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A new approach to the interpretation and analysis of coherent inelastic neutron
scattering from polycrystals (poly-CINS) is presented. This article describes a
simulation of the one-phonon coherent inelastic scattering from a lattice model
of an arbitrary crystal system. The one-phonon component is characterized by
sharp features, determined, for example, by boundaries of the (Q, !) regions
where one-phonon scattering is allowed. These features may be identified with
the same features apparent in the measured total coherent inelastic cross
section, the other components of which (multiphonon or multiple scattering)
show no sharp features. The parameters of the model can then be relaxed to
improve the fit between model and experiment. This method is of particular
interest where no single crystals are available. To test the approach, the poly-
CINS has been measured for polycrystalline aluminium using the MARI
spectrometer (ISIS), because both lattice dynamical models and measured
dispersion curves are available for this material. The models used include a
simple Lennard-Jones model fitted to the elastic constants of this material plus a
number of embedded atom method force fields. The agreement obtained
suggests that the method demonstrated should be effective in developing models
for other materials where single-crystal dispersion curves are not available.

1. Introduction
Traditionally, inelastic neutron scattering measurements have
involved either incoherent inelastic neutron scattering from
polycrystals or coherent inelastic scattering (CINS) from
single crystals. The reason that CINS from polycrystals has not
been employed to a significant extent in the past is that the
process of integrating the scattering intensity over crystallite
orientations tends to obscure the useful information that is
easily available from the direct measurement of dispersion
curves for single crystals measured using a triple-axis spec-
trometer. However, many important materials can only be
obtained in polycrystalline forms, and hence it is of interest to
investigate ways of interpreting the coherent inelastic scat-
tering from such samples. One early attempt to do this using
coherent inelastic scattering from polycrystalline graphite was
made by one of the authors (Ross, 1973). Since this time,
software development and advances in computing power have
made it possible (though still demanding) to generate models
and to fit them to the data.

There are already several software packages able to calcu-
late the key quantity required in neutron scattering, namely
the dynamic structure factor, S(Q, !), using the one-phonon
eigenvectors as determined via density functional theory
(DFT) or other methods. Notable examples are the PHONON

(http://wolf.ifj.edu.pl/phonon/) and McStas (Lefmann &
Nielsen, 1999) packages, and efforts have been made to
broaden the selection of scattering kernels to include calcu-
lated spectral contributions from multiple-phonon scattering,
multiple scattering and instrument resolution functions
(Willendrup et al., 2004; DANSE project, http://wiki.danse.us)
to facilitate direct comparison with the measured data.
However, these ‘whole spectrum’ methods have significant
limitations. The computational expense associated with the
calculation of the eigenvectors of a system is an order N3

problem, where N is the number of atoms in a basis set
describing the lattice; as the number of atoms in a system
increases, so the system rapidly becomes too large for the
application of ab initio methods for the determination of the
dynamical matrix. This is further compounded by the reci-
procal space sampling requirements for a given model; as the
size of the basis set of atoms used to describe the system
increases, so the sampling requirements (in terms of k points
sampled in reciprocal space) also increases. These two factors
alone represent an effective limit to the size of the system for
which S(Q, !) may be modelled using these ab initio methods.

In the present work we focus on the calculation of poly-
crystalline coherent inelastic neutron scattering (poly-CINS)
one-phonon cross sections using interatomic potential-based
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methods, as these are relatively computationally efficient and
are widely applicable to many systems (including those with
large unit cells) and as the force-constant parameters involved
provide a convenient starting point for least-squares optimi-
zation of the starting values. Specifically, the method has been
implemented within the program GULP (Gale & Rohl, 2003),
designed for lattice dynamical calculations based on force field
descriptions, via a new module known as Scatter. However, the
approach described could equally well be used in conjunction
with DFT packages such as CASTEP (Clark et al., 2005) or
SIESTA (Sanchez-Portal et al., 1995), from which phonon
eigenvectors may be generated.

The present method differs from a ‘whole spectrum’
approach in that it concerns itself with the identification of
prominent one-phonon scattering features appearing in
experimental neutron scattering from polycrystals; other
contributions (multiphonon, multiple scattering, resolution
broadening) would have to be included in the theoretical
neutron spectra to provide a full intensity profile for matching
to experimental data on a point by point basis. One-phonon
processes showing sharp coherent scattering features domi-
nate in the low-Q region of (Q, !) space and can be observed
experimentally with the best experimental resolution.

An outline of the Scatter code has already been published
(Roach et al., 2007), but the methodology behind its applica-
tion to the interpretation and analysis of poly-CINS is new to
this work. It is tested here for the rather simple aluminium
system.

The structure of this article is as follows. In x2, the theory
and methodology of coherent inelastic neutron scattering are
described, along with details of the current implementation
and the methodology associated with the identification and
interpretation of one-phonon scattering features. Also intro-
duced here are four semi-empirical dynamical models of
aluminium that are used to compute the dispersion curves and
bulk properties for each model. In x3, the present experi-
mental measurement using the MARI spectrometer is
described. In x4, the method developed for the systematic
analysis of poly-CINS data is used to compare our experi-
mental data for polycrystalline aluminium with the predictions
of the best of the models. The models are also compared with
the single-crystal dispersion curve data. Finally, in x5, the
general applicability of the method to different materials is
discussed.

2. Methodology

2.1. Background theory

The neutron scattering amplitude of a nucleus can have a
number of different values, owing to neutron spin and to
isotope effects, so the scattering has to be divided into two
parts: coherent and incoherent scattering. The coherent part,
depending on the average value of the scattering amplitude,
contains all the information about the relative position and
motion of the nuclei taken in pairs, while the incoherent
scattering depends only on the motions of each atom taken

independently. As shown by Van Hove (1954), the resulting
cross section can be expressed in terms of the corresponding
scattering functions, Scoh(Q, !) and Sinc(Q, !) for the coherent
and incoherent scattering cases, respectively. These functions,
which depend only on the interactions between the nuclei,
define the corresponding double differential scattering cross
sections (for materials containing only one element) as follows
(Squires, 1978):
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Here, !coh and !inc represent the two total cross sections, Q is
the momentum transfer vector [Q = (4"/#)sin$ being the
magnitude of the vector, where $ is half the scattering angle
and # is the wavelength of the incident neutrons], E0 is the
kinetic energy of a given scattered neutron where the incident
energy is E, b is the average (and b2 is the mean-square
average) of the bound scattering length for the nucleus, k and
k0 are the incident and final wavenumbers, respectively, of the
scattered neutron, and ! is the frequency of an excited
phonon. The scattering functions, Scoh(Q, !) and Sinc(Q, !),
were originally defined as here for a single species of nucleus.
However, for a general non-Bravais lattice (with unit cells
containing more than one atom), the terms have to be summed
over the atoms in the unit cell, although this results in a
scattering function which, in the strictest sense, is not S(Q, !)
as originally defined. Hence, the effective one-phonon scat-
tering functions for a system with multiple atomic species, as
used here, should be written as S0coh/inc(Q, !), where
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for neutron energy gain [%ð!þ !sÞ and hnsi] and energy loss
[%ð!% !sÞ and hns + 1i] of a system, generating a phonon of
wavevector q. Here ns is the number of phonons in mode s at
thermal equilibrium. In equations (3) and (4), N is the number
of atoms in the unit cell in the (non-Bravais) system and the
inner summation is over these atoms, d, with mass Md and a
position vector within the unit cell of rd, while Wd is the
associated Debye–Waller factor. The outer summations are
over s, the reciprocal lattice vector, and s, the phonon mode of
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frequency !s, providing a polarization vector eds for each
normal mode, as obtained by solving the dynamical matrix.
The reader should be aware that some texts adopt slightly
different definitions of the phase factor of the polarization
vector. For example, the text by Turchin (1965) defines the
phonon wave at a position rd within the unit cell to have the
phase of the travelling wave at that point, whereas Squires
(1978) defines this wave as having a phase relative to that of
the travelling wave at the corner of the unit cell. The Turchin
version leads to a different general formulation of the
coherent inelastic cross section from that given in equation
(3). This ‘frame of reference’ difference, whilst being irrele-
vant for a monatomic lattice, is crucial to the present objective
for the case of more than one atom/unit cell. Here the form of
the polarization vector used by Turchin will be adopted, as this
is the form employed in GULP. Hence the corrected form of
equation (3) is

S0coh Q; !ð Þ ¼ 1
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where nds is the polarization vector on the alternative defini-
tion given above.

