
A Survey of Cost-Sensitive Decision Tree Induction Algorithms

SUSAN LOMAX, University of Salford
SUNIL VADERA, University of Salford

The past decade has seen a significant interest on the problem of inducing decision trees that take
account of costs of misclassification and costs of acquiring the features used for decision making. This
survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy
based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging. The
survey brings together these different studies and novel approaches to cost-sensitive decision tree
learning, provides a useful taxonomy, a historical timeline of how the field has developed and should
provide a useful reference point for future research in this field.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning - induction

General Terms: Algorithms

Additional Key Words and Phrases: Decision Tree Learning, Cost-Sensitive Learning, Data mining

ACM Reference Format:
Lomax, S., and Vadera, S. 2011. A survey of cost-sensitive decision tree induction algorithms. ACM
Computing Surveys. Article (), 34 pages.

DOI =

1. INTRODUCTION

Decision trees are a natural way of presenting a decision-making process, because
they are simple and easy for anyone to understand [Quinlan 1986]. Learning
decision trees from data however is more complex, with most methods based on
an algorithm, known as ID3 that was developed by Quinlan [1979, 1983,1986].
ID3 takes a table of examples as input, where each example consists of a
collection of attributes, together with an outcome (or class) and induces a decision
tree, where each node is a test on an attribute, each branch is the outcome of that
test and at the end are leaf nodes indicating the class to which the example, when
following that path, belongs. ID3, and a number of its immediate descendents,
such as C4.5 [Quinlan 1993], OC1 [Murthy et al. 1994] and CART [Breiman et al.
1984] focused on inducing decision trees that maximized accuracy.

However, several authors have recognized that in practice there are costs
involved (e.g. Breimen et al. [1984]; Turney [1995]; Elkan [2001]). For example, it
costs time and money for blood tests to be carried out [Quinlan et al. 1987]. In
addition, when examples are misclassified, they may incur varying costs of
misclassification depending on whether they are false negatives (classifying a
positive example as negative) or false positives (classifying a negative example as
positive). This has led to many studies that develop algorithms that aim to induce
cost-sensitive decision trees. These studies are presented in many different
sources and, to the best of our knowledge; there is no comprehensive synthesis of
cost-sensitive induction algorithms. Hence, this survey aims to provide an
overview of existing algorithms and their characteristics that should be a useful
source for any researcher or practitioner seeking to study, develop or apply cost-
sensitive decision tree learning.

Section 2 of the paper begins with a brief introduction to decision tree
induction to set the context for readers not already familiar with this field. The
survey identified over fifty algorithms, some of which are well known and cited,
but also some that are less well known. Section 3 begins by presenting a
taxonomy of cost-sensitive decision tree algorithms that is based on the
algorithms identified. Sections 4 and 5 present a survey of the algorithms based
on the taxonomy, and Section 6 concludes the paper.

“© ACM, (YEAR). This is the author’s version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in PUBLICATION, {VOL#, ISS#, (DATE)}
http://doi.acm.org/10.1145/{nnnnnn.nnnnnn}”. The paper was accepted in September 2011 and will appear in the future.
Please cite the version published in ACM COMPUTING SURVEYS when it appears.

2. BACKGROUND TO DECISION TREE INDUCTION

Given a set of examples, early decision tree algorithms, such as ID3 and CART,
utilize a greedy top-down procedure. An attribute is first selected as the root node
using a statistical measure [Quinlan 1979, 1983; Breiman et al. 1984]. The
examples are then filtered into subsets according to values of the selected
attribute. The same process is then applied recursively to each of the subsets
until a stopping condition, such as a certain proportion of examples being of the
same class. The leaf nodes are then assigned the majority class as the outcome.
Researchers have experimented with different selection measures, such as the
GINI index [Breiman et al. 1984], using chi-squared [Hart 1985] and which have
been evaluated empirically [Mingers 1989]. The selection measure utilized in ID3
is based on Information Theory which provides a measure of disorder, often
referred to as the entropy, and which is used to define the expected entropy, E for
an attribute A [Shannon 1948; Quinlan 1979; Winston 1993]:
ሻܣሺܧ ൌ ∑ ܲሺܽሻ. ∑ – Pሺܽ|ܿሻlog2ሺPሺܽ|ܿሻሻሻ௖א ஼௔א஺ (1)

where a ∈ A are the values of attribute A, and the c ∈ C are the class values.

This formula measures the extent to which the data is homogeneous. For
example, if all the data were to belong to the same class, the entropy would be '0'.
Likewise if all the examples belonged to different classes, the entropy would be
'1'. ID3 uses an extension of the entropy by calculating the gain in information
(I) achieved by each of the attributes if these were chosen for the split and
choosing the attribute which maximizes this gain:

ID3: ܫ஺ ൌ ሻܦሺܧ െ ሻܣሺܧ

where E(D) = ∑ – NౙN௖א ஼ ଶ݃݋݈ NౙN , calculated on the current training set before
splitting.

Although, Quinlan adopted this measure for ID3, he noticed that the measure
is biased towards attributes that have more values, and hence proposed a
normalisation, known as the Gain Ratio, which is defined by:

C4.5: ݋݅ݐܴܽ݊݅ܽܩ஺ ൌ ூಲூ௡௙௢ಲ ஺݋݂݊ܫ ݁ݎ݄݁ݓ ൌ ∑ – NNೌ௔א ஺ ଶ݃݋݈ NNೌ

Table 1 Example data set ‘Television Repair’

picture
quality

sound quality age class

poor good 2 faulty
poor excellent 1 faulty
good poor 2 faulty
good poor 2 faulty
good excellent 1 not faulty
good good 1 not faulty
good good 2 faulty
excellent good 1 faulty
excellent excellent 1 not faulty
excellent good 2 not faulty
good good 2 faulty
good good 2 faulty
good good 1 not faulty
excellent excellent 1 not faulty
excellent good 1 not faulty

C4.5 was also developed to include the ability to process numerical data and

deal with missing values. Figure 1 presents the tree that result from applying the

ID3 procedure to the examples in Table 1. At each leaf is the class distribution, in
the format of [faulty, not faulty].

