ) 

 

      
  (   )       

       
    ( 6-5 ) 

 

The updating of the hidden layer is more computationally intensive than the output layer. If 

there are more hidden layers, the computation to progressive increases. In most practical cases 
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a single hidden layer network is adequate (Rajendra Acharya, 2007). A change in the number 

of neurons in the hidden layer (n) can affect the sophistication of classification. At the same 

time, an increase in the number of hidden neurons may cause a delay in the convergence of 

weights.  

Self Organising Maps 

Self-organising neural networks are effective in dealing with unexpected and changing 

conditions (Negnevitsky, 2005). Teuvo Kohonen introduced a special class of artificial neural 

networks called self-organising feature maps (T Kohonen, 1987; Teuvo Kohonen, 1988). 

These maps are based on competitive learning. In competitive learning, neurons compete 

among themselves to be activated. In competitive learning only a single output neuron is 

active at any time. The output neuron that wins the „competition‟ is called the winner-takes-all 

neuron. 

Self-Organizing Maps (SOM) are applied for classification of ECG signals as these networks 

learn to detect regularities and correlation in their input and adapt their future responses to 

that input accordingly. The neurons of competitive networks learn to recognize groups of 

similar input vectors. Self-organizing maps learn to recognize groups of similar input vectors 

in such a way that neurons physically close together in the neuron layer respond to similar 

input vectors (T Kohonen, 1987). Each output neuron by means of these lateral connections is 

affected by the activity of its neighbours. The activation of the output units according to 

Kohonen‟s original work is by equation 1. The modification of the weights is given by the 

equation ( 6-6 ) where    = activation of output unit,   = activation value from input unit,     



70 

 

Lateral weights connecting to output unit,    = neurons in the neighbourhood,     = unity 

function returning 1 or 0 (McGarry, Sarfraz, & MacIntyre, 2007) . 

        (   )        (∑  

 

(        )
 )  ( 6-6 ) 

 

 
  

6.3       Support Vector Machine  

Support Vector Machine (SVM) is an extensively used tool for binary classification problem 

(Vapnik, Golowich, & Smola, 1997). It is characterized by a good generalization 

performance. The construction of SVM classifier is based on finding a maximum margin 

between the training data and the decision boundary, as shown in figure 6-3. The subsets of 

training data which are closest to the decision boundary are called support vectors. For a 

given training data (xi , yi) for i =1...N, the optimization problem for the SVM is formulated as 

shown in equation (6-7) 

 

Figure 6-3 SVM methodology of maximising margin between different classes  
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             (   )  
 

 
     ∑    

 

   
 ( 6-7 ) 

Subject to the constraints 

 

  ( 
  (  )   )                 

               

( 6-8 ) 

Where C is a positive regularization parameter which is chosen empirically, w is the weight 

vector of training parameters,    is a positive slack variable indicates the distance of xi with 

respect to the decision boundary, and ϕ is a nonlinear mapping function used to map input 

data point xi into a higher dimensional space. SVMs can be written using Lagrange 

multipliers with α ≥ 0 for equation (6-8). The solution for the Lagrange multipliers are 

obtained by solving a quadratic programming problem. The SVM decision function can be 

expressed as 

  ( )  ∑      (    )   

     

 ( 6-9 ) 

Where  (    ) is the kernel function and defined as 

  (    )   ( )
  (  )

  ( 6-10 ) 
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For  mapping  the  data  into high  dimensional  space,  various  kernel  transformations  

namely: linear, quadratic,  polynomial  and  radial  basis  function  (RBF)  are  used. Four 

basic kernels  give an equation (6-11). 
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( 6-11 ) 

 γ , r, and d are kernel parameters. 

Initially SVM is designed to classify two classes; it is extended to multi class problems. SVM 

is used to classify ECG arrhythmia by (Homaeinezhad et al., 2012; Shen et al., 2010; Y. Wu 

& Zhang, 2011).In this study, the Gaussian radial basis function (Keerthi & Lin, 2003) 

defined in equation (6-11) is used, for classification of eight ECG beats with feature set 

developed from independent components and dynamic features. The performance of both 

ANN and SVM are nearly same. Due to form of function learned by ANN and SVM is 

typically the same. A single hidden layer neural network uses exactly the same form of the 

model as an SVM.  
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Chapter 7               Proposed Method- Hypothesis  

The purpose of this chapter is to present the proposed methods, theory and related information 

about the proposed algorithms for noise removal and classification. The subsequent chapters 

are for better understanding of the work. 

7.1       Motion Artefacts Removal: Proposed Method 

This study is to exploit the independent component analysis for separation of the motion 

related artefacts blended within the ECG signals utilizing the independent statistical features 

of the ECG signals and motion related noise. It is followed by artificial neural network (ANN) 

classifier to work on the “cleaned” ECGs to categorize them into normal and abnormal 

patterns. 

Motion related artefacts and EMG interferences are generally considered as the most 

troublesome, since they can mimic the appearance of ectopic beats and therefore cannot be 

removed by straightforward filtering (Goldberger et al., 2000; Moody et al., 1984). Due to 

body movements, ECG signals are contaminated or even corrupted by motion artefacts also 

known as „em‟ artefacts. To improve the robustness of pattern recognition and classification 

of ambulatory ECGs, elimination of these „em‟ artefacts is the key.  

7.2       Proposed Algorithm 

In this study a novel method is proposed to place an extra electrode on the body where ECG is 

minimal, thus the signals from ECG lead II will have a part of the noise, N‟ (which is a linear 

attenuated version of the motion related noise source N) and the signals from the extra leads, 

where the ECG is minimal, will contain mostly the noise N’’. Since noise appears in both 
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leads are homogeneous, all resulted from motions, the signals from the two leads are 

representative of the ECG and the noise with different mixing ratios. The ICA can be used to 

separate out the pure ECG and the motion related noise. 

ICA based Blind source separation techniques could be used for separating ECG and 

ambulatory noise, as these signals are uncorrelated (Castells, Rieta, Millet, & Zarzoso, 2005; 

Hyvärinen & Oja, 2000a). For ICA blind source separation, multi-lead ECG recording is 

required and the ECG and noise to be removed should be independent of each other. To 

investigate the application of ICA for separation of electrode motion artefact using just two 

signals, ECG from modified lead II are taken from the MIT-BIH dataset and electrode motion 

noise signal from MIT noise stress test database.  

 

 

                          

                        
( 7-1 ) 

Where modified lead II records ECG signal and part of electrode motion noise, the limb 

electrode also measures ECG signal and electrode motion noise, but ECG is minimal in this 

part so the majority of limb electrode signal is composed of „em‟ noise. There are other parts 

as well, where the ECG is minimal like lumbar curve, which can also be used for motion 

artefact recording. 
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Figure 7-1 Proposed setup for removing motion artefacts 

 

FastICA algorithm is used to separate the pure ECG and Motion artefacts. The  selection of 

FastICA algorithm is based on  comparative study of different ICA algorithms in the  previous 

work of the same author (Sarfraz, Li, & Javed, 2011). The proposed setup adopted for this 

study is shown in figure 7-1. 

With two independent components separated out from the ICA algorithm, one has to 

determine which one is the ECG. Visual inspection is certainly not desirable. In practice, the 

separated components tend to have more distinctive properties than the original signals both 

in time and frequency domains. Hence the statistical properties of these waveforms are 

employed and automatic recognition is done using kurtosis. The kurtosis is the fourth−order 

cumulant as explained in section 4.5       . The kurtosis is zero for Gaussian densities. For 
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continuous noise, the Kurtosis value is much smaller compared with that of normal ECG.       

In  this work, a threshold of 30 is selected, a component whose modulus of kurtosis is below 

this threshold will be considered as continuous noise. When no component has a kurtosis over 

a specified threshold, then the component with the maximum  kurtosis is selected. The main 

reason for choosing kurtosis is its simplicity. Computationally, kurtosis can be estimated by 

using the fourth moment of the sample data. The correlation coefficient is also used to 

differentiate noise and clean ECG. The value of 0.2 is set for correlation coefficient any value 

more than this is taken as noise and below that it is clean ECG. 

The flowchart depicting procedure followed for removing motion artefact is shown in figure 

7-2. 

 

Figure 7-2 Motion artefact removal flowchart 
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Figure 7-3 Sample of „em‟ noise 10 Sec  

Picture adapted from (Goldberger et al., 2000) 

 

 

Figure 7-4 Ambulatory ECG with motion artefact 
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Figure 7-5 Extracted signal from two leads  

 

 

Figure 7-6 Original ECG data  

To explain the noise overlapping and its effect on ECG signal, a motion artefact signal is 

mixed randomly on two lead ECG as shown in Figure 7-4 Ambulatory ECG with motion 

artefact. Both the ECG leads have lost maximum morphological information and manual 

inspection cannot reveal any meaningful information on current state. FastICA algorithm is 
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applied to two lead ECG with noise and it is able to separate the noise from ECG as shown in 

Figure 7-5 Extracted signal from two leads.  When the extracted signal and original signal in 

Figure 7-6 Original ECG data are compared, it is clearly visible that ICA can successfully 

recover clean ECG from noisy mixture. 