Once the expressions for the neutron scattering functions
have been established, the next step is to introduce the means
by which the phonon frequency (square root of the eigen-
value) and the polarization vectors (eigenvectors) are
obtained for a given phonon wavevector, q. The approach,
briefly summarized here, follows the standard Born–von
Karman method (Born & Huang, 1956), where forces are
described in terms of potentials between pairs of atoms. This
method results in the construction of a dynamical matrix of the
form

D qð Þ ¼
P
r

D rð Þ exp i q ' r% !tð Þ ð6Þ

for each of the pairwise vectors, r, at reciprocal space wave-
vector, q. The eigenvalues, !(q), and eigenvectors, n, are then
obtained from equation (7):

D qð Þn ¼ ðMdMd0 Þ
1=2!2n; ð7Þ

which is solved using jDðqÞ % ðMdMd0Þ
1=2!2 Ij ¼ 0 (I is the

identity matrix) and hence by diagonalizing the resultant
matrix. For every q vector there is thus a set of 3d eigenvalues
(and therefore frequencies) and for each eigenvalue a corre-
sponding eigenvector (i.e. a set of polarization vectors) for
each of the d atoms; this results in the notation nds and !s for
eigenvectors and eigenvalues, respectively.

The frequencies and polarization vectors so obtained are
then used to calculate the scattering function presented in
equation (5). When performing a powder-averaged calcula-
tion, it is necessary to sample reciprocal space in a series of
concentric shells, each corresponding to a given magnitude of
the momentum transfer vector, Q, as it is rotated through $
and ’. For each magnitude and orientation of Q, the program
calculates the corresponding values of q by selecting the
nearest reciprocal lattice point and taking q relative to this
point. From this value of q, the dynamical matrix [equation
(6)] is then generated and the corresponding eigenvalues and
eigenvectors obtained [see equation (7)]. Fig. 1 illustrates this
sampling method, along with a diagrammatic representation
of the Q vector relationship with the lattice vector, s, and
phonon wavevector, q.

The resulting data are then output using a histogram-aver-
aging method, where defined intervals are used to create a
mesh of data ‘pixels’; here each pixel corresponds to a set
range in the amplitude of Q (referred to as Q, where Q = |Q|)
and to a set frequency interval. The intensities obtained for
this interval in Q are sorted into the specified histogram in !.
Assembling such slices for each Q yields S(Q, !). Resolution
broadening of the scattering % functions in Q and !, Debye–
Waller factors may be applied before summation of the
intensities, but this is not necessary for present purposes.

2.2. Semi-empirical force constant modelling of aluminium

Aluminium is a very well studied material that has attracted
attention of late owing to the interest in the use of light metal
hydrides for hydrogen storage (Schuth et al., 2004; Kang et al.,
2004). Results from recent work (Budi et al., 2009) on the
generation of new semi-empirical force constant models for
use in cluster calculations has typically been compared against
reliable DFT calculations (Pham et al., 2011) (where
comparisons are normally made with zone boundary
frequencies), bulk properties (as above), and the density of
vibrational states as obtained by both measurement and
calculation (Tang et al., 2010). The simplicity of its crystal
structure and the proliferation of these fitting models suggest
the use of aluminium as an ideal test material for the meth-
odology presented.

When selecting models for aluminium from the large
number of possible variants in the literature the emphasis here
has been to test the utility of models in frequent use. For
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Figure 1
(a) The principal poly-CINS reciprocal space sampling method used in
the Scatter code. (b) Selecting the nearest reciprocal lattice point to Q
provides the reciprocal lattice vector, s, such that q remains within the
first Brillouin zone (shaded area).
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convenience, we will start with a simple Lennard-Jones 12–6
potential (Lennard-Jones & Ingham, 1925) fitted to the elastic
constants (C11, C22 and C44) of aluminium, following the
approach suggested by Halicioǧlu & Pound (1975). Although
this type of model is generally considered unsuitable for the
study of metallic systems, its very unsuitability (as well as its
very low computational cost and the rather general nature of
the potential itself) suggested its use as a model for assessing
the more heavily parameterized (and considerably more
computationally expensive) embedded atom method poten-
tials.

The most successful methodology applied to the semi-
empirical modelling of metals, however, is the embedded atom
method (EAM) (Daw & Baskes, 1983), originally developed
by Daw and Baskes to study hydrogen embrittlement in nickel
and now adapted for use in lattice dynamics and cluster
calculations. For this reason, it was decided to test the effec-
tiveness of potentials of this type for predicting the dynamical
properties of aluminium and to compare the results with the
simplest available potential – the Lennard-Jones (LJ) model,
described above.

The EAM models most frequently used in studies of pure
and alloyed periodic systems are the Sutton–Chen functional
EAM potential (Sutton & Chen, 1990), the Cleri–Rosato tight
binding EAM potential (Cleri & Rosato, 1993), the Streitz–
Mintmire EAM potential (Streitz &Mintmire, 1994), the Mei–
Davenport modified EAM (MEAM) potential (Mei &
Davenport, 1992) and the parameterized EAM (NP-B; Jasper
et al., 2005) potential. Sheng et al. have published results for an
optimized EAM potential (Sheng et al., 2011), but as they
neglected to include EAM parameters for their model
(obtained by fitting to DFT calculations), it has not been
practical to include this model in the comparison. Likewise the
many-body potential of Mishin et al. (1999), derived from a
spline fit to DFT calculations and to bulk data, provided
excellent agreement with the measured dispersion curves, but
the paper did not include an explicit model parameterization

and so this model has also been omitted. Both the Cleri–
Rosato and Streitz–Mintmire models were considered for
implementation in this study, but as the emphasis here is on
the inelastic scattering analysis, these models were neglected
for brevity. Hence the three models selected for further
analysis are the Sutton–Chen, the Mei–Davenport and the
NP-B. Functional forms and explanations of these standard
potentials have been omitted from the text, but the expres-
sions and parameters used are given in Table 1.

2.3. Dispersion curves from the semi-empirical models

The experimental data presented in this analysis of disper-
sion curve predictions are taken from the triple-axis neutron
spectroscopy study of Stedman & Nilsson (1966), as presented
in Fig. 2.

As a general preamble, it is worth pointing out the salient
features of what is a very well studied system. In the experi-
mental data, the face-centred cubic (f.c.c.) aluminium struc-
ture gives rise to the expected form of the dispersion curves in
the [100] and [111] directions – doubly degenerate transverse
acoustic (TA) modes (as a result of the fourfold and threefold
rotational symmetry along these respective axes) and a single
longitudinal acoustic (LA) mode. These modes are dominated
by the first nearest neighbour interaction (hence the near-
sinusoidal form). Thus reasonable agreement for the gradient
of the near-linear part of the curve at low |q| (the velocity of
sound) and the frequency at which the curves cross the zone
boundary is sufficient to match the shape of the curves. The
observed flattening of the [111] TA curve near the zone
boundary is a consequence of contributions to bonding from
electron screening and exchange interactions at the Fermi
surface (Hafner & Schmuck, 1974) and, in consequence,
cannot be modelled with short-ranged pair potentials.
However, the contribution of this feature to the dynamics (and
hence to the prediction of bulk properties) is relatively small,
and further consideration of this region can be neglected in
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Table 1
Functional forms and associated parameters of the potential models for aluminium.

Potential model Form of EAM functional EAM density Pair potential

Sutton–Chen Fið&iÞ ¼ %
P

i Ai&
1=2
i ,

A = 1.000 eV
&i ¼

P
i Cr

%6
ij ,

C = 1303.927 Å6

’ðrijÞ ¼ a=r7,
A = 592.41956 eV Å6

NP-B Fið&iÞ ¼
P

i %Ec½1% ð'=(Þ lnð&i=&eÞ&ð&i=&eÞ
'=(

þ
P3

m¼1
1
2 ’0sm exp½%ðm1=2 % 1Þ)&

( ½1ðm1=2 % 1Þ%% ðm1=2%=(Þ lnð&i=&eÞ&ð&i=&eÞ
m1=2)=(,

Ec = 2.834 eV, ' = 4.954, ( = 5.203, ) = 5.824,
% = 8.969, ’0 = 0.2095 eV, s1 = 6.928, s2 = 3.861,
s3 = 15.50; &e cancels with &e in density term

&i ¼
P

i

P5
l¼0ðcl=12Þðri=r0Þ

l ,
c0 = 0.4333, c1 = %7.305,
c3 = 29.812, c4 = %54.44,
c5 = %15.50, r0 = 2.760 Å

’ðrijÞ ¼ %’0½1þ %ðr=r0 % 1Þ& exp½%)ðr=r0 % 1Þ&,
’0 = 0.2095 eV, r0 = 2.760 Å, % = 8.969,
) = 5.824

Mei–Davenport Fið&iÞ ¼
P

i %Ec½1% ð'=(Þ lnð&i=&eÞ&ð&i=&eÞ
'=(

þ
P3

m¼1
1
2 ’0sm exp½%ðm1=2 % 1Þ)&

( ½1ðm1=2 % 1Þ%% ðm1=2%=(Þ lnð&i=&eÞ&ð&i=&eÞ
m1=2)=(,

Ec = 3.39 eV, ' = 4.60, ( = 7.10, ) = 7.34759,
% = 7.35, ’0 = 0.1318 eV, s1 = 12.0, s2 = 6.0,
s3 = 24.0; &e cancels with &e in density term

&i ¼
P

i

P5
l¼0ðcl=12Þðri=r0Þ

l ,
c0 = 0.64085, c1 = %6.83764,
c3 = 26.75616, c4 = %47.16495,
c5 = %8.60834, r0 = 2.8638 Å

’ðrijÞ ¼ %’0½1þ %ðr=r0 % 1Þ& exp½%)ðr=r0 % 1Þ&,
’0 = 0.1318 eV, r0 = 2.8638 Å, % = 7.35,
) = 5.58441;
MDF taper r(cut) = 5.382 Å;
MDF taper f(cut) = 0.522 Å

Lennard-Jones
12–6 potential

N/A N/A ’ðrijÞ ¼ A=r m¼12 % B=r n¼6,
A = 38763.011, B = 118.33287
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the present work – especially as it can be modelled with
longer-range pair-wise interactions or directly via DFT.