Once a decision tree has been built, some type of pruning is then usually
carried out. Pruning is the term given to that of replacing one or more sub-trees
with leaf nodes. There are three main reasons for pruning. One is that it helps to
reduce the complexity of a decision tree, which would otherwise make it very
difficult to understand [Quinlan 1987], resulting in a faster, possibly less costly
classification. Another reason is to help prevent the problem of over-fitting the
data.

Figure 1 Decision Tree after ID3 has been applied to the data set in Table 1

The third reason is that noisy, sparse or incomplete data sets can cause very

complex decision trees, so pruning is a good way to simplify them [Quinlan 1987].
There are several ways to calculate whether a sub-tree should be pruned or not.
Quinlan [1987], Knoll et al. [1994] and Bradford et al. [1998a, 1998b] have
discussed different methods to do this, for instance, aiming to minimize loss
[Bradford et al. 1998a, 1998b], or using misclassification costs to prune a decision
tree [Knoll et al. 1994]. This paper focuses on surveying the cost-sensitive tree
induction algorithms and readers interested in pruning are referred to the
comprehensive review by Frank and Witten [1998].

3. A FRAMEWORK FOR COST-SENSITIVE TREE INDUCTION ALGORITHMS

Section 2 summarized the main idea behind decision tree induction algorithms
that aim to maximize accuracy. How can we induce decision trees that minimize
costs? The survey reveals several different approaches. First some of the
algorithms aim to minimize just costs of misclassification, some aim to minimize
just the cost of obtaining the information and others aim to minimize both costs of
misclassification as well as costs of obtaining the data. Secondly, the algorithms
vary in the approach they adopt. Figure 2 summarizes the main categories that
cover all the algorithms found in this survey. There are two major approaches:
methods that adopt a greedy approach that aims to induce a single tree, and non-
greedy approaches that generate multiple trees. Methods that generate single
trees include early algorithms, such as CS-ID3 [Tan and Schlimmer 1989], that
adapt entropy based selection methods to include costs and post-construction
methods such as AUCSplit [Ferri et al. 2002] that aim to utilize costs after a tree
is constructed. Algorithms that utilize non-greedy methods include those that
provide a wrapper around existing accuracy based methods, such as MetaCost

[Domingos 1999], genetic algorithms, such as ICET [Turney 1995], and
algorithms that adopt tentative searching methods.

Figure 2 Taxonomy of Cost-Sensitive Decision Tree Induction Algorithms

Table 2 categorizes the algorithms identified in the literature with respect to

the taxonomy shown in Figure 2 and shows the significant volume of work in this
field in each of the classes. The table also indicates whether the algorithms
incorporate test costs, misclassification costs or both. The time line of algorithms,
shown as Figure 3, is also interesting. The first mention of the importance of costs
dates back to Hunt’s [1966] Concept Learning System framework (CLS) that
aimed to develop decision trees and recognized that tests and misclassifications
could have an economic impact on human decision making. Although, ID3
adopts some of the ideas of CLS, a significant difference in the development was
ID3’s use of an information theoretic measure for attribute selection [Quinlan
1979]. The use of an information theoretic top-down approach in ID3 influenced
much of the early work which focused on methods for adapting existing accuracy
based algorithm to take account of costs. These early approaches were evaluated
empirically by Pazzani et al. [1994] who observed little difference in performance
between algorithms that used cost-based measures and ones that used
information gain. This, together with the publication of the results of the ICET
system [Turney 1995] which used genetic algorithms led to significant interest in
developing more novel algorithms, including intense research on the use of
boosting and bagging [Ting and Zheng 1998a, 1998b; Ting 2000a, 2000b;
Domingos, 1999; Zadrozny 2003a; Lazano and Abe 2008] and more recently, on
the use of stochastic approaches [Esmeir and Markovitch 2010, 2011].

The rest of the paper is organized according to the categorization in Table 2,
with Section 4 describing the algorithms adopting a single tree, greedy strategy
and Section 5 describing the algorithms that use a multiple tree, non-greedy
strategy. The Appendix includes a summary of the data sets used by the studies
surveyed and which can help identify suitable data for future studies. Table 3
shows the notation and definitions used throughout the paper.

Table 2 Cost-sensitive decision tree induction algorithms categorized with respect to taxonomy by time

Figure 3 A Timeline of Algorithms

Table 3 Definitions of equations
Symbol Definition
N Number of examples in current training set/node
Ni Number of examples in training set belonging to class i
x Refers to an example in the training set
node(x) Leaf node to which the example belongs
k Number of classes and indicates looping through each class in turn
w Weights
A Indicates an attribute
a Indicates attribute values belonging to an attribute
Cij Misclassification cost of classifying a class i example as a class j example
CA Test cost for attribute A
cost(x,y) Cost of classifying example x into class y
hi The ith hypothesis

4. SINGLE TREE, GREEDY COST-SENSITIVE DECISION TREE INDUCTION
ALGORITHMS

As described in Section 2, historically, the earliest tree algorithms developed top-
down greedy algorithms for inducing decision trees. The primary advantage of
such greedy algorithms is efficiency, though a potential disadvantage is that they
may not explore the search space adequately to obtain good results. This section
presents a survey of greedy algorithms. The survey identified two major strands
of research: Section 4.1 describes algorithms that utilise costs during tree
construction and Section 4.2 describes post-construction methods that are useful
when costs may change frequently.

