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1. INTRODUCTION 
 
Decision trees are a natural way of presenting a decision-making process, because 
they are simple and easy for anyone to understand [Quinlan 1986]. Learning 
decision trees from data however is more complex, with most methods based on 
an algorithm, known as ID3 that was developed by Quinlan [1979, 1983,1986]. 
ID3 takes a table of examples as input, where each example consists of a 
collection of attributes, together with an outcome (or class) and induces a decision 
tree, where each node is a test on an attribute, each branch is the outcome of that 
test and at the end are leaf nodes indicating the class to which the example, when 
following that path, belongs. ID3, and a number of its immediate descendents, 
such as C4.5 [Quinlan 1993], OC1 [Murthy et al. 1994] and CART [Breiman et al. 
1984] focused on inducing decision trees that maximized accuracy. 

However, several authors have recognized that in practice there are costs 
involved (e.g. Breimen et al. [1984]; Turney [1995]; Elkan [2001]). For example, it 
costs time and money for blood tests to be carried out [Quinlan et al. 1987]. In 
addition, when examples are misclassified, they may incur varying costs of 
misclassification depending on whether they are false negatives (classifying a 
positive example as negative) or false positives (classifying a negative example as 
positive). This has led to many studies that develop algorithms that aim to induce 
cost-sensitive decision trees.  These studies are presented in many different 
sources and, to the best of our knowledge; there is no comprehensive synthesis of 
cost-sensitive induction algorithms. Hence, this survey aims to provide an 
overview of existing algorithms and their characteristics that should be a useful 
source for any researcher or practitioner seeking to study, develop or apply cost-
sensitive decision tree learning. 

Section 2 of the paper begins with a brief introduction to decision tree 
induction to set the context for readers not already familiar with this field. The 
survey identified over fifty algorithms, some of which are well known and cited, 
but also some that are less well known. Section 3 begins by presenting a 
taxonomy of cost-sensitive decision tree algorithms that is based on the 
algorithms identified.  Sections 4 and 5 present a survey of the algorithms based 
on the taxonomy, and Section 6 concludes the paper. 
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2. BACKGROUND TO DECISION TREE INDUCTION 
 
Given a set of examples, early decision tree algorithms, such as ID3 and CART, 
utilize a greedy top-down procedure. An attribute is first selected as the root node 
using a statistical measure [Quinlan 1979, 1983; Breiman et al. 1984].  The 
examples are then filtered into subsets according to values of the selected 
attribute.  The same process is then applied recursively to each of the subsets 
until a stopping condition, such as a certain proportion of examples being of the 
same class. The leaf nodes are then assigned the majority class as the outcome.    
Researchers have experimented with different selection measures, such as the 
GINI index [Breiman et al. 1984], using chi-squared [Hart 1985] and which have 
been evaluated empirically [Mingers 1989].  The selection measure utilized in ID3 
is based on Information Theory which provides a measure of disorder, often 
referred to as the entropy, and which is used to define the expected entropy, E for 
an attribute A [Shannon 1948; Quinlan 1979; Winston 1993]:  
ሻܣሺܧ  ൌ ∑ ܲሺܽሻ. ∑ – Pሺܽ|ܿሻlog2ሺPሺܽ|ܿሻሻሻ௖א ஼௔א஺      (1) 
 
where  a ∈ A are the values of attribute A, and the c ∈ C are the class values.    
 

This formula measures the extent to which the data is homogeneous. For 
example, if all the data were to belong to the same class, the entropy would be '0'. 
Likewise if all the examples belonged to different classes, the entropy would be 
'1'.   ID3 uses an extension of the entropy by calculating the gain in information 
(I) achieved by each of the attributes if these were chosen for the split and 
choosing the attribute which maximizes this gain:  
 
ID3:  ܫ஺ ൌ ሻܦሺܧ െ        ሻܣሺܧ 
 
where E(D) = ∑  – NౙN௖א ஼ ଶ݃݋݈  NౙN  , calculated on the current training set before 
splitting. 
 

Although, Quinlan adopted this measure for ID3, he noticed that the measure 
is biased towards attributes that have more values, and hence proposed a 
normalisation, known as the Gain Ratio, which is defined by: 
 
C4.5:   ݋݅ݐܴܽ݊݅ܽܩ஺ ൌ ூಲூ௡௙௢ಲ ஺݋݂݊ܫ ݁ݎ݄݁ݓ  ൌ  ∑  – NNೌ௔א ஺ ଶ݃݋݈  NNೌ    
 

 
Table 1 Example data set ‘Television Repair’ 

picture 
quality 

sound quality age class 

poor good 2 faulty 
poor excellent 1 faulty 
good poor 2 faulty 
good poor 2 faulty 
good excellent 1 not faulty 
good good 1 not faulty 
good good 2 faulty 
excellent good 1 faulty 
excellent excellent 1 not faulty 
excellent good 2 not faulty 
good good 2 faulty 
good good 2 faulty 
good good 1 not faulty 
excellent excellent 1 not faulty 
excellent good 1 not faulty 

 
C4.5 was also developed to include the ability to process numerical data and 

deal with missing values. Figure 1 presents the tree that result from applying the 



ID3 procedure to the examples in Table 1. At each leaf is the class distribution, in 
the format of [faulty, not faulty]. 

Once a decision tree has been built, some type of pruning is then usually 
carried out. Pruning is the term given to that of replacing one or more sub-trees 
with leaf nodes. There are three main reasons for pruning. One is that it helps to 
reduce the complexity of a decision tree, which would otherwise make it very 
difficult to understand [Quinlan 1987], resulting in a faster, possibly less costly 
classification. Another reason is to help prevent the problem of over-fitting the 
data.  
 

 
 

Figure 1 Decision Tree after ID3 has been applied to the data set in Table 1  

 
The third reason is that noisy, sparse or incomplete data sets can cause very 

complex decision trees, so pruning is a good way to simplify them [Quinlan 1987]. 
There are several ways to calculate whether a sub-tree should be pruned or not. 
Quinlan [1987], Knoll et al. [1994] and Bradford et al. [1998a, 1998b] have 
discussed different methods to do this, for instance, aiming to minimize loss 
[Bradford et al. 1998a, 1998b], or using misclassification costs to prune a decision 
tree [Knoll et al. 1994].  This paper focuses on surveying the cost-sensitive tree 
induction algorithms and readers interested in pruning are referred to the 
comprehensive review by Frank and Witten [1998]. 
 
3. A FRAMEWORK FOR COST-SENSITIVE TREE INDUCTION ALGORITHMS 
 
Section 2 summarized the main idea behind decision tree induction algorithms 
that aim to maximize accuracy.   How can we induce decision trees that minimize 
costs? The survey reveals several different approaches. First some of the 
algorithms aim to minimize just costs of misclassification, some aim to minimize 
just the cost of obtaining the information and others aim to minimize both costs of 
misclassification as well as costs of obtaining the data.  Secondly, the algorithms 
vary in the approach they adopt.  Figure 2 summarizes the main categories that 
cover all the algorithms found in this survey. There are two major approaches: 
methods that adopt a greedy approach that aims to induce a single tree, and non-
greedy approaches that generate multiple trees.  Methods that generate single 
trees include early algorithms, such as CS-ID3 [Tan and Schlimmer 1989], that 
adapt entropy based selection methods to include costs and post-construction 
methods such as AUCSplit [Ferri et al. 2002] that aim to utilize costs after a tree 
is constructed.  Algorithms that utilize non-greedy methods include those that 
provide a wrapper around existing accuracy based methods, such as MetaCost 



[Domingos 1999], genetic algorithms, such as ICET [Turney 1995], and 
algorithms that adopt tentative searching methods. 
 

 
Figure 2 Taxonomy of Cost-Sensitive Decision Tree Induction Algorithms 

 
Table 2 categorizes the algorithms identified in the literature with respect to 

the taxonomy shown in Figure 2 and shows the significant volume of work in this 
field in each of the classes. The table also indicates whether the algorithms 
incorporate test costs, misclassification costs or both.  The time line of algorithms, 
shown as Figure 3, is also interesting. The first mention of the importance of costs 
dates back to Hunt’s [1966] Concept Learning System framework (CLS) that 
aimed to develop decision trees and recognized that tests and misclassifications 
could have an economic impact on human decision making.   Although, ID3 
adopts some of the ideas of CLS, a significant difference in the development was 
ID3’s use of an information theoretic measure for attribute selection [Quinlan 
1979].  The use of an information theoretic top-down approach in ID3 influenced 
much of the early work which focused on methods for adapting existing accuracy 
based algorithm to take account of costs. These early approaches were evaluated 
empirically by Pazzani et al. [1994] who observed little difference in performance 
between algorithms that used cost-based measures and ones that used 
information gain.  This, together with the publication of the results of the ICET 
system [Turney 1995] which used genetic algorithms led to significant interest in 
developing more novel algorithms, including intense research on the use of 
boosting and bagging [Ting and Zheng 1998a, 1998b; Ting 2000a, 2000b; 
Domingos, 1999; Zadrozny 2003a; Lazano and Abe 2008] and more recently, on 
the use of stochastic approaches [Esmeir and Markovitch 2010, 2011]. 

The rest of the paper is organized according to the categorization in Table 2, 
with Section 4 describing the algorithms adopting a single tree, greedy strategy 
and Section 5 describing the algorithms that use a multiple tree, non-greedy 
strategy.  The Appendix includes a summary of the data sets used by the studies 
surveyed and which can help identify suitable data for future studies. Table 3 
shows the notation and definitions used throughout the paper. 
 
 
 
 
 
 
 



Table 2 Cost-sensitive decision tree induction algorithms categorized with respect to taxonomy by time 

 
 
 
 



 
 

Figure 3 A Timeline of Algorithms 

 

 

 

 



 

Table 3 Definitions of equations 
Symbol Definition 
N Number of examples in current training set/node 
Ni Number of examples in training set belonging to class i 
x Refers to an example in the training set 
node(x) Leaf node to which the example belongs 
k Number of classes and indicates looping through each class in turn 
w Weights 
A Indicates an attribute 
a Indicates attribute values belonging to an attribute 
Cij Misclassification cost of classifying a class i example as a class j example 
CA Test cost for attribute A 
cost(x,y) Cost of classifying example x into class y 
hi The ith hypothesis 
 
 
4.  SINGLE TREE, GREEDY COST-SENSITIVE DECISION TREE INDUCTION 
ALGORITHMS  
 
As described in Section 2, historically, the earliest tree algorithms developed top-
down greedy algorithms for inducing decision trees. The primary advantage of 
such greedy algorithms is efficiency, though a potential disadvantage is that they 
may not explore the search space adequately to obtain good results. This section 
presents a survey of greedy algorithms.  The survey identified two major strands 
of research:  Section 4.1 describes algorithms that utilise costs during tree 
construction and Section 4.2 describes post-construction methods that are useful 
when costs may change frequently. 
 