The dispersion curves in the [110] direction, along which
there is only twofold rotational symmetry, produce an LA
mode and two distinct TA modes. The shapes of the TAmodes
are determined by the second nearest neighbour contributions
(even in models that do not explicitly include this interaction);
the maximum for the higher-frequency TA mode (found to be
displaced from a symmetry point) is determined by the second
nearest neighbour contribution, and its accurate positioning
requires a model with considerably more near neighbour
interactions (eight to ten interaction shells is typical). In
aluminium, this maximum is found close to (12

1
20).

Turning to the predicted dispersion curves, the Lennard-
Jones 12–6 potential, fitted to the elastic constants, performs
better than all of the EAM potentials in comparison with
experiment. It should be noted, however, that this model is
specifically targeted at describing the curvature of the
experimental (single-crystal) dispersion curves but is not fitted
to give zero stress at this geometry. As can be seen in Fig. 2, it
provides excellent agreement with the LA modes in all crys-
tallographic directions. The lack of nearest neighbour inter-
action terms beyond the first predictably generates only
reasonable agreement with the TA modes in the [100] and
[110] directions; this clearly demonstrates the need for addi-
tional terms for second and further nearest neighbour inter-
actions, as does the inaccurate |q| positioning of the [110] TA
maximum, although the model does predict the maximum
frequency of this mode very well.

It should be noted that the dispersion curves obtained from
the EAM models, also shown in Fig. 2, were not originally
compared with the experimental dispersion curve data as their
main use has been for studying clusters and associated ener-

getics. Hence, the accurate prediction of the lattice dynamics
was less relevant and poor fits are not unexpected. The
Sutton–Chen model provides the worst agreement with the
experimental dispersion curves, being significantly different
from experiment across the entire range of |q|, for all three
high-symmetry directions, and the prediction of the frequen-
cies at the zone boundaries, most notably the gamma point,
provides a poor dynamical description of the aluminium
lattice.

The NP-B model, which clearly overestimates the stiffness
of the bonding between atoms, produces dispersion curves
that are an improvement on those of the Sutton–Chen
potential, although the overbinding of the potential produces
frequencies for all modes that are considerably higher than the
experimental values.

The Mei–Davenport model performs best out of the EAM
potentials chosen for this comparison. This model provides a
near-perfect agreement for the TA mode in the [100] direc-
tion, over the entire range of |q|, and gives very reasonable
agreement for the LA mode in the same direction, with close
agreement in the lower-q region (|q| < 0.5) and reasonable
agreement at the zone boundary (within 20%). The [110] and
[111] directions give rise to similarly reasonable agreement to
that provided by the LA mode in the [100] direction: going
from very good agreement at low q (|q| < 0.5) to reasonable
agreement at the zone boundary in both high-symmetry
directions (certainly superior to the other EAM potentials).

There are clearly many more subtleties in the analysis of
these dispersion curves. However, the present work seeks to
present the equivalency of approach between single-crystal
and polycrystalline neutron scattering, and hence further
discussion is not relevant to the present objective.
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Figure 2
Dispersion curves calculated for the semi-empirical models (with initial
parameters) used in this work, compared with experimental triple-axis
spectrometer data gathered by Stedman & Nilsson (1966) at 80 K (red
points). Heavy black lines represent the LJ 12–6 model, heavy grey lines
the Mei–Davenport EAM, heavy yellow lines the NP-B EAM and thin
black lines the Sutton–Chen EAM.

Figure 3
Theoretical polycrystalline S0(Q, !) for aluminium, calculated using the
LJ 12–6 potential model, for the full range ofQ (0,Q, 10.0 Å%1) and !
(0 < ! < 350 cm %1). The S0(Q, !) intensity rises from very low (dark blue)
through mid (light blues and yellow) to very high (dark red). White areas
denote regions in (Q, !) space where no scattering occurs, whereas dark
blue shows low-intensity scattering due to off-symmetry direction
(polycrystalline averaged) scattering.
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2.4. Interpretation of one-phonon polycrystalline coherent
S(Q, x)

The present approach assumes that the one-phonon
coherent scattering process is dominant in the studied system
at low Q; for the aluminium system this is a reasonable
assumption given that aluminium is a strongly coherent scat-
terer [with a coherent cross section of 1.495 b (1 b = 100 fm2),
contrasting significantly with the incoherent cross section of
0.0082 b]. The approach also assumes no preferred orientation
of crystallites in the sample, as it uses spherical polycrystalline
averaging (although intensity changes due to preferred
orientation are readily introduced by altering the sampling
method): again a reasonable assumption for a polycrystalline
cubic system such as aluminium. The resulting contour plot of
the poly-CINS intensity for the fitted LJ 12–6 potential is
shown in Fig. 3, which was obtained using the Scatter
subroutine in the GULP program as described above. This
poly-CINS plot is a 300 (in Q) ( 300 (in frequency or energy
transfer, ET) bin data set with 300 angular steps in $ and ’, for
ranges of 0.0,Q, 10.0 Å%1 and 0, !, 350 cm%1 (0, ET,
43.4 meV). This produces a sampling mesh of 27 million q
points and samples (Q, !) space in an approximately
equivalent Q and energy transfer resolution to that
provided by time-of-flight instruments such as MARI.
The pattern is clearly complex but can be analysed if
approached systematically in the light of the experi-
mental or calculated dispersion curves.

Fig. 4(a) shows the dispersion surface for the first
mode (in this case, the longitudinal acoustic mode)
overlaid with a colour map that shows the S(Q, !)
intensity for the plane (hk0) over the range of the
calculation. Fig. 4(b) takes this projection and rotates
it so that the (h00) dispersion surface is visible
(equivalent to the allowed scattering from the long-
itudinal mode in the [200] direction), so that the
coherence condition is illustrated; from here, one can
clearly see the regions of allowed scattering [with the
colour map providing S(Q, !) intensity information –
white effectively denotes regions of (Q, !) space
where there is no allowed scattering]. From Fig. 4(b),
one can clearly see the regions of intense scattering
around the Brillouin zone boundaries, as well as the
increased intensity corresponding to the 1/! term in
equation (5). Fig. 4(c) shows the same data, as seen
from ‘above’, viewing the (hk0) plane; this figure
rather clearly illustrates the periodic boundary
conditions and provides a reference point for Fig. 4(d).
The white line denotes the vector from the (000) point
in the reciprocal lattice out to the (420) point.

Fig. 4(d) provides an illustration of how it is that
some of the sharp features are associated with vectors
to more remote reciprocal lattice points. The diagram
shows the (hk0) plane in reciprocal space and for a
particular value of ! that cuts the LA dispersion
surfaces close to each ‘allowed’ f.c.c. reflection, out as
far as (420). Thus the small circles represent the q
vectors corresponding to the LA phonons at that value

of !. Because of the coherence condition, the sphere in Q,
which has to be integrated over direction to yield the intensity
expected in the polycrystalline case, has to lie in the range
defined by |s % q(!)| < Q < |s + q(!)|. Thus we expect to find
sharp features for this value of ! where the Q sphere touches
one of the small circles as illustrated, and this turns out to be
along the vectors from the origin to the higher reciprocal
lattice points. Noting this, and taking into account the polar-
ization term in the intensity eds'Q, the edge features in the
scattering will be pronounced for LA modes because here the
phonon displacement vector is parallel to Q. Transverse
modes, on the other hand, will tend to peak where the Q
sphere passes through the reciprocal lattice point, as here the
displacement vector is parallel to the Q vector at the point
where the sphere crosses the dispersion surface at right angles
(and also passes through the reciprocal lattice point). Because
the steps in intensity generally occur along the [hkl] directions,
they are relatively easy to identify in the integrated one-
phonon cross section.