In order to evaluate a motion artefact reduction algorithm a database is generated by 

combining the clean ECG signal with different level of noise. For each type of arrhythmias 

100 sets of 10 seconds are selected from the data set. 6 combination of different SNR value 

ranging from 24 dB to -12 dB are obtained for each data set. In total 4800 different 

combinations of ECGs with different SNR are obtained. The sampling frequency of ECGs is 

360 Hz. Clean ECG and noise signal are then combined to get a signal with desired SNR 

value. This is achieved by multiplying „em‟ signal by a gain factor and adding it to clean 

ECG. SNR values ranging from 24 to -12 dB instep of six are used. The output signals are 

then compared to reference „em‟ signal. Signal quality improvement is measured by 

performance of beat detection algorithm and by the classification performance of noisy and 

clean signal. 
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7.3       Classification with Feature extraction from ECG using  

Electrocardiogram (ECG) reflects the activities of the human heart and reveals hidden 

information on its structure and behaviour. The information is extracted to gain insight that 

assists  to explain and differentiate diverse pathological conditions. This is traditionally done 

by an expert through visual inspection of ECGs. The complexity and tediousness of this onus 

hinder long-term monitoring and rapid diagnoses. Therefore computerised and automated 

ECG signal processing is sought after. In this study an algorithm that uses independent 

component analysis (ICA) to improve the performance of ECG pattern recognition is 

proposed. The algorithm deploys the basis functions obtained via the ICA of typical ECG to 

extract ICA features of ECG signals for further pattern recognition, with the hypothesis that 

components of an ECG signal generated by different parts of the heart during normal and 

arrhythmic cardiac cycles might be independent. The features obtained via the ICA together 

with the R-R interval and QRS segment power are jointly used as the input to a machine 

learning classifier, an artificial neural network in this case. Results from training and 

validation of the MIT-BIH Arrhythmia database show  significantly improved  performance 

in terms of recognition accuracy. This new method also allows for the reduction of the 

number of inputs to the classifier, simplifying the system and increasing the real-time 

performance. This study presents the algorithm, discusses the principle algorithm and presents 

the validation results. 



81 

 

7.4       Proposed Method 

The basic ICA model is that a vector of unknown sources s is not observed directly, but from 

a linear combination of them.      , where              column vector,              

mixing matrix, and              column vector of the source signals. The columns of A *  + 

are used as the basis functions which generate the observed signals. The inverse of      

     , transforms the original signals into the unknown source coefficients,      . 

The objective of ICA algorithm is to find out the basis function by adapting and learning from 

the ECG data    in this study. The cost function in ICA can be  minimization of mutual 

information of demixing model output as used in Infomax algorithm (Bell & Sejnowski, 

1995) or the maximization of nongaussianity used in FastICA algorithms (Hyvarinen, 1999). 

Using ICA as a feature extraction method, the basis functions    is considered as the basis 

features and the component of       is considered to be the coefficient for each basis feature 

in the feature space. So the model can be written as         
 
     . As compared to 

correlation-based transformations such as principal component analysis (PCA), ICA not only 

uses second-order statistics to decorrelate the signals, but also uses high-order statistics to 

reduce high-order dependencies. Thus the output coefficients corresponding to different basis 

functions are as statistically independent as possible. 
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Figure 7-7 A normal heartbeat is a linear combination of ICA bases with Coefficients,  

e.g. (-0.4) ·ai+ (0.2) ·aj+0.5·ak+... 

ICA basis functions {ai,aj,ak,...}  is scaled by the corresponding coefficients {si,sj,sk,...}.The 

heartbeat segment is represented mostly by{ai,aj,ak}, as most of the other coefficients are 

almost zero. The ICA basis functions reveal the statistical structures of the single heartbeat 

segments of ECG as shown in figure 7-7. 

The ECG signals are obtained from the MIT-BIH arrhythmia database for study. Since most 

of the diagnostic information of the ECG signal lies around R peak i.e. QRS segment, which 

is about 0.06 – 0.10 s, so designated portion on both sides of R peak is chosen. In this study 

200 data points in each sample which is nearly 0.0556 s of ECG signals are selected. The 

sampling frequency of this signal is 360 Hz. The extracted sample of 200 data point has all 

the required information of ECG pulse including P and T wave as well, which gives us 

complete information contained in single pulse including the cases of noise presence along 

with the original signal. Figure 7-8 gives the general idea of how different arrhythmias have 

different beat characteristics.Same signal size and specification is used in our earlier work 

(Sarfraz et al., 2011; Sarfraz, Li, & Javed, 2013; Sarfraz & Li, 2013). 
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Figure 7-8 ECG heartbeats of eight types  

 

It is better to define the statistics of the classification results used in this study as follows 

TP: True positive, correctly classified abnormal beats. 

TN: True negative, correctly classified normal beat. 

FP: False positive, incorrectly classified normal beats. 

FN: False negative, incorrectly classified abnormal beats. 
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Sensitivity is defined as a measure to test positive samples. 

 
   

  

     
 

( 7-2 ) 

 

Specificity is defined as a measure to test negative samples. 

 
   

  

     
 

( 7-3 ) 

 

Accuracy is defined as a measure to test samples correctly. 

 
         

     

           
 

( 7-4 ) 

 

Positive Predictivity or  Positive Predictive Values (PPV) is defined as ratio of true positive 

with total number of positive cases. 

     
  

     
 ( 7-5 ) 
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Type MIT-BIH data, file reference 

NORM 

 

100,101,103,105,108,112,113,114,115,117,121,122,123,202,205 

219,230,234 

LBBB 109,111,207,214 

RBBB 118,124,212,231 

PVC 106,119,200,203,208, 213,221,228,233,116,201,210,215 

APB 209,222,232,220,223 

PB 102,104,107,217 

VFW 207 

VEB 207 

 

Table 7-1 Record and number of ECG sample used   
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Figure 7-9 Block diagram of the proposed feature extraction and classification system 

 

Flowchart to depict the procedure for motion artefact removal is shown in figure 7.2        after 

finding  the unmixing matrix W using FastICA, and then reordering  the row of the W matrix 

by the norm of the row from the smallest to the largest. The  independent components (ICs) 

are calculated. They are employed as bases for calculation of feature vector. 

It is interesting to note fact that arrhythmias are different from the normal heart in terms of 

both morphology and dynamics. Two dynamic features are introduced to describe the rhythm 

of a heartbeat,  namely  pre-RR interval and post- RR interval. The pre-RR-interval is the RR 

interval between a given heartbeat and the previous heartbeat. The post-RR-interval is the 

RR-interval between a given heartbeat and the following heartbeat. Both of them are 

calculated  using pan Tompkins algorithm for QRS detection (Pan & Tompkins, 1985). In 

both training and testing stage, each sample of the training set is projected onto the ICs. The 
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projections constitute the ICA-feature vector. Along with the RR interval, and QRS signal 

power the feature vector is obtained. Flowchart to depict the procedure for feature extraction 

and classification is shown in figure 7.2       . 

 In this study BPNN is used  as classifier in the training stage. The input is feature vectors and 

the output value is set at 1, 2, 3, to 8 for NORM, LBBB, RBBB, or PVC (8 types of ECG). 

The aim of this stage is for adjusting the best parameters in neural networks for the best 

classification. To study the effect of the numbers of ICs in ECG beat classification, the 

numbers of ICs vary from 5 to 40 and their effects is  investigated. The results presented in 

this study achieved the best performance of classifier with 15 ICs. 10 fold approach is  used to 

select the number if ICs. Further increasing the number of ICs from 15 do not improve 

classification accuracy regularly. Even though some improvement is recorded, but it is 

neglected, due to non-uniformity. After the neural network is trained, it is applied to the other 

set of ECG samples for testing the performance of the classifier and calculating the specificity 

and sensitivity. 