4.1 Use of costs during construction

4.1.1. The extension of statistical measures. As outlined in the previous section,
top-down decision tree induction algorithms use a measure, such as information
gain, to select an attribute upon which the data set will be partitioned during the
tree induction process. A reasonable extension, which was taken by a number of
early algorithms, was to adapt these information theoretic measures by including
costs. These early algorithms retained the top-down induction process and the
only differences between them are the selection measures and whether they take
account of costs of attributes as well as costs of misclassification.

Five of the algorithms, CS-ID3 [Tan and Schlimmer 1989], IDX [Norton
1989], EG2 [Nunez 1991] , CSGain [Davis et al. 2006] and CS-C4.5 [Frietas et al.
2007] focus on minimizing the cost of attributes and adapt the information
theoretic measure to develop a cost based attribute selection measure, called the
Information Cost Function for an attribute A (ICFA):

EG2: ICFA = 2InfoGainA – 1/(CA + 1)ω (2)

CS-ID3: ICFA ൌ ሺInfoGainAሻ2 / CA

IDX : ICFA ൌ InfoGainA / CA

CS-C4.5: ICFA ൌ InfoGainA / ሺCAφAሻ ω

CSGain: ICFA ൌ ሺNa/Nሻ * InfoGainA – ω * CA

These measures are broadly similar in that they all include the cost of an
attribute (CA) to bias the measure towards selecting attributes that cost less but
still take some account of the information gained. The only difference between
the measures is the extent of weight given to the cost of an attribute, with EG2
and CS-C4.5 adopting a user provided parameter ω that varies the extent of the
bias. CS-C4.5 also includes φA, a risk factor used to penalize a particular type of

tests, known as delayed tests, which are tests, such as blood tests, where there is
a time lag between requesting and receiving the information. The authors of
CSGain also experiment with a variation, called CSGainRatio algorithm where
they use the Gain ratio instead of the information gain.

Figure 4 Decision Tree after EG2 has been applied to the data set in Table 1

Figure 4 presents a cost-sensitive decision tree induced by applying the EG2

algorithm to the data in Table 1. For illustration purposes, the attributes picture
quality, sound quality and age are assigned random test costs of 30, 15 and 1
units respectively. These costs are used in selecting an attribute using the ICF
measure resulting in a tree that takes account of the costs of the tests.

Algorithms that continue this adaptation of information theoretic measures
but also take account of the misclassification cost as well as the test costs include
an approach by Ni et al. [2005], Zhang et al. [2007], Zhang [2010] and Liu [2007].
Although the detailed measures differ, they all aim to capture the trade-off
between the cost of acquiring the data and its contribution to reducing
misclassification cost. Ni et al. [2005], for example, utilize the following attribute
selection measure:

Performance: ܨܥܫ஺ ൌ ሺሺ2ீ௔௜௡ோ௔௧௜௢ಲ െ 1ሻ כ ஺ܥ஺/ሺܥܯܦ ൅ 1ሻሻ כ ώ஺ (3)

where ώA is the bias of experts for attribute A and DMCA is the improvement in
misclassification cost if the attribute A is used.

As well as using both types of cost, this algorithm makes use of domain
experts who assign a value of importance to each of the attributes. If an expert
has no knowledge of the importance of an attribute this bias is set to the default
value of 1. If some attributes produce the same value for equation (3), preference
is given to those attributes with the largest reduction in misclassification costs
(DMCA). If this fails to find an attribute then the attribute with the largest test
cost (CA) is chosen as the aim is to reduce misclassification costs.

Liu [2007] identifies some weaknesses of equation (3), noting that several
default values have been used, so develops the PM algorithm. Liu [2007] notes
that if gain ratios of attributes are small, the values returned by the original
algorithm, equation (3), would be small; resulting in the costs of attributes being

ignored. If attributes have large total costs, the information contained in those
attributes will be ignored. Other issues are the conflict of applying resource
constrains. For instance, the overall aim of this algorithm is to allow for user
resource constrains and it is therefore necessary to allow for the fact that users
with increased test resources are not concerned as much about the cost of
attributes, rather in the reduction of misclassification costs, and alternatively
those with limited test resources are more concerned with the cost of the tests in
order to reduce the overall costs rather than only reducing the misclassification
costs.

In order to trade off between these needs, a solution offered by Liu [2007] is to
normalize the gain ratio values and to employ a harmonic mean to weigh between
concerns with test costs (low test resources) and reduction in misclassification
costs (when test resources are not an issue), additionally a parameter α is used to
balance requirements of different test examples with different test resources.

Zhang et al. [2007] take a different approach when adapting the Performance
algorithm. They focus on the fact that the test costs and misclassification costs
are possibly not on the same scale; test costs would be considered on a cost scale
of currency whilst misclassification costs, particularly in terms of medical
diagnosis, states Zhang et al. [2007], must be a social issue; what monetary value
could be assigned for potential loss of life? The adaptation attempts to achieve
maximal reduction in misclassification costs from lower test costs. The only
difference to equation (3) to produce CTS (Cost-Time Sensitive Decision Tree), is
to remove the bias of expert parameter, preferring to address such issues as
waiting costs (also referred to in other studies as delayed cost), at the testing
stage by developing appropriate test strategies.

