
ENVIRONMENTAL ENGINEERING SCIENCE
Volume 23, Number 2, 2005
© Mary Ann Liebert, Inc.

Constructed Wetlands: Prediction of Performance 
with Case-Based Reasoning (Part B)

Byoung-Hwa Lee, Miklas Scholz,* Antje Horn, and Alison M. Furber

Institute for Infrastructure and Environment
School of Engineering and Electronics

The University of Edinburgh
Edinburgh EH9 3JL, Scotland

United Kingdom

ABSTRACT

The aim of this research was to assess the treatment efficiencies for gully pot liquor of experimental ver-
tical-flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (common reed)
and filter media of different adsorption capacities. Six out of 12 filters received inflow water spiked with
metals. For 2 years, hydrated nickel and copper nitrate were added to sieved gully pot liquor to simulate
contaminated primary treated storm runoff. The findings were analyzed and discussed in a previous paper
(Part A). Case-based reasoning (CBR) methods were applied to predict 5 days at 20°C N-Allylthiourea bio-
chemical oxygen demand (BOD) and suspended solids (SS), and to demonstrate an alternative method of
analyzing water quality performance indicators. The CBR method was successful in predicting if outflow
concentrations were either above or below the thresholds set for water-quality variables. Relatively small
case bases of approximately 60 entries are sufficient to yield relatively high predictions of compliance of
at least 90% for BOD. Biochemical oxygen demand and SS are expensive to estimate, and can be cost-ef-
fectively controlled by applying CBR with the input variables turbidity and conductivity.
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INTRODUCTION

CASE-BASED REASONING (CBR) is a method of prob-
lem solving, which has arisen out of the field of ar-

tificial intelligence, and aims to recreate the robust prob-
lem solving technique often used by humans within the
constraints of a computer program (Aamodt and Plaza,

1994; Arditi and Tokdemir, 1999). When a human en-
counters a problem he or she tends to remember similar
situations that they have come across in the past, and the
methodology in which solutions were found. By recall-
ing these events, it becomes possible to reuse the previ-
ous solution(s) to solve the current problem, perhaps ad-
justing the methodology and outcome slightly to meet the



specific requirements of the new task (Aamodt and Plaza,
1994).

Case-based reasoning works very similarly to the hu-
man logic of data handling. A data base of past experi-
ences that may be useful to solve a particular type of
query is kept. The difficulty in CBR is the design of a
system that is capable of recalling past experiences,
which would provide useful information when a new
problem is introduced to the system. In CBR terminol-
ogy, the event in which a solution to a former problem
was found is referred to as a “case,” and is stored in the
system’s “case base.” For the purpose of CBR, each case
should be recorded within the case base systematically
and the useful information must be stored consistently
through the entire case base, the chosen structure used
being referred to as the “case representation” (Ardity and
Tokdemir, 1999).

When a new problem is introduced to the CBR system,
it should be represented in the same format as the stored
cases, and then the process of deciding which of the past
cases may be of use in finding a solution to this problem
can begin. The main assumption underlying a CBR
methodology is that similar problems will have similar so-
lutions. It follows that the most useful cases in the case
base will be those that are most similar to the problem case.

The concept of similarity is fundamental in CBR the-
ory, making inexact matching possible, which is required
when previously unseen problems arise. A mechanism is
implemented within the system that is capable of recalling
past cases that are most closely matched to the problem
presented in terms of the variable(s) used to describe the
cases. Therefore, the variables used should be carefully
chosen such that the solutions recalled will also be rele-
vant to the problem case. Once the most similar cases have
been selected, the predicted solution is found using an
adaptation or learning process (Aamodt and Plaza, 1994).

