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Abstract: This study quantifies the sensitivity of surface runoff to drought and climate 

change in the Diyala watershed shared between Iraq and Iran. This was achieved through a 

combined use of a wide range of changes in the amount of precipitation (a decline between 

0% and −40%) and in the potential evapotranspiration rate (an increase between 0% and +30%). 

The Medbasin-monthly rainfall-runoff model (Medbasin-M) was used for runoff simulation. 

The model was calibrated for twelve hydrologic years (1962−1973), and the simulation 

results were validated with the observed annual runoff for nine water years (1974−1982). 

For the calibration period, the correlation coefficient (r), the root mean squared error 

(RMSE), the mean absolute error (MAE) and the index of agreement (IoA) were 0.893, 

2.117, 1.733 and 0.852, respectively. The corresponding values for validation were 0.762, 

1.250, 1.093 and 0.863, in this order. The Reconnaissance Drought Index (RDI) and the 

Streamflow Drought Index (SDI) were analysed using DrinC software. Three nomographs 

were introduced to quantify the projected reductions in the annual runoff and the anticipated 

RDI and SDI values, respectively. The proposed methodology offers a simple, powerful and 

generic approach for predicting the rate of change (%) in annual runoff under climate 

change scenarios. 
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1. Introduction 

The sustainable management of water resources in transboundary river basins has become a 

continuous challenge for riparian states. The differences in policies, development perspectives and 

priorities make it difficult to achieve a common understanding of the rational use of water. One major 

point of interest for all shared watercourses is the available volume of runoff, which is an important and 

crucial factor to meet the water demands of many sectors, such as agriculture, public water supply and 

fish farms. Drought and climate change are likely to put considerable pressure on water resources 

management and augment the level of vulnerability, particularly of the downstream countries in 

transboundary river basins. Climate alteration is anticipated to escalate the recurrence, strength and 

duration of drought episodes in some regions. 

The Intergovernmental Panel on Climate Change (IPCC) reported that the Global Circulation Models 

have produced a range of likely climate change scenarios according to various simulations [1]. Among 

others, two main predictions are relevant to droughts: increase in temperature and decrease in 

precipitation amount in some regions. Drought is a natural phenomenon that can be characterized by 

three dimensions (variables): severity, duration and spatial extent. Conventionally, droughts are categorized 

as meteorological, hydrological, agricultural and socio-economic phenomena. Numerous drought 

indices have been introduced in the literature [2–18]. Among the commonly used indices are the Rainfall 

Anomaly Index (RAI), Percentage of Normal Precipitation (PNPI), Percent of Normal Index (PNI), 

Deciles Index (DI), Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration 

Index (SPEI), Palmer Drought Severity Index (PDSI), Reconnaissance Drought Index (RDI), Crop 

Moisture Index (CMI), Surface Water Supply Index (SWSI), Streamflow Drought Index (SDI) and 

Truncation Threshold Level (TTL; also called Drought Threshold Level (DTL)). 

The topic of drought severity has occupied a notable proportion of drought studies, which have been 

conducted in many countries, such as Iran [4,5], Iraq [6,7], Greece [8,9], Turkey [10], Jordan [11] and 

Saudi Arabia [12]. Recent articles have pointed out the promising usage of the RDI to quantify the 

severity of drought [4,13–15]. Precipitation (P) and potential evapotranspiration (PET; directly related 

to air temperature) are the two key parameters used in RDI. In this paper, the severity of drought was 

judged by means of RDI, and the hydrological drought (denoted in this paper as a decline in runoff 

volume) was characterized by using SDI [16−18]. 

The assessment of the impacts of droughts and of the anticipated climate change on runoff volume is 

important for providing a common ground for communication between the riparian countries. This study 

quantifies the impact of possible climate alterations and droughts anticipated in the downstream country 

Iraq. This was achieved through a mutual usage of a wide array of potential future climate shifts in P 

and PET and the Medbasin-M rainfall-runoff model. 
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The overall aim of the article is to quantify the impact of the anticipated drought and climate change 

on streamflow available for the lower riparian country, Iraq. The main objectives of this paper are to: 

(1) predict the likely proportional change (%) in the annual runoff available for the downstream  

country; and 

(2) anticipate the standardized Reconnaissance Drought Index (RDIst) and SDI values due to a wide 

range of possible future climate change. 

This study offers a generic, simple and solid tool to support water managers and decision-makers in 

shaping better management plans and strategies for water resources that are anticipated to be available 

in the short to long term. 