4.1 Use of costs during construction 

4.1.1. The extension of statistical measures.   As outlined in the previous section, 
top-down decision tree induction algorithms use a measure, such as information 
gain, to select an attribute upon which the data set will be partitioned during the 
tree induction process.  A reasonable extension, which was taken by a number of 
early algorithms, was to adapt these information theoretic measures by including 
costs. These early algorithms retained the top-down induction process and the 
only differences between them are the selection measures and whether they take 
account of costs of attributes as well as costs of misclassification. 

Five of the algorithms,  CS-ID3 [Tan and Schlimmer 1989], IDX [Norton 
1989], EG2 [Nunez 1991] , CSGain [Davis et al. 2006] and CS-C4.5 [Frietas et al. 
2007]  focus on minimizing the cost of attributes and adapt the information 
theoretic measure to develop a cost based attribute selection measure, called the 
Information Cost Function for an attribute A  (ICFA): 

EG2:  ICFA = 2InfoGainA – 1/(CA + 1)ω            (2) 

CS-ID3: ICFA ൌ ሺInfoGainAሻ2 / CA      

IDX :   ICFA ൌ InfoGainA / CA               

CS-C4.5: ICFA ൌ InfoGainA / ሺCAφAሻ ω      

CSGain:        ICFA ൌ ሺNa/Nሻ * InfoGainA – ω * CA    
 

These measures are broadly similar in that they all include the cost of an 
attribute (CA) to bias the measure towards selecting attributes that cost less but 
still take some account of the information gained.   The only difference between 
the measures is the extent of weight given to the cost of an attribute, with EG2 
and CS-C4.5 adopting a user provided parameter  ω  that varies the extent of the 
bias. CS-C4.5 also includes φA, a risk factor used to penalize a particular type of 



tests, known as delayed tests, which are tests, such as blood tests, where there is 
a time lag between requesting and receiving the information.  The authors of 
CSGain also experiment with a variation, called CSGainRatio algorithm where 
they use the Gain ratio instead of the information gain. 
 

 
Figure 4 Decision Tree after EG2 has been applied to the data set in Table 1  

 
Figure 4 presents a cost-sensitive decision tree induced by applying the EG2 

algorithm to the data in Table 1.  For illustration purposes, the attributes picture 
quality, sound quality and age are assigned random test costs of 30, 15 and 1 
units respectively.  These costs are used in selecting an attribute using the ICF 
measure resulting in a tree that takes account of the costs of the tests. 

Algorithms that continue this adaptation of information theoretic measures 
but also take account of the misclassification cost as well as the test costs include 
an approach by Ni et al. [2005], Zhang et al. [2007], Zhang [2010] and Liu [2007].  
Although the detailed measures differ, they all aim to capture the trade-off 
between the cost of acquiring the data and its contribution to reducing 
misclassification cost. Ni et al. [2005], for example, utilize the following attribute 
selection measure: 
 
Performance:  ܨܥܫ஺ ൌ ሺሺ2ீ௔௜௡ோ௔௧௜௢ಲ െ 1ሻ כ ஺ܥ஺/ሺܥܯܦ ൅ 1ሻሻ כ   ώ஺   (3) 
  
where ώA is the bias of experts for attribute A and DMCA is the improvement in 
misclassification cost if the attribute A is used.     
 

As well as using both types of cost, this algorithm makes use of domain 
experts who assign a value of importance to each of the attributes. If an expert 
has no knowledge of the importance of an attribute this bias is set to the default 
value of 1. If some attributes produce the same value for equation (3), preference 
is given to those attributes with the largest reduction in misclassification costs 
(DMCA). If this fails to find an attribute then the attribute with the largest test 
cost (CA) is chosen as the aim is to reduce misclassification costs.  

Liu [2007] identifies some weaknesses of equation (3), noting that several 
default values have been used, so develops the PM algorithm. Liu [2007] notes 
that if gain ratios of attributes are small, the values returned by the original 
algorithm, equation (3), would be small; resulting in the costs of attributes being 



ignored. If attributes have large total costs, the information contained in those 
attributes will be ignored. Other issues are the conflict of applying resource 
constrains. For instance, the overall aim of this algorithm is to allow for user 
resource constrains and it is therefore necessary to allow for the fact that users 
with increased test resources are not concerned as much about the cost of 
attributes, rather in the reduction of misclassification costs, and alternatively 
those with limited test resources are more concerned with the cost of the tests in 
order to reduce the overall costs rather than only reducing the misclassification 
costs. 

In order to trade off between these needs, a solution offered by Liu [2007] is to 
normalize the gain ratio values and to employ a harmonic mean to weigh between 
concerns with test costs (low test resources) and reduction in misclassification 
costs (when test resources are not an issue), additionally a parameter α is used to 
balance requirements of different test examples with different test resources.  

Zhang et al. [2007] take a different approach when adapting the Performance 
algorithm. They focus on the fact that the test costs and misclassification costs 
are possibly not on the same scale; test costs would be considered on a cost scale 
of currency whilst misclassification costs, particularly in terms of medical 
diagnosis, states Zhang et al. [2007], must be a social issue; what monetary value 
could be assigned for potential loss of life? The adaptation attempts to achieve 
maximal reduction in misclassification costs from lower test costs. The only 
difference to equation (3) to produce CTS (Cost-Time Sensitive Decision Tree), is 
to remove the bias of expert parameter, preferring to address such issues as 
waiting costs (also referred to in other studies as delayed cost), at the testing 
stage by developing appropriate test strategies.  

The above measures all utilize the information gain as part of a selection 
measure.  An alternative approach, taken by Breiman et al. [1984], is to alter the 
class probabilities, P(i) used in the information gain measure.    That is, instead of 
estimating P(i)  by Ni/N, it is weighted by the relative cost, leading to an altered 
probability [Breiman, et al. 1984, p114]: 
 

Altered Probabilityi  = Cij*ሺNi/Nሻ / ∑j costሺjሻሺNj/Nሻ                    
 

In general, the cost of misclassifying an example of class j may also depend on 
the class i that it is classified into, so Breiman et al. [1984] suggest adopting the 
sum of costs of misclassification: 
 costሺjሻ ൌ  ∑i Cij         (4) 
 

Although these altered probabilities can then be used in the Information Gain 
measure, the method was tried by Pazzani et al. [1994] using the GINI index: 
 

Altered GINI = 1-∑ky=1 Altered Probabilityy2      
 

C4.5 allows the use of weights for examples, where the weights alter the 
Information Gain measure by using sums of weights instead of counts of 
examples. So instead of counting the number of examples with attribute value a 
and class k, the weights assigned to these examples would be summed and used 
in equation (1). 

C4.5’s use of weights has been utilized to incorporate misclassification costs, 
by overriding the weight initialization method. For example if the cost to 
misclassify a faulty example from the example data set in Table 1 is 5, those 
examples belonging to class ‘faulty’ could be allocated the weight of 5, and 
examples belonging to class ‘not faulty’ could have the weight of 1, so that more 
weight is given to those examples with the higher misclassification cost. C4.5CS 
is one such algorithm which utilizes this use of weights. 



The method of computing initial weights by C4.5CS is similar to that of the 
GINIAlteredPriors algorithm developed by Breiman et al. [1984] and Pazzani et 
al. [1994]. When presented with the same data set, both methods would produce 
the same decision tree. However Ting [1998] observes that the method which 
alters the priors would perform poorly as pruning would be carried out in a cost 
insensitive way, whereas the C4.5CS algorithm uses the same weights in its 
pruning stage. In his experiments with a version which replicates Breiman et al. 
[1984]’s method, C4.5(π’) performs worse that the C4.5CS algorithm. He explains 
this result as owing to different weights in the tree growing stage and the 
pruning stage. 

The sum of all the weights for class j in the C4.5CS algorithm will be equal to 
N. The aim of C4.5CS is to reduce high cost errors by allocating the highest 
weights to the most costly errors so that C4.5 concentrates on reducing these 
errors.  
 
C4.5CS [Ting 1998, 2002]:   ݐ݄݃݅݁ݓ௝ ൌ ሺ݆ሻݐݏ݋ܿ ே∑ ௖௢௦௧ሺ௜ሻே೔೔     
 
where cost(j) and cost(i) are as defined by equation (4).  
 
MaxCost [Margineantu and Dietterich 2003]: ݐ݄݃݅݁ݓ ௝ ൌ       ௝௜ܥ ଵஸ௜ஸ௞ݔܽ݉ 
           

AvgCost [Margineantu and Dietterich 2003]:  ݐ݄݃݅݁ݓ௝ ൌ  ∑ ஼ೕ೔ೖ೔సభ,೔ಯೕሺ௞ିଵሻ  
         

These latter two algorithms have been designed to solve multi-class problems 
so the cost matrices involved are not the usual 2 x 2 grids presented when solving 
two class problems. Instead a k x k matrix is used, the diagonal cells containing 
the cost of correctly classifying an example, usually zero although for some 
domains it could well be greater than zero. 
 
  

Table 4 Example of a cost matrix of a four class problem 
Predicted class Correct Class 
 1 2 3 4 

1 0 10 2 5 
2 100 0 5 2 
3 5 2 0 50 
4 2 5 25 0 

 
Table 4 presents an example of a cost matrix of a data set where k = 4. The 

diagonal cells have been assigned zero therefore a correct classification results in 
zero cost. Two algorithms developed by [Margineantu and Dietterich 2003] use 
this cost matrix directly to compute initial weights. MaxCost uses the worst case 
cost of misclassifying an example. The maximum value within a column is 
considered to be the worst case cost of misclassifying an example. For instance, 
the weight of all class 1 examples will be assigned 100 as that is the maximum 
misclassification cost in the column corresponding to class 1. AvgCost calculates 
the average cost of misclassifying an example for its weight. Each weight is 
computed as the mean of the off-diagonal cells in the corresponding column. 
Using this algorithm, class 1 examples are assigned 35.6. These two algorithms 
are considered more efficient than others of this type [Margineantu and 
Dietterich 2003].  