CBR applied to biochemical data

Concerning general data sets, CBR systems are often
seen as simple, convenient, and effective methods of ar-
tificial intelligence for multicomponent analysis (Arditi
and Tokdemir, 1999). The methodology is based on as-
suming regularity, typicality, and consistency. Moreover,
it can be characterized by the four “re” steps: retrieve,
reuse, revise, and retain. The output or target variable is
determined from input variables that are associated with
weightings. Various methods of their determination ex-
ist: uniform (i.e., no weightings), correlated, and cali-
brated weightings, as well as exact and fuzzy matched
meta weightings (Watson, 1997).

Case-based reasoning has been successfully applied to
the development and implementation of a knowledge-

based hybrid supervisory system to support the operation
of a real wastewater treatment plant (Rodriguez-Roda et
al., 2002). The CBR system can be structured into three
separated levels: data gathering, diagnosis, and decision
support. The different tasks of the system can be per-
formed in a seven-step cycle: data gathering and update,
diagnosis, supervision, prediction, communication, actu-
ation, and evaluation (Rodriguez-Roda et al., 2002).

With respect to biochemical data sets, hybrid CBR sys-
tems for monitoring water quality based on chemical vari-
ables and algae populations have been applied previously
(Policastro et al., 2004). A CBR system was also suc-
cessfully developed to supervise complex biochemical
processes such as the activated sludge process (Roda et
al., 2001). The suitability of CBR has also been shown
in aqueous solutions containing mixtures of ions of dif-
ferent nature and concentration. For example, CBR has
been successfully applied to the rapid recognition and
evaluation of mineral water samples (Colilla et al., 2002).

Constructed treatment wetlands are often seen as com-
plex “black box” systems, and have therefore not been
used previously for a detailed CBR analysis. The pro-
cesses within an experimental constructed treatment wet-
land are difficult to model due to the complexity of the
relationships between most water quality variables (Ger-
naey et al., 2003; Nunez et al., 2004). However, it is nec-
essary to monitor, control, and predict the treatment pro-
cesses to meet environmental and sustainability policies,
and regulatory requirements such as secondary waste-
water treatment standards (Lee et al., 2005). CBR
methodologies (Aamodt and Plaza, 1994) could be used
to make water quality predictions and to optimize the op-
eration of treatment wetlands. Consideration should also
be given to CBR as a learning tool.

The measurement of biochemical oxygen demand
(BOD) and suspended solids (SS) concentrations is
widely applied for wastewater before and after treatment,
as they give a general indication of the water quality sta-
tus. BOD is a measurement of the oxygen consumed in
5 days by organisms within the water sample stored
within an incubator at 20°C. N-Allylthiourea is usually
added to inhibit nitrification [American Public Health As-
sociation (APHA), 1995]. A regulator such as the Scot-
tish Environmental Protection Agency imposes thresh-
olds for water quality variables. The corresponding
secondary wastewater treatment thresholds for BOD and
SS are 20 and 30 mg/L, respectively (Scholz et al., 2002;
Lee et al., 2005).

Methods of measuring or reliably predicting BOD and
SS are useful for the day-to-day operation of constructed
treatment wetlands. Unfortunately, taking BOD mea-
surements is both expensive (measurements are labor in-
tensive and capital costs of modern on-line equipment are
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relatively high; approximately £15,000) and only of his-
torical value (results are not available until 5 days after
the sample has been taken). Furthermore, the procedures
to estimate BOD and SS concentrations are time-con-
suming and labor-intensive. Therefore, some method of
prediction, if it could be made reliable enough, would be
advantageous (Lee et al., 2005).

CBR could be a methodology well suited to the analy-
sis of biochemical data. Verdenius and Broeze (1999) dis-
cussed the difficulties that arise in modeling environmen-
tal systems, highlighting particularly the complexity of the
relationships between the different variables, and how these
relationships change over time. The creation of any model,
using traditional techniques, requires expertise of the en-
vironmental system, mathematical technique, and software
packages used. Once compiled, the model will then require
continual updating as the system evolves over time. In
many circumstances, mathematical models have proved in-
sufficient, and environmental experts have had to be called
in to find solutions based on empirical observations. Ex-
perts do recall their experience of similar past problems to
come up with a new solution (Nunez et al., 2004). As CBR
also uses this technique to find solutions, it is thought that
CBR may be beneficially applied to environmental prob-
lems. Moreover, CBR has been shown to function well
with highly complex “black box” system problems, and as
a CBR system can be designed to “learn” solutions to the
new problems it comes across, the system is dynamic and
will update itself without much intervention from the sys-
tem designer (Sanchez-Marre et al., 1999).