2. Materials and Methods 

2.1. Meteorological Drought Severity (MDS) 

Drought severity was assessed through the computation of the RDI, more precisely through its 

standardised form. The initial value (α୩) of RDI is calculated for the i-th year for a reference period of  

k months according to Equation (1): 
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where ܲ and ܲܧ ܶ are precipitation and potential evapotranspiration of the j-th month of the i-th year 

and N is the total number of years of the available data. The values of α follow satisfactorily both the 

lognormal and the gamma distributions in a wide range of locations and different reference periods for 

which they were tested [8,19]. By assuming that the lognormal distribution is applied, Equation (2) can 

be used for the calculation of the	ܴܫܦୱ୲: ܴܫܦ௦௧() = ()ݕ − ො௬ߪതݕ (2)

where ݕ() is ln(α()); ݕത is its arithmetic mean; and σෝ௬ is its standard deviation (SD). In the case that the 

gamma distribution is applied, ܴܫܦୱ୲ can be calculated by fitting the gamma probability density function 

(pdf) to the given frequency distribution of α୩ [8,19]. For short reference periods (e.g., monthly or  

3-months), which may include zero values for the cumulative precipitation, ܴܫܦୱ୲ can be calculated 

based on a composite cumulative distribution function, including the probability of zero precipitation, 

and the gamma cumulative probability. Positive values of ܴܫܦୱ୲ indicate wet periods, while negative 

values indicate dry periods compared with the normal conditions of the area. The severity of drought 

events increases when ܴܫܦୱ୲ values are highly negative. 
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2.2. Streamflow Drought Index 

According to [16], if a time series of monthly streamflow volumes ܳ is available, in which i denotes 

the hydrological year and j the month within that hydrological year (j = 1 for October and j = 12 for 
September), ܸ, can be obtained based on Equation (3): 

ܸ, =  ܳଷୀଵ  (3)

where i = 1,2,…,N, j = 1,2,…,12 and k = 1,2,3,4. V, is the cumulative streamflow volume for the i-th 

hydrological year and the k-th reference period, k = 1 for October−December, k = 2 for October−March, 

k = 3 for October−June and k = 4 for October−September. Based on the cumulative streamflow volumes ܸ,, the Streamflow Drought Index (SDI) is defined for each reference period k of the i-th hydrological 

year (Equation (4)): ܵܫܦ, = ܸ, − തܸܵ  (4)

where i = 1,2,…,N and k = 1,2,3,4. തܸ and ܵ are the mean and SD, respectively, of the cumulative 

streamflow volumes of the reference period k, as these are estimated over a long period of time. In this 

definition, the truncation level is set to തܸ, although other values based on rational criteria could be  

also used. 

Streamflow may follow a skewed probability distribution, which can be approximated well by the 

family of the gamma distribution functions. The distribution is then transformed to be normal. Using the 

two-parameter log-normal distribution (for which the normalization is simply reclaiming the natural 

logarithms of streamflow), the SDI index is defined in Equations (5) and (6) are the natural logarithms 
of cumulative streamflow with mean ݕത and SD ܵ௬,, as these statistics are estimated over a long period 

of time. ܵܫܦ, = ,ݕ − തܵ௬,ݕ  (5)

where i = 1,2,…,N and k = 1,2,3,4 and: ݕ,	= ln( ܸ,), i = 1,2,…,N and k = 1,2,3,4 (6)

The annual SDI index was computed over the period of 30 years between 1962 and 1991. Quantities 

and descriptive situations of the SDI and the RDIst indices, which are provided in the  

literature [4,17,20–22], were considered in this paper to provide a better representation of drought in 

spatial distribution mapping (Table 1). 

In this study, the calculations were performed using DrinC software [23,24]. DrinC has been recently 

used in several studies for drought assessment and monitoring [19], predominantly in arid to semi-arid 

areas, such as Iraq and Iran [25,26]. In this study, the annual RDIst and SDI indices were computed over 

the period of the normal climatic period from 1975 to 1982. The precipitation and runoff data were fitted 

to the log-normal distribution function in the computation process. The estimation of potential 

evapotranspiration used in the calculation of RDI was obtained through DrinC by using the 

Blaney−Criddle method [27]. Finally, the RDIst and SDI nomographs were developed, which describe 
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the ‘departure’ from the normal condition based on the “0 scenario”. The reference mean annual runoff 

volume indicating the condition of zero change in both P and PET is referred to as the “0 scenario”. 

Table 1. Classification of drought conditions based on the standardized Reconnaissance 

Drought Index (RDIst) and Streamflow Drought Index (SDI) values. 