The above measures all utilize the information gain as part of a selection
measure. An alternative approach, taken by Breiman et al. [1984], is to alter the
class probabilities, P(i) used in the information gain measure. That is, instead of
estimating P(i) by Ni/N, it is weighted by the relative cost, leading to an altered
probability [Breiman, et al. 1984, p114]:

Altered Probabilityi = Cij*ሺNi/Nሻ / ∑j costሺjሻሺNj/Nሻ

In general, the cost of misclassifying an example of class j may also depend on
the class i that it is classified into, so Breiman et al. [1984] suggest adopting the
sum of costs of misclassification:
 costሺjሻ ൌ ∑i Cij (4)

Although these altered probabilities can then be used in the Information Gain
measure, the method was tried by Pazzani et al. [1994] using the GINI index:

Altered GINI = 1-∑ky=1 Altered Probabilityy2

C4.5 allows the use of weights for examples, where the weights alter the
Information Gain measure by using sums of weights instead of counts of
examples. So instead of counting the number of examples with attribute value a
and class k, the weights assigned to these examples would be summed and used
in equation (1).

C4.5’s use of weights has been utilized to incorporate misclassification costs,
by overriding the weight initialization method. For example if the cost to
misclassify a faulty example from the example data set in Table 1 is 5, those
examples belonging to class ‘faulty’ could be allocated the weight of 5, and
examples belonging to class ‘not faulty’ could have the weight of 1, so that more
weight is given to those examples with the higher misclassification cost. C4.5CS
is one such algorithm which utilizes this use of weights.

The method of computing initial weights by C4.5CS is similar to that of the
GINIAlteredPriors algorithm developed by Breiman et al. [1984] and Pazzani et
al. [1994]. When presented with the same data set, both methods would produce
the same decision tree. However Ting [1998] observes that the method which
alters the priors would perform poorly as pruning would be carried out in a cost
insensitive way, whereas the C4.5CS algorithm uses the same weights in its
pruning stage. In his experiments with a version which replicates Breiman et al.
[1984]’s method, C4.5(π’) performs worse that the C4.5CS algorithm. He explains
this result as owing to different weights in the tree growing stage and the
pruning stage.

The sum of all the weights for class j in the C4.5CS algorithm will be equal to
N. The aim of C4.5CS is to reduce high cost errors by allocating the highest
weights to the most costly errors so that C4.5 concentrates on reducing these
errors.

C4.5CS [Ting 1998, 2002]: ݐ݄݃݅݁ݓ௝ ൌ ሺ݆ሻݐݏ݋ܿ ே∑ ௖௢௦௧ሺ௜ሻே೔೔

where cost(j) and cost(i) are as defined by equation (4).

MaxCost [Margineantu and Dietterich 2003]: ݐ݄݃݅݁ݓ ௝ ൌ ௝௜ܥ ଵஸ௜ஸ௞ݔܽ݉

AvgCost [Margineantu and Dietterich 2003]: ݐ݄݃݅݁ݓ௝ ൌ ∑ ஼ೕ೔ೖ೔సభ,೔ಯೕሺ௞ିଵሻ

These latter two algorithms have been designed to solve multi-class problems
so the cost matrices involved are not the usual 2 x 2 grids presented when solving
two class problems. Instead a k x k matrix is used, the diagonal cells containing
the cost of correctly classifying an example, usually zero although for some
domains it could well be greater than zero.

Table 4 Example of a cost matrix of a four class problem
Predicted class Correct Class
 1 2 3 4

1 0 10 2 5
2 100 0 5 2
3 5 2 0 50
4 2 5 25 0

Table 4 presents an example of a cost matrix of a data set where k = 4. The

diagonal cells have been assigned zero therefore a correct classification results in
zero cost. Two algorithms developed by [Margineantu and Dietterich 2003] use
this cost matrix directly to compute initial weights. MaxCost uses the worst case
cost of misclassifying an example. The maximum value within a column is
considered to be the worst case cost of misclassifying an example. For instance,
the weight of all class 1 examples will be assigned 100 as that is the maximum
misclassification cost in the column corresponding to class 1. AvgCost calculates
the average cost of misclassifying an example for its weight. Each weight is
computed as the mean of the off-diagonal cells in the corresponding column.
Using this algorithm, class 1 examples are assigned 35.6. These two algorithms
are considered more efficient than others of this type [Margineantu and
Dietterich 2003].

Margineantu and Dietterich [2003] also suggest an alternative way of setting
the weights, called EvalCount, where an accuracy-based decision tree is first
induced and then used to obtain the weights. The training data is sub divided
into a sub training set and a validation set. The sub training set is then used to
grow an accuracy based decision tree. Using this decision tree, the cost of
misclassification for each class on the validation set is then measured using the

cost matrix. The weight allocated to a training example is then set to the total
cost of misclassifying an example of that class.

4.1.2 Direct use of costs. Instead of adapting the information gain to include
costs, a number of algorithms utilize the cost of misclassification directly as the
selection criteria. These algorithms can be subdivided into two groups: those that
only use misclassification costs and those which also include test costs.

The central idea with these algorithms is to calculate the expected cost if an
attribute is used to divide the examples, compared with the expected cost if there
is no further division (i.e. a leaf is assumed). The attribute that results in the
most reduction is then selected to divide the examples. Of course, if none of the
attributes results in a reduction, then a leaf node is created.

Cost-Minimization [Pazzani et al. 1994], Decision Trees with Minimal Cost
[Ling et al. 2004] and two adaptations Decision Trees with Minimal Cost under
Resources Constrain [Qin et al. 2004] and CSTree [Ling et al. 2006a] use either
misclassification costs or a combination of misclassification costs and test costs to
partition the data. Cost-Minimization, the simplest of these chooses the attribute
which results in the lowest misclassification costs.