The application of CBR to predict variables as part of
complex biochemical data sets should be considered. The
predictions of BOD and SS serve as examples of one pos-
sible application of CBR to biochemical data. Success-
ful predictions could help to optimize the operation and
maintenance of constructed treatment wetlands.

Project purpose

The major purpose of this part of the study is to im-
prove water quality monitoring and interpretation guide-
lines of vertical-flow constructed treatment wetlands with
case-based reasoning, and to use a case study (Lee et al.,
2005) as an educational tool. The objectives are to assess

1. the potential of CBR for analyzing biochemical data,
interpretation of wetland data, and predicting BOD
and SS;

2. the most appropriate method of selecting input vari-
ables,

3. the optimum size of the case base;
4. the goodness of prediction with a CBR analysis; and
5. the potential of CBR as a teaching tool to enhance un-

derstanding of “black box” systems.

METHODOLOGY AND SOFTWARE
APPLIED TO UNDERTAKE CBR

The experimental data set applied for this study has
been described in detail by Lee et al. (2005). The CBR
system used to predict the BOD and SS concentrations
of treated gully pot liquor samples was created using sim-
ple mathematical functions in Microsoft Excel. Past cases
were sorted in the case base represented by up to six in-
put variables: turbidity (NTU), conductivity (�S), redox
potential (mV), outflow water temperature (°C), dis-
solved oxygen, DO (mg/L) and pH (�). Total dissolved
solids were not selected because of very high correlations
(usually �0.9 for most filters and seasons) with conduc-
tivity (Lee et al., 2005). Calibrated weights were assigned
to each input variable. Biochemical oxygen demand
(mg/L) or SS (mg/L) were the corresponding output vari-
ables. The input variables were selected due to their po-
tential predictive relationships (based on correlation and
regression analysis) with the BOD and SS (Scholz, 2003),
and the fact that they are both more cost-effective and
easier to measure in comparison to BOD and SS.

If the CBR system is presented with a new problem
case (measurements at a particular day), the similarity of
each past case with the problem case will be calculated.
The most similar cases will subsequently be selected, and
used to calculate the predicted output of the new prob-
lem case. The similarity of each past case with the prob-
lem case is calculated one case at a time and by com-
paring one input variable at a time. The local similarity
(the similarity of a past case and the problem case with
respect to only one variable) is found via a mathemati-
cal function of the difference between the two cases for
one variable. In Equation (1), a variable i for the past
case and problem case is normalized over the range of
the past cases by dividing each case by the mean of the
past cases. The differences between each past case and
the problem case are then calculated with respect to each
variable. The function f in Equation (1) converts the lo-
cal difference to the local similarity.

local_simi � f(�(Vip/MVi) � (Vic/MVi)�) (1)

where: local_simi is the local similarity of variable i for
past case c and problem case p; Vip is the value of vari-
able i for the problem case; MVi is the mean of variable
i found in the case base; Vic is the value of variable i for
the past case; �(Vip/MVi) � (Vic/MVi)� is the local differ-
ence; and f is the function, which maps the local differ-
ence onto the local similarity.