Condition Range 

Extremely wet (SDI and RDIst) ≥2.00 
Very wet 1.5 ≤ (SDI and RDIst) < 2.00 

Moderately wet 1.00 ≤ (SDI and RDIst) < 1.50 
Near normal −1.00 < (SDI and RDIst) < 1.00 

Moderately dry −1.50 < (SDI and RDIst) ≤ −1.00
Severely dry −2.00 < (SDI and RDIst) ≤ −1.50

Extremely dry (SDI and RDIst) ≤ 2.00 

2.3. Rainfall-Runoff Model 

The simulation of the river runoff is typically performed through rainfall-runoff models implementing 

different approaches and various levels of complexity. In this study, the monthly rainfall-runoff model 

(Medbasin-M) [28,29] was used to simulate the runoff reaction under various climatic conditions on an 

annual basis. The model uses three calibration parameters. These are the maximum soil storage capacity 

(Smax), the coefficient of the deep percolation (C) and the monthly delay factor (a), which is used to adjust 

the monthly runoff distribution [30]. The required input data for the model are monthly precipitation and 

PET data. 

A detailed soil and land survey provides the most reliable data, which can be used for estimating the 

soil storage capacity (S) and obtaining the runoff curve number (CN) as part of the model requirements. 

However, essential data are not always available and not simply accessible. For this study, the Smax was 

estimated using Equation (7), which has been developed by the Natural Resources Conservation Service 

(NRCS, formerly known as the Soil Conservation Service), which relates Smax to CN [31,32]. 	ܵ୫ୟ୶ = 25.4 ൬1,000ܰܥ − 10൰ (7)

The runoff curve number is an empirical parameter, which is mainly a function of the hydrologic soil 

group, cover type, treatment, hydrologic condition and antecedent runoff condition. References,  

such as [33], provide detailed guidelines to aid in selecting the appropriate CN values considering the 

basin characteristics. The CN is an alternative way to estimate the model’s parameter Smax. However, in 

this study, there is not sufficient and reliable information, such as land use and soil types, for an accurate 

calculation of the CN. Therefore, Smax was calculated through a model calibration process. 

Initial values of CN and C were first assumed. A two-stage process was conducted for the calibration 

of the model parameters. The first stage involved matching the volumes of observed and simulated 

hydrographs on an annual basis. In the second stage, the shape of the simulated hydrograph was 

compared with the shape of the observed hydrograph. A trial and error approach was utilized until the 

best fit was achieved. The goodness-of-fit indicators, r, RMSE, MAE and index of agreement (IoA), 

were used for assessing the model performance. 
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2.4. Methodological Approach 

The following steps describe the methodology followed in this paper: 

1. The Medbasin-M rainfall-runoff model was calibrated using the monthly P and PET data for the 

period of twelve hydrologic years (1962−1973) for which unimpaired streamflow data were 

observed and used for model calibration. The climatic conditions for the calibration period were 

mostly near to normal, with some years characterised by moderately wet or moderately dry 

conditions (Table 1). This allowed the unbiased calibration of the model. About 75% and 92% 

of the annual precipitations during the calibrated period were between the mean −SD and the  

mean +SD, and between mean − 2SD and mean + 2SD, respectively. The minimum, mean and 

the maximum annual precipitations were 520 mm, 729 mm and 1,187 mm, respectively. The SD 

was approximately 201 mm. The annual precipitation observed in 1969 was interpreted as an 

outlier. No other outliers were observed over the calibration time interval. The minimum, mean 

and maximum PET values were 1,215 mm, 1,287 mm and 1,364 mm, respectively. The SD was 

about 58 mm. No outliers were observed. 

2. The simulation results were validated using monthly climatic data (P and PET) and the 

unregulated observed runoff for a period of nine water years (1974−1982). Some statistical 

goodness-of-fit tools were employed for calibrating the model and validating the simulation results. 