One of the main algorithms to use costs directly in order to find the attribute
on which to partition data, is Decision Trees with Minimal Cost developed by Ling
et al. [2004], spawning other adaptations. Expected cost is calculated using both
misclassification costs and test costs aiming to minimize the total cost. An
attribute with zero or smallest test cost is most likely to be the root of the tree,
thus attempting to reduce the total cost. This algorithm has been developed
firstly to minimize costs and secondly to deal with missing values in both the
training and testing data. In training, examples with missing values remain at
the node representing the attribute with missing values. In a study comparing
techniques by Zhang et al. [2005], it was concluded that this was the best way to
deal with missing values in training examples. How and whether to obtain values
during testing are solved by constructing testing strategies and are discussed
additionally in Ling et al. [2006b].

To illustrate what happens when only the costs (i.e., no information gain) are
used to select attributes, consider the application of the DT with MC algorithm to
the example in Table 1, where in addition to the test costs we assume the
misclassification costs of 50 and 200 for the faulty and not faulty class
respectively.

5(a) Tree from DT with MC 5(b) Tree if left branch is
expanded.

Figure 5 Decision Tree when DT with MC has been applied to data set in Table 1

Figure 5(a) shows the tree induced by DT with MC algorithm, which is very
different from the cost-sensitive tree produced by EG2 (Figure 4) and from the
tree produced by ID3 (Figure 1). This algorithm employs pre-pruning, that is, it

stops splitting as soon as there is no improvement. Figure 5(b) shows a partial
tree obtained, if the left branch was expanded further. The additional attribute
that would lead to the least cost is sound quality, with a total cost of 220 units
since there are still two faulty examples misclassified but there is the extra cost
of 120 units for testing Sound Quality (i.e., 8 examples each costing 15 units).
However, the cost without splitting is 100 units (i.e., 2 faulty examples
misclassified, with misclassification cost of 50) and hence, in this case, the extra
test is not worthwhile.

Ling et al. [2006b] use the algorithm developed in Ling et al. [2004] in a lazy
learning framework in order to use different test strategies to obtain missing
values on test data and to address problems of delayed tests. Using expected total
cost, a tree is induced for each test example using altered test costs, whereby test
costs are reduced to zero for examples with known values, thus making them a
more desirable choice.

Ling et al. [2004]’s algorithm is further adapted into CSTree which does not
take into account test costs, using only misclassification costs [Ling et al. 2006a].
CSTree deals with two-class problems and estimates the probability of the
positive class using the relative cost of both classes and uses this to calculate
expected cost.

A different and perhaps more extensive idea is by Qin et al. [2004], who
develop an adaptation of the Ling et al. [2004] algorithm Decision Trees with
Minimal Cost under Resource Constrains. Its purpose is to trade off between
target costs (test costs and misclassification costs) and resources. Qin et al.
[2004] argue that it is hard to minimize two performance metrics and it is not
realistic to minimize both of them at the same time. So they aim to minimize one
kind of cost and control the other in a given budget. Each attribute has two costs,
test cost and constrain, likewise each type of misclassification has a cost and a
constrain value. Both these values are used in the splitting criteria, to produce a
target-resource cost decision tree [Qin et al. 2004] and used in tasks involving
target cost minimization (test cost) and resources consumption for obtaining
missing data.

Decision Tree with Minimal Costs under Resource Constrain:

 ICFA ൌ ሺT – TAሻ / ConstrainA

஺݊݅ܽݎݐݏ݊݋ܥ ൌ ሺܰ െ ሻ݋ כ ஺ݎ ൅ ݌ כ ሻݎ௜௝ሺܥ ൅ ݊ כ ሻݎ௝௜ሺܥ ൅ ݋ כ ሻݎ௝௜ሺܥ

where T is the misclassification cost before splitting, TA is the expected cost if
attribute A is chosen, rA, Cij(r) and Cji(r) are the resource costs for false negatives
and false positives respectively, p is the number of positive examples and n the
number of negative examples and o the number of examples with missing
attribute value.

A different approach than simply using the decision tree produced using direct
costs, is suggested by Sheng and Ling [2005], a hybrid cost-sensitive decision tree.
They develop a hybrid between decision trees and Naïve Bayes, DTNB (Decision
Tree with Naïve Bayes). Decision trees have a structure which is used to collect
the best tests but ignores, when classifying, originally known attribute values not
appearing in the path taken by a test example. It is argued by Sheng and Ling
[2005] that any value is available at a cost, if values are available at the testing
stage, these might be useful in order to reduce misclassification costs and to
ignore them would be wasting available information. Naïve Bayes can use all
known attribute values for classification but has no structure to determine which
tests to perform and in what order should they be carried out in order to obtain
unknown attribute values. The DTNB algorithm aims to combine the advantages
of both techniques.

A decision tree is built using expected cost reduction using the sum of test
costs and expected misclassification costs to determine whether to further split

the data and on what attribute. Simultaneously a cost-sensitive Naïve Bayes
model using Laplace correction and misclassification costs is hidden at all nodes
including leaves and is used for classification only of the test examples. The
decision tree supplies the sets of tests used in various test strategies and the
Naïve Bayes model, built on all the training data, classifies the test examples,
thus overcoming problems caused by segmentation of data, that is the reduction
of data at lower leaves, and making use of all attributes with known values but
which have not been selected during induction so that no information once
obtained, is wasted. In experiments, this hybrid method proved to be better in
combination than the individual techniques [Sheng and Ling 2005].