The function used to map the local difference onto the
local similarity is defined in Equation (2) that applies
fuzzy theory such that a difference of zero scores a sim-
ilarity of one and a difference of more than two standard
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deviations scores a similarity of zero. The global simi-
larity (similarity of the past case to the problem case con-
sidering all variables) of a past case can be found from
the local similarity of each variable. Each local similar-
ity is first multiplied by a weighting factor that corre-
sponds to the importance of that variable in predicting
the output. These should be found by calibrating the sys-
tem using an independent data set. As the calibration
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Table 2. Constructed treatment wetlands: Case-based reasoning (CBR) applied to predict the 5-day at 20°C N-Allylthiourea
biochemical oxygen demand (BOD) and the suspended solids (SS) concentrations with the input variables turbidity (NTU),
conductivity (�S), redox potential (mV), and the outflow water temperature (°C).

Filter No. of Mean Mean Error Correct prediction 
no. cases concentrationmeasured concentrationpredicted (%) of compliance (%)a ab bb r2b

CBR for BOD (mg/L)
3 56 7.55 10.86 30.5 89.29 �0.035 2.038 0.258
4 55 12.69 9.92 27.9 87.27 �0.005 0.991 0.614
5 59 11.41 13.35 14.4 91.53 �0.013 1.703 0.731
6 60 16.20 9.85 64.5 81.67 �0.008 0.911 0.230
7 58 6.70 9.88 32.2 89.66 �0.040 2.386 0.546
8 60 11.05 11.05 0.0 95.00 �0.013 1.509 0.751
9 58 9.83 13.44 26.9 87.93 �0.017 1.826 0.513
10 62 18.75 11.11 68.8 87.10 �0.003 0.655 0.629
11 60 10.08 12.23 17.6 81.67 0.000 1.077 0.529
12 112 11.31 13.27 14.8 83.04 0.000 0.999 0.303
3–12 640 11.60 11.65 0.4 87.03 �0.007 1.125 0.396

CBR for SS (mg/L)
3 60 106.67 111.72 4.5 85.00 �0.001 1.231 0.863
4 42 58.20 94.43 38.4 78.57 0.000 0.554 0.349
5 58 146.86 121.50 20.9 84.48 �0.001 1.500 0.791
6 62 114.76 114.19 0.0 85.48 �0.001 1.297 0.792
7 57 127.61 111.87 14.1 84.21 0.000 1.124 0.688
8 62 91.76 86.18 6.5 87.10 0.000 0.970 0.960
9 60 91.72 97.86 6.3 88.33 0.000 1.000 0.614
10 64 81.05 94.04 13.8 89.06 0.000 1.138 0.924
11 62 82.43 81.72 0.0 88.71 �0.001 1.246 0.851
12 110 134.86 108.84 23.9 77.27 0.000 0.884 0.808
3–12 637 111.50 100.52 10.9 84.46 �0.001 1.140 0.732

aThe likelihoods of correct predictions, if the effluent concentrations are either below or above the thresholds for secondary 
wastewater treatment. The BOD and SS concentrations for compliance are 20 and 30 mg/L, respectively; bconcentrationpredicted �
a � concentrationmeasured

2 � b � concentrationmeasured � c, where c � 0 and r2 � coefficient of determination.

data set is introduced to the system the weighting of each
factor should be adjusted one at a time until the best pos-
sible output is achieved. Equation (3) defines how the
local similarities of each variable are combined to cal-
culate the global similarity of the past case and problem
case.

f(x) � exp(�0.5(x/SDVi)2) (2)

Table 1. Correlation coefficients from a correlation analysis comprising input (column headings) and target (row headings)
variables used for a subsequent case-based reasoning analysis.

Turbidity Conductivity Redox Temperature Dissolved
Variable (NTU) (�S) potential (mV) (°C) oxygen (mg/L) pH (�)

BODa (mg/L) 0.535 0.244 �0.374 �0.121 �0.074 �0.242
SSb (mg/L) 0.531 0.833 �0.338 �0.323 �0.135 0.035

aFive-days at 20°C N-Allylthiourea biochemical oxygen demand; bsuspended solids; Note: 5% significance level: 0.078; 1% sig-
nificance level: 0.102.



where x is the local difference; f is the function, which
converts the local difference into the local similarity; and
SDVi is the standard deviation of the differences of vari-
able i found in the case base of past cases.