The process presented here is a simple one; reciprocal
lattice vectors from the origin of the reciprocal lattice to the
first 11 reciprocal lattice points are calculated for the model
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Figure 4
Views of the mode 1 dispersion surface in the QxQy plane of the reciprocal lattice
of aluminium, using the original Lennard-Jones potential (before fitting has been
applied), with scattering intensity superimposed upon the frequency surface as a
colour map. (a) An isometric projection of the dispersion surface. (b) A cross
section through the plane from the Qx-axis perspective. (c) The view looking down
on the plane. (d) A diagrammatic representation of the (hk0) plane in aluminium,
showing for example the [420] direction (broken line). The two spheres in Q show
the upper and lower values of Q for which one-phonon scattering can occur as a
result of the condition |s % q| < Q < |s + q|.
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used in the theoretical generation of S0(Q, !) – namely the
Lennard-Jones 12–6 model introduced in x4. These lines are
used to calculate S0(Q, !) going through the different (hkl)
points. As expected, the cross section shows a sharp intensity
step where the two spheres touch tangentially (in the long-
itudinal case) or peak at the (hkl) point (transverse case). This
provides an initial qualitative appreciation of the features
found in the poly-CINS data (as discussed in x3). Further
clarification, in the form of figures demonstrating this curve
projection and overlay process, is provided in the supple-
mentary text1 (Fig. S5).

The next step in this process is to take cuts through the
calculated polycrystalline S(Q, !) data for given ! intervals
integrated over a narrow band of Q values and to associate,
where possible, distinct scattering features with individual
dispersion surfaces in the symmetry directions selected. In
Fig. 5, cuts of constant Q (having a single ‘bin’ width of
0.0334 Å%1) have been taken through the theoretical data
presented in Fig. 3. Each cut, which is representative of the Q
resolution available from a typical high-resolution chopper
spectrometer, is then inspected and the most prominent
features are compared with the equivalent projections of the
dispersion curves. It is observed that the steps in intensity at a
given Q tend to occur where this cut crosses one of the set of
‘dispersion’ curves calculated along higher-order s directions,
as explained above. As noted above, the intensity features
observed can be classified in terms of either peaks or coher-
ence edge features; both sets of features are determined by the
structure and vibrational characteristics of the material and
are governed by equation (4). For the purposes of this work, it
is unnecessary to identify every feature in a given cut through
the poly-CINS data set, because clearly some will arise where
the Q sphere touches the dispersion curve away from any
symmetry direction.

In this work, coherence edge features have generally been
selected for identification, as the use of experimental data
requires the summation of adjacent Q bins to reduce the
statistical error in the measured intensity (owing to the rela-
tively low count rate for a given set of detectors). This results
in a ‘smearing’ of both types of sharp feature such that the
peak–coherence edge paired features are often the only
readily identifiable feature in a given cut through an experi-
mental set. Therein lies the compromise implicit in this
approach to the analysis of poly-CINS data; a narrower range
of Q over which a summation is taken results in sharper Q-
dependent features, but this in turn reduces the number of
measured neutron counts and hence the statistical accuracy of
the data. In the extreme, a full summation over the entire
range of Q sampled by an instrument results in the effective
application of the incoherent approximation; here all Q
dependence is lost and the data collection is reduced to a
phonon density of states measurement, whereas a fine cut (as
for a single detector), providing the best Q resolution, would

result in excessively long measurement times to gain sufficient
statistics to make an effective comparison with a model.
Examples of coherence edge features in Fig. 4 include the
features containing the [111] LA modes at Q = 1.0 Å%1 and Q
= 3.4 Å%1 and the [200] TA coherence edge atQ = 1.8 Å%1, for
energy transfers of 33.8 meV (273 cm%1), 29.8 meV
(240 cm%1) and 38.6 meV (311 cm%1), respectively.

It should be noted that the full intensity of Scoh
0 (Q, !) at a

given (Q, !) value is not exclusively the result of a single mode
in a set direction in reciprocal space. Clearly, a large number of
q values contribute to a given Scoh(Q, !) intensity after
averaging over Q directions. However, it does seem that many
of the sharp features in the scattering functions do arise from
the tangential intersection of the sphere in Q with a particular
dispersion curve.
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Figure 5
Identification of prominent features in the theoretical poly-CINS data set
presented in Fig. 3. The horizontal axes are energy transfer and
vibrational frequency (meV and cm%1, respectively) and the vertical axis
is S0coh(Q, !). Major scattering features are labelled for each cut in terms
of a q point along the direction in the conventional reciprocal lattice [hkl].
Black arrows denote an identified feature, with appropriate [hkl], in the
LJ 12–6 theoretical data and grey arrows denote prominent features that
do not correspond to any of the dispersion curves used in this analysis.

1 Supplementary information is available from the IUCr electronic archives
(Reference: HE5613). Services for accessing this material are described at the
back of the journal.
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2.5. Bulk properties
Here we present the bulk properties calculated from the

models described in the previous section. The values are given
in Table 2, along with experimental values from the literature.
Note that the bulk moduli calculated with GULP use the
Voigt volume derivative approach (Nye, 1957).

As shown in Table 2, the potentials all perform adequately
when compared with experiment; the single exception to this
is the binding energy predicted by the LJ 12–6 pair potential.
As is to be expected, this two-parameter LJ model is unable to
fit the binding energy, lattice parameter and mechanical
properties simultaneously. Because of its pairwise nature, the
LJ 12–6 potential cannot capture the Cauchy violation
between the elastic constants C12 and C44, unlike the EAM
models. However, this simple model, when fitted to the elastic
constants, provides good agreement across a range of other
bulk properties, in particular, the bulk moduli; the model
predicts Young’s modulus especially well compared with the
other models. It also performs adequately for the bulk and
shear moduli, although both the NP-B and Sutton–Chen
potentials do better, with the Mei–Davenport outperforming
the Lennard-Jones by a considerable margin. However, the
Lennard-Jones model performs very well in the prediction of
Poisson’s ratio; the EAM models all predict values that are
significantly different from experiment. No particular
conclusions should be drawn from the agreement with elastic
constants as these were used to parameterize the model. Thus,
on the whole, the simple LJ 12–6 model performs remarkably
well with respect to the curvature of the potential energy
surface; the Mei–Davenport model generally matches, or
slightly exceeds, its performance for most of the bulk prop-
erties compared here, while the Sutton–Chen and NP-B
potentials generally have a worse overall performance in this
regard.

When comparing the potential models it is important to
consider the relative computational expense, given that
calculations of poly-CINS will require many second-derivative
evaluations. As an example, the LJ 12–6 model completes a
standard sampling of (Q, !) space, as described in x2.4, about
300 times faster than the equivalent EAM calculations. To be
precise, the LJ 12–6 model takes around 150 s on a 8-core,
3 GHz Xeon workstation, whereas the EAM potentials
average around 45 000 s on the same workstation for the

identical sampling and phonon calculations; it is thus clear that
the LJ 12–6 model can be useful as a tool for generating the
bulk properties in systems with large numbers of atoms in the
unit cell, although its poor binding energy and more limited
transferability to other environments, such as cluster calcula-
tions, limit its broader utility.

3. Experimental

In order to collect data across a full range of momentum and
energy transfers for aluminium (necessary to investigate theQ
dependence of the vibrational modes in a poly-CINS experi-
ment), the most appropriate instrument type is a direct
geometry time-of-flight chopper spectrometer. This type of
instrument [of which the MARI spectrometer (Taylor et al.,
1991) situated at the ISIS facility, UK, is a distinguished
example] is designed to sample (Q, !) space by means of a
fixed incident neutron energy, where the scattered neutrons
are measured using a large detector bank so that energy and
momentum transfer can be recorded independently.

Data were gathered on this spectrometer over a period of
22 h, using the proton current convention for a total proton
current on target of 3600 mA h for ISIS TS1. The sample was a
94 g polycrystalline sample of 99.999% purity aluminium in
pellet form (manufactured by Goodfellow Cambridge Ltd) at
a temperature of 10 K. The fixed incident energy was
58.8 meV, which provided a sampling of (Q, !) space for 0 ,
Q , 10.0 Å%1 and 0 , ! , 350 cm %1 (0 , ET , 43.4 meV) in
the characteristic ‘bishop’s mitre’ configuration obtained from
the detector coverage in neutron energy loss. Although the
instrument also collects data in neutron energy gain, neutron
energy loss was preferred (and the experiment was performed
at low temperatures). This approach more fully samples the
region of (Q, !) space of interest, because neutron energy gain
is limited to energy transfers -kT, i.e. a few meV at low
temperature, where there will be little intensity for energy gain
above this. The data have been corrected for detector effi-
ciency, and all other pre-processing and data reduction from
raw time-of-flight data to S0(Q, !) were accomplished using
the MANTID suite of neutron scattering instrumentation
software (http://download.mantidproject.org/). The resulting
data set is shown, with a 10% maximum intensity cutoff
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Table 2
Experimental and calculated bulk properties of aluminium.