4.1.3 Linear and non-linear decision nodes. Most of the early algorithms handle
numeric attributes by finding alternative thresholds, resulting in univariate or
axis-parallel splits. A number of authors have suggested that this is not
sufficiently expressive and adopted more sophisticated multivariate splits. These
methods still adopt the top-down decision tree induction process and the primary
difference between them, which we summarize below, is whether they adopt
linear or non-linear splits and how they obtain the splits.

The LMDT algorithm [Draper et al. 1994] was one of the first to go beyond
axis-parallel splits. This algorithm aims to develop a decision tree whose nodes
consist of Nilsson’s [1969] linear machines. A linear machine aims to learn the
weights of linear discriminants. Before looking at the LMDT algorithm, it is
worth understanding the concept of a linear machine, which is central to the
LMDT algorithm. The following figure summarizes the structure of a linear
machine.

Figure 6 Linear Machine

Each function gi(x) aims to represent a class i in a winner takes all fashion. A
weight wij represents the coefficient of xj for the ith linear discriminant function.
The training procedure involves presenting an example x that belongs to a class i.
If the example is misclassified, say into class j, then the weights of the jth machine
can be decreased and the i th machine increased, i.e.:

Wi = Wi + c.x
Wj = Wj - c.x

where c is a correction factor, and the Wi and Wj are the weight vectors for the ith
and jth linear discriminants.

When the classes are linearly separable, the use of a constant correction rate
(i.e. as in a perceptron) is sufficient to determine a suitable discriminant and this

simple procedure converges. However, in general, the classes may not be linearly
separable and the above procedure may not converge. Draper et al. [1994]
overcame this problem by utilizing a thermal training procedure developed by
Frean [1990]. This involved using an annealing parameter β to determine the
correction factor c as follows:

 c = β2 / β + k where k = (Wj – Wi)T x / 2xT x.

where Wj is the weight vector of the ith discriminant function that represents
the true class of the example, and Wj is the weight vector of the jth discriminant
function that represents the class in which the example is misclassified.

LMDT is altered to make it cost-sensitive by altering its weight learning
procedure, with the aim of reducing total misclassification costs. In the modified
version, it samples the examples based on the cost of misclassifications made by
the current classifier. The training procedure is initialized for each class using a
variable ‘proportioni’, for each class i. Next, if the stopping criterion is not met,
the thermal training rule trains the linear machine and if the examples have
been misclassified, the misclassification cost is used to compute a new value for
each ‘proportioni’.

An alternative approach to obtaining linear splits, taken in the LDT system
[Vadera 2005b], is to take advantage of discriminant analysis which enables the
identification of linear discriminants of the form [Morrison 1976; Afifi and Clark
1996]:
 ሺߤଵ െ ݔଶሻΣିଵߤ െ ଵଶ ሺߤଵ െ ଵߤଶሻΣିଵሺߤ ൅ ଶሻߤ ൑ ln ቀ஼మభ௉ሺ஼మሻ஼భమ௉ሺ஼భሻቁ (5)

where x is a vector representing the new example to be classified, ߤଵ, ߤଶ are the
mean vectors for the two classes, Σ is the pooled co-variance matrix, and ܲሺܥ௜ሻ is
the probability of an example being in class Ci.

Theoretically, it can be shown that equation (5) minimizes the
misclassification cost when ࢞ has a multivariate normal distribution and when
the co-variance matrices for each of the two groups are equal.

This trend of moving towards more expressive divisions is continued in the
CSNL system [Vadera 2010] that adopts non-linear decision nodes. The approach
also utilizes discriminate analysis, and adopts following split that minimizes cost
provided the class distributions are multivariate normal:

 െ ଵଶ ∑௧ሺݔ െିଵଵ ∑ ሻݔ ൅ ሺߤଵ௧ିଵଶ ∑ െିଵଵ ଶ௧ߤ ∑ ሻݔ െ ݇ ൒ ln ቀ஼మభ௉ሺ஼మሻ஼భమ௉ሺ஼భሻቁିଵଶ)

 ݇ ൌ ଵଶ ݈݊ ሺ| ∑ |భ| ∑ |మ ൅ ଵଶ ሺߤଵ௧ ∑ ଵିଵଵߤ െ ଶ௧ߤ ∑ ଶିଵଶߤ ሻ (6)

where x is a vector representing the example to be classified, µ1, µ2 are the mean
vectors for the two classes, ∑1, ∑2 are the covariance matrices for the classes and
∑1-1, ∑2-1 the inverses of the covariance matrices.

Given that the multivariate assumption may not hold in practice, it may be
that utilization of a subset of variables could lead to more cost-effective splits, and
hence several strategies for subset selection are explored. One strategy, explored
in [Vadera 2005a], is to attempt all possible combinations and select the subset
that minimizes cost. However, this strategy is not particularly scalable and
results in trees that are difficult to visualize. An alternative strategy, explored in
[Vadera 2010], selects two of the most informative features, as measured by
information gain, and uses the above equation (6) to obtain non-linear divisions.

4.2 Post construction

If costs are unknown at training time they cannot be used for inducing a tree.
Additionally if costs are likely to change, this would mean inducing a tree for
every different combination of costs. Hence, various authors have explored how
misclassification costs can be applied after a tree has been constructed.