Classification is done using Back Propagation neural network (BPNN) implemented in 

MATLAB software. ANN are widely used classifier for ECG (Al-Fahoum & Howitt, 1999; 

Belgacem, Chikh, & Reguig, 2003a; Jiang, Zhang, Zhao, & Albayrak, 2006a; Wang, Chiang, 

Yang, & Hsu, 2012; S.-N. Yu & Chou, 2007). Back-propagation neural network (BPNN) 

used in this study is a three-layer feed-forward structure (Jang, Sun, & Mizutani, 1997a). The 

first layer is the input layer that has the ICA features , pre-RR-interval, post-RR-interval and 

QRS segment power  as inputs. 
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In this study 15 ICs are selected to be part of feature vectors. The average accuracy, increases 

rapidly at small numbers of ICs and then reaches a plateau at around 15 ICs,  at even higher 

IC numbers, the average accuracies stay at around  99.4 %. Further increase in IC number 

does not significantly increase the accuracy of the classifier. 18 neurons are used in the input 

layer, related to morphological and dynamic features. The second layer, also called the hidden 

layer, has 20 neurons and the output layer has 8 neurons for classification, which is equal to 

the number of ECG beat types to be classified. In this study, the hyperbolic tangent functions 

are used in the first and second layer, and the identity function is used in the output layer. The 

weight and bias values in the BPNN are updated by Levenberg-Marquardt optimization 

method (Jang, Sun, & Mizutani, 1997b) with a learning rate of 0.1. A criterion of 0.01 in 

mean-square-error is empirically determined to terminate the iterations in the training phase 

of the classifier. Time taken for the training of classification is about 1.6 seconds in the 

Matlab computing environment based on the average over 10 times. 

 

 

 

  



89 

 

Chapter 8               Results and Discussion 

The entire experiments was simulated using MATLAB. The MIT-BIH  arrhythmia and noise-

stress database were used.  An annotated and validated database is very important for the 

study of ECG signal processing and pattern recognition in general, and such a “standard” 

database is particularly useful in this study. This allows for the validation of the newly 

developed algorithms and compared with the results from others work. The selection of MIT-

BIH database is natural choice because it is completely annotated by medical specialists and 

arguably the most popular one used by many other authors and quoted in numerous important 

publications in this field e.g. ( (Belgacem, Chikh, & Reguig, 2003b; Chou & Yu, 2008b; Jiang 

et al., 2006 a; Moody, Mark, & Goldberger, 2001; Wang et al., 2012). The MIT-BIH 

Arrhythmia Database contains 48 half-hour excerpts of two-channel ambulatory ECG 

recordings. A total of 9800 sample segments attributing to eight ECG beat types are selected 

from the MIT-BIH arrhythmia database for experiments. The eight beat types used in the 

study are normal beat (NORM), left bundle branch block beat (LBBB), right bundle branch 

block beat (RBBB), atrial premature beat (APB), premature ventricular contraction (PVC), 

paced beat (PB), ventricular flutter wave (VFW), and ventricular escape beat (VEB). The 

types and numbers of the ECG beat exploited in the study are summarized in Table 7-1 

Record and number of ECG sample used, out of 9800 beats half of the ECG beats are used for 

training and the other half for testing the classifiers performance. Though the dataset is large 

enough but some arrhythmias are present in few patients which results in small dataset. 

The MIT-BIH Noise Stress Test Database includes typical ambulatory noise recordings made 

using physically active volunteers. Standard ECG recorders, leads, and electrodes are used; 

the electrodes are placed on the limbs in positions where the subject‟s ECGs are virtually 
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invisible. Electrode motion artefact is generally considered the most troublesome, since it can 

mimic the appearance of ectopic beats and cannot be removed easily by simple filters, as can 

noise of other types by (Moody, Muldrow, & Mark, 1984). The ECG recordings are created 

from the MIT-BIH Arrhythmia Database, to which calibrated amounts of noise from record 

'em' are added. Six set of noisy ECG signals are developed with SNR ranging from 24 dB to-6 

dB, with interval o six as used in MIT-NSTDB. Matlab software is used for the signal 

processing, pattern recognition, visualization and user interface in this study. The ICA BSS 

algorithm used is the FastICA which is experimentally verified to have the best result of noise 

removal for similar application (Sarfraz et al., 2011).  
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In order to evaluate a motion artefact reduction algorithm a database is generated by 

combining the clean ECG signal with different level of noise. For each type of arrhythmias 

100 sets of 10 seconds are selected from the data set. 6 combination of different SNR value 

ranging from 24 dB to -12 dB are obtained for each data set. In total 4800 different 

combinations of ECGs with different SNR are obtained. The sampling frequency of ECGs is 

360 Hz. Clean ECG and noise signal are then combined to get a signal with desired SNR 

value. This is achieved by multiplying „em‟ signal by a gain factor and adding it to clean 

ECG. SNR values ranging from 24 to -12 dB instep of six are used. Figure  8-1 shows one 

example of a clean ECG; a pure noise and a combination of both signals.  For evaluation the 

simulated signals with added „em‟ noise are used as input to denoising algorithm. The output 

signals are then compared to reference „em‟ signal. Signal quality improvement is measured 

by performance of beat detection algorithm and by the classification performance of noisy and 

clean signal. 
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Figure 8-1  ECG Combine with noise (Top Panel), „em‟ Noise middle panel, Extracted ECG with ICA 

bottom panel. Y Axis is normalized after ICA 

 

Figure 8-2 shows  an  example  of  a  clean  ECG (before  adding  noise),  a  noisy  ECG   

when  noise  is added to a SNR = -6 dB) and filtered ECG using ICA. The beat detection had 

a significant improvement after filtering as compared to the noise signal.  
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Figure 8-2 Pan Tomkins algorithm for beat detection on a sample of a clean ECG, a noisy 

ECG (SNR= -6 dB) & filtered ECG using ICA. The beat detection has significant 

improvement after ICA filtering. 

  

To test the effectiveness of the ICA in the removal of motion related artefacts, ANN 

classifiers for normal and abnormal ECGs with ICA filtering and with basic filtering are 

tested with  ECGs mixed with motion related noise in a multiple signal to noise ratios ranging 

from 24 dB to -12 dB are used to validate the proposed method. The sensitivity of a test is 

defined as the proportion of people with arrhythmia who will have a positive result. The PPV 

of a test is the proportion of people with normal ECG who will have a negative result. The 

higher value of positive predictive value and sensitivity indicate better classification and small 

error. Comparison results are shown in. It has clearly shown that when the signal to noise 

ratio increases, the performance of ANN classification without removing noise with ICA 
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algorithm decreases significantly with low recognition accuracy. With the ICA de-noising 

recognition accuracy improves significantly in poor signal to noise ration conditions. It is 

observed from the results that ICA noise removal improves the accuracy of the classification, 

for all levels of noise, but more significantly in the noisy ECG there is an improvement up to 

40% in sensitivity and positive predictivity as shown in Figure 8-3 and Figure 8-4. The 

classification accuracy also records major improvement in noisy signals as shown in 

Figure 8-5.  

 

 

Noise (dB) 

 

 

 

 

Sensitivity (%) 

-12 dB   -6 dB 0 dB   6 dB 12 dB 18 dB 24 dB 

ICA Filtering 93.3 94 95.1 97.1 97.6 98 97.9 

Basic Filtering 55.6 61.1 80.6 83.2 92.9 96.5 96.5 

 

Table 8-1 Comparison of classification Sensitivity before and after source separation. 
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Figure 8-3 Sensitivity with ICA filtering and without filtering 

 

 

    Noise (dB) 

 

 

 

 

Predictivity (%) 

-12 dB   -6 dB 0 dB   6 dB 12 dB 18 dB 24 dB 

ICA Filtering 
94.1 93.8 94.7 97.4 97.8 98.1 98.1 

 No  Filtering 
55.9 59.9 81.6 82.5 93.6 96.4 96.1 

 

Table 8-2 Comparison of classification positive predictive value before and after source 

separation. 
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Figure 8-4 Positive Predictivity with ICA filtering and without filtering 

 

 

 

Noise (dB) 

 

 

 

 

Accuracy (%) 

-12 dB   -6 dB 0 dB   6 dB 12 dB 18 dB 24 dB 

ICA Filtering 93.8 93.9 94.9 97.2 97.7 98.1 98 

No  Filtering 55.9 60.1 81.2 82.8 93.3 96.4 96.3 

 

Table 8-3 Comparison of classification accuracy before and after source separation. 
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Figure 8-5 Accuracy with ICA filtering and without filtering 

 

 

Figure 8-6 ECG beat detection using a Pan Tomkins algorithm 
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Figure 8-7 ECG QRS detection using a Pan Tomkins algorithm 

 

 

Figure 8-8 Beat detection comparison for LBBB arrhythmia with proposed ICA filtering and 

without filtering  
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Figure 8-9 Beat detection comparison for Normal ECG beat with proposed ICA filtering and 

without filtering 

 

Figure 8-10 Beat detection comparison for RBBB ECG beat with proposed ICA filtering and 

without filtering 
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Figure 8-11 Beat detection comparison for VEB arrhythmia with proposed ICA filtering and 

without filtering 

 

Significant performance enhancement is observed in beat detection in different arrhythmias 

with the proposed ICA filtering algorithm. It is also observed that different arrhythmias type 

have varied performance with beat detection due to different morphological features.  
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This section presents the results of classification of ECG arrhythmias into eight classes, using 

ICA for feature extraction.  