These measures are r, RMSE, MAE and IoA ([34,35] for the latter). The following formulas 

(Equations (8) to (11)) were applied: 

r =ඨ ∑ ሾ(ோ್ೞ)ିோത್ೞሿሾ(ோ್ೞ)ିோതೞሿసభ൛∑ ሾ(ோ್ೞ)ିோത್ೞሿసభ ൟబ.ఱ൛∑ ሾ(ோೞ)ିோതೞሿసభ ൟబ.ఱ (8)

ܧܵܯܴ = ඩ1݊ሾ(ܴ௦) − (ܴ௦)ሿଶ
ୀଵ  (9)

ܧܣܯ = 1݊|(ܴ௦) − (ܴ௦)|
ୀଵ  (10)

ܣܫ = 1 − ∑ ሾ(ܴ௦) − (ܴ௦)ሿଶୀଵ∑ ሾ|(ܴ௦) − തܴ௦| + |(ܴ௦) − തܴ௦|ሿଶୀଵ  (11)

where	ܴݏܾ, ܴ௦, തܴ௦ and തܴ௦ are the observed runoff, simulated runoff and the means of 

the observed and simulated runoffs, respectively. N is the number of years and i is the time step. 

3. The RDIst values were calculated over a time window of 30 years between 1962 and 1991. This 

was performed to specify which period represents nearly the normal climatic condition (on 

average) and to assess the constants a and b of the linear Equations (12) and (13): ܴܫܦ௦௧ = ܽଵ ∗ (αଵଶ)݊ܮ + bଵ (12)

SDܫ	 = ܽଶ ∗ (݂݂݊ݑݎ)݊ܮ + bଶ (13)

where ܴܫܦ௦௧, αଵଶ and SDI are the standardized form of the RDI, the initial form of the RDI and 

the streamflow drought index, respectively. ܽଵ, ܽଶ, ܾଵ and ܾଶ are constants. The period of nearly 
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normal climatic condition expresses the timeframe in which no extreme RDIst values were 

witnessed and when, on average, the RDIst value is close to zero. The period of eight water years 

(1975 to 1982), which characterised the normal condition, was used for running the climatic 

scenarios. Moreover, the period between 1975 and 1982 was devoid of any considerable human 

construction activities (e.g., hydraulic control structures and large-scale irrigation schemes) in 

the upstream country, Iran. 

4. The Medbasin-M model was used to compute the reference mean annual runoff for the normal 

climatic condition.  

5. The Fifth Assessment Report of the IPCC [1] suggests that the region where the examined basin 

is located is likely to face a decline in precipitation amount and an increase in mean air 

temperature as part of climate change. The IPCC [36] highlighted that the annual average river 

runoff availability is projected to decrease by between 10% and 30% over some dry regions at  

mid-latitudes by 2050. Some impacted regions presently have water-stressed areas. Furthermore, 

an increase in drought spells is also projected for mid-latitudes. The IPCC reports also point out 

with high confidence (defined by IPCC) that climate change has the potential to exacerbate water 

resource stresses in most regions of Asia. The regional projections of temperature and 

precipitation in Asia based on a so-identified A2-forced emission scenario using the  

Atmosphere-Ocean General Circulation Model (AOGCM) simulations show that the rate of 

decrease in precipitation could reach −40% in winter (between December and February) and 

−50% in summer (between June and August). The increase in temperature would be in the order 

of +10% in winter and +6% in summer. It should be noted that these predictions should be 

considered as valid until the end of the 21st century. The synthetic scenarios for assessing the 

runoff sensitivity to climate change were formulated through an incremental shift of the historical 

P and PET values by a 2% step for a P reduction range from 0% to −40% and a PET increase 

from 0% to +30%. Correspondingly, 336 scenarios were developed, representing the mutual 

impact of deviations in P and PET values that lie within the aforementioned assortment of 

scenarios. These scenarios include all possible basin-wide climate change projections, as well as 

a wide array of drought severity conditions. The Medbasin-M model was repetitively used to 

simulate the runoff for the 336 scenarios. 

6. The anticipated proportional change in the annual runoff (%), corresponding to each scenario, 

was determined relative to the reference mean annual runoff. 

7. A nomograph was used for estimating the projected proportional change (%) in the  

climate-impacted runoff. The predictable proportional changes in the runoff represent the 

anticipated runoff reductions (%) relative to the long-term unimpaired mean annual runoff under 

the normal climatic condition. 

2.5. Study Area and Data Availability 

The Diyala river basin shared between Iraq and Iran was chosen as an example application basin for 

this study. The Diyala transboundary river system stretches from its source in the Zagros Mountains of 

western Iran to Iraq in the east. The river watershed drains a total area of about 32,600 km2, of which 

43% lies in Iraq, and has a total length of 384 km before discharging into the Tigris River south of 
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Baghdad. The watershed is situated between the latitudes 33.216°N and 35.833°N and the longitudes 

44.500°E and 46.833°E (Figure 1). The river basin is located in the arid to semi-arid climate zone. Most 

runoff is generated during the period of November to May. The yearly average precipitation within the 

basin is nearly 500 mm. However, the precipitation mainly occurs between November and April, 

accounting for 90% of the whole water year. 