Margineantu and Dietterich [2003] also suggest an alternative way of setting 
the weights, called EvalCount, where an accuracy-based decision tree is first 
induced and then used to obtain the weights.  The training data is sub divided 
into a sub training set and a validation set. The sub training set is then used to 
grow an accuracy based decision tree. Using this decision tree, the cost of 
misclassification for each class on the validation set is then measured using the 



cost matrix. The weight allocated to a training example is then set to the total 
cost of misclassifying an example of that class. 
    

4.1.2 Direct use of costs.   Instead of adapting the information gain to include 
costs, a number of algorithms utilize the cost of misclassification directly as the 
selection criteria. These algorithms can be subdivided into two groups: those that 
only use misclassification costs and those which also include test costs. 

The central idea with these algorithms is to calculate the expected cost if an 
attribute is used to divide the examples, compared with the expected cost if there 
is no further division (i.e. a leaf is assumed).  The attribute that results in the 
most reduction is then selected to divide the examples. Of course, if none of the 
attributes results in a reduction, then a leaf node is created. 

Cost-Minimization [Pazzani et al. 1994], Decision Trees with Minimal Cost 
[Ling et al. 2004] and two adaptations Decision Trees with Minimal Cost under 
Resources Constrain [Qin et al. 2004] and CSTree [Ling et al. 2006a] use either 
misclassification costs or a combination of misclassification costs and test costs to 
partition the data. Cost-Minimization, the simplest of these chooses the attribute 
which results in the lowest misclassification costs.  

One of the main algorithms to use costs directly in order to find the attribute 
on which to partition data, is Decision Trees with Minimal Cost developed by Ling 
et al. [2004], spawning other adaptations. Expected cost is calculated using both 
misclassification costs and test costs aiming to minimize the total cost. An 
attribute with zero or smallest test cost is most likely to be the root of the tree, 
thus attempting to reduce the total cost. This algorithm has been developed 
firstly to minimize costs and secondly to deal with missing values in both the 
training and testing data. In training, examples with missing values remain at 
the node representing the attribute with missing values. In a study comparing 
techniques by Zhang et al. [2005], it was concluded that this was the best way to 
deal with missing values in training examples. How and whether to obtain values 
during testing are solved by constructing testing strategies and are discussed 
additionally in Ling et al. [2006b]. 

To illustrate what happens when only the costs (i.e., no information gain) are 
used to select attributes, consider the application of the DT with MC algorithm to 
the example in Table 1, where in addition to the test costs we assume the 
misclassification costs of 50 and 200 for the faulty and not faulty class 
respectively.    

 
 

5(a) Tree from DT with MC  5(b) Tree if left branch is 
expanded. 

Figure 5 Decision Tree when DT with MC has been applied to data set in Table 1 
 

Figure 5(a) shows the tree induced by DT with MC algorithm, which is very 
different from the cost-sensitive tree produced by EG2 (Figure 4) and from the 
tree produced by ID3 (Figure 1).  This algorithm employs pre-pruning, that is, it 



stops splitting as soon as there is no improvement.  Figure 5(b) shows a partial 
tree obtained, if the left branch was expanded further.  The additional attribute 
that would lead to the least cost is sound quality, with a total cost of 220 units 
since there are still two faulty examples misclassified but there is the extra cost 
of 120 units for testing Sound Quality (i.e., 8 examples each costing 15 units).  
However, the cost without splitting is 100 units (i.e., 2 faulty examples 
misclassified, with misclassification cost of 50) and hence, in this case, the extra 
test is not worthwhile.   

Ling et al. [2006b] use the algorithm developed in Ling et al. [2004] in a lazy 
learning framework in order to use different test strategies to obtain missing 
values on test data and to address problems of delayed tests. Using expected total 
cost, a tree is induced for each test example using altered test costs, whereby test 
costs are reduced to zero for examples with known values, thus making them a 
more desirable choice. 

Ling et al. [2004]’s algorithm is further adapted into CSTree which does not 
take into account test costs, using only misclassification costs [Ling et al. 2006a]. 
CSTree deals with two-class problems and estimates the probability of the 
positive class using the relative cost of both classes and uses this to calculate 
expected cost.  

A different and perhaps more extensive idea is by Qin et al. [2004], who 
develop an adaptation of the Ling et al. [2004] algorithm Decision Trees with 
Minimal Cost under Resource Constrains. Its purpose is to trade off between 
target costs (test costs and misclassification costs) and resources.  Qin et al. 
[2004] argue that it is hard to minimize two performance metrics and it is not 
realistic to minimize both of them at the same time. So they aim to minimize one 
kind of cost and control the other in a given budget. Each attribute has two costs, 
test cost and constrain, likewise each type of misclassification has a cost and a 
constrain value. Both these values are used in the splitting criteria, to produce a 
target-resource cost decision tree [Qin et al. 2004] and used in tasks involving 
target cost minimization (test cost) and resources consumption for obtaining 
missing data. 
 
Decision Tree with Minimal Costs under Resource Constrain: 
 
  ICFA ൌ ሺT – TAሻ / ConstrainA    
 
஺݊݅ܽݎݐݏ݊݋ܥ    ൌ ሺܰ െ ሻ݋ כ ஺ݎ ൅ ݌ כ ሻݎ௜௝ሺܥ ൅ ݊ כ ሻݎ௝௜ሺܥ ൅ ݋ כ  ሻݎ௝௜ሺܥ 
 
where T is the misclassification cost before splitting, TA is the expected cost if 
attribute A is chosen, rA, Cij(r) and Cji(r) are the resource costs for false negatives 
and false positives respectively, p is the number of positive examples and n the 
number of negative examples and o the number of examples with missing 
attribute value. 

A different approach than simply using the decision tree produced using direct 
costs, is suggested by Sheng and Ling [2005], a hybrid cost-sensitive decision tree. 
They develop a hybrid between decision trees and Naïve Bayes, DTNB (Decision 
Tree with Naïve Bayes). Decision trees have a structure which is used to collect 
the best tests but ignores, when classifying, originally known attribute values not 
appearing in the path taken by a test example. It is argued by Sheng and Ling 
[2005] that any value is available at a cost, if values are available at the testing 
stage, these might be useful in order to reduce misclassification costs and to 
ignore them would be wasting available information. Naïve Bayes can use all 
known attribute values for classification but has no structure to determine which 
tests to perform and in what order should they be carried out in order to obtain 
unknown attribute values. The DTNB algorithm aims to combine the advantages 
of both techniques.  

A decision tree is built using expected cost reduction using the sum of test 
costs and expected misclassification costs to determine whether to further split 



the data and on what attribute. Simultaneously a cost-sensitive Naïve Bayes 
model using Laplace correction and misclassification costs is hidden at all nodes 
including leaves and is used for classification only of the test examples. The 
decision tree supplies the sets of tests used in various test strategies and the 
Naïve Bayes model, built on all the training data, classifies the test examples, 
thus overcoming problems caused by segmentation of data, that is the reduction 
of data at lower leaves, and making use of all attributes with known values but 
which have not been selected during induction so that no information once 
obtained, is wasted. In experiments, this hybrid method proved to be better in 
combination than the individual techniques [Sheng and Ling 2005]. 
 

4.1.3 Linear and non-linear decision nodes.   Most of the early algorithms handle 
numeric attributes by finding alternative thresholds, resulting in univariate or 
axis-parallel splits.  A number of authors have suggested that this is not 
sufficiently expressive and adopted more sophisticated multivariate splits. These 
methods still adopt the top-down decision tree induction process and the primary 
difference between them, which we summarize below, is whether they adopt 
linear or non-linear splits and how they obtain the splits. 

The LMDT algorithm [Draper et al. 1994] was one of the first to go beyond 
axis-parallel splits. This algorithm aims to develop a decision tree whose nodes 
consist of Nilsson’s [1969] linear machines. A linear machine aims to learn the 
weights of linear discriminants.    Before looking at the LMDT algorithm, it is 
worth understanding the concept of a linear machine, which is central to the 
LMDT algorithm.  The following figure summarizes the structure of a linear 
machine. 
 

 
 

Figure 6 Linear Machine 
 

Each function gi(x) aims to represent a class i in a winner takes all fashion.  A 
weight wij represents the coefficient of xj for the ith linear discriminant function.   
The training procedure involves presenting an example x that belongs to a class i.  
If the example is misclassified, say into class j, then the weights of the jth machine 
can be decreased and the i th machine increased, i.e.: 
 

Wi  = Wi + c.x    
Wj = Wj - c.x        

 
where c is a correction factor, and the Wi   and Wj are the weight vectors for the ith  
and jth   linear discriminants. 

When the classes are linearly separable, the use of a constant correction rate 
(i.e. as in a perceptron) is sufficient to determine a suitable discriminant and this 



simple procedure converges.  However, in general, the classes may not be linearly 
separable and the above procedure may not converge.   Draper et al. [1994] 
overcame this problem by utilizing a thermal training procedure developed by 
Frean [1990]. This involved using an annealing parameter β to determine the 
correction factor c as follows: 
 

 c = β2 / β + k     where k = (Wj – Wi)T x / 2xT x. 
 
where Wj is the weight vector of the ith  discriminant function that represents  
the true class of the example, and Wj  is the weight vector of the jth discriminant  
function that represents the class in which the example is misclassified. 
 

LMDT is altered to make it cost-sensitive by altering its weight learning 
procedure, with the aim of reducing total misclassification costs. In the modified 
version, it samples the examples based on the cost of misclassifications made by 
the current classifier. The training procedure is initialized for each class using a 
variable ‘proportioni’, for each class i. Next, if the stopping criterion is not met, 
the thermal training rule trains the linear machine and if the examples have 
been misclassified, the misclassification cost is used to compute a new value for 
each ‘proportioni’.  