Glob_sim � �[(local_simi*wi)/�wi � 100] (3)

where: i is 1, 2, . . . , n; n is the number of variables used
to represent a case; wi is the weighting associated with
variable i; and Local_simi is the local similarity of the
past case and problem case for variable i.

When the global similarity of each past case with the
problem case is found, the past cases can be ranked in
order of their corresponding sum to decide which of the
past cases would be deemed similar enough to be selected
for adaptation. The three to five past cases with the high-
est similarity rankings were chosen in this study. Tests
undertaken on different sets of data show that between
two and six cases are usually sufficient to achieve the
best performance. The CBR usually requires a relatively
large data set for optimization exercises.

Equations (4) and (5) show how a prediction is made
for the target variables of the problem case by combin-
ing the numerical value of the target variable for the three
to five selected cases.

Proportion Pj � Glob_simj/Glob_simT (4)

where: j is 1, 2, 3, 4, or 5; Pj is the proportion of the pre-
diction that is obtained from the past case j; and
Glob_simT is the sum of the global similarities of the
three to five selected cases.

Prediction P � �(Pj � TVj) (5)

where Pj is the proportion of the prediction that is ob-
tained from the past case j; and TVj is target variable of
past case j.

CBR RESULTS AND DISCUSSION

Correlation analysis

Table 1 summarizes the findings from a correlation
analysis comprising input (turbidity, conductivity, redox
potential, outflow water temperature, dissolved oxygen,
and pH) and target (BOD and SS) variables. These find-
ings are used for a subsequent CBR analysis. Correla-
tions were strong between BOD and turbidity, SS and
turbidity, and SS and conductivity (at the 1% significance
level). Therefore, turbidity and conductivity are likely to
be the most important input variables.

Comparison of different filters

Table 2 shows the application of a CBR system for the
prediction of the outflow BOD and SS. Figure 1 visual-
izes the regression analysis between measured and pre-
dicted BOD and measured and predicted SS for Filter 8
(typical UK reed bed; Lee et al. 2005). The associated case
base contained the following input variables: turbidity,
conductivity, redox potential, and outflow water tempera-
ture. The application of second-order polynomial trend-
lines results in very good fits for both target variables.

The likelihoods of correct predictions if the effluent
concentrations are either below or above the thresholds
for secondary wastewater treatment are also shown in
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Figure 1. Regression analysis between the measured 5-day at
20°C N-Allylthiourea biochemical oxygen demand BODmea-

sured (BODm) and BODpredicted (BODp), and between the mea-
sured suspended solids SSmeasured (SSm) and SSpredicted (SSp)
for Filter 8. The case base contained the input variables tur-
bidity, conductivity, redox potential, and the outflow water tem-
perature. The following SS entries are beyond the displayed
range: (3.8, 0.023), (70.8, 55.234), and (82.1, 73.32).

Figure 2. Distribution of absolute differences between mea-
sured and predicted concentrations for 5-day at 20°C N-Al-
lylthiourea biochemical oxygen demand (BODm) and measured
and predicted suspended solids (SSm) for Filter 8. The case
base contained the input variables turbidity, conductivity, re-
dox potential, and the outflow water temperature. The BOD en-
try (24.88, 75.12) is beyond the displayed range.

T1�

T2
F1

�
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Table 2. The BOD and SS concentrations for compliance
are 20 and 30 mg/L, respectively. The correct predictions
of compliance were all �77%. The probabilities are
therefore all at least by 0.27 higher in comparison to pure
guessing. The predictions are encouraging and support
the potential for future use of CBR as a management tool
for the day-to-day process control.