One of the simplest of ways is to change how the label of the leaf of the
decision tree is determined. I-gain Cost-Laplace Probability [Pazzani et al. 1994]
uses a Laplace estimate of the probability of a class given a leaf shown in
equation (7). If there are Ni examples of class i at a leaf and k classes then the
Laplace probability of an example being of class i is:

 ܲሺ݅ሻ ൌ ே೔ା ଵ௞ା ∑ ே೤ೖ೤సభ (7)

When considering accuracy only, an example is assigned to the class with the

lowest expected error. To incorporate costs, the class which minimizes the
expected cost of misclassifying an example into class j is selected, where the
expected cost is defined by:

݆ ݏݏ݈ܽܿ ݋ݐ݊݅ ݊݋݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܿݏ݅ܯ ݂݋ ݐݏ݋ܥ ݀݁ݐܿ݁݌ݔܧ ൌ ∑ ௜௝௜ܥ ܲሺ݅ሻ

Ferri et al. [2002], propose a post construction method based on Receiver
Operating Characteristics (ROC) [Swets et al. 2000]. ROC facilitates comparison
of alternative classifiers by plotting their true positive rate (on the y axis) against
their false positive rate (on the x axis). Figure 7 shows an example ROC, where
the true and false rates of four classifiers are plotted. The closer a classifier is to
the top left hand corner, the more accurate it is (since the true positive rate is
higher and the false positive rate smaller).

Figure 7 Example ROC

The convex hull created from the points (0,0), the four classifiers and (1,1)

represents an optimal front. That is, for any classifier below this convex hull,
there is a classifier on the front that is less costly.

The idea behind Ferri et al. [2002]’s approach is to generate the alternative
classifiers by considering all possible labellings for the leaf nodes of a tree. For a
tree with m leaf nodes, and a two class problem, there are 2m alternative labels,
which could be computationally expensive. However, Ferri et al. [2002] shows
that for a two class problem, if the leaves are ordered by the accuracy of one of

the classes, then only m+1 alternative labellings are needed to define the convex
hull, where the jth node of the ith labelling, Li,j, is defined by:
௜,௝ܮ ൌ ൜െ݁ݒ ݂݅ ݆ ൏ ݅൅݁ݒ ݂݅ ݆ ൒ ݅

The convex hull formed by these labellings can then be used to determine the
most optimal classifier once the costs of misclassification are known.

5. MULTIPLE TREE, NON-GREEDY METHODS FOR COST-SENSITIVE DECISION TREE
INDUCTION

Greedy algorithms have the potential to suffer from local optima, and hence an
alternative direction of research has been to develop algorithms that generate
and utilize alternative trees. There are three common strands of work: Section
5.1 describes the use of genetic algorithms, Section 5.2 describes methods for
boosting and bagging, and Section 5.3 describes the use of stochastic sampling for
developing anytime and anycost frameworks.

5.1 Use of Genetic Evolution for Cost-Sensitive Tree Induction

Several authors have proposed the use of genetic algorithms to evolve cost-
effective decision trees [Turney 1995]. Just as evolution in nature uses survival of
the fittest in order to produce next generations, a pool of decision trees are
evaluated using a fitness function, the fittest retained and combined to produce
the next generation repeatedly until a cost-effective tree is obtained. This section
describes the algorithms that utilize evolution, which vary in the way they
represent, generate, and measure the fitness of the trees.

One of the first systems to utilize GAs was Turney’s [1995] ICET system
(Inexpensive Classification with Expensive Tests. ICET uses C4.5 but with EG2’s
cost function to produce decision trees, in Section 4.1.

Its populations consists of individuals with the parameters CAi, ω, and CF,
where CAi, ω are biases utilized in equation (2) and CF is a parameter used by
C4.5 for determining the aggressiveness of pruning.

ICET begins by dividing the training set of examples into two random but
equal parts: a sub-training set and a sub-testing set. An initial population is
created consisting of individuals with random values of CAi, ω, and CF. C4.5, with
the EG2’s cost function, is then used to generate a decision tree for each
individual. These decision trees are then passed to a fitness function to determine
fitness. This is measured by calculating the average cost of classification on the
sub-testing set.

The next generation is then obtained by using the roulette wheel selection
scheme, which selects individuals with a probability proportional to their fitness.
Mutation and crossover are used on the new generation and passed through the
whole procedure again. After a fixed number of generations (cycles) the best
decision tree is selected. ICET uses the GENEtic Search Implementation System
(GENESIS, Grefenstette [1990]) with its default parameters including a
population size of 50 individuals, 1000 trials and 20 generations.

More recently, Kretowski and Grześ [2007] describe GDT-MC (Genetic
Decision Tree with Misclassification Costs), an evolutionary algorithm in which
the initial population consists of decision trees that are generated using the
usual top down procedure, except that the nodes are obtained using a dipolar
algorithm. That is, to determine the test for a node, first two possible examples
from the current data set are randomly chosen such that they belong to different
classes. A test is then created by randomly selecting an attribute that
distinguishes the two examples. Once a tree is constructed, it is pruned using a
fitness function. The fitness function used in GDT-MC aims to take account of

the expected misclassification cost as well as the size of trees and takes the form
[Kretowski and Grześ, 2007]:
݁݁ݎݐ ݂݋ ݏݏ݁݊ݐ݅ܨ ൌ ቀ1 െ ா஼ெ஼ቁ ሺ1 ൅ .ߛ ܶܵሻ

where EC is the misclassification cost per example, MC is the maximal possible
cost per example, TS is the number of nodes in the tree and γ is a user provided
parameter that determines the extent to which the genetic algorithm should
minimize the size of the tree to aid generalization.

The genetic operators are similar in principle to the cross-over and mutation
operators, except that they operate on trees. Three cross-over like operators are
utilized on two randomly selected nodes from two trees:

– exchange the sub-trees at the two selected nodes.
– if the types of tests allow, then exchange just the tests.
– exchange all sub-trees of the selected nodes, randomly selecting the ones

to be exchanged.