All the experiments in this study are simulated using MATLAB.  The ECG  signal  from  MIT  

BIH  arrhythmia  database  is  subjected  to  QRS  complex  detection  using  Pan-Tompkins  

method.  After QRS  complex  detection,  200 data point sample with 100  data points  from  

the  right  of  QRS  peak, 99  data points  to  the  left  of  QRS  complex  and  the  QRS  peak  

itself is  chosen  as  a  segment  of  ECG  beat.  The  choice  of  200  samples  around  the  R  

peak  as  a  signal  window  length  is   such  that it  consists  almost  one  cycle  of  cardiac  

activity. This  duration  is  used  in  author‟s previous  studies  as  well (Sarfraz et al., 2014; 

Sarfraz & Li, 2013). 

Fifteen features of ICA and PCA along with three other features, pre RR interval, post RR 

interval and QRS segment power are fed  to  different  classifiers, ANN and SVM    for  

automated  classification. The  input  layer  consisted of  18  nodes  corresponding  to  the  18  

features  used;  a  hidden  layer of  20  neurons  and  an  output  layer  of  8 neurons  

corresponding  to the  eight  classes  is  used.  The  choice  of  20  neurons  in  the  hidden 

layer  is  by  trial  and  error  method.  The  three layer  neural  network  with  different  

number  of  hidden  neurons is also tested.  The highest  accuracy is recorded with 20  neurons  

in  the  hidden  layer.  The ANN weights  are  updated  using  the error back propagation 

method  of learning.  In  this  study  10-fold  cross  validation  technique  is used for  training  

and  testing  of  the  classifiers.  The  overall  performance  of  the  classifier  is  evaluated  by  

taking  the  average  of  ten folds.  The  correct  classification  or  misclassification  is  

assessed  as True  Positive  (TP),  True  Negative  (TN),  False  Positive  (FP)  and  False 
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Negative  (FN).  Based  on  these  measures  the  sensitivity,  specificity, positive predictive 

value  and  accuracy  are  determined.  

Figure 8-13 shows accuracy in each of the ten folds of ANN classifier with the proposed 

features set. It can be observed from this figure, that very high overall accuracy is achieved 

with the proposed method. Figure 8-14 shows  specificity  in  each  of the  ten  folds  for  

different  arrhythmias. Normal beats having 100 % average specificity of 100 %, while VEB 

have 99.1 %. It  can  be  observed  from  Figure 8-15  that  ANN classifier with ICA extracted 

features set along with pre & post R- intervals and QRS segment power  provides highest 

sensitivity for arrhythmias. 100 % sensitivity is recorded for nearly all arrhythmias types. The 

performance of the proposed classification method is tabulated in Table 8-4, Table 8-5 and 

Table 8-6. 
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Figure 8-12 Classification into eight classes with proposed method 

 

Figure 8-12 shows the confusion matrix with sensitivity, specificity and overall accuracy of 

ECG beats classification to eight classes. Each row depicts one type of arrhythmia. The last 

column of matrix shows the individual positive predictive value of each arrhythmia type. 

While the last row of matrix shows the individual sensitivity of each arrhythmia type. Highest 

accuracy of  99.8% was reached as shown in the bottom right cell of the confusion matrix. 
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Figure 8-13 Results of Arrhythmia Classification Accuracy with proposed method 

 
Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 

Fold 

6 

Fold 

7 

Fold 

8 

Fold 

9 

Fold 

10 

Accuracy 99.6 99.4 99.3 99.6 99.3 99.6 99.6 99.4 99.3 99.8 

 

Table 8-4 Detailed accuracy for different arrhythmias with proposed method 
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Figure 8-14 Results of positive predictive value with the proposed method 

 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 

10 NORM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5 100.0 

LBBB 100.0 100.0 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 

RBBB 100.0 99.5 98.5 99.5 99.5 100.0 99.0 100.0 99.0 100.0 

PVC 99.5 100.0 99.5 99.0 99.5 100.0 100.0 98.5 99.5 99.5 

APB 99.5 97.6 99.0 99.5 100.0 98.5 99.0 100.0 99.0 100.0 

PB 99.0 99.5 100.0 99.5 100.0 99.5 99.0 100.0 100.0 100.0 

VEB 98.5 100.0 98.5 99.0 96.6 99.0 99.5 98.5 99.0 99.0 

VFW 100.0 96.2 94.3 100.0 96.2 100.0 100.0 100.0 92.6 100.0 

  

Table 8-5 Detailed positive predictive value for different arrhythmias with proposed method 
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Figure 8-15 Results of sensitivity with the proposed method 

 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 

10 NORM 
100 100 100 100 100 100 100 100 100 100 

LBBB 
99 99 99 99 99 99 99 99 98.5 99.5 

RBBB 
100 100 100 99.5 100 99.5 99.5 100 99.5 100 

PVC 
99 99 99 99 99 99 99 99 99 99 

APB 
100 100 100 100 100 100 100 100 100 100 

PB 
100 98.5 96.5 100 96.5 100 100 100 99.5 100 

VEB 
98.5 99 99.5 99 99.5 99.5 99 99.5 97.5 100 

VFW 
100 100 100 100 100 100 100 98 100 100 

 

Table 8-6 Detailed sensitivity for different arrhythmias with the proposed method 
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Figure 8-16 shows  the  accuracy  for  different  folds  of  SVM  classifiers  using  proposed 

features set. Average accuracy of 99 % is recorded.  Highest being 99.3 %.  It  can  be  noted  

from this  figure,  that  SVM  provided  less  accuracy, whereas  ANN  provided  highest  

accuracy. Although this performance can be tested by changing different kernel function, but 

that is beyond the scope of this work and can be looked in future work for performance 

analysis of different classifiers with the proposed features set. The  performance  of  specifity 

and sensitivity  due  to  ICA  features  extracted different  folds  of   SVM classifier  is  shown  

in Figure 8-17 and Figure 8-18. NORM beats showed highest specifity of nearly 100 %, while 

VEB and VFW beat recorded 98.6 % and 96.4 % specifity mainly due to a small data set for  

these two type beats. 

  

 

Figure 8-16 Results of Arrhythmia Classification Accuracy with SVM classifier 
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Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 

Fold 

6 

Fold 

7 

Fold 

8 

Fold 

9 

Fold 

10 

Accuracy 98.90 99.03 99.10 99.31 98.69 98.83 98.76 98.76 99.10 99.03 

 

Table 8-7 Detailed accuracy for different arrhythmias with SVM classifier 

 

 

 

Figure 8-17 Results of positive predictive value with SVM classifier 
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 

NORM 
100.0 100.0 100.0 100.0 99.5 100.0 99.5 99.5 99.5 100.0 

LBBB 
100.0 100.0 100.0 99.5 100.0 100.0 99.0 99.5 100.0 98.5 

RBBB 
97.6 98.5 100.0 99.5 99.0 100.0 99.5 100.0 100.0 99.5 

PVC 
100.0 100.0 100.0 99.5 99.5 99.5 100.0 100.0 100.0 99.5 

APB 
99.0 100.0 100.0 99.0 99.5 97.1 97.6 99.0 98.5 99.5 

PB 
100.0 100.0 100.0 99.5 100.0 100.0 100.0 99.5 100.0 100.0 

VEB 
96.1 96.6 94.8 99.0 94.3 96.6 96.1 94.7 97.5 97.0 

VFW 
98.0 94.1 94.1 96.1 96.0 94.1 98.0 96.0 92.3 96.1 

 

Table 8-8 Detailed positive predictive value for different arrhythmias with SVM classifier 

 

 

 

Figure 8-18 Results of sensitivity with SVM classifier 
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 

NORM 
100 100 100 100 99.5 100 100 100 100 100 

LBBB 
99 99 99 99.5 99 99 97.5 99 99.5 99.5 

RBBB 
100 100 100 99 99.5 99.5 99 99 99.5 99 

PVC 
99 99 99 99.5 99 99 99 99 99 98.5 

APB 
98.5 100 100 100 99 100 100 100 100 100 

PB 
98.5 98 96.5 99 96.5 96.5 98.5 96.5 98 98 

VEB 
98 98.5 99.5 98.5 99 98.5 98 98.5 98.5 98.5 

VFW 
96 96 96 98 96 96 96 96 96 98 

 

Table 8-9 Detailed sensitivity for different arrhythmias with SVM classifier 

 

Figure 8-19 shows the accuracy for different folds of several arrhythmias using principal 

components features and ANN classifier. It can be noted from this figure, that PCA extracted 

features set provided less accuracy as compared to proposed features set with independent 

components as features. Overall accuracy is 98. 4 % with VFW beats recorded only 95.6 % .  