An alternative approach to obtaining linear splits, taken in the LDT system 
[Vadera 2005b],   is to take advantage of discriminant analysis which enables the 
identification of linear discriminants of the form [Morrison 1976; Afifi and Clark 
1996]: 
 ሺߤଵ െ ݔଶሻΣିଵߤ െ ଵଶ ሺߤଵ െ ଵߤଶሻΣିଵሺߤ ൅ ଶሻߤ ൑ ln ቀ஼మభ௉ሺ஼మሻ஼భమ௉ሺ஼భሻቁ      (5) 
    
where x is a vector representing the new example to be classified, ߤଵ, ߤଶ are the 
mean vectors for the two classes, Σ is the pooled co-variance matrix, and ܲሺܥ௜ሻ  is 
the probability of an example being in class Ci.                                       

Theoretically, it can be shown that equation (5) minimizes the 
misclassification cost when ࢞ has a multivariate normal distribution and when 
the co-variance matrices for each of the two groups are equal. 

This trend of moving towards more expressive divisions is continued in the 
CSNL system [Vadera 2010] that adopts non-linear decision nodes.  The approach 
also utilizes discriminate analysis, and adopts following split that minimizes cost 
provided the class distributions are multivariate normal: 
 
 െ ଵଶ ∑௧ሺݔ െିଵଵ ∑ ሻݔ ൅ ሺߤଵ௧ିଵଶ ∑ െିଵଵ ଶ௧ߤ ∑ ሻݔ െ ݇ ൒ ln ቀ஼మభ௉ሺ஼మሻ஼భమ௉ሺ஼భሻቁିଵଶ )   
 
 ݇ ൌ  ଵଶ ݈݊ ሺ| ∑ |భ| ∑ |మ ൅ ଵଶ ሺߤଵ௧ ∑ ଵିଵଵߤ െ ଶ௧ߤ ∑ ଶିଵଶߤ ሻ                      (6) 
 
where x is a vector representing the example to be classified, µ1, µ2 are the mean 
vectors for the two classes, ∑1, ∑2 are the covariance matrices for the classes and 
∑1-1, ∑2-1 the inverses of the covariance matrices.  

Given that the multivariate assumption may not hold in practice, it may be 
that utilization of a subset of variables could lead to more cost-effective splits, and 
hence several strategies for subset selection are explored.  One strategy, explored 
in [Vadera 2005a], is to attempt all possible combinations and select the subset 
that minimizes cost. However, this strategy is not particularly scalable and 
results in trees that are difficult to visualize.  An alternative strategy, explored in 
[Vadera 2010], selects two of the most informative features, as measured by 
information gain, and uses the above equation (6) to obtain non-linear divisions.  
 
 
 



 
4.2 Post construction 
 
If costs are unknown at training time they cannot be used for inducing a tree. 
Additionally if costs are likely to change, this would mean inducing a tree for 
every different combination of costs. Hence, various authors have explored how 
misclassification costs can be applied after a tree has been constructed. 

One of the simplest of ways is to change how the label of the leaf of the 
decision tree is determined. I-gain Cost-Laplace Probability [Pazzani et al. 1994] 
uses a Laplace estimate of the probability of a class given a leaf shown in 
equation (7). If there are Ni examples of class i at a leaf and k classes then the 
Laplace probability of an example being of class i is: 

 
 

           ܲሺ݅ሻ ൌ  ே೔ା ଵ௞ା ∑ ே೤ೖ೤సభ   (7) 

 
When considering accuracy only, an example is assigned to the class with the 

lowest expected error. To incorporate costs, the class which minimizes the 
expected cost of misclassifying an example into class j is selected, where the 
expected cost is defined by: 
 
݆ ݏݏ݈ܽܿ ݋ݐ݊݅ ݊݋݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܿݏ݅ܯ ݂݋ ݐݏ݋ܥ ݀݁ݐܿ݁݌ݔܧ        ൌ  ∑ ௜௝௜ܥ ܲሺ݅ሻ 
 

Ferri et al. [2002], propose a post construction method based on Receiver 
Operating Characteristics (ROC) [Swets et al. 2000].  ROC facilitates comparison 
of alternative classifiers by plotting their true positive rate (on the y axis) against 
their false positive rate (on the x axis).   Figure 7 shows an example ROC, where 
the true and false rates of four classifiers are plotted. The closer a classifier is to 
the top left hand corner, the more accurate it is (since the true positive rate is 
higher and the false positive rate smaller).    
 
 

 
Figure 7 Example ROC 

 
The convex hull created from the points (0,0), the four classifiers and (1,1) 

represents an optimal front.  That is, for any classifier below this convex hull, 
there is a classifier on the front that is less costly. 

The idea behind Ferri et al. [2002]’s approach is to generate the alternative 
classifiers by considering all possible labellings for the leaf nodes of a tree.  For a 
tree with m leaf nodes, and a two class problem, there are 2m alternative labels, 
which could be computationally expensive.  However, Ferri et al. [2002] shows 
that for a two class problem, if the leaves  are ordered by the accuracy of one of 



the classes, then only  m+1 alternative labellings are needed to define the convex 
hull, where the jth node of the ith labelling, Li,j,  is defined by:   
௜,௝ܮ  ൌ  ൜െ݁ݒ ݂݅ ݆ ൏ ݅൅݁ݒ ݂݅ ݆ ൒ ݅                      
 

The convex hull formed by these labellings can then be used to determine the 
most optimal classifier once the costs of misclassification are known. 
 
5. MULTIPLE TREE, NON-GREEDY METHODS FOR COST-SENSITIVE DECISION TREE 
INDUCTION 
 
Greedy algorithms have the potential to suffer from local optima, and hence an 
alternative direction of research has been to develop algorithms that generate 
and utilize alternative trees. There are three common strands of work:  Section 
5.1 describes the use of genetic algorithms, Section 5.2 describes methods for 
boosting and bagging, and Section 5.3 describes the use of stochastic sampling for 
developing anytime and anycost frameworks. 

5.1 Use of Genetic Evolution for Cost-Sensitive Tree Induction 
 
Several authors have proposed the use of genetic algorithms to evolve cost-
effective decision trees [Turney 1995]. Just as evolution in nature uses survival of 
the fittest in order to produce next generations, a pool of decision trees are 
evaluated using a fitness function, the fittest retained and combined to produce 
the next generation repeatedly until a cost-effective tree is obtained. This section 
describes the algorithms that utilize evolution, which vary in the way they 
represent, generate, and measure the fitness of the trees. 

One of the first systems to utilize GAs was Turney’s [1995] ICET system 
(Inexpensive Classification with Expensive Tests. ICET uses C4.5 but with EG2’s 
cost function to produce decision trees, in Section 4.1. 

Its populations consists of individuals with the parameters CAi, ω, and CF, 
where CAi, ω are biases utilized in equation (2) and CF is a parameter used by 
C4.5 for determining the aggressiveness of pruning.  

ICET begins by dividing the training set of examples into two random but 
equal parts: a sub-training set and a sub-testing set. An initial population is 
created consisting of individuals with random values of CAi, ω, and CF. C4.5, with 
the EG2’s cost function, is then used to generate a decision tree for each 
individual. These decision trees are then passed to a fitness function to determine 
fitness. This is measured by calculating the average cost of classification on the 
sub-testing set.  

The next generation is then obtained by using the roulette wheel selection 
scheme, which selects individuals with a probability proportional to their fitness.   
Mutation and crossover are used on the new generation and passed through the 
whole procedure again. After a fixed number of generations (cycles) the best 
decision tree is selected.  ICET uses the GENEtic Search Implementation System 
(GENESIS, Grefenstette [1990]) with its default parameters including a 
population size of 50 individuals, 1000 trials and 20 generations.   

More recently, Kretowski and Grześ [2007] describe GDT-MC (Genetic 
Decision Tree with Misclassification Costs), an evolutionary algorithm in which 
the initial population consists of  decision trees that are generated using the 
usual top down procedure, except that the nodes are obtained using a dipolar 
algorithm. That is, to determine the test for a node, first two possible examples 
from the current data set are randomly chosen such that they belong to different 
classes. A test is then created by randomly selecting an attribute that 
distinguishes the two examples. Once a tree is constructed, it is pruned using a 
fitness function.   The fitness function used in GDT-MC aims to take account of 



the expected misclassification cost as well as the size of trees and takes the form 
[Kretowski and Grześ, 2007]: 
݁݁ݎݐ ݂݋ ݏݏ݁݊ݐ݅ܨ  ൌ  ቀ1 െ ா஼ெ஼ቁ ሺ1 ൅ .ߛ ܶܵሻ      
 
where EC is the misclassification cost per example, MC is the maximal possible 
cost per example, TS is the number of nodes in the tree and γ is a user provided 
parameter that determines the extent to which the genetic algorithm should 
minimize the size of the tree to aid generalization. 

The genetic operators are similar in principle to the cross-over and mutation 
operators, except that they operate on trees.   Three cross-over like operators are 
utilized on two randomly selected nodes from two trees:  

– exchange the sub-trees at the two selected nodes. 
– if the types of tests allow, then exchange just the tests. 
– exchange all sub-trees of the selected nodes, randomly selecting the ones 

to be exchanged. 
 

The mutation operators adopted allow a number of possible modifications of 
nodes, including replacing a test with an alternative dipolar test, swapping of a 
test with a descendent node’s test, replacement of a non-leaf node by a leaf node, 
and development of leaf node into a sub-tree.   A linear ranking scheme, coupled 
with an elitist selection strategy, is utilized to obtain the next generation 
[Michalewicz 1996].1 

The ECCO (Evolutionary Classifier with Cost Optimisation) system [Omielan 
2005]  adopts a more direct use of genetic algorithms by mapping decision trees to 
binary strings and then adopting the standard cross-over and mutation operators 
over binary strings.   Attributes are represented by a fixed size binary string, so 
for example 8 attributes are coded with 3 bits.    Numeric attributes are handled 
by seeking an axis parallel threshold value that maximizes information gain, 
thereby resulting in a binary split. The mapping between a tree and its binary 
string is achieved by assuming a fixed size maximal tree where each node is 
capable of hosting an attribute which has the most features.2   Figure 8 illustrates 
the mapping for a problem where the attributes have two features only. Such a 
maximal tree is then interpreted by mapping the nodes to attributes, assuming 
that the branches are ordered in terms of the features.   In addition, mutation 
may result in some nodes with non-existent attributes, which are also translated 
to decision nodes.    