The study is limited to the upper part of the basin with a total area of 17,900 km2, which is mainly 

located in the upper riparian state, Iran. In the downstream country Iraq, the examined area is partly 

controlled by the Derbandikhan dam. In this study, the Derbandikhan hydrometric station (DHS) in Iraq 

is the control gauging station of the upper portion of the basin. The observed surface runoff at this station 

was used to calibrate and validate the constructed rainfall-runoff model. The entire basin has been prone 

to successive episodes of drought, particularly the severe droughts between 1999 and 2001 and the two 

successive years 2007 and 2008 [25,26]. Moreover, the upper segment of the basin is exceedingly 

dammed and witnessed the implementation of large-scale water withdrawal schemes at its source in  

Iran [25,26]. Agriculture represents the main consumer of water among all other sectors. 

Figure 1. Diyala watershed (case study example) and the locations of the  

hydro-meteorological stations. 

  

Monthly precipitation and air temperature data from 13 meteorological stations (seven stations in Iran 

and six stations in Iraq) were available for the period between 1962 and 1991. A long-time series of 30 

hydrologic years of daily flow records (1962 to 1991) observed at the DHS (Figure 1) was analysed. 

Data were obtained from various sources [37–40], such as the Ministry of Agriculture and Water 

Resources in the Kurdistan region of Iraq and the Iranian Meteorological Organization. Some other 
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meteorological data in Iraq were obtained from the Food and Agricultural Organization of the United 

Nations [41]. The PET time series was computed using the Blaney–Criddle method [27]. 

3. Results and Discussion 

3.1. Model Calibration and Simulation Results after Validation 

The statistics, r, RMSE, MAE and IoA, were 0.893, 2.117, 1.733 and 0.852, respectively, during the 

calibration. After validation, the corresponding statistics were 0.762, 1.250, 1.093 and 0.863, in this 

order. Results indicate promising model outcomes during the calibration and validation stages. This 

emphasises that the model can be safely used for further analysis, such as running the synthetic climatic 

scenarios and determining the proportional change (%) in the mean annual runoff relative to the normal 

climatic condition. The coefficients associated with Equations (12) and (13) were 4.323, 2.634, 2.204 

and −18.554, respectively. The predicted runoff volumes for the calibrated and validated periods against 

the observed runoff data are illustrated in Figure 2. 

Figure 2. Simulated runoff data against the observed runoff records. 

  

3.2. Anticipated Runoff for Various Climatic Scenarios 

Figure 3 illustrates the RDIst over a period of 30 years between 1962 and 1991. The period of eight 

years of nearly normal climatic conditions (1975 to 1982) was picked for running the climatic scenarios. 

This period experienced no extreme events, and the average value of RDIst was close to zero. Moreover, 

findings reveal that the reference mean annual runoff, the initial value of the RDI (αଵଶ), the RDIst and 

the SDI were as much as 4.87 billion m3, 0.55, 0.09 and 0.16, respectively. For an extreme climatic 

condition with a 40% reduction in P and a 30% increase in PET, the anticipated mean annual runoff, the αଵଶ, the RDIst and the SDI were about 0.84 billion m3, 0.26, −3.26 and −3.71, respectively. The projected 

mean annual runoff for the worst case scenario represents about 17.3% of that referred to as the “0 

scenario” (4.87 billion m3). 

Findings suggest a considerable impact that could be caused by climate change on the availability of 

water resources, particularly for the lower riparian country. Likewise, the study highlights the 

importance and the urgent need for pro-active plans and actions to cope with the most critical impact of 
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drought and climate change. High-level coordination is required between all relevant parties to reduce 

the negative impacts and to moderate the economic and environmental losses. Furthermore, successful 

treatments need to be found to address the consequences that are likely to extend for a longer period 

after the end of the drought situation. 

Figure 3. Selected simulation period for the Reconnaissance Drought Index (RDI) applied 

for different climatic scenarios concerning the Diyala example basin. 

  

Figure 4 shows the foreseen change (%) in the annual runoff relative to the reference mean annual 

runoff value referred to as the “0 scenario”. It should be stressed that the 0 scenario is based on the 

climate conditions of 1975–1982; therefore, the percentage of runoff change refers to that period. This 

figure provides a simple and useful tool that can be used by water managers and decision-makers to 

obtain the likely reduction (%) of the mean annual runoff according to a wide range of anomalies in P 

and PET. 