Sutton–Chen Mei–Davenport NP-B Lennard-Jones Experiment

Lattice constant (Å) 4.050 4.050 4.030 4.050† 4.0495
Binding energy per atom (eV) %3.33 %3.39 %3.43 %0.52 %3.43
Young’s modulus (GPa) 14.2 32.6 124.0 59.9 70.3
Bulk modulus (Voigt average) (GPa) 75.2 76.87 176.3 68.3 76.9
Shear modulus (Voigt average) (GPa) 9.80 22.9 83.53 35.57 26.1
Poisson’s ratio 0.468 0.429 0.383 0.354 0.345
C11 (GPa) 82 92 236 98 107
C12 (GPa) 72 69 146 54 61
C44 (GPa) 16 37 109 49 29

† For LJ 12–6 this is a fixed value and has not been derived from an optimization.
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applied to avoid domination of the contour plot by the elastic
line, in Fig. 6.

Applying the neutron scattering theory described in the
previous section, it is possible to gain a good understanding of
the sharp features present in such data sets owing to one-
phonon scattering – generally due to the sphere in Q touching
and crossing particular dispersion surfaces. Multiple-phonon
terms, which will dominate at larger energy and momentum
transfers, are considerably smoothed relative to the one-
phonon terms, as are multiple-scattering effects.

Common to all such coherent polycrystalline Scoh
0 (Q, !)

plots, the one-phonon scattering functions as given by equa-
tion (5) (as a function ofQ) yield scattering intensities that, on
average, increase as a function of -Q2 until attenuated by the
increasing contribution of the Debye–Waller factor,
exp(%Wd) at higher Q.

Upon visual inspection, the first and most obvious features
of the data in Fig. 6 are the ‘arches’ of very intense scattering
associated with the LA dispersion curves, corresponding to the
superposition of the single crystallographic directions consis-
tent with the dispersion curves of a single crystal. These
features, which dominate the scattering intensities in the
experimental data, arise from the fact that, for a particular
energy transfer, h- !, the coherence condition implies that |s %
q(!)| < Q < |s + q(!)|, where q is taken along the phonon
branches in high-symmetry directions in the Brillouin zone (in
particular, for aluminium, the [200], [220] and [111] direc-
tions). As seen on closer inspection, the lower-symmetry
directions defined by vectors from the origin to higher-order
Bragg peaks are also significant. Otherwise, given the relative
complexity of these data, identifying which feature belongs to
a given vibrational mode is challenging, especially when one
considers systems with more than one atom per unit cell or
materials with noncubic symmetry. However, it is clear that
many of the dominant features in a given poly-CINS data set,

and, in particular, the simplest case of a face-centred cubic
metal with a single elemental basis, such as aluminium, are
those defined by the modes in the major crystallographic
directions defined by the s vectors of the reciprocal lattice
projected out into Q. This observation informs much of the
analysis provided in x4, as the approach taken to the analysis
of the data relies upon the identification of scattering features
using projections of dispersion curves onto momentum
transfer,Q. Thus, the ‘arches’, corresponding to the LA modes
in the [111], [200] and [220] crystallographic directions as they
return to the elastic line (zero energy transfer) at 2.68, 3.1 and
4.4 Å%1 are clearly visible, with further multiples of these at
6.2, 8.8 and 5.34 Å%1 and so on. These features are accom-
panied by the modes returning to zero energy transfer
obtained from the vectors to the higher reciprocal lattice
points for the f.c.c. lattice, such as the [311], [331], [420], [422],
[511], [531], [442] and [620] directions in the conventional
(Cartesian) reciprocal lattice directions.

The other key features that are clearly identifiable from this
dispersion curve comparison are the maximum energies of the
LA and TA modes that give rise to cutoff features in the poly-
CINS scattering associated with abrupt intensity changes that
are invariant in Q but seen as ‘bands’ of intense scattering
over the range of energy transfer. Beginning at low Q, the first
such features are those due to the maxima of the LA modes of
the [111] and [100] dispersion curves at Q = 1.34 Å%1 and Q =
1.56 Å%1, respectively, at vibrational frequencies (energy
transfers) of 325 cm%1 (40.3 meV) and 322 cm%1 (39.9 meV)
that give rise to the high-frequency limit of the scattering.
(Note that if Q is parallel to q, as in the first zone, the
condition leads to the longitudinal modes having maximum
intensity and the transverse modes zero intensity.)

4. Analysis of coherent inelastic neutron scattering
from polycrystalline aluminium

In this section, the methodology presented in x2.4 is applied to
the specific task of identifying and exploiting the poly-CINS
data from polycrystalline aluminium. Given that data sets
obtained from powder samples can be thought of as a multi-
tude of dispersion curves [deriving from every possible
direction in (Q, !) space] superimposed upon each other,
great care should be taken in identifying any given feature as
belonging to a particular phonon branch. This is particularly
so, given that it was found that many of the most intense sharp
features in the poly-CINS data set arise where the sphere in Q
crosses the dispersion surface in nonsymmetry directions.
However, by extending the analysis to include crystallographic
directions in reciprocal space other than the highest symmetry
directions, many of these features can be identified. This then
allows the experimentalist to identify specific features and use
the frequencies of these features in a fitting process to
generate theoretical models that match these features. Given
that the intensities of poly-CINS features are directly related
to the eigenvectors for the motions of planes of atoms, this
method presents an excellent means of generating physically
useful models that can predict bulk properties well.
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Figure 6
Experimental polycrystalline S0(Q, !) for aluminium at 10 K obtained on
the MARI spectrometer, ISIS, for the full range in neutron energy loss of
Q (0 , Q , 10.0 Å%1) and ! (0 , ! , 350 cm %1). The S0(Q, !) intensity
rises from very low (dark blue) through mid (yellow) to very high (dark
red). White areas denote regions in (Q, !) space where there is no
detector coverage.
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The approach taken in this work has been to identify the
dominant features of the aluminium S0(Q, !) spectrum using
the simple LJ 12–6 model. Once the general features of the
plots are identified, it becomes relatively straightforward to
extract effective dispersive feature information in terms of
more traditional dispersion curves, which can then be used to
create a set of k points for use in a fitting process, as described
in x4.1. This method is applied to the experimental data set to
illustrate the utility and limitations associated with the analysis
of experimentally obtained data. In x4.2, the same approach is
applied to a comparison of the ‘best’ of the MEAM models,
the Mei–Davenport model, with the theoretical neutron
spectra; dispersion curves and bulk properties are then
recalculated for both models fitted to experimental data. It
should be noted that no resolution correction has been added
to the theoretical data, as this makes it easier to identify the
coherence edges, which are then linked to the sloping edge
features in the experimental data (see x4.1).

4.1. Comparison of experimental Al poly-CINS S000(Q, x) data
with model predictions

As noted above, the full intensity of Scoh
0 (Q, !) at a given

(Q, !) value is a superposition of the scattering seen in all
directions. That is why it is necessary to concentrate on the
identification of particular sharp features for the comparison
of experiment and theory. Once Scoh

0 (Q, !) features are
identified as being associated with a given cut in reciprocal
space, the next step is to approach the experimental S(Q, !)
data and attempt to identify equivalent features. In order to
facilitate the comparison, both experimental and theoretical
cuts (the LJ model) through the data sets at fixed Q values
may be superimposed as in Fig. 7.

We note here that there are gaps in the detector coverage
on the instrument and these affect the choice of constant Q
cuts. Hence a new set of cuts, chosen to pass through the
sharpest, most intense one-phonon features with a minimum
of gaps due to missing detectors, were selected: cuts were
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Figure 7
Selected cuts at constant Q through the experimental S0(Q, !) (black line) for aluminium at 10 K obtained on the MARI spectrometer, ISIS, from Q =
1.0 Å%1 toQ = 7.0 Å%1. The horizontal axes are energy transfer and vibrational frequency (meVand cm%1 respectively) and the vertical axis is S0coh(Q, !).
The width of cut is 0.067 A%1 and the corresponding cut through the LJ 12–6 theoretical data (fitted to elastic constants) is given as the red line. All
intensities are to scale.

electronic reprint



made through both theoretical and experimental data sets for
a bin width of 0.0667 Å%1 (median value .0.03335 Å%1) for
median values of Q of 2.2, 2.5, 3.2, 3.6, 4.2, 4.6, 5.0, 5.6, 6.2, 6.6
and 7.0 Å%1. The resulting comparisons are shown in Fig. 7.