 
  

Figure 8  Illustration of mapping 
A tree is then populated with the examples in a training set and each leaf node 

labelled with a class that minimizes the cost of misclassification.   A version of the 
minimums error pruning algorithm that minimizes cost instead of error is used 

                                                            
1 The elitist strategy ensures that a few of the fittest are copied to the new generation, and the linear 
ranking strategy ensures some diversity and avoids the fittest don’t dominating the evolution to early 
in the evolution.    
2 The approach works in general for an attribute with more than two features 



for pruning.  The fitness measure used is the expected cost of classification, 
taking account of both the cost of misclassification and the cost of the tests.  Once 
genes are mapped to decision trees and pruned, and their fitness obtained, the 
standard mutation and cross-over operators applied, a new generation of the 
fittest is evolved and the process repeated a fixed number of cycles.   Like ICET, 
ECCO adopts the GENESES GA system and adopts its default parameters.  

Li et al. [2005] take advantage of the capabilities of Genetic Programming 
(GP), which enable representation of trees as programs instead of bit strings, to 
develop a cost-sensitive decision tree induction algorithm.  They use the following 
representation of binary decision trees as programs, defined using BNF [Li et al. 
2005]: 
 
<Tree> :: “if-then-else” <Cond><Tree><Tree> | Class 
 <Cond> :: <Cond> “And” <Cond> | <Cond> “Or” <Cond> 
                          | Not <Cond> | Variable<RelationOperation>Threshold 
 <RelationOperation> ::= “>” | “<” | “=” 
 

Unlike GDT-MC, which utilizes specialized mutation and crossover operators, 
Li et al. [2005] adopt the standard mutation and crossover operators of genetic 
programming. A tournament selection scheme, in which four individuals are 
selected randomly with a probability proportional to their fitness, compete to 
move to the next generation.  The fittest of the four is copied to the pool for the 
next generation and this tournament process repeated to produce the complete 
mating pool for the next generation.   The fitness function employed is also 
different from ICET, ECCO and GDT-MC.  Unlike, these methods, which utilize 
expected cost, Li et al [2005] propose the following fitness function that is based 
on the principle that a cost-effective classifier will maximize accuracy (RC) but 
minimize the false positive rate (RFP): 
   

 Constraint Fitness Function ൌ Wrc’ * RC – Wrfp * RFP  
 

Experimentation with this function leads them to the following additional 
constraint to ensure that accuracy of one of classes is not compromised when the 
costs of misclassifications are significantly imbalanced: 
   
  Wrc ൌ 1 if C൅ Ԗ ሾPmin, Pmaxሿ, 0 otherwise,     
 
where C+ is the proportion of examples predicted to be positive, and the Pmin and 
Pmax define  the expected range for C+ that is provided by a user.  
 
5.2 Wrapper Methods for Cost-sensitive Tree Induction 
 
A significant amount of research has been done on accuracy based classifiers, and 
instead of developing new cost-sensitive classifiers or adapting them as described 
above, an alternative strategy is to develop wrappers over accuracy based 
algorithms.     

This section describes two approaches for utilizing existing accuracy based 
algorithms.  Section 5.2.1 describes methods based on boosting, where an 
accuracy based learner is used to generate an improving sequence of hypotheses 
and Section 5.2.2 describes methods based on bagging that are based on 
generating and combining independent hypotheses. Section 5.2.3 describes a 
method which implicitly includes alternative hypotheses but in one structure. 
 
5.2.1 Cost-Sensitive Boosting.  Boosting involves creating a number of hypotheses ht 
and then combining them to form a more accurate composite hypothesis of the 
form [Schapire 1999; Meir and Rätsch 2003]: 
 

 



 ݂ሺݔሻ ൌ  ∑ ሻ௧்ୀଵݔ௧݄௧ሺߙ      (8) 
  
where αt indicates the extent of weight that should be given to ht(x). 
 

One of the first practical boosting methods, AdaBoost (Adaptive Boosting) 
works by generating hi(x) in sequential trials by using a learner on weighted 
examples that reflect their importance [Freund and Schapire 1996]. It begins by 
assigning weights of 1/N to each example.  At the end of each sequential trial, 
these weights are adjusted so that the weights of misclassified examples are 
increased, but the weights of correct examples decreased. After a fixed number of 
cycles, a sequence of trees or hypotheses hi is available and can be combined to 
perform classification.  The final classification is based on selecting the class that 
results in the maximum weighted vote as defined by equation (8). There are 
different versions of AdaBoost with specific weight update rules (e.g., Freund and 
Schapire [1997], Bauer and Kohavi [1998], Schapire and Singer 1999]).  For 
example, one version that is based on a weak learner capable of producing 
hypotheses ht that return a confidence rating in the range [-1,1] uses the 
following update rule [Schapire 1999]: 
 
௧ߙ     ൌ  భమln ቀଵିఢ೟ఢ೟ ቁ       (9)

    
ሻݔ௧ାଵሺݓ  ൌ ሻሻܼ௧ݔ௧ሺ݄ݕ ௧ߙሻ exp ሺെݔ௧ሺݓ        
 
where the Zt is used to normalize the weights so they add up to 1.    
 

Thus, AdaBoost consists of three key steps: the initialization, the weight 
update equations, and the final weighted combination of the hypotheses.   The 
literature contains a number of algorithms that adapt these three steps of 
AdaBoost to develop cost-sensitive boosting algorithms. 

In particular, Ting  and Zheng [1998], which was one of the first studies to 
utilize boosting for cost-sensitive induction, proposed two adaptations:  an 
algorithm called UBoost (Boosting with Unequal Instance Weights) and another 
called Cost-UBoost (UBoost with Cost-Sensitive adaptation).  

UBoost utilizes AdaBoost, except that the weights for each example x, of class j 
are initialized to the cost of misclassifying an example of class j, and normalized3 :  
 
ሻݔ଴ሺݓ    ൌ     ሺ݆ሻݐݏ݋ܿ 
 

The cost of misclassifying an example of class i, denoted by cost(i) is defined by 
Ting and Zheng [1998] as in equation (4).  Below, we also use the notation cost(x) 
to denote the cost of misclassifying an example x. 

In addition, the composite classification rule of equation (8) is adapted to first 
work out the expected cost of classifying an example ECj(x), into class j using the 
combined hypotheses:  
 

ሻݔ௝ሺܥܧ  ൌ  ∑ ,ݔሺܥܧ௧ߙ ݆, ݄௧௧்ୀଵ ሻ      
 
where EC(x,j,ht)  is the expected cost  if the example x is classified in class j based 
on the distribution of examples in the leaf node of the tree ht that leads to the 
classification ht(x).    

UBoost then selects the class j that results in the minimum expected cost 
ECj(x). 

                                                            
3 The presentation here assumes that the normalisation of the weights by a factor is Zt   is done at the 
end of a trial, therefore simplifying the equations. 



 
Ting and Zheng [1998] also propose a method Cost-UBoost that extends 

UBoost by also amending the weight update procedure to take account of costs, so 
that:3 
 
ሻݔ௧ାଵሺݓ   ൌ .ሻݔ௧ሺݓ ,′ݕሺߚ  ሻݕ
 
where y is the actual class and y’ is the predicted class for an example x and β is 
defined by:  
 
,′ݕሺߚ   ሻݕ ൌ  ൜ ܥ௬௬′ ݕ ݄݊݁ݓ′ ് ′ݕ ݄݊݁ݓ               1      ݕ ൌ    ݕ
 

The empirical trials conducted by Ting and Zheng [1998] suggest that Cost-
UBoost performs better than UBoost in terms of minimizing costs of 
misclassification for two class problems. However, they note that this advantage 
reduces for multi-class problems and suggest that this is owing to the mapping of 
different costs of misclassification into a single misclassification cost by equation 
(4).   Later in this section, we describe the more recent work of Abe et al. [2004], 
and Lozano and Abe [2008]) that develops theoretical foundations for multi-class 
cost-sensitive boosting problems. 

In a follow up study, Ting [2000] propose further variations, named CSB0, 
CSB1,  CSB2 and compare their performance to another variation of AdaBoost, 
known as AdaCost [Fan et al. 1999].   CSB0 is essentially the Cost-UBoost 
algorithm described above, while CSB1,  CSB2 and AdaCost utilize increasingly 
sophisticated weight update functions for weak learners that produce the 
confidence in its prediction ht(x) [1 ,0] א  [Ting, 2000]: 
 
CSB1:      ݓ௧ାଵሺݔሻ ൌ ,′ݕሺߚሻݔ௧ሺݓ  ሻሻݔ௧ሺ݄ߜሻexp ሺെݕ

 
CSB2:      ݓ௧ାଵሺݔሻ ൌ ,′ݕሺߚሻݔ௧ሺݓ  ௧ሻߙሻݔ௧ሺ݄ߜሻexp ሺെݕ

 
AdaCost:  ݓ௧ାଵሺݔሻ ൌ ,ݕሺ′ߚ௧ߙሻݔ௧ሺ݄ߜሻexp ሺെݔ௧ሺݓ  ሻሻ′ݕ

 
where δ is -1 if the example is misclassified and +1 if classified correctly, and a αt  

is defined as derived in [Shapire and Singer 1999]: 
௧ߙ  ൌ ଵଶ݈݊ ൬1 ൅ ௧1ݎ െ  ௧൰ݎ

 
and with rt defined as follows for the CSB family: 
௧ݎ  ൌ  ଵே ෍ ሻ௫ఢ௑ݔሻ݄௧ሺݔ௧ሺݓߜ  

 
As well as the update equation, the rt and cost adjustment function β’ are 

defined differently for AdaCost: 
௧ݎ  ൌ ෍ ,ݕሺ′ߚሻݔሻ݄௧ሺݔ௧ሺݓߜ ݄ሺݔሻሻ௫ఢ௑  

,′ݕሺ′ߚ   ሻݕ ൌ  ൜ 0.5 ܿݐݏ݋ሺݔሻ ൅ 0.5, ′ݕ ݄݊݁ݓ ് ሻݔሺݐݏ݋ܿ െ0.5ݕ ൅  0.5, ′ݕ ݄݊݁ݓ ൌ    ݕ
 

Ting [2000] evaluates these methods empirically and concludes that the 
introduction of the αt in CSB2 does not lead to a significant improvement and the 
additional parameters used in AdaCost are not particularly effective either.   



CSB1 produces more cost-effective results than AdaCost in 30 runs while 
AdaCost performs better in 11 runs.  Surprisingly, the evaluations also suggest 
that AdaBoost produces better results than its cost-sensitive version AdaCost, 
which Ting [2000] attributes to the particular definition of β’ that allocates a 
relatively low reward (penalty) when high cost examples are correctly 
(incorrectly) classified.   This is in contrast to the results presented in [Fan et al. 
1999], where AdaCost produces better results than AdaBoost when the Ripper 
learner is used instead of C4.5 as the base learner. 