Figure 4. Foreseen runoff changes (%) of the upper Diyala example basin for an array of 

climatic changes for precipitation (P) and potential evapotranspiration (PET). 
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Figures 5 and 6 demonstrate the anticipated RDIst and SDI values, respectively, according to 

possible changes in climatic condition (P and PET). For water governance decision-making, the 

problem becomes far more complex, because it deals not only with average anomalies, but also, and 

more decisively, with extreme events, like severe prolonged drought spells. 

Figure 5. Anticipated standardised Reconnaissance Drought Index (RDIst) for the upper 

Diyala example basin regarding a wide range of climatic scenarios for precipitation (P) and 

potential evapotranspiration (PET). 

 

Figure 6. Anticipated Streamflow Drought Index (SDI) for the upper Diyala example  

basin regarding a wide range of climatic scenarios for precipitation (P) and potential 

evapotranspiration (PET). 
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Results reveal a robust relationship between the predicted RDIst and SDI values for all examined 

scenarios (Figure 7). Moreover, both RDIst and SDI vary according to drought severity in a similar 

manner. It is noteworthy to highlight that Figures 4 to 6 collectively represent a solid measure for drought 

and climate change signatures. The associated methodology should be part of a simple and generic tool 

that can be used by water managers and decision-makers to estimate the likely projected decline (%) in 

the mean annual streamflow, which is influenced by climate, and to quantify the drought severity 

corresponding to a possible decrease in P and an increase in PET. A pro-active estimation of possible 

climate change scenarios and their adverse impact on runoff and drought spells would provide the 

opportunity to improve current decisions concerned with water allocations in time and space. Moreover, 

the proposed method allows decision-makers to take appropriate actions in advance to avoid the 

likelihood of adverse impacts of drought and climate change on multi-water users, particularly those in 

the agricultural sector. This timely tool is of high importance to the lower riparian example country, Iraq, 

which has become vulnerable to recent frequent drought events and upstream human-induced activities.  

The suggested approach is of a generic nature and has merits at national, regional and universal scales. 

At the national level, it supports water managers and other related stakeholders to take serious steps and 

actions to handle the anticipated reductions in runoff volume according to various scenarios of climate 

change and recurrent droughts. At the regional scale, the approach offers a common platform for riparian 

states for better coordination to reduce possible harmful environmental and socio-economic effects of 

shared water use in upstream countries on the downstream states. Correspondingly, at the universal level, 

the approach can be applied to develop similar figures and estimate the possible reductions in annual 

runoff due to climate alterations and drought episodes. 

Figure 7. Relationship between the anticipated standardised Reconnaissance Drought Index 

(RDIst) and the Streamflow Drought Index (SDI) for the upper Diyala example basin. 

 

4. Conclusions and Recommendations 

A simple, generic, powerful and novel approach was presented for predicting the proportional change 

(%) in the mean annual runoff under various climate change scenarios and anticipated droughts. The 

proposed methodology offers a simple and solid tool to support water managers and decision-makers in 

shaping better management plans and strategies for water resources that are anticipated to be available 

in the short to long term. Three nomographs were introduced for the anticipated alteration (%) in mean 
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annual runoff, the anticipated RDIst and SDI, corresponding to a wide range of potential climate change. 

A robust relationship was found between the RDIst and SDI, indicating that the meteorological and 

hydrologic drought indices (RDIst and SDI) are responding in a similar manner to climate change. 

The anticipated anomaly (%) in stream flow can directly be linked to the hydrological and 

meteorological drought levels through the corresponding nomographs for SDI and RDIst. An early 

assessment of meteorological drought leads to a proactive step that enables decision-makers to predict 

water availability for the entire water year and plan in advance measures for mitigating drought impacts. 

Although the nomographs were prepared for annual timescales, the same procedure could be applied for 

selected shorter periods within the hydrologic year (e.g., three months, six months and nine months). 

The developed nomographs are supportive tools for formulating strategic alertness plans to combat 

drought episodes and soften their effects on various water use areas, particularly the agriculture sector. 

It is worth mentioning that functional medium- to long-term water management requires dependable 

data, reliable information and better perception of present and anticipated events in the future. The 

authors recommend further research work to develop similar nomographs that respond to the relative 

impact of both basin-wide climate change and upstream human-induced activities (e.g., man-made land 

use change, river damming and diversion-related hydraulic structures). Moreover, they encourage 

similar studies for other transboundary basins shared between countries, such as Iraq and Iran, Iraq and 

Turkey, as well as Mediterranean watersheds. 
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