Although there are significant differences in both the
intensity profiles and the positions of sharp features on the
energy transfer scale, the general Scoh

0 (Q, !) profile is in
reasonable agreement: sufficiently so to relate features in the
theoretical and experimental profiles.

From these comparisons, 31 Scoh
0 (Q, !) features could be

reasonably assigned to one of the 11 reciprocal space direc-
tions used for this treatment. In order to reduce the likelihood
of assignment errors in this process, a Python script was
written to automate the selection process somewhat; each
potential matchable feature in the experimental data (whether
peak or coherence edge) was selected directly from the rele-
vant data slice and the corresponding energy transfer for the
feature was recorded; these values were then used as sort

parameters. This sort generated a list of the nearest theoretical
dispersion surfaces in our set of [hkl] directions, and only
surfaces that passed through the feature within 1 cm%1 ("!)
were considered as potential matches. Depending on the
relative sharpness of the scattering feature, some features of
less than 1 cm%1 were discarded as being insufficiently clear to
match. Each sort then provided the dispersion curve label, the
q point (in terms of fractional reciprocal lattice vector) and the
mode number (using the mode identification in GULP) for
use in model fitting, assuming that the "! condition was met
and the feature was sufficiently distinct in both theoretical and
experimental data sets.

This process is clearly amenable to automated feature
identification via a mathematical optimization formalism.
However, for this initial work, the same process as is used for
mode assignment in other spectroscopy has been used and
only clearly distinct features have been selected for potential
comparison to experimental data.
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Figure 8
Four constant Q cuts through Fig. 3 (red line) and Fig. 7 (black line) for a Q bin of width of 0.067 Å%1. The horizontal axes are energy transfer and
vibrational frequency (meV and cm1, respectively) and the vertical axis is S0coh(Q, !). Major scattering features are labelled for each cut in terms of a
point along the direction in the conventional reciprocal lattice [hkl]. Red arrows (below spectra) denote an identified feature, with appropriate [hkl], in
the LJ 12–6 theoretical data and black arrows (above spectra) the equivalent feature in the MARI data. Relative intensities between cuts are not to scale,
for clarity of presentation.
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With these criteria, of the 31 identified features in 11 cuts
through the Lennard-Jones-derived data, only 20 could be
unambiguously assigned to the experimental data. The label-
ling is provided in Fig. 8 for these 20 features, where the
arrows are labelled with the relevant direction in q space. The
upper values (black) refer to the experimental data and the
lower values (red) to the model. To aid in the visualization of
these points, Fig. S5 (in the supplementary text) shows how the
sampling of (Q, !) space has been accomplished, by projecting
the points labelled in Fig. 8 onto the Q scale used for Figs. 3
and 6.

The final step in the analysis process involved fitting two of
the models (LJ and Mei–Davenport) to these (q, !) points
using GULP’s internal least-squares minimization routine. In
this procedure, the (q, !) points were input as observables and
the optimal parameters were obtained for both models from a
variety of initial values to ensure that a reasonable global
minimum was obtained. For the Mei–Davenport model, the
EAM density terms were not fitted, although the lattice was
allowed to relax in one fit and fixed in the other to explore the
effect of fixing the lattice in such a model.

4.2. Results from the fitting of poly-CINS data to two models
for aluminium

The fitting process proved very successful for the case of the
Lennard-Jones potential model, and a global minimum was
found with values of A and B of 28273.896 eVA%12 and
46.590 eVA%6, respectively, keeping the lattice constant fixed.
The fitting process applied to the Mei–Davenport model,
whilst successful, was considerably more methodologically
dubious as the parameter space for the process is considerably
larger and, as this work is not specifically targeted at produ-
cing a more physically accurate MEAMmodel, little effort was
spent on ensuring that a true global empirical minimum was
reached. However, as the EAM density parameters were kept
fixed, i.e. were not included as fitting parameters, the fit
resulted in changes to the Ec, ', ( and ) parameters (with new
values of 3.335, 4.57, 7.047 and 11.326 eV, respectively) in the
EAM functional part of the potential, with ’0 and % changing
to 0.1330 and 7.3866 eV, respectively. The final parameteriza-
tion of each model is presented in Table 3.

Thus, in Fig. 9, the initial and final (fitted) versions of the
Mei–Davenport and Lennard-Jones models were used to
generate Scoh

0 (Q, !) data sets equivalent to those found in
Fig. 3, and constant Q cuts were taken through these data sets,
following the process described in the previous section. The
figure presents a representative example [for median Q =

4.6 Å%1, with a cut width of 0.0667 Å%1 (median value .
0.0334 Å%1)] of these data comparisons; more have been
provided in the supplementary text. As can be seen, the key
features being tracked are the peak corresponding to the [531]
dispersion curve at 145 cm%1 (18.0 meV) and the coherence
edge feature corresponding to the [422] dispersion curve at
200 cm%1 (24.8 meV) in the experimental data. Curves (a) and
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Table 3
Functional forms and associated parameters of the potential models for aluminium, fitted from poly-CINS data.

Potential model Fitted EAM functional parameters Fitted EAM density parameters Pair potential parameters

Mei–Davenport Ec = 3.335 eV, ' = 4.57, ( = 7.047,
) = 11.326, % = 7.35, ’0 = 0.1318 eV,
s1 = 12.0, s2 = 6.0, s3 = 24.0

c0 = 0.64085, c1 = %6.83764,
c3 = 26.75616, c4 = %47.16495,
c5 = %8.60834, r0 = 2.8638 Å

’0 = 0.1330 eV, r0 = 2.8638 Å,
% = 7.3866, ) = 5.58441

Lennard-Jones (4 Å cutoff) N/A N/A A = 28273.896, B = 46.590074
Lennard-Jones (12 Å cutoff) N/A N/A A = 44389.768, B = 135.77357

Figure 9
Comparison of four theoretical models, using the constantQ cut (width of
0.067 Å%1) for Q = 4.6 Å%1 from Fig. 8, with experimental data for
aluminium at 10 K obtained on the MARI spectrometer, ISIS (grey line).
(a) The original LJ 12–6 model, (b) the LJ 12–6 model fitted from MARI
experimental data, (c) the original Mei–Davenport model and (d) the
Mei–Davenport model fitted from MARI experimental data. The
horizontal axes are energy transfer and vibrational frequency (meV and
cm%1, respectively) and the vertical axis is S0coh(Q, !).

electronic reprint



(c) show the theoretical Scoh
0 (Q, !) generated from the initial

versions of the models and clearly illustrate the better
agreement with experiment provided by the LJ model. Curves
(b) and (d) are the equivalent Scoh

0 (Q, !) data generated after
the fitting procedure It is clear that both models show signif-
icant improvement; in particular, the peak corresponding to
the [531] direction shows much improved agreement with the
experimental data. This is not surprising given that the
features discussed were used as observables in the fitting
process. However, selection of other cuts also produces
features that are in better agreement with experiment (see
supporting text for additional examples).

At this point in the analysis, it becomes clear that the
present process lends itself very naturally to an iterative
approach to the fitting process; although the present treatment
deals with only a single ‘run through’ of the method, the most
sensible means of improving fits [and hence the quality of the
model generating Scoh

0 (Q, !)] would be to take the outputs of
the current method and, rather than moving straight to bulk
properties and dispersion curves, to re-apply the process
(probably several times) by taking cuts through the data set
generated by the new model(s) and running through the
feature identification and the fitting steps again. This
approach, which would resemble a profile refinement process
as used for diffraction data (in effect, inelastic profile refine-
ment), would minimize the differences between the theore-
tical and experimental Scoh

0 (Q, !); work is in progress to
demonstrate this approach.

Once the fitted models have been inspected for agreement
with experiment, the final stage in the analysis is that of
generating bulk properties and dispersion curves for the
original and fitted models. Fig. 10 presents the dispersion
curves for the two versions of the Lennard-Jones and of the
Mei–Davenport models compared with the single-crystal
dispersion curve data of Stedman & Nilsson. Rather
encouragingly, both fitted potential models generate disper-
sion curves that are very similar, illustrating that the sampling
of reciprocal space is consistent for both models. Both of the
fitted models also produce dispersion curves that are in better
agreement with the experimental curves, after allowing for the
difference in temperature: the Stedman & Nilsson data were
taken at 80 K, whereas the models generated are for data
taken at 10 K. The higher temperatures will result in slightly

softer modes and hence lower maximum frequencies at the
zone boundaries. Of course, none of the models effectively
reproduce the curvature of the TA modes in the [110] direc-
tion: both models have very short cutoff distances for the
interactions (first nearest neighbour for the LJ model and
fourth nearest neighbour for the Mei–Davenport model),
which will significantly influence the curvature of the disper-
sion curves in this region. Indeed, the work by Gilat &
Nicklow (1966) suggests that effective Born–von Karman
force constant models in metals such as aluminium are
sensitive to nearest neighbour interactions out to at least the
eighth nearest neighbour distance. However, both models do
show an improved agreement with experiment (both for the
single-crystal values and for the data reported in the present
work).