The above adaptations of boosting presume that costs are well-defined in 
advance.   Merler et al. [2003] argue that in medical applications, the costs of 
false positives or false negatives can only be approximate, and further that during 
the classification process there two separate phases. In the first phase, the aim is 
to ensure that the classifier is sensitive and the true positives are maximized 
whilst the specificity of a classifier is retained within acceptable bounds. In a 
second phase, a specialist medical consultant would examine the identified 
positives more carefully, filtering out the false negatives.  Hence, for this type of 
application, they develop a boosting algorithm, SSTBoost (Sensitivity-Specificity 
tuning Boosting) that adapts AdaBoost so that the error for the ith example is 
defined in terms of measures of sensitivity and specificity: 
 
௜ߝ  ൌ ሺ1 െ ାଵܿାଵߨሻݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൅ ሺ1 െ    ଵܿିଵିߨሻݕݐ݂݅ܿ݅݅ܿ݁݌ܵ
 
where π+1 π-1 are the class priors and c+1, c-1 are the costs of misclassification of 
the two classes. Sensitivity is the true positive rate and specificity is true 
negative rate.   

With this definition of error, they use equation (9) for αt : 
 
௧ߙ    ൌ ቀଵଶቁ ln ሺଵିఌ೔ఌ೔ ሻ  
 

The weight update equation takes the form: 
ሻݔ௧ାଵሺݓ  ൌቊw୲ሺxሻexp ሺെߙ௧ሺ2 െ ,ሻሻሻݔሺݐݏ݋ܿ ሻݔ௧ሺݓ ݕ݈ݐܿ݁ݎݎ݋ܿ ݂݀݁݅݅ݏݏ݈ܽܿ ݏ݅ ݔ ݈݁݌݉ܽݔ݂݁݅ exp൫ߙ௧ܿݐݏ݋ሺݔሻ൯ ,  ݕ݈ݐܿ݁ݎݎ݋ܿ݊݅ ݂݀݁݅݅ݏݏ݈ܽܿ ݏ݅ ݔ ݈݁݌݉ܽݔ݁ ݂݅ 

 
 

Given specific costs for misclassification, this adaptation of AdaBoost, results 
in a classifier with a particular sensitivity and specificity. To enable a search for a 
classifier in a target region of sensitivity and specificity, they relate the costs of 
misclassifying a positive example, c+, and cost of misclassifying negative example, 
c-, in terms of a single parameter ω: 
 ܿାଵ ൌ ߱ ܿିଵ ൌ 2 െ ω 
 

This then enables a search over ω by using the method of bisection to find a 
classifier that aims to be within a user specified region of sensitivity and 
specificity, meeting their application goals. 

The above adaptations of AdaBoost amend the procedure to take account of 
costs. In contrast, as part of a study that aims to utilize boosting for estimating 
conditional class probabilities,  Mease et al. [2007] describe how AdaBoost can be 
used directly to develop a procedure called JOUS-Boost to perform cost-sensitive 
boosting.  They use a result owed to Elkan [2001] that shows that it is possible to 
change the distribution of the data to reflect the ratio of costs and such that 
applying boosting on this changed distribution  results in minimization of cost. 
More specifically, given the cost of misclassification and number of examples of 



class 1 and class 2 are N1, N2 respectively, the distribution of the data is changed 
so that the number of examples N1’, N2’ of class 1 and 2, satisfy: 
 ܰԢଵܰԢଶ ൌ  ଵܰܥଵଶଶܰܥଶଵ 

 
This change of distribution can be achieved by sampling the original data in a 

way that results in a smaller data set (under-sampling) or a larger data set (over-
sampling).  The sampling itself can be done with replacement, where a selected 
example is returned, or without replacement.   Under-sampling can result in loss 
of data and over-sampling leads to duplication of examples.   Mease et al. [2007] 
carry out experiments on both artificial and real data showing that the 
duplication due to over-sampling leads to over-fitting when boosting.   They then 
propose a variation, called JOUS-Boost (Over/Under Sampling and Jittering), 
that amends the sampling process by adding noise to the features of any 
duplicated data and provide empirical evidence to show that this helps to reduce 
over-fitting when AdaBoost is used.     

Most of the above algorithms are based on using boosting on two class 
problems.  In two class problems, algorithms such as UBoost are able to set the 
weight of an example in proportion to the cost of misclassifying an example.  
However, for multi-class problems, an example could be misclassified into several 
classes, so determining the weight is less obvious.  Several authors have proposed 
methods such as utilizing the sum or average of misclassification into the other 
classes (e.g. Breiman, et al [1984]; Margineantu [2001]); though as noted above, 
Ting and Zheng [1998] suggest that use of these methods may explain a reduction 
in the advantage gained by Cost-UBoost over UBoost in their empirical 
evaluations. Abe et al. [2004] also argue that these methods do not have a 
theoretical basis.  Hence, they propose an alternative way of utilizing boosting, 
called Gradient Boosting with Stochastic Ensembles (GBSE), for multi-class 
problems.  GBSE is motivated by first defining a stochastic hypothesis H(y | x) 
for a class y for an example x based on the individual hypotheses ht(x) generated 
by [Abe et al. 2004]: 
ሻݔ|ݕሺܪ  ൌ  1ܶ ෍ ሻݔሺ݄௧ሺܫ ൌ ሻ்ݕ

௧ୀଵ  

 

If Ht(y|x) is the composite hypothesis after round t of boosting, then it is 
formed by combining the previous composite hypothesis Ht-1 with the new 
hypothesis, ht,  obtained in round t, weighted by αt: 
ሻݔ|ݕ௧ሺܪ   ൌ ሺ1 െ α୲tሻܪ௧ିଵሺݔ|ݕሻ ൅  α୲ܫሺ݄௧ሺݔሻ ൌ  ሻݕ
 
where I(E) returns 1 if the expression E is true and 0 if E is false, α = 1/t, and 
initially H0(x|y) = 1/k, for a k-class problem. 

 
This enables the definition of the expected cost of misclassification over the 

examples, and using gradient descent, Abe et al. [2004] then derive the following 
weight update rule, where wx,y is the weight associated with classifying example x 
in class y: 

௫,௬ݓ  ൌ ሻݔு௧ିଵሺݐݏ݋ܿ െ ,ݔሺݐݏ݋ܿ   ሻ     (10)ݕ
 
where costHt-1(x) is the expected cost of classifying example x by the composite 
hypothesis Ht-1(x).      
 



However, existing boosting methods assume a single weight of importance per 
example, and not multiple weights, wx,y. Hence, to utilize existing boosting 
methods, there needs to be a mapping to and from multiple weights to single 
weights per example.  Abe et al. [2004] show that this mapping can be achieved 
by expanding an example (x, y, (c1, c2, …ck)), that  has features x, class y, and 
costs of classification into class i defined by ci, into k examples : 
 ܵ ൌ ൛൫ݔ, ,ݕ ௝ݔܽ݉ ௝ܿ െ ܿ௜൯ห݅ ߳ሺ1. . ݇ሻሽ                  (11) 
 

Abe et al. [2004] prove that minimizing cost over this expanded data set is 
equivalent to minimizing the cost over the original multi-class data.  They note 
that equation (10) can lead to negative weights wx,y  which makes it difficult to 
utilize existing relational weak learners.  They therefore transform the examples 
of equation (11) to the following form: 
 ቄቀሺݔ, ,ሻݕ ௫,௬ݓ൫ܫ ൒ 0൯, ௫,௬|ቁቚݓ| ݔ א  ܺ, ݕ א ܻሽ     (12) 
 

A weak learner can be applied to these data and used to induce a relational 
hypothesis ht(x,y) and the composite hypothesis revised: 
 
ሻݔ|ݕ௧ሺܪ   ൌ ሺ1 െ α୲tሻܪ௧ିଵሺݔ|ݕሻ ൅ α୲ ௧݂ሺݔ|ݕሻ           (13) 
 
where ft(y|x) converts the relational hypothesis to a stochastic form: 
 

௧݂ሺݔ|ݕሻ ൌ ቐ ,ሻݔ|ݕ௧ିଵሺܪ ,ݔሺ݄ ݐ݄ܽݐ ݄ܿݑݏ ݔ ݏ݈݁݌݉ܽݔ݁ ݋݊ ݂݅ ሻݕ ൌ ,ݔሺ݄ሺܫ1 ሻݕ ൌ 1ሻ|ሼݕ א ܻ|݄ሺݔ, ሻݕ ൌ 1ሽ| , ݁ݏ݅ݓݎ݄݁ݐ݋   

 
 

This formulation defines the mapping needed for GBSE to use single weight 
boosting methods for multi-class problems. 

A desirable property of any boosting algorithm is that it should converge and 
lead to the optimization of its objective.  Although this has not been shown for 
GBSE, Abe et al. [2004] show that a variant, called GBSE-T, with a fixed α, and 
the following amendment of the GBSE weight update equation (10) converges 
exponentially: 
 
௫,௬ݓ  ൌ ௖௢௦௧ಹ೟షభሺ௫ሻ௞ െ ,ݔሺݐݏ݋ܿ                         ሻݕ
 

In a follow up study, Lozano and Abe [2008] develop stronger theoretical 
foundations for cost-sensitive boosting in which they derive update equations for 
a family of methods, called Cost-Sensitive Boosting with p-norm Loss (Lp-CSB) for 
which they prove convergence.   Like the above study, they use stochastic 
gradient boosting as the methodology, however, instead of aiming to minimize the 
expected cost of misclassification at each boosting round, they aim to minimize its 
approximation using the p-norm [Lozano and Abe 2008]:  
 1|ܵ| ෍ ሺ݄ሺݔ|ݕሻ௣ሺ௫,௬,௪ሻאௌ ሻܿݐݏ݋ሺݔ, ൒ ݌ ݎ݋݂    ሻݕ 1 

          
   
where S takes the expanded form defined as equation (11). 
 