Figure 2 shows the distribution of prediction errors for
a selected CBR result (Filter 8; typical UK reed bed;
Cooper et al. (1996)) visualized in Fig. 1. Where the dis-
tribution is clustered, the errors are least. This is promis-

ing, as it appears that if the density of the case base can
be increased, then the error can be reduced further (see
below). More cases are likely to lead to a better CBR per-
formance.

Moreover, research has shown that new case-based
methods that utilize the cluster information of data sets
are likely to be superior to conventional CBR systems
(Verdenius and Broeze, 1999; Roh et al., 2003; Yang et
al., 2004). Despite the greater variability of SS in con-
trast to BOD (Lee et al., 2005), SS has smaller absolute
differences between measured and predicted concentra-
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Table 4. Optimization of input variable combinations for Filters 3 to 12: Case-based reasoning (CBR) applied to predict the
5-day at 20°C N-Allylthiourea biochemical oxygen demand (BOD) and the suspended solids (SS) concentrations.

Input No. of Mean Mean Error Correct prediction 
variables cases concentrationmeasured concentrationpredicted (%) of compliance (%)a ab bb r2b

CBR for BOD (mg/L)
1 640 11.60 11.48 1.0 82.66 �0.005 0.874 0.092
1+2 640 11.60 14.33 19.1 80.94 0.000 0.543 �0.015
1+2+3 640 11.60 11.24 3.2 84.84 �0.006 0.997 0.236
1+2+3+4 640 11.60 11.65 0.4 87.03 �0.007 1.125 0.396
1+2+3+4+5 640 11.60 11.39 1.8 85.47 �0.006 1.059 0.413

CBR for SS (mg/L)
1 637 111.50 124.71 10.6 54.47 �0.001 0.964 �0.092
1+2 637 111.50 102.76 8.5 85.56 �0.001 1.174 0.685
1+2+3 637 111.50 97.15 14.8 85.71 �0.001 1.160 0.714
1+2+3+4 637 111.50 100.52 10.9 84.46 �0.001 1.140 0.732
1+2+3+4+5 637 111.50 98.80 16.9 82.52 �0.001 1.149 0.706

The case base contained the following input variables: 1 � turbidity (NTU); 2 � conductivity (�S); 3 � redox potential (mV); 
4 � outflow water temperature (°C); 5 � dissolved oxygen (mg/L); athe likelihoods of correct predictions, if the effluent concentra-
tions are either below or above the thresholds for secondary wastewater treatment. The BOD and SS concentrations for compliance
are 20 and 30 mg/L, respectively; bconcentrationpredicted � a � concentrationmeasured

2 � b � concentrationmeasured � c, where c � 0
and r2 � coefficient of determination.

Table 3. Comparison between extended storage (Filters 1 and 2) and Constructed treatment wetlands (Filters 3 to 11) for a
similar retention time: case-based reasoning (CBR) applied to predict the 5-day at 20°C N-Allylthiourea biochemical oxygen
demand (BOD) and the suspended solids (SS) concentrations with the input variables turbidity (NTU), conductivity (�S),
redox potential (mV) and the outflow water temperature (°C).

Filter No. of Mean Mean Error Correct prediction 
no. cases concentrationmeasured concentrationpredicted (%) of compliance (%)a ab bb r2b

CBR for BOD (mg/L)
1–2 109 35.52 35.16 1.0 68.81 �0.005 1.282 0.249
3–11 528 11.66 11.31 3.1 87.88 �0.001 1.083 0.423

CBR for SS (mg/L)
1–2 132 304.60 243.40 25.1 84.85 0.000 0.968 0.510
3–11 527 106.60 98.80 7.9 85.96 �0.001 1.202 0.724

aThe likelihoods of correct predictions, if the effluent concentrations are either below or above the thresholds for secondary 
wastewater treatment. The BOD and SS concentrations for compliance are 20 and 30 mg/L, respectively. bconcentrationpredicted �
a � concentrationmeasured

2 � b � concentrationmeasured � c, where c � 0 and r2 � coefficient of determination.