Finally, the bulk properties of aluminium were calculated
for both fitted models. The results are presented in Table 4.
The fitted Lennard-Jones model, which produces improved
dispersion curves, nevertheless performs somewhat less well
than the original model as far as the bulk properties are
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Figure 10
Dispersion curves calculated for the semi-empirical models fitted to
experimental data in this work, compared with the experimental triple-
axis spectrometer data (red points) previously presented in Fig. 3. Heavy
black lines are the original LJ 12–6 model, thin black lines the fitted LJ
model, thick grey lines the original Mei–Davenport model and thin grey
lines the fitted Mei–Davenport model.

Table 4
Comparison of bulk properties from models fitted to poly-CINS data in this work.

Original Mei–Davenport Fitted Mei–Davenport Original LJ 12–6 Fitted LJ 12–6 Experiment

Lattice constant (Å) 4.050 4.050 (4.170) 4.050† 4.050† 4.0495
Binding energy per atom (eV) %3.326 %3.44 (%3.48) %0.52 %0.88 %3.43
Young’s modulus (GPa) 14.2 37.1 (37.1) 59.9 44.8 70.3
Bulk modulus (Voigt average) (GPa) 75.2 80.0 (81.9) 68.3 66.5 76.9
Shear modulus (Voigt average) (GPa) 9.80 31.9 (26.8) 35.57 32.85 26.1
Poisson’s ratio 0.468 0.423 (0.425) 0.354 0.388 0.345
C11 (GPa) 82 97 (99) 98 88 107
C12 (GPa) 72 71 (73) 54 56 61
C44 (GPa) 16 44 (36) 49 44 29

† For LJ 12–6 this is a fixed value and has not been derived from an optimization.
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concerned. This is unsurprising given that the initial model was
fitted to experimental elastic constants, but changes to the
force constants A and B are relatively small. The bulk prop-
erty calculations for the Mei–Davenport model were handled
in two ways; the first was a straight fixed-lattice calculation
where the potential generated very good agreement with
experimental data; in the case of binding energy (not strictly
valid for fixed-lattice calculations), Young’s and shear moduli,
and elastic constant predictions, the fitted model outperforms
the original model and generates predicted bulk properties
consistently closer to experimental values. With the constraint
of a fixed lattice removed, the model fitted to the Scoh

0 (Q, !)
data produced a second set of predicted bulk properties (in
parentheses in Table 4). Although this results in a relaxation
of the lattice, giving rise to a lattice constant that is signifi-
cantly too large (4.17 Å, rather than the experimental value of
4.05 Å), the model performs much better than either the
Lennard-Jones (fitted) or the original Mei–Davenport model
in terms of predicted binding energy and the other bulk
properties, especially the elastic moduli (Young’s, bulk and
shear). We have demonstrated that the results can be mark-
edly improved simply by expanding the cutoff of the LJ 12–6
model to 12.0 Å. This results in a model that provides broadly
similar agreement (in terms of bulk values) to that of the
original LJ model (fitted from elastic constants), yet requires
no adjustment of the lattice constants (i.e. the model predicts a
lattice spacing of 4.05 Å when allowed to relax). The resultant
values of the parameters are included in Table 3 but further
discussion is postponed.

4.3. Discussion on the extension of the method to other
systems

As has been stated earlier, aluminium was chosen to illus-
trate the methodology for this work because it has the simplest
possible crystalline structure as well as being a very well
understood material in terms of both bulk properties and
dynamics. Given the complexity of polycrystalline data sets,
aluminium represents the simplest possible case to apply in
terms of both basis size and symmetry, yet for this method to
be generally useful, it should be extensible to materials with
polyatomic basis sets and should also provide some demon-
strable advantages to the current method of analysing powder
spectra – namely the incoherent approximation.

Currently, the standard approach to assigning vibrational
frequencies for polycrystalline coherent scattering systems is
via the so-called incoherent approximation, a detailed treat-
ment of which can be found elsewhere (Mitchell et al., 2005;
Kearley, 1995). In this approach, the experimental data are
integrated over the full angular range of detectors, which
provides greatly improved statistics at the cost of obscuring all
explicit Q dependence in the resulting two-dimensional
(frequency versus integrated intensity) data sets. The general
method effectively treats the resulting data as a means of
experimentally determining the phonon density of states, g(!).
These data are then compared, with minimal processing, with
a gamma point calculation [typically using DFT and software

such as PHONON or a-CLIMAX (Ramirez-Cuesta, 2004) to
post-process the force constant outputs into simulated
inelastic neutron intensity data], and some implicit Q depen-
dence is then inferred from relative intensities or the intensity
profile as a whole. As an analysis method, it has much to
recommend it: the method is very computationally efficient (a
gamma point calculation is relatively computationally inex-
pensive and can be performed on a desktop workstation in
very little time for small-unit-cell systems) and, as has been
mentioned, there are a number of freely available support
software packages available to assist in this analysis. However,
it is clear that there are several issues with this approach, the
most significant being that explicit Q dependence of the
vibrational modes is lost entirely; as one is dealing with the
density of vibrational states, one may not track the curvature
of individual modes. Indeed, before the computational
resources became available for routine DFT calculations,
much of the most detailed inelastic scattering simulation and
fitting used semi-empirical models and carefully considered
correction factors (Egelstaff & Poole, 1969) to properly weight
the integrated intensities. The scattering data were plotted as a
function of Q2 at a given angle, and the high-Q data were
extrapolated back to yield a gradient at small Q2, where the
actual data shows large fluctuations due to coherent terms.
This would result in semi-empirical force constant fits that
could be very difficult to interpret and assign properly, given
the sensitivity of the fits to the relative intensity profiles
(Kearley, 1995).

After the advent of the easily accessible computational
resources required to directly generate intensities using DFT,
the emphasis shifted to using the aforementioned DFT direct
simulation approach, typically compared with directly inte-
grated g(!). However, this approach directly integrates the
scattering over observed values of Q at a given energy and
assumes that the coherent scattering averages out. Our
calculations show that there are significant differences
between the actual density of states obtained from GULP and
the above quantity obtained from the GULP poly-CINS
output. The most notable one is that of intensity differences
between the strict incoherent density of states, especially at
lowQ, where contributions from the coherent scattering in this
region produce a ‘summed up over Q/angles’ profile for the
incoherent approximation that significantly deviates from the
density of states. There are also issues associated with fitting
an improved model: DFT calculations do not, in general,
provide precise matches to INS data sets, and the scaling
approach (Mitchell et al., 2005) used to assign modes unam-
biguously can obscure the quality of a given calculation. In any
case, DFT outputs cannot be ‘fitted’ to provide functional
models for T > 0 K systems with ease. The poly-CINS method
does not suffer from this limitation (although DFT inputs can
be used to provide an initial starting point for finite
temperature calculations), as the Q dependence of individual
modes can be identified and tracked, without resort to either
complex correction factors or scaling of frequencies.

As the size of the basis set increases from the monatomic
basis used for this work, other features in the scattering data
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will become relevant to discuss – most notably the scattering
from optic modes (as aluminium is monatomic, it does not
possess optic modes). Although this work has restricted itself
to the discussion of the dynamics of the aluminium system,
and by definition scattering profiles derived from acoustic
modes, the authors have measured a number of polyatomic
systems (with lower symmetries than cubic aluminium) using
this approach, most notably graphite (Roach, 2006; Roach,
Heuser et al., 2013; Roach, Parker et al., 2013), MgD2 (Buckley
et al., 2013) and C60 (Roach, 2006; Roach, Heuser et al., 2013;
Roach, Parker et al., 2013). In all these cases, optic modes
generate the same coherence edge and peak features (they are
still subject to the same selection condition as acoustic modes)
and can be measured and identified, although these can be
more difficult to distinguish than in the present case, requiring
extremely long data collection runs on high-intensity instru-
ments to provide sufficiently high count rates to distinguish
these features from noise. This is especially so in the case of
very large systems and systems with relatively ‘flat’ optic mode
branches (such as C60), which require correspondingly high
resolution sampling in the calculation of the poly-CINS
intensities. Lower-symmetry systems also appear to pose no
particular problem, providing the sampling of reciprocal space
is sufficiently tight.