They use methodology similar to the derivation of GBSE and use gradient 
descent to show that optimizing this p-norm based objective leads to finding a 
hypothesis ht at each round that minimizes [Lozano and Abe 2008, p507]: 
 ෍ ෍ ሻݔሺ݄௧ሺܫ௫,௬ሺݓ ൌ ௑א௒௫אሻሻ௬ݕ  

where ݓ௫,௬ ൌ ,ݔሺݐݏ݋ሻ௣ିଵܿݔ|ݕ௧ିଵሺܪ   ሻݕ
 

To facilitate the use of a relational weak learner, the examples are translated 
to the following form, into a similar form to equation (12) in GSBE (p508): 
 ܵ ൌ ሼሺሺݔ, ,ሻݕ ݈, א ݔ |Ԣ௫,௬ሻݓ ܺ, ݕ א ܻ ሽ 
 
Except that the weights are different from GSBE and defined by: 
 

൞ Ԣ௫,௬ݓ ൌ ௪ೣ,೤ଶ  ܽ݊݀  ݈ ൌ ,ݔሺ ݎ݋݂   ,0 ᇱ௫,௬ݓݏݏ݈ܽܿ ݐݏ݋ܿ ݉ݑ݉݅݊݅݉ ݄݁ݐ ݋ݐ ݀݊݋݌ݏݏ݁ݎ݋ܿ ݐ݋݊ ݏ݁݋݀ ݕ ݄݊݁ݓሻݕ ൌ  ∑ ௪ೣ,೤೤אೊᇲଶ  ܽ݊݀ ݈ ൌ 1,  ݐݏ݋ܿ ݈ܽ݉݅݊݅݉ ݄ݐ݅ݓ ݁݊݋ ݄݁ݐ ݐ݌݁ܿݔ݁ ݏ݁ݏݏ݈ܽܿ ݈݈ܽ ݂݋ ݐ݁ݏ ݄݁ݐ ݏᇱܻ݅ ݁ݎ݄݁ݓ

 
 

Once, a weak learner is applied and a new hypotheses ht(x,y) obtained, the 
revised composite hypothesis is defined as in equation (13) with ft(x|y) = ht(x,y).   
Lozano and Abe [2008] prove that this scheme and its related family of schemes 
are guaranteed to minimize the p-norm based objective, providing a significant 
theoretical result and understanding of cost-sensitive boosting methods.   
 

5.2.2 Cost-Sensitive Bagging.  The main principle of bagging is that producing n 
re-samples of the data set (with replacement), applying a learning procedure to 
each resample and aggregating the answers leads to better classifiers, 
particularly for learners that are not stable [Breiman 1996].    This principle is 
used in MetaCost [Domingos 1999], which is one of the earliest systems to utilise 
cost-sensitive bagging. Thus, MetaCost re-samples the data several times and 
applies a base learner to each sample to generate alternative decision trees.   The 
decisions made on each example by the alternative trees are combined to predict 
the class of each example that minimizes the cost and the examples relabelled.  
The relabelled examples are then processed by the base learner, resulting in a 
cost-sensitive decision tree.   

Zadrozny et al. [2003a, 2003b] describe a method called Costing that, like 
MetaCost applies a base learner to samples of the data to generate alternative 
classifiers.   However, the sampling process is significantly different from 
MetaCost.  Each resample aims to change the distribution of the data so that 
minimizing error on the changed distribution is equivalent to minimizing cost on 
the original distribution (i.e., as described for JOUS-Boost above).   Zadrozy et al. 
[2003a] argue that using sampling with replacement can lead to overtraining 
because of the potential for duplication, and sampling without replacement is also 
problematic since we can no longer assume that the examples selected are 
independent.   Hence, to overcome these shortcomings, Zadrozny [2003a] utilize 
rejection sampling [Von Neumann 1951] in which an example with cost c has a 
probability of c/Z of being accepted, where Z is chosen as the maximum cost of 
misclassifying an example.  Once these samples, which are proportional to the 
cost, are generated using rejection sampling, Costing applies a base learner to 
generate m classifiers whose outcomes can be aggregated to classify an example.  
Notice that, unlike MetaCost, there is no relabeling of the data in order to 
generate a single decision tree.  
 



Lin and McLean [2000] develop an approach, in which they use different 
learners on the same training sample to generate alternative classifiers. As with 
MetaCost, they use the different classifiers to predict the class of each example.  
However, the labelling of an example x, by a classifier j is based on the risk of 
classification into two classes: 
 Risk1,j ൌ  π2 * Pሺ2|x,jሻ * C12                       (14) Risk2,j ൌ          π1 * Pሺ1|x,jሻ * C21 
 
where π1, π2 are the prior probabilities of the examples in the two classes. 
 

The risk of classification of an example x into a class c is then defined as a 
weighted sum of the m classifiers: 
 Risk୶,ୡ ൌ ෍ w୨Rୡ,୨௠

௝ୀଵ  

 
where wj, which is the weight associated with classifier j,  is the accuracy of the 
classifier on the training set. The class c that minimizes Riskx,c  is used to label 
an example x. 
 

Moret et al. [2006] describe a similar method to Lin and McLean [2000], called 
Bagged Probability Estimation Trees (B-PETS), but do not utilize the prior class 
probabilities, πi, in equation (14) and also estimate the P(i|x,j) using the 
distribution of examples in the leaf nodes and Laplace’s correction (equation 7) 
which is known to produce better estimates. 

Moret et al. [2006] also propose an alternative way of estimating P(c|x), the 
probability of an example x being in a particular class c that makes use of lazy 
option trees.  A lazy option tree (LOT) is constructed for an example x, using the 
usual top-down process except there are two significant differences.  First, since 
the example is known, only tests that are consistent with the example are 
considered at each node.  Secondly, instead of selecting a single best test for each 
node, the first k best tests are also stored as alternative tests, leading to k sub-
trees. An estimate of P(c|x) is then based on the k leaf nodes that the example x 
falls into.  In addition, they also use re-sampling and bagging over lazy option 
trees (B-LOTs), to produce estimates of P(c|x). These estimates of P(c|x) can 
then be used to select the class that minimizes the risk based on the cost of 
misclassification.        

Given that both MetaCost and AdaBoost each result in improved performance, 
it seems plausible that exploring a combination of the two methods could lead to 
further improvements. Ting [2000a] investigates this possibility by carrying out 
an empirical evaluation of two adaptations of MetaCost:  one, called MetaCost_A 
where the base learner is AdaBoost, and a second, called MetaCost_CSB, where 
the base learner is CSB0.   The results of the empirical evaluations suggest that 
there is little to be gained by embedding AdaBoost or CSB0 within MetaCost.  
Bagging is known to be particularly effective at reducing variance of due to an 
unstable base learner [Bauer and Kohavi 1998], which may provide an 
explanation of why using bagging over AdaBoost or CSB does not result in 
further improvements. 

The comparison in Ting [2000a] also shows that using a cost sensitive base 
learner for MetaCost does result in improvements over a using a cost-insensitive 
learner, which is also apparent in the empirical results presented in Vadera 
[2010]. 
 

5.2.3 Multiple Structures.  Estruch et al. [2002] argue that generating alternative 
trees such as in boosting and bagging can consume significant space and 
therefore propose a structure, called Multi-Tree, which aims to implicitly include 



alternative trees.   The central idea is to follow the usual top-down decision 
induction process, but instead of discarding alternative choices, these are stored 
as suspended nodes that could be expanded in the future [Ferri-Ramírez 2002; 
Rissanen 1978].    Figure 9 shows a multi-tree for the example given Table 1 of 
‘Television Repair’ data set. The attributes that have been selected are presented 
in rectangles, and the suspended nodes, which are in circles, are linked by the 
dashed lines.  The figure also includes the class distribution in each node and is 
given in the format [number of examples in ‘faulty’ class, number of examples in 
‘not faulty’ class].  A multi-tree can be expanded to include an additional tree by 
selecting a suspended node and developing it into a tree using the top-down 
process but retaining potential attributes as suspended nodes. Estruch et al. 
[2002] consider alternative methods of selecting which suspended node to expand 
and adopt a random selection scheme.  Thus a multi-tree will implicitly include 
several trees each of which can be used for classification and whose outcomes can 
be combined to produce a weighted classification in the same manner to bagging. 

Estruch et al. [2002] experiment with different ways of producing this 
weighted classification by taking advantage of the fact that different decision 
trees may share the same part of a multi-tree.  A multi-tree is not as 
comprehensible as a single tree, and hence a method for extracting a single tree is 
developed. 

In contrast to MetaCost, where a single tree is obtained by applying a base 
learner on the re-classified examples, a single tree is extracted by traversing a 
multi-tree bottom-up, and selecting those suspended nodes that agree the most 
with the outcomes of the multi-tree using a randomly created data set.  They then 
utilize ROC, as described in Section 4.2, to take account of costs.    Estruch et al. 
[2002] includes an empirical comparison which concludes that it is more efficient 
in comparison to bagging and boosting.  The results for accuracy suggest that 
bagging produces better results at lower number of iterations while the use of 
multi-tree produces slightly better results beyond 200 iterations.   
 

 
Figure 9 Multi-tree using the example data set 

 
5.3 Stochastic Approach 
 
The greedy methods of induction of trees, described in Section 4, select an 
attribute after considering its immediate effect on the examples. Several authors 
have investigated the potential for utilizing a k-lookahead strategy to select 
attributes by considering their effect deeper down a tree (e.g., Murthy and 
Salzberg [1995], Dong and Kothari [2001]).  That is, for each attribute, a sub-tree 
of depth k is developed and the attribute that results in the best sub-tree is 
selected.  Although increasing the look-ahead depth k has the potential for 
increasing the quality of a tree, as Esmeir and Markovitch [2004] point out, this 
also leads to an exponential increase in the time required for induction.   
 



Hence, in their work they explore the use of stochastic sampling methods to 
assess the attributes and develop ACT [Esmeir and Markovitch 2007, 2008], a 
framework for anytime induction of cost-sensitive trees, and TATA [Esmeir and 
Markovitch,2011], an anycost framework for learning under limited budgets. 

ACT (Anytime Cost-sensitive trees) [Esmeir and Markovitch 2007, 2008] uses a 
stochastic tree induction algorithm to generate r samples of sub-trees for each 
value of an attribute.  The cost of each of these sub-trees is calculated using the 
training examples, and the minimum cost utilized as an estimate for the attribute 
value.  The costs of the sub-trees for the attribute values are aggregated to 
estimate the cost of selecting an attribute, and the minimum cost attribute 
selected.  The first of the r samples is generated using the EG2 algorithm and the 
remaining samples are generated using a greedy top-down induction process 
except that the probability of selecting an attribute is proportional to its 
information cost measure as defined in EG2 equation (2). 