Figure 8-20 shows the positive predictive value of PCA features with ANN classifier for 

different folds. The  sensitivity  of  classification  of  PCA  components  for different  folds  of  

the  ANN classifier  is  shown  plotted  in  Figure 8-21.  It  can be  seen  from  this  figure  

that,  NORM beat achieved   highest  sensitivity  consistently  for  all  folds. 
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Figure 8-19 Results of accuracy with PCA extracted features 

 

 

Figure 8-20 Results of positive predictive value with PCA extracted features 
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 

NORM 
100 100 100 100 99.5 100 100 100 100 100 

LBBB 
99 99 99 99 99 99 93.5 99 99 99 

RBBB 
100 100 100 99 99.5 99.5 99 99 99 99 

PVC 
99 99 99 98 99 99 99 99 98.5 98 

APB 
98.5 100 100 99 99 100 100 100 100 100 

PB 
98.5 98 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 

VEB 
98 98.5 99.5 98.5 99 98.5 92.03

9801 

98.5 98.5 97.5 

VFW 
96 96 96 94 96 96 96 96 96 96 

 

Table 8-10 Detailed specificity for different arrhythmias with PCA extracted features 

 

 

Figure 8-21 Results of positive predictive value with PCA extracted features 
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 

NORM 
100 100 100 100 99.5 100 100 100 100 100 

LBBB 
99 99 99 99 99 99 93.5 99 99 99 

RBBB 
100 100 100 99 99.5 99.5 99 99 99 99 

PVC 
99 99 99 98 99 99 99 99 98.5 98 

APB 
98.5 100 100 99 99 100 100 100 100 100 

PB 
98.5 98 96.5 96.5 96.5 96.5 96.5 96.5 96.5 96.5 

VEB 
98 98.5 99.5 98.5 99 98.5 92.03

9801 

98.5 98.5 97.5 

VFW 
96 96 96 94 96 96 96 96 96 96 

 

Table 8-11 Detailed sensitivity for different arrhythmias with PCA extracted features 

 

 
Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 

Fold 

6 

Fold 

7 

Fold 

8 

Fold 

9 

Fold 

10 

Accuracy 98.9 99.1 99.0 98.4 98.7 98.8 97.1 98.8 98.7 98.5 

 

Table 8-12 Detailed accuracy for different arrhythmias with PCA extracted features 
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8.1       Discussion 

Efficient artifact reduction in ambulatory ECG recording requires a broad approach. In this 

work, an integrated approach to motion artifact reduction in ECG combining the electrode 

position selection and algorithm development using ICA is presented. Initial results in  these 

areas have been reported, and important challenges remain. In order to evaluate the proposed 

algorithm, ambulatory ECGs were acquired from the MIT-BIH database, and the algorithm is 

compared with several  methods including normally used algorithm. 

The selection of MIT-BIH database for this study was due to the fact that most of the previous 

work mentioned in the literature for ECG classification, were tested  only  on  limited  data  

sets and  the  generalization  performance  of  these  methods  on  large databases  was  not  

tested. Secondly, all  these  methods  were  tested  only  on  a few classes  of  ECG  beats and  

there  is  a  need  to  test  the  methods  and  algorithms  on a  standard  classification  scheme  

of  arrhythmia  beats  such  as ANSI/AAMI  EC57:1998. Since the proposed algorithm 

achieved the desired performance, it should be tested on real patients ECG data for real time 

implementation. 

The application of statistical de-noising techniques such as ICA requires independency of the 

input leads, thus imposing  additional and possibly conflicting requirements. Further research 

is needed to evaluate the most appropriate electrode configuration, as required by 

cardiologists, optimizing the  performances of de-noising algorithms, and improving the 

comfort of the patients. 
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For a complete automatic heartbeat classification system, R-peak detection is required as the 

preliminary step. The errors result from the R-wave detection unit may reduce the 

performance of the classifier. Since, a number of research work published in the literature 

achieved impressively high detection rates of more than 99.5% (Afonso, Tompkins, Nguyen, 

& Luo, 1999; Lagerholm, Peterson, Braccini, Edenbrandt, & Sornmo, 2000). This work does 

not intend to detect the R-waves, but use the information provided by the annotation files in 

the MIT-BIH database, which were manually verified by specialists. It is straightforward to 

incorporate the R-wave detection algorithms into the proposed scheme to make a fully 

automatic heartbeat classification system. 

Results presented above are obtained by processing the ECG in slabs of 10 seconds. Although 

this is appropriate during the algorithm development and performance optimization course, it 

does not provide the necessary real-time performances required for continuous and remote 

monitoring of ECG on-the-move. The easiest way to extend a batch-processing algorithm for 

real-time applications is to compute it in sliding overlapping windows. But that too has 

several drawbacks, including reduced algorithmic performance, increased memory 

requirement and increased computational load. 

In summary, the proposed motion artifact removal  algorithm using the ICA that minimizes 

distortion. The proposed method performed better than referential methods in the presence of 

all common types of artefacts. For ECG classification with features extracted using 

independent component analysis, the proposed algorithm performs better than any existing 

method. Also, the algorithm which is based on short-term segmented dataset offers potential 

for real-time processing this algorithm.      
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Chapter 9               Conclusion and  Future Work 

The work described in this thesis has been concerned with the development of a motion 

artefact denoising algorithm and classification algorithm for ECG. Two new algorithms are 

developed, one for removing non trivial noises in ECG and second for ECG arrhythmia 

classification using features extracted with ICA. A new feature set is developed which 

includes dynamic ECG features along with ICA extracted features. 

9.1       Propose and develop the algorithm for denoising of ECG signals 

using ICA 

The proposed algorithm deals with uncommon noises presented in ECG data during holter 

and telemedicine applications. Proposed method connects well-known FastICA algorithm 

with a correlation factor and kurtosis  in order to identify noise and reduce it. This  study  

investigated  the  performance  of  PCA  and ICA  in  denoising  ECG  signals  recorded  in  

ambulatory conditions.  A  simulated  database  formed  by  the  combination  of  clean  ECG  

signals  with  electrode motion artefacts scaled  to  different levels of energy is developed for 

evaluation. Sensitivity of the beat detection algorithm after filtering with ICA is 100 %, even 

for very noisy signal. High classification accuracy and positive predictive value of ICA 

filtered signal are recorded. 40 % improvement in the sensitivity of ICA filtered signal for 

SNR of -12 dB is achieved.  An automatic method based on kurtosis and correlation 

coefficient for component selection is proposed.  Filtering,  using  this  method, achieved   

100 % sensitivity in  beat  detection  as compared  to  non-filtered  signals,  especially  when  

the noise  level  is  high. As  a  limitation  of  this  study,  it  should  be  noted  that some 

stationarity has been assumed, as signals are  of 10 seconds  length.  The performance under 
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shorter duration noise is not studied. Although this is acceptable during the algorithm 

development and performance optimization practice, it does not provide the necessary real-

time performances required for continuous and remote monitoring of ECG on-the-move. 

Another limitation to the current study is that it has been tested on a database in which clean 

ECG and noise signals are artificially combined. Additional tests are needed to be done in 

real-time situations to understand and expand the scope of the proposed algorithm. 

The proposed method performed better than referential methods in the presence of all 

common types of artefacts. FastICA algorithm has better performance as compared to other 

ICA algorithms discussed in literature. The time requirements of our algorithm are decreased 

due computational simplicity of the FastICA algorithm. This ability is very valuable in 

medical applications. 

9.2       Proposed  and developed the algorithm for arrhythmia classification 

using ICA 

The algorithm is proposed for ECG arrhythmia classification by  using features extracted with 

ICA. The classification experiments are performed on the MIT-BIH arrhythmia database.  For 

this study, eight types of ECG samples  which includes the normal sinus beat and arrhythmias, 

are used. Proposed method combines Independent Component Analysis (ICA), Pre-RR 

Interval, post-RR Interval and QRS Segment Power for feature set and neural network 

classifiers for ECG beat classification. A new feature set combined dynamic ECG features 

along with ICA extracted features. Optimal selection of the number of ICs for best 

classification accuracy is made. Computer simulations show that ICA based feature extraction 

method performs better than any other available method. Neural network classifiers 
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demonstrated high classification accuracies of over 99.5% with a relatively small number of 

ICs. It also proves that selecting relevant features from the feature set could improve the 

recognition performance, which makes a robust feature set for ECG arrhythmia classification. 

Comparison of classification accuracy, specificity and sensitivity with other state of the art 

method is done and its efficiency is proven. The results prove that the proposed scheme is a 

promising model for arrhythmia detection of clinical ECG signals. 