Finally, zone boundary effects can add to the variation of
intensities, and one might speculate that this issue might affect
the identification of edge and peak features where scattering
close to the zone edge is very much more intense (see Fig. 4b
and comments in x2.4); indeed, it is very likely that a number
of the most intense features in Figs. 7 and 8 are due to the
orientational averaging of this effect. This is, however, more
likely to be an issue with samples with crystallites of higher-
symmetry materials (such as aluminium), as the Brillouin zone
path is very simple and these effects will superimpose in the
orientational averaging much more obviously. With lower-
symmetry crystallites, this would probably average out into a
smoother intensity profile. However, it is important to check
on this. Fig. S5 in the supplementary text provides a conve-
nient method of checking for bias introduced as a result of this
effect, as well as a means of checking other sampling bias (TA
rather than LA, for instance, or zone centre versus zone edge).
In the case of aluminium, and the sampling and feature
selection for this work, it appears that the sampling is evenly
split between zone edge and other regions. It is quite clear that
some coherence edge features are more pronounced near the
zone edges, but it is also clear (from Figs. 8 and S5) that
scattering beyond these areas is sufficiently intense to identify
these features away from the zone edge.

5. Conclusions

In the present paper we describe the structure of an extension
to the GULP program, which calculates the polycrystalline
coherent inelastic neutron scattering directly from a dyna-
mical matrix for the crystal. This model for Scoh

0 (Q, !) can be
compared directly with experimental measurements made
using an inelastic neutron spectrometer, either as a complete

contour plot or in terms of profiles along observed loci in (Q,
!) space. The method has been applied to aluminium as a
simple example of a crystalline material for which dispersion
curve data are available; this provides definitive corroboration
of the methodology. Three popular semi-empirical models
have been simulated, along with a simple model generated for
the purpose of method checking. It was found that these
models differ significantly from each other in terms of the
dispersion curves and the bulk properties predicted by each.
The best performing of these four models (the Lennard-Jones
and the Mei–Davenport) were then used to identify and
analyse the polycrystalline coherent inelastic neutron scat-
tering spectrum from a polycrystalline aluminium sample.
Cuts were used through the data to identify dispersive features
that were then used as fitting observables in a least-squares fit
of the model to the neutron data.

The method described, which relies on the analyst to
identify scattering features in the neutron data that corre-
spond to single-crystal dispersion curves in a polycrystal, has
proven to be effective in the simple case of aluminium. The
strength of the method is that it does not require full sampling
of (Q, !) space – even along the locus of a cut through
experimental data – to generate fitting observables. Rather it
applies an understanding of the ‘rules’ behind coherent
inelastic scattering to identify scattering features that coincide
with dispersion curves in single-crystal samples, and then uses
these points in (Q, !) space to generate individual q points for
fitting using lattice dynamics codes. Furthermore, although fits
to experimental data can be improved with the addition of
computationally calculated two-phonon and multiphonon
scattering contributions, dynamic Debye–Waller factor
contributions, multiple scattering corrections, and other
(instrument-specific) contributions, none of these are neces-
sary to identify the majority of one-phonon edges in a poly-
crystalline sample. This in turn means that the computational
costs for a given analysis are orders of magnitude less than
would be required for a full calculation using a total scattering
approach. As one increases the size of a given unit cell, the
computational expense of the full calculation rapidly becomes
prohibitive and the required sampling of reciprocal space itself
becomes a limiting factor; even simple systems with unit cells
containing less than 20 or so atoms require significant
computational resources for such calculations. Work is
underway on the extension of this method to systems with
larger unit cells. With regard to the complementarity of the
poly-CINS method with incoherent inelastic neutron scat-
tering, it is worth pointing out that, for systems dominated by
incoherent scattering that are not suitable for isotope substi-
tution with coherently scattering nuclei, the poly-CINS
method would provide little additional useful information and
so mode assignment via incoherent scattering would be the
most efficient method to use. However, for those materials
that can be readily isotope substituted to take advantage of
one or more elements with isotopes with appreciable coherent
cross sections, the poly-CINS method could be used and the
signal from the incoherent scattering would be calculated and
added to produce a composite S0(Q, !). This plot would be
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used to identify features with no Q dependence and exclude
them from the search for Q-dependent scattering features.
Mixed metal hydrides/deuterides would be an example of
where poly-CINS would provide a more complete experi-
mental verification of a given model than via the incoherent
approximation or incoherent inelastic scattering alone.

Although this type of experimental measurement has not
been much used in the past, it seems clear that, with the power
of modern computational resources, it has the potential to
become an important technique for analysing the dynamics of
a wide range of intrinsically polycrystalline solids that have
coherent cross sections (and incoherent scattering can be
simulated to isolate the coherent scattering features for
systems with more mixed coherent–incoherent cross sections).
In order that this approach be more accessible, the software
used for this work will shortly be available in the next release
of the GULP code, along with the analysis tools (written in
Python) used to efficiently identify and compare dispersion
curves and theoretical and experimental data sets.
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Halicioǧlu, T. & Pound, G. M. (1975). Phys. Status Solidi, 30, 619–623.
Jasper, A. W., Schultz, N. E. & Truhlar, D. G. (2005). J. Phys. Chem. B,
109, 3915–3920.

Kang, J. K., Lee, J. Y., Muller, R. P. & Goddard, W. A. (2004). J. Chem.
Phys. 121, 10623–10633.

Kearley, G. (1995). Nucl. Instrum. Methods Phys. Res. Sect. A, 354,
53–58.

Lefmann, K. & Nielsen, K. (1999). Neutron News, 10(3), 20–23.
Lennard-Jones, J. E. & Ingham, A. E. (1925). Proc. R. Soc. London
Ser. A, 107, 636–653.

Mei, J. & Davenport, J. (1992). Phys. Rev. B, 46, 21–25.
Mishin, Y., Farkas, D., Mehl, M. & Papaconstantopoulos, D. (1999).
Phys. Rev. B, 59, 3393–3407.

Mitchell, P. C. H., Parker, S. F., Ramirez-Cuesta, A. J. & Tomkinson, J.
(2005). Vibrational Spectroscopy with Neutrons. Singapore: World
Scientific.

Nye, J. F. (1957). Physical Properties of Crystals. Oxford University
Press.

Pham, H. H., Williams, M. E., Mahaffey, P., Radovic, M., Arroyave, R.
& Cagin, T. (2011). Phys. Rev. B, 84, 064101.

Ramirez-Cuesta, A. J. (2004). Comput. Phys. Commun. 157, 226–238.
Roach, D. L. (2006). PhD thesis, University of Salford, Greater
Manchester, UK.

Roach, D. L., Gale, J. D. & Ross, D. K. (2007). Neutron News, 18(3),
21–23.

Roach, D. L., Heuser, B., Ross, D. K., Garba, M. T., Baldissin, G.,
Gale, J. D. & Abernathy, D. L. (2013). In preparation.

Roach, D. L., Parker, S. F., Ross, D. K., Gonzalez-Velez, H., Garba,
M. T., Gale, J. D., Russina, M., Granroth, G. E. & Bewley, R. I.
(2013). In preparation.

Ross, D. K. (1973). J. Phys. C, 6, 3525–3535.
Sanchez-Portal, D., Artacho, E. & Soler, J. M. (1995). Solid State
Commun. 95, 685–690.

Schuth, F., Bogdanovic, B. & Felderhoff, M. (2004). Chem. Commun.
pp. 2249–2258.

Sheng, H. W., Kramer, M. J., Cadien, A., Fujita, T. & Chen, M. W.
(2011). Phys. Rev. B, 83, 134118.

Squires, G. L. (1978). Introduction to the Theory of Thermal Neutron
Scattering. Cambridge University Press.

Stedman, R. & Nilsson, G. (1966). Phys. Rev. 162, 549–557.
Streitz, F. & Mintmire, J. (1994). Phys. Rev. B, 50, 11996–12003.
Sutton, A. P. & Chen, J. (1990). Philos. Mag. Lett. 61, 139–146.
Tang, X., Li, C. W. & Fultz, B. (2010). Phys. Rev. B, 82, 184301.
Taylor, A. D., Arai, M., Bennington, S. M., Bowden, Z. A., Osborn,
R., Andersen, K., Stirling, W. G., Nakane, T., Yamada, K. & Welz,
D. (1991). Proceedings of the 11th Meeting of the International
Collaboration on Advanced Neutron Sources. KEK Report 90–25.
Tsukuba, Japan.

Turchin, V. F. (1965). Slow Neutrons. Jerusalem: IPST.
Van Hove, L. (1954). Phys. Rev. 95, 249–262.
Willendrup, P., Farhi, E. & Lefmann, K. (2004). Physica B, 350, E735–
E737.

research papers

1770 Daniel L Roach et al. + Polycrystalline coherent inelastic neutron scattering J. Appl. Cryst. (2013). 46, 1755–1770

electronic reprint