In experiments, ACT returned better results than ICET (Section 5.1) and 
Decision Trees with Minimal Cost (Section 4.1.2) [Esmeir and Markovitch 2008, 
p26].  

In a more recent study, Esmeir and Markovitch [2011] note that  minimising 
the sum of  test and misclassification costs  implies that the costs should be on 
the same scale.4 They argue that a more realistic goal would be to develop trees 
that minimise misclassification costs but subject to a constraint that the total cost 
of the tests utilised is no more than a specified cost.5  The limit on test costs may 
be available prior to learning, after learning but before classification, or may be 
unavailable, leading to algorithms they term as pre-contract, contract and 
interruptible classifiers. They develop a framework for algorithms for such 
situations, called TATA (Tree classification AT Anycost), that is capable of 
reducing misclassification costs as the budget for using tests increases.         

They develop this framework by first noting that existing top-down tree 
induction algorithms can be adapted so that the total test cost for any example 
will be no more than a pre-specified cost.    This can be achieved during the tree 
induction process by only considering those attributes whose cost is below the 
current available budget, where the current budget is the initial budget less the 
cost of the attributes used from the root to the current node.    Then, they adopt 
an approach similar to ACT, except that  the r samples are obtained using an 
adapted  version of C4.5 in which attributes that cost more than the available 
budget are excluded and attributes are selected stochastically with a probability 
proportional to their information gain.  The samples for each available attribute 
are used to estimate the misclassification cost and the one with minimal 
misclassification cost selected. Given a maximum budget available for testing and 
a suitable sample size r, this achieves the requirements for a pre-contract 
algorithm. 

For a contract algorithm, the budget for test costs in not available until the 
classification stage.  To handle such applications, Esmeir and Markovitch [2011] 
propose inducing a sequence of trees, t1, … tk, which they term a repertoire, with 
respective budgets  c1,…,ck, where c1 is set to the cost of the cheapest test, and ck is 
set to the maximum cost,  where all the tests are used.    The number of trees, k, 
that are used, depends on the amount of time and memory available but also 
impacts on the time available for the number of stochastic samples, r, that are 
possible.   The k trees could be obtained by discretising the interval from c1   to ck 
into k-1  uniformly spread intervals  or in a more sophisticated manner by 

                                                            
4 As mentioned in section 4.1.1, Zhang et al. [2007], also make the same observation, though they 
adapt the measure used in the Performance algorithm to represent the trade-off between costs of tests 
and costs of misclassification.  
5 Greiner et al. (2002) provides some theoretical results for active learning under such budgets. 



repeatedly  using hill-climbing to subdivide an interval that has the largest gap 
in terms of expected errors and test cost budgets. 6 

To achieve the goals of an interruptible algorithm, where neither the budgets 
for learning or the total tests costs are available, they propose developing a 
repertoire of trees and then to start classification using the tree with the 
minimum possible budget, and then repeatedly moving on to the tree with the 
next higher budget until interrupted or reaching the final tree.  

An empirical evaluation of TATA shows that misclassification costs reduce 
more rapidly with increasing budget when compared to EG2, an adapted version 
of EG2 where only attributes within budget are considered and C4.5.  The 
misclassification cost also reduces as the number of stochastic samples, r, 
increases, with the most significant improvement occurring when one, two or 
three samples are used, but minimal improvement after three samples.  
 
6. CONCLUSIONS 
 
There has been significant interest in the introduction of costs into decision tree 
induction. Many ways of introducing costs within the decision tree process have 
been developed. Whilst there have been accounts of different types of costs, there 
has been no synthesis of the wide range of studies on cost sensitive algorithms. 
Hence this paper has carried out an extensive survey of the field with a view to 
providing an appreciation of the different approaches and algorithms that have 
been proposed. 

A new taxonomy of cost sensitive algorithms has been developed, organizing 
the algorithms into classes representing the way cost sensitivity has been 
introduced.  The survey revealed two major approaches; greedy, which induces a 
single tree making decisions with no backtracking and non-greedy, which uses 
multiple trees and multiple choices to induce trees. Seven classes are defined: 
 
(a) Use of costs during construction, whereby attribute selection measures are 

adapted to include costs. The main differences between the algorithms in this 
class are the selection measures used and whether costs of tests, 
misclassification costs or both are incorporated. 

(b) Post construction, developed when costs are unknown at training time or if the 
costs are subject to many changes. Differences between these algorithms arise 
from how the labels for leaf nodes are chosen. 

(c) GA methods, which utilize evolution, producing populations of decision trees 
which are evaluated with regard to costs with the fittest being retained and 
combined. The algorithms vary in the way trees are generated or represented 
and how the fitness is measured. 

(d) Boosting, which generates a number of decision trees in sequence using 
instance weights. The algorithms differ in the way that these weights are 
initialized, and updated. Other differences between algorithms include how 
the sampling is done, and how error rates or confidence rates have been 
calculated in order to give the trees with least error more importance in 
composite voting methods. 

(e) Bagging, which generates a number of independent decision trees using re-
samples from the training set, thus differing from the trees generated by 
boosting, being independent of each other similarly to those in the GA 
methods. Generally these algorithms are wrapping methods, using the 
decision tree as a sub-routine and wrapping the incorporation of costs around 
it. Differences between these algorithms are how sampling occurs and in the 
composite voting method used. 

                                                            

6 More formally, they select an i for which (Ei – Ei+1) (Ci+1 – Ci) is maximum where the Ei  and Ci are 
the expected error and budgets for the ith tree.  



(f) Multiple structures, which expands the ideas of generating alternative trees 
and combining the outcome by having alternative trees in one structure. This 
shows all possible alternative choices of attribute selection in one decision tree 
so that alternative choices are not discarded as in the usual decision tree 
process but are stored and can be expanded in the future.   

(g) Stochastic Approach, which induces decision trees created by generating r 
stochastic samples of trees rooted at each potential attribute and selecting the 
attribute that results in the best tree. Varying the number of r samples results 
in the anytime behaviour where quality can improve with more time.  As well 
as anytime behaviour, this approach has been used to produce a framework for 
anycost behaviour, where misclassification costs reduce as the available total 
cost for testing increases.    

 
The survey also includes a timeline showing how the field has developed from 

early algorithms that simply amend selection measures to take account of costs, 
to the more recent and sophisticated stochastic algorithms that use sampling to 
induce anycost trees. 

Selecting the most appropriate algorithm amongst the many algorithms will 
depend on various factors including whether an application needs to minimise 
costs alone, minimise costs of tests and misclassifications, whether there is a 
fixed budget for test costs, and whether there is a need for anytime or anycost 
learning.  Although, the particular experimental methods, data sets utilised (see 
Table A.1 in the Appendix) and related systems compared vary, it is possible to 
form a general view from the empirical evaluations presented in the studies.  

A number of the non-greedy algorithms show the benefits of generating 
multiple trees. Based on the original study by Turney [2005] and the independent 
comparisons in [Lomax and Vadera, 2011], ICET performs well when aiming to 
minimise the sum of costs of misclassification and tests, especially when costs of 
misclassification are uniform7.  

ACT, a system based on stochastic sampling, improves upon the results from 
ICET for both uniform and non-uniform misclassification costs [Esmeir and 
Markovitch, 2008]. 

The use of boosting has developed from the pioneering work on systems such 
as Cost-UBoost [Ting and Zheng,1998] and AdaCost [Fan et. al, 1999] to JOUS-
Boost [Mease et al., 2007] that shows the benefits of adding noise to the sampling 
process to reduce over-fitting.   Lozano and Abe [2008] have advanced our 
understanding of cost-sensitive boosting by deriving methods such as Cost-
Sensitive Boosting with p-norm Loss (Lp-CSB) that are guaranteed to converge. 
The recent work of Esmeir and Markovitch [2011] on TATA provides a novel 
framework for applications where the maximum cost for testing is available in 
advance, at the classification stage or even later. 

Given the relative success of non-greedy algorithms for cost-sensitive tree 
induction, a fair question is:   
 

“Is it worth using or even pursuing future research on greedy cost-
sensitive decision tree induction algorithms?” 

 
The primary advantage of the greedy algorithms is that they are very efficient 

and therefore represent a good starting point for applications, and where 
performance with respect to costs is very good, there may be little benefit in using 
the more computationally expensive multi-tree methods.  Producing similar 
results to multi-tree methods using single tree methods does represent a major 
research challenge, but as the work on non-linear decision tree shows [Vadera, 
2010], it is possible to produce results comparable to MetaCost and ICET for 
minimisation of misclassification costs at a fraction of the computational time.  

                                                            
7 Costs of misclassification are said to be uniform when they are the same for all the classes. 



Whether it is possible to extend this to applications that need to take account of 
costs of tests or budgeted learning remains an open question. 

In conclusion, the field of cost-sensitive decision tree learning has a rich and 
diverse history, providing a strong base for future research that could include:  (i) 
carrying out an independent and comprehensive empirical evaluation that could 
help method selection based on application requirements (ii) building upon recent 
advances to develop new algorithms that improve performance or meet new 
requirements   and (iii) developing theoretical foundations that improve our 
understanding of convergence and the trade-offs between learning time and cost 
optimisation.  
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APPENDIX 
 
Table A1, given overleaf, shows the top 20 data sets used by the studies in this 
survey. These data sets have been divided into groups; two class data sets, multi-
class data sets and those which have been used as two class and multi-class data 
sets. The table gives details of how many data sets each study used, the average 
number of data sets used and how many of the data sets are in the top 20. All 
data sets in the top 20 are available from the Machine Learning Repository8. 
Some of the studies have used private data sets or those from other sources.  

The table also indicates whether the test costs and misclassification costs are 
provided.  

Other data sets which are not in the top 20 listing but are still useful in order 
to measure performance include: (i) the Soybean data set which has 19 classes, 
(ii) Thyroid (NN), used by Turney [1995] and others, and is a larger version of the 
hypothyroid data set and having 3 classes and (iii) Statlog Shuttle, a large data 
set with 58,000 examples, useful to examine how an algorithm performs with a 
larger number of examples. 
 

                                                            
8 http://archive.ics.uci.edu/ml/index.html 



 