All goals formulated were successfully met. Two algorithms were proposed– one for de-

noising of ECG recording containing trivial noise and the second algorithm for classification 

of eight different types of ECG arrhythmias. Both algorithms were tested against the state-of-

the-art methods and results were decent. Both algorithms were capable of dealing with 

uncommon noises. This makes them very useful in applications within telemedicine issues 

and holter recordings, where the environment is rapidly changing and the distortions 

corrupting the ECG signals could be very different from those normally present in ECG 

within the laboratory or clinical measurement of ECG. 
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Future Work 

Although the results presented here have demonstrated the effectiveness of the Independent 

Component Analysis for removal of motion artefacts and feature extraction of ECG signal and 

it could be further developed in a number of ways: 

Extending the Algorithm for Real-Time Application 

To extend the proposed batch-processing algorithm for real-time applications, computation 

should be done in sliding overlapping windows. There are several shortcomings in running 

algorithms in sliding overlapping windows, including reduced algorithmic performance, 

increased memory requirement and increased computational load, which needs to be resolved 

for a streamline implementation. 

Extending the Algorithm for Other Classifiers 

No classifier is perfect; the best classifier's performance is to correctly classify novel cases. 

Performance is related to both classifier design and testing. Occasionally complex classifiers 

fit 'noise' in the training data, achieving low accuracy when presented with novel cases. Our 

classification results showed a different accuracy of each arrhythmia with same classifier. 

Using multiple and hybrid classifiers can result in improving classification accuracy and 

stability. The future work will aim at extensive testing of our developed algorithms with real 

data sets in conjugation with other intelligent system classifiers.  



120 

 

References 

1. Acernese, F., Ciaramella, A., De Martino, S., Falanga, M., Godano, C., & Tagliaferri, 

R. (2004). Polarisation analysis of the independent components of low frequency 

events at Stromboli volcano (Eolian Islands, Italy). Journal of Volcanology and 

Geothermal Research, 137(1), 153–168. 

2. Acharya, R. (2007). Advances in cardiac signal processing. Springer.  

3. Acharya, R., Kumar, A., Bhat, P. S., Lim, C. M., Kannathal, N., & Krishnan, S. M. 

(2004). Classification of cardiac abnormalities using heart rate signals. Medical and 

Biological Engineering and Computing, 42(3), 288–293. 

4. Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., & Luo, S. (1999). ECG beat detection 

using filter banks. Biomedical Engineering, IEEE Transactions on, 46(2), 192–202. 

5. Al-Fahoum, A. S., & Howitt, I. (1999). Combined wavelet transformation and radial 

basis neural networks for classifying life-threatening cardiac arrhythmias. Medical & 

Biological Engineering & Computing, 37(5), 566–573. 

6. Anand, S. S., & Yusuf, S. (2011). Stemming the global tsunami of cardiovascular 

disease. Lancet, 377(9765), 529–32. doi:10.1016/S0140-6736(10)62346-X 

7. Asl, B. M., Setarehdan, S. K., & Mohebbi, M. (2008a). Support vector machine-based 

arrhythmia classification using reduced features of heart rate variability signal. 

Artificial Intelligence in Medicine, 44(1), 51–64. 

8. Asl, B. M., Setarehdan, S. K., & Mohebbi, M. (2008b). Support vector machine-based 

arrhythmia classification using reduced features of heart rate variability signal. 

Artificial Intelligence in Medicine, 44(1), 51–64. 



121 

 

9. Bache, K., & Lichman, M. (2013). UCI Machine Learning Repository. University of 

California, Irvine, School of Information and Computer Sciences. Retrieved from 

http://archive.ics.uci.edu/ml 

10. Barro, S., Fernández-Delgado, M., Vila-Sobrino, J. A., Regueiro, C. V., & Sánchez, E. 

(1998). Classifying multichannel ECG patterns with an adaptive neural network. IEEE 

Engineering in Medicine and Biology Magazine : The Quarterly Magazine of the 

Engineering in Medicine & Biology Society, 17(1), 45–55. 

11. Barros, A. K., Mansour, A., & Ohnishi, N. (1998). Removing artefacts from 

electrocardiographic signals using independent components analysis. 

Neurocomputing, 22(1), 173–186. 

12. Belgacem, N., Chikh, M. A., & Reguig, F. B. (2003a). Supervised classification of 

ECG using neural networks. Retrieved from http://dspace.univ-

tlemcen.dz/handle/112/837 

13. Belgacem, N., Chikh, M. A., & Reguig, F. B. (2003b). Supervised classification of 

ECG using neural networks. Retrieved from http://dspace.univ-

tlemcen.dz/handle/112/837 

14. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind 

separation and blind deconvolution. Neural Computation, 7(6), 1129–1159. 

15. Bingham, E., Kuusisto, J., & Lagus, K. (2002). ICA and SOM in text document 

analysis. In Proceedings of the 25th annual international ACM SIGIR conference on 

Research and development in information retrieval (pp. 361–362). ACM.  



122 

 

16. Cabras, G., Carniel, R., & Isserman, J. (2010). Signal enhancement with generalized 

ICA applied to Mt. Etna volcano, Italy. Bollettino Di Geofisica Teorica Ed Applicata, 

51(1).  

17. Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian 

signals. In IEE Proceedings F (Radar and Signal Processing) (Vol. 140, pp. 362–

370). IET. Retrieved from http://digital-library.theiet.org/content/journals/10.1049/ip-

f-2.1993.0054 

18. Cardoso, J.-F., & Souloumiac, A. (1996). Jacobi angles for simultaneous 

diagonalization. SIAM Journal on Matrix Analysis and Applications, 17(1), 161–164. 

19. Castells, F., Laguna, P., Sö, L., Bollmann, A., & Roig, M. (2007). Principal 

component analysis in ECG signal processing. EURASIP Journal on Advances in 

Signal Processing, 2007. 

20. Castells, F., Rieta, J. J., Millet, J., & Zarzoso, V. (2005). Spatiotemporal blind source 

separation approach to atrial activity estimation in atrial tachyarrhythmias. Biomedical 

Engineering, IEEE Transactions on, 52(2), 258–267. 

21. Chawla, M. P. S. (2009). A comparative analysis of principal component and 

independent component techniques for electrocardiograms. Neural Computing and 

Applications, 18(6), 539–556. 

22. Cheung, Y., & Xu, L. (2001). Independent component ordering in ICA time series 

analysis. Neurocomputing, 41(1), 145–152. 

23. Chou, K.-T., & Yu, S.-N. (2008). Categorizing Heartbeats by Independent Component 

Analysis and Support Vector Machines. In Intelligent Systems Design and 



123 

 

Applications, 2008. ISDA’08. Eighth International Conference on (Vol. 1, pp. 599–

602).  

24. Cichocki, A., Amari, S., Siwek, K., Tanaka, T., & Phan, A. H. (2003). ICALAB for 

Signal Processing. Toolbox for ICA, BSS and BSE, http:/7www. Bsp. Brain. Riken. 

ip/[CALAB/ICALAB SignalProc.  

25. Clifford, G. D., Azuaje, F., & McSharry, P. (2006). Advanced methods and tools for 

ECG data analysis. Artech house London.  

26. Davie, A. P., Francis, C. M., Love, M. P., Caruana, L., Starkey, I. R., Shaw, T. R. D., 

… McMurray, J. J. V. (1996). Value of the electrocardiogram in identifying heart 

failure due to left ventricular systolic dysfunction. Bmj, 312(7025), 222. 

27. De Chazal, P., O‟Dwyer, M., & Reilly, R. B. (2004). Automatic classification of 

heartbeats using ECG morphology and heartbeat interval features. Biomedical 

Engineering, IEEE Transactions on, 51(7), 1196–1206. 

28. De, O., Adams, M., Carnethon, G., Lloyd-Jones, R., Simone, T., Ferguson, K., … 

Hong American. (2009). D. Association Statistics Committee and Stroke Statistics 

Subcommittee, heart disease and stroke statistics- update: a report from the American 

Heart Association Statistics Committee and Stroke Statistics Subcommittee, 

Circulation 119 (January (3)) ., 480–486. 

29. Dokur, Z., & Ölmez, T. (2001). ECG beat classification by a novel hybrid neural 

network. Computer Methods and Programs in Biomedicine, 66(2), 167–181. 



124 

 

30. EC57, A.-A. (1998). Testing and reporting performance results of cardiac rhythm and 

ST segment measurement algorithms. Association for the Advancement of Medical 

Instrumentation, Arlington, VA. 

31. Fikret, G., & EMB. (1999). Neural network based decision making in diagnostic 

applications”,IEEE , , pp. ., 18(4), 89–93. 

32. Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. 

G., … Stanley, H. E. (2000). Physiobank, physiotoolkit, and physionet components of 

a new research resource for complex physiologic signals. Circulation, 101(23), e215–

e220. 

33. Güler, İ. (2005). ECG beat classifier designed by combined neural network model. 

Pattern Recognition, 38(2), 199–208. 