F2 �



tions (Fig. 2) than BOD. It follows that relatively high
raw data variability is not necessarily an indication for
an underperforming CBR analysis as can be intuitively
expected.

The system typically achieved an 85% success rate for
predicting whether or not the water samples met regula-
tory requirements (Table 2). The theoretical probability
of the system predicting a correct answer is 0.5 (right or
wrong), based on the number of cases below or above
the threshold in the case base and the actual concentra-
tion of the target variable of the test cases used. In com-
parison, prediction errors of up to 54% were recorded for
an unrelated project previously, compared to 17% corre-
sponding to pure guessing (Wendler and Bach, 2004).

Table 2 suggests that the system is fit for purpose con-
sidering relatively high coefficients of determination r2,
particularly for measured and predicted SS. However, the
system requires optimization to further increase the ac-
curacy. Optimization measures would be certain to in-

clude the selection of cases with greater process control
and data availability. The aim would be to reduce the
number of unknown variables.

Extended storage vs. constructed wetlands

Table 3 shows a CBR comparison between extended
storage (Filters 1 and 2) and constructed treatment wet-
lands (Filters 3 to 11) characterized by similar retention
times. CBR was applied to predict the BOD and SS con-
centrations. The case base contained turbidity, conduc-
tivity, redox potential, and outflow water temperature as
input variables. Concerning the prediction of BOD, rel-
atively high likelihoods of correct predictions were
achieved for the wetlands but not for extended storage.
This is surprising, considering that extended storage is a
much simpler process with a reduced number of unknown
variables. However, the buffering capacity of the system
is low, and data variability is subsequently higher than
for the wetlands.
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Table 5. Unbiased assessment of data subsets for Filters 3 to 12: Case-based reasoning (CBR) applied to predict the 5-day at
20°C N-Allylthiourea biochemical oxygen demand (BOD) and the suspended solids (SS) concentrations with the input variables
turbidity (NTU), conductivity (�S), redox potential (mV), and the outflow water temperature (°C).

No. of Mean Mean Error Correct prediction 
Selection cases concentrationmeasured concentrationpredicted (%) of compliance (%)a ab bb r2b

CBR for BOD (mg/L)
1 out of 15 40 11.05 13.52 18.3 83.33 �0.008 1.106 0.052
1 out of 10 58 11.05 11.15 0.9 95.00 �0.005 0.976 0.476
1 out of 6 90 11.05 10.46 1.7 90.00 �0.011 1.216 0.363
1 out of 5 116 11.05 10.87 1.7 91.67 �0.010 1.157 0.231
1 out of 4 144 11.05 10.45 5.7 93.33 �0.003 0.826 0.552
1 out of 3 194 11.05 12.30 10.2 93.33 �0.010 1.399 0.658
1 out of 2 290 11.05 10.48 5.4 90.00 �0.007 1.060 0.585
2 out of 3 385 11.05 9.28 19.1 90.00 0.011 1.208 0.564
3 out of 4 435 11.05 10.15 8.9 93.33 �0.012 1.369 0.655
4 out of 5 464 11.05 10.99 0.5 95.00 �0.010 1.359 0.805
1 out of 1 580 11.05 11.05 0.0 95.00 �0.013 1.509 0.751

CBR for SS (mg/L)
1 out of 15 39 91.76 85.76 7.0 69.4 �0.001 0.952 0.092
1 out of 10 57 91.76 68.84 33.3 75.8 0.000 0.628 0.400
1 out of 6 97 91.76 84.07 9.1 79.0 0.000 0.885 0.761
1 out of 5 115 91.76 86.99 5.5 77.4 0.000 0.869 0.686
1 out of 4 144 91.76 79.28 15.7 85.5 �0.001 1.061 0.810
1 out of 3 192 91.76 101.97 10.0 85.5 0.000 0.956 0.872
1 out of 2 288 91.76 85.59 7.2 90.3 0.000 0.990 0.923
2 out of 3 383 91.76 86.83 5.7 87.1 0.000 0.973 0.925
3 out of 4 433 91.76 89.10 3.0 83.9 0.000 1.022 0.936
4 out of 5 461 91.76 81.18 13.0 88.7 0.000 1.041 0.939
1 out of 1 575 91.76 86.18 6.5 87.1 0.000 0.970 0.960