The mutation operators adopted allow a number of possible modifications of
nodes, including replacing a test with an alternative dipolar test, swapping of a
test with a descendent node’s test, replacement of a non-leaf node by a leaf node,
and development of leaf node into a sub-tree. A linear ranking scheme, coupled
with an elitist selection strategy, is utilized to obtain the next generation
[Michalewicz 1996].1

The ECCO (Evolutionary Classifier with Cost Optimisation) system [Omielan
2005] adopts a more direct use of genetic algorithms by mapping decision trees to
binary strings and then adopting the standard cross-over and mutation operators
over binary strings. Attributes are represented by a fixed size binary string, so
for example 8 attributes are coded with 3 bits. Numeric attributes are handled
by seeking an axis parallel threshold value that maximizes information gain,
thereby resulting in a binary split. The mapping between a tree and its binary
string is achieved by assuming a fixed size maximal tree where each node is
capable of hosting an attribute which has the most features.2 Figure 8 illustrates
the mapping for a problem where the attributes have two features only. Such a
maximal tree is then interpreted by mapping the nodes to attributes, assuming
that the branches are ordered in terms of the features. In addition, mutation
may result in some nodes with non-existent attributes, which are also translated
to decision nodes.

Figure 8 Illustration of mapping
A tree is then populated with the examples in a training set and each leaf node

labelled with a class that minimizes the cost of misclassification. A version of the
minimums error pruning algorithm that minimizes cost instead of error is used

1 The elitist strategy ensures that a few of the fittest are copied to the new generation, and the linear
ranking strategy ensures some diversity and avoids the fittest don’t dominating the evolution to early
in the evolution.
2 The approach works in general for an attribute with more than two features

for pruning. The fitness measure used is the expected cost of classification,
taking account of both the cost of misclassification and the cost of the tests. Once
genes are mapped to decision trees and pruned, and their fitness obtained, the
standard mutation and cross-over operators applied, a new generation of the
fittest is evolved and the process repeated a fixed number of cycles. Like ICET,
ECCO adopts the GENESES GA system and adopts its default parameters.

Li et al. [2005] take advantage of the capabilities of Genetic Programming
(GP), which enable representation of trees as programs instead of bit strings, to
develop a cost-sensitive decision tree induction algorithm. They use the following
representation of binary decision trees as programs, defined using BNF [Li et al.
2005]:

<Tree> :: “if-then-else” <Cond><Tree><Tree> | Class
 <Cond> :: <Cond> “And” <Cond> | <Cond> “Or” <Cond>
 | Not <Cond> | Variable<RelationOperation>Threshold
 <RelationOperation> ::= “>” | “<” | “=”

Unlike GDT-MC, which utilizes specialized mutation and crossover operators,
Li et al. [2005] adopt the standard mutation and crossover operators of genetic
programming. A tournament selection scheme, in which four individuals are
selected randomly with a probability proportional to their fitness, compete to
move to the next generation. The fittest of the four is copied to the pool for the
next generation and this tournament process repeated to produce the complete
mating pool for the next generation. The fitness function employed is also
different from ICET, ECCO and GDT-MC. Unlike, these methods, which utilize
expected cost, Li et al [2005] propose the following fitness function that is based
on the principle that a cost-effective classifier will maximize accuracy (RC) but
minimize the false positive rate (RFP):

 Constraint Fitness Function ൌ Wrc’ * RC – Wrfp * RFP

Experimentation with this function leads them to the following additional
constraint to ensure that accuracy of one of classes is not compromised when the
costs of misclassifications are significantly imbalanced:

 Wrc ൌ 1 if C൅ Ԗ ሾPmin, Pmaxሿ, 0 otherwise,

where C+ is the proportion of examples predicted to be positive, and the Pmin and
Pmax define the expected range for C+ that is provided by a user.

5.2 Wrapper Methods for Cost-sensitive Tree Induction

A significant amount of research has been done on accuracy based classifiers, and
instead of developing new cost-sensitive classifiers or adapting them as described
above, an alternative strategy is to develop wrappers over accuracy based
algorithms.

This section describes two approaches for utilizing existing accuracy based
algorithms. Section 5.2.1 describes methods based on boosting, where an
accuracy based learner is used to generate an improving sequence of hypotheses
and Section 5.2.2 describes methods based on bagging that are based on
generating and combining independent hypotheses. Section 5.2.3 describes a
method which implicitly includes alternative hypotheses but in one structure.

5.2.1 Cost-Sensitive Boosting. Boosting involves creating a number of hypotheses ht
and then combining them to form a more accurate composite hypothesis of the
form [Schapire 1999; Meir and Rätsch 2003]:

 ݂ሺݔሻ ൌ ∑ ሻ௧்ୀଵݔ௧݄௧ሺߙ (8)

where αt indicates the extent of weight that should be given to ht(x).

One of the first practical boosting methods, AdaBoost (Adaptive Boosting)
works by generating hi(x) in sequential trials by using a learner on weighted
examples that reflect their importance [Freund and Schapire 1996]. It begins by
assigning weights of 1/N to each example. At the end of each sequential trial,
these weights are adjusted so that the weights of misclassified examples are
increased, but the weights of correct examples decreased. After a fixed number of
cycles, a sequence of trees or hypotheses hi is available and can be combined to
perform classification. The final classification is based on selecting the class that
results in the maximum weighted vote as defined by equation (8). There are
different versions of AdaBoost with specific weight update rules (e.g., Freund and
Schapire [1997], Bauer and Kohavi [1998], Schapire and