34. Güler, İ., & Übeyli, E. D. (2005). A modified mixture of experts network structure for 

ECG beats classification with diverse features. Engineering Applications of Artificial 

Intelligence, 18(7), 845–856. 

35. Guvenir, H. A., Acar, S., Demiroz, G., & Cekin, A. (1997). A supervised machine 

learning algorithm for arrhythmia analysis. In Computers in Cardiology 1997 (pp. 

433–436). doi:10.1109/CIC.1997.647926 

36. Haykin, S. (1995). Neural Networks: Foundation. MacMillan College Publishing 

Company,. 

37. Holter, N. J. (1961). New Method for Heart Studies Continuous electrocardiography 

of active subjects over long periods is now practical. Science, 134(3486), 1214–1220. 



125 

 

38. Homaeinezhad, M. R., Atyabi, S. A., Tavakkoli, E., Toosi, H. N., Ghaffari, A., & 

Ebrahimpour, R. (2012). ECG arrhythmia recognition via a neuro-SVM–KNN hybrid 

classifier with virtual QRS image-based geometrical features. Expert Systems with 

Applications, 39(2), 2047–2058. 

39. Hu, W., Xie, D., & Tan, T. (2004). A hierarchical self-organizing approach for 

learning the patterns of motion trajectories. IEEE Transactions on Neural Networks / a 

Publication of the IEEE Neural Networks Council, 15(1), 135–44. 

doi:10.1109/TNN.2003.820668 

40. Huang, H. F., Hu, G. S., & Zhu, L. (2012). Sparse representation-based heartbeat 

classification using independent component analysis. Journal of Medical Systems, 

36(3), 1235–1247. 

41. Huikuri, H. V., Castellanos, A., & Myerburg, R. J. (2001). Sudden death due to 

cardiac arrhythmias. The New England Journal of Medicine, 345(20), 1473–82. 

doi:10.1056/NEJMra000650 

42. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent 

component analysis. Neural Networks, IEEE Transactions on, 10(3), 626–634. 

43. Hyvärinen, A. (1999). The fixed-point algorithm and maximum likelihood estimation 

for independent component analysis. Neural Processing Letters, 10(1), 1–5. 

44. Hyvärinen, A., Karhunen, J., & Oja, E. (2001). What is Independent Component 

Analysis? Independent Component Analysis, 145–164. 

45. Hyvärinen, A., & Oja, E. (2000a). Independent component analysis: algorithms and 

applications. Neural Networks, 13(4), 411–430. 



126 

 

46. Hyvärinen, A., & Oja, E. (2000b). Independent component analysis: algorithms and 

applications. Neural Networks, 13(4), 411–430. 

47. Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997a). Neuro-fuzzy and soft computing-a 

computational approach to learning and machine intelligence [Book Review]. 

Automatic Control, IEEE Transactions on, 42(10), 1482–1484. 

48. Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997b). Neuro-fuzzy and soft computing-a 

computational approach to learning and machine intelligence [Book Review]. 

Automatic Control, IEEE Transactions on, 42(10), 1482–1484. 

49. Jiang, X., Zhang, L., Zhao, Q., & Albayrak, S. (2006a). ECG arrhythmias recognition 

system based on independent component analysis feature extraction. In TENCON 

2006. 2006 IEEE Region 10 Conference (pp. 1–4).  

50. Jiang, X., Zhang, L., Zhao, Q., & Albayrak, S. (2006b). ECG arrhythmias recognition 

system based on independent component analysis feature extraction (pp. 1–4).  

51. Jung, T.-P., Humphries, C., Lee, T.-W., Makeig, S., McKeown, M. J., Iragui, V., & 

Sejnowski, T. J. (1998). Removing electroencephalographic artefacts: comparison 

between ICA and PCA. In Neural Networks for Signal Processing VIII, 1998. 

Proceedings of the 1998 IEEE Signal Processing Society Workshop (pp. 63–72). 

IEEE.  

52. Jung, T.-P., Makeig, S., Lee, T.-W., McKeown, M. J., Brown, G., Bell, A. J., & 

Sejnowski, T. J. (2000). Independent component analysis of biomedical signals (pp. 

633–644).  



127 

 

53. Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, 

T. J. (2000). Removal of eye activity artefacts from visual event-related potentials in 

normal and clinical subjects. Clinical Neurophysiology, 111(10), 1745–1758. 

54. Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, 

T. J. (2001). Analysis and visualization of single-trial event-related potentials. Human 

Brain Mapping, 14(3), 166–185. 

55. Karhunen, J., & Oja, E. (2001). Hyva¨rinen, A., & Independent component analysis. 

John Wiley Sons. 

56. Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines 

with Gaussian kernel. Neural Computation, 15(7), 1667–1689. 

57. Khawaja, A. (2006). Automatic ECG analysis using principal component analysis and 

wavelet transformation. Univ.-Verlag Karlsruhe. Retrieved from 

http://www.uvka.de/univerlag/volltexte/2007/227/ 

58. Kohonen, T. (1987). Adaptive, associative, and self-organizing functions in neural 

computing., 26(23), 4910–8. 

59. Kohonen, T. (1988). Self-organization and associative memory. Self-Organization and 

Associative Memory, 100 Figs. XV, 312 Pages.. Springer-Verlag Berlin Heidelberg 

New York. Also Springer Series in Information Sciences, Volume 8, 1.  

60. Kolenda, T., Hansen, L. K., & Sigurdsson, S. (2000). Independent components in text. 

In Advances in Independent Component Analysis (pp. 235–256). Springer.  



128 

 

61. Kwak, N., & Choi, C.-H. (2003). Feature extraction based on ICA for binary 

classification problems. Knowledge and Data Engineering, IEEE Transactions on, 

15(6), 1374–1388. 

62. Kwak, N., Choi, C.-H., & Choi, J. Y. (2001). Feature extraction using ica. In Artificial 

Neural Networks—ICANN 2001 (pp. 568–573). Springer. Retrieved from 

http://link.springer.com/chapter/10.1007/3-540-44668-0_80 

63. Li, Y., Powers, D., & Peach, J. (2000). Comparison of blind source separation 

algorithms. Advances in Neural Networks and Applications, 18–21. 

64. Linh, S., Osowski, M., & IEEE. (2003). T.H. Stodolski, On-line heart beat recognition 

using Hermite polynomials and neuro-fuzzy network, on Instrumentation and 

Measurement 52 (August (4)) ., 1224–1231. 

65. Lu, C.-J., Lee, T.-S., & Chiu, C.-C. (2009). Financial time series forecasting using 

independent component analysis and support vector regression. Decision Support 

Systems, 47(2), 115–125. 

66. Madhuranath, H., & Haykin, S. (1998). Improved Activation Functions for Blind 

Separation: Details of Algebraic Derivations. CRL Internal Report No. 

67. Makeig, S., Bell, A. J., Jung, T.-P., Sejnowski, T. J., & others. (1996). Independent 

component analysis of electroencephalographic data. Advances in Neural Information 

Processing Systems, 145–151. 

68. Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D., & Sejnowski, T. J. (1997). Blind 

separation of auditory event-related brain responses into independent components. 

Proceedings of the National Academy of Sciences, 94(20), 10979–10984. 



129 

 

69. Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: principles and 

applications of bioelectric and biomagnetic fields. Oxford University Press.  

70. Martis, R. J., Acharya, U. R., & Min, L. C. (2013). ECG beat classification using 

PCA, LDA, ICA and Discrete Wavelet Transform. Biomedical Signal Processing and 

Control, 8(5), 437–448. 

71. Matei, B. (2000). A review of independent component analysis techniques. Signal, 

6(7), 8. 

72. McGarry, K., Sarfraz, M., & MacIntyre, J. (2007). Integrating gene expression data 

from microarrays using the self-organising map and the gene ontology. In Pattern 

Recognition in Bioinformatics (pp. 206–217). Springer.  

73. Meyer, C. D. (2000). Matrix analysis and applied linear algebra. Siam.  

74. Minami, K., Nakajima, H., & Toyoshima, T. (1999). Real-time discrimination of 

ventricular tachyarrhythmia with Fourier-transform neural network. Biomedical 

Engineering, IEEE Transactions on, 46(2), 179–185. 

75. Mishra, P., & Singla, S. K. (2013). Artefact Removal from Biosignal using Fixed 

Point ICA Algorithm for Pre-processing in Biometric Recognition. Measurement 

Science Review, 13(1), 7–11. 

76. Mohammadzadeh-Asl, B., & Setarehdan, S. K. (2006). Neural network based 

arrhythmia classification using heart rate variability signal. In Proceedings of the 

EUSIPCO.  



130 

 

77. Moody, G. B., Mark, R. G., & Goldberger, A. L. (2001). PhysioNet: a web-based 

resource for the study of physiologic signals. Engineering in Medicine and Biology 

Magazine, IEEE, 20(3), 70–75. 