aThe likelihoods of correct predictions, if the effluent concentrations are either below or above the thresholds for secondary 
wastewater treatment. The BOD and SS concentrations for compliance are 20 and 30 mg/L, respectively; bconcentrationpredicted �
a � concentrationmeasured

2 � b x concentrationmeasured � c, where c � 0 and r2 � coefficient of determination.
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Optimization of the numbers and type 
of input variables

Table 4 summarizes the findings of an input variable
combination optimization exercise. The purpose was to
estimate both BOD and SS with as few input variables
as possible to reduce costs and effort. The case base there-
fore contained the following input variables in order of
priority (Table 1): turbidity, conductivity, redox poten-
tial, outflow water temperature and dissolved oxygen. All
predictions of compliance were high except for the pre-
diction of SS with turbidity alone despite a relatively high
corresponding correlation coefficient of 0.531 (Table 1).
It follows that the first two variables (turbidity and con-
ductivity) that are inexpensive to obtain are sufficient to
predict the most important, expensive, and time-con-
suming to obtain target variables BOD and SS.

Optimization of the size of the input database

The data set of this case study has been described in
detail by Lee et al. (2005). Table 5 shows an unbiased
assessment of data subsets to optimize the size of the in-
put database. The case base contained turbidity, conduc-
tivity, redox potential, and outflow water temperature as
input variables, because the combination of these vari-
ables has the highest mean prediction compliance per-
centage (Table 4). The data subsets were selected sys-
tematically (in sequence; x out of y, where x � y), but
technically at random. The probabilities of all filters and
input variables to contribute to any calculation were sta-
tistically the same; 0.1 and 0.25, respectively.

In contrast to traditional curve fitting techniques, the
CBR system is capable of picking up rapidly fluctuating
trends among the different input variables (Lee et al.,
2005), because the distribution of cases is relatively
dense (Table 5). Only neighboring cases will be picked
up for relatively small case bases. In comparison, a large
case base is likely to be beneficial, if data are sparse 
and not erratic. This may be the case for most data sets
in physics and mechanical engineering but not envi-
ronmental engineering and science. It follows that the
distribution and density of cases, and the relationships
between the variables (gradual or erratic trends) should
be considered when selecting the optimum number of
cases.

CBR is well suited for relatively highly variable wa-
ter quality data sets such as those from constructed treat-
ment wetlands. Little domain knowledge is required, and
the optimum number of cases can be selected by trial and
error (Table 5). Findings show that the case study data
set could be reduced by 75%, and that BOD and SS can
still be predicted reasonably well with four inexpensive
variables measured only every 2 weeks. Nevertheless, the

CBR should be calibrated with cases of known output to
minimize the error.

CONCLUSIONS

CBR was successfully applied to predict BOD and SS,
but there is room for improvement by applying opti-
mization techniques to control the variances of the input
variables. This would lead to a relatively accurate data
set that should be used to calibrate the system. BOD and
SS are expensive to estimate, and can be cost-effectively
controlled by applying CBR with the input variables tur-
bidity and conductivity and possibly also redox potential.

The CBR system showed better performance for con-
structed wetlands (“buffers” due to biomass between ag-
gregates) in comparison to extended storage (no “buffer”
capacity). Small data sets based on 2-week sampling were
sufficient to monitor the water quality.

This paper demonstrates to the reader the successful
application of CBR to typical “black box” systems such
as constructed wetlands governed by biochemical pro-
cesses. This paper may also find use as a learning aid for
water and environmental engineers and managers.
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