78. Moody, G. B., Muldrow, W., & Mark, R. G. (1984). A noise stress test for arrhythmia 

detectors. Computers in Cardiology, 11(3), 381–384. 

79. Naik, G. R., & Kumar, D. K. (2011). An overview of independent component analysis 

and its applications. Informatica: An International Journal of Computing and 

Informatics, 35(1), 63–81. 

80. Naik, G. R., Kumar, D. K., & Arjunan, S. P. (2010). Independent Component Analysis 

For Classification Of Surface Electromyography Signals During Different MVCs. In 

Proceedings of the 20th International EURASIP Conference-BIOSIGNAL 2010: 

Analysis of Biomedical Signals and Images (pp. 352–358).  

81. Nazmy, T. M., El-Messiry, H., & Al-Bokhity, B. (2010). Adaptive neuro-fuzzy 

inference system for classification of ECG signals (pp. 1–6). Retrieved from 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5461743 

82. Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent systems. Pearson 

Education. 

83. Olmez, T. (1997). Classification of ECG waveforms using RCE neural network and 

genetic algorithm‟,Electronics Letters, , pp. ., 33(8), 1561–1562. 

84. Owis, M. I., Youssef, A.-B., & Kadah, Y. M. (2002). Characterisation of 

electrocardiogram signals based on blind source separation. Medical and Biological 

Engineering and Computing, 40(5), 557–564. 



131 

 

85. Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. Biomedical 

Engineering, IEEE Transactions on, (3), 230–236. 

86. Pu, Q., & Yang, G.-W. (2006). Short-text classification based on ICA and LSA. In 

Advances in Neural Networks-ISNN 2006 (pp. 265–270). Springer. Retrieved from 

http://link.springer.com/chapter/10.1007/11760023_39 

87. Qiu, G., Varley, M. R., & Terrell, T. J. (1992). Accelerated training of 

backpropagation networks by using adaptive momentum step. Electronics Letters, 

28(4), 377–379. 

88. Rice, J. A. (2007). Mathematical statistics and data analysis. Cengage Learning.  

89. Romero, I. (2010). PCA-based noise reduction in ambulatory ECGs (pp. 677–680).  

90. Romero, I. (2011). PCA and ICA applied to Noise Reduction in Multi-lead ECG (pp. 

613–616).  

91. Rosaria, S., Carlo, M., & IEEE. (1998). Artificial neural networks for automatic ECG 

analysis‟, Signal Processing, , pp. ., 46(5), 1417–1425. 

92. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Internal 

Representations by Error Propagation, Parallel Distributed Processing, Explorations 

in the Microstructure of Cognition, ed. DE Rumelhart and J. McClelland. Vol. 1. 

1986. MIT Press, Cambridge, MA. 

93. Sarfraz, M., & Li, F. (2013). Independent Component Analysis for Motion Artefacts 

Removal from Electrocardiogram. Global Perspectives on Artificial Intelligence, 1(4).  

94. Sarfraz, M., Li, F., & Javed, M. (2011). A comparative study of ICA algorithms for 

ECG signal processing (pp. 135–138).  



132 

 

95. Sarfraz, M., Li, F., & Javed, M. (2013). A Blind Source Separation Method to 

Eliminate Noise Artefacts in ECG Signals (Vol. I, pp. 112–119). Presented at the 2nd 

INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTING, 

Ghaziabad, India. 

96. Sarfraz, M., Li, F., & Khan, A. A. (2014). Independent Component Analysis Methods 

to Improve Electrocardiogram Patterns Recognition in the Presence of non-Trivial 

Artefacts. In ICBBS 2014 (Vol. III). Copenhagen, Denmark. 

97. Sheffield, L. T., Berson, A., Bragg-Remschel, D., Gillette, P. C., Hermes, R. E., 

Hinkle, L., … Oliver, C. (1985). Recommendations for standards of instrumentation 

and practive in the use of ambulatory electrocardiography. The Task Force of the 

Committee on Electrocardiography and Cardiac Electrophysiology of the Council on 

Clinical Cardiology. Circulation, 71(3), 626A. 

98. Shen, M., Wang, L., Zhu, K., & Zhu, J. (2010). Multi-lead ECG classification based 

on independent component analysis and support vector machine. In Biomedical 

Engineering and Informatics (BMEI), 2010 3rd International Conference on (Vol. 3, 

pp. 960–964). IEEE.  

99. Shlens, J. (2014). A Tutorial on Independent Component Analysis. arXiv Preprint 

arXiv:1404.2986.  

100. Smith, L. I. (2002). A tutorial on principal components analysis. Cornell 

University, USA, 51, 52. 

101. Stone, J. V. (2004). Independent component analysis: a tutorial introduction. 

The MIT Press.  



133 

 

102. Tanskanen, J., Mikkonen, J. E., & Penttonen, M. (2005). Independent 

component analysis of neural populations from multielectrode field potential 

measurements. Journal of Neuroscience Methods, 145(1), 213–232. 

103. Tichavskỳ, P., Zima, M., & Krajca, V. (2011). Automatic Removal of Sparse 

Artefacts in Electroencephalogram. In BIOSIGNALS (pp. 530–535). Vapnik, V., 

Golowich, S. E., & Smola, A. (1997). Support vector method for function 

approximation, regression estimation, and signal processing. Advances in Neural 

Information Processing Systems, 281–287. 

104. Wang, J.-S., Chiang, W.-C., Yang, Y.-T. C., & Hsu, Y.-L. (2012). An effective 

ECG arrhythmia classification algorithm. In Bio-Inspired Computing and Applications 

(pp. 545–550). Springer.  

105. Wisbeck, J. O., Barros, A. K., Yy, A. K. B., & Ojeda, R. G. (1998). 

Application of ICA in the separation of breathing artefacts in ECG signals. Wu, S., 

Chow, T., Using, S., RBF, & IEEE. (2004). Induction Machine Fault Detection Based 

Networks‟, Industrial Electronics, pp. ., 51, 183–194. 

106. Wu, Y., & Zhang, L. (2011). ECG classification using ICA features and 

support vector machines. In Neural Information Processing (pp. 146–154). Springer.  

107. Yu, C.-C., & Liu, B.-D. (2002). A backpropagation algorithm with adaptive 

learning rate and momentum coefficient. In Neural Networks, 2002. IJCNN’02. 

Proceedings of the 2002 International Joint Conference on (Vol. 2, pp. 1218–1223). 

IEEE.  



134 

 

108. Yu, S.-N., & Chou, K.-T. (2006). Combining independent component analysis 

and backpropagation neural network for ECG beat classification (pp. 3090–3093).  

109. Yu, S.-N., & Chou, K.-T. (2007). A switchable scheme for ECG beat 

classification based on independent component analysis. Expert Systems with 

Applications, 33(4), 824–829. 

110. Yu, S.-N., & Chou, K.-T. (2008). Integration of independent component 

analysis and neural networks for ECG beat classification. Expert Systems with 

Applications, 34(4), 2841–2846. 

111. Yu, S.-N., & Chou, K.-T. (2009). Selection of significant independent 

components for ECG beat classification. Expert Systems with Applications, 36(2), 

2088–2096. 

112. Zhu, Y., Shayan, A., Zhang, W., Chen, T. L., Jung, T.-P., Duann, J.-R., … 

Cheng, C.-K. (2008). Analyzing high-density ECG signals using ICA. Biomedical 

Engineering, IEEE Transactions on, 55(11), 2528–2537. 

  



135 

 

 

Appendix: Related Publication 

 Sarfraz, M., Li, F., & Javed, M. (2011, July). A comparative study of ICA algorithms 

for ECG signal processing. In Proceedings of the International Conference on 

Advances in Computing and Artificial Intelligence (pp. 135-138). ACM. 

 Sarfraz, M., & Li, F. (2013). Independent Component Analysis for Motion Artefacts 

Removal from Electrocardiogram. Global Perspectives on Artificial Intelligence, Vol. 

1 Iss.4, (pp. 49-55) .  

 Sarfraz, M., Li, F., & Javed, M. (2013). A Blind Source Separation Method to 

Eliminate Noise Artefacts in ECG Signals (Vol. I, pp. 112–119). Presented at the 2nd 

international conference on recent trends in computing, Ghaziabad, India. 

 Sarfraz, M., Li, F., & Khan, A. A. (2014). Independent Component Analysis Methods 

to Improve Electrocardiogram Patterns Recognition in the Presence of non-Trivial 

Artefacts. International Journal of Bioscience, Biochemistry and Bioinformatics 

(IJBBB  ISSN: 2010-3638)) (In Press). 

 Sarfraz, M., Li, F., & Khan, A. A. (2014). Using Independent Component Analysis to 

Obtain Feature Space for Reliable ECG Arrhythmia Classification. Manuscript 

submitted for publication. 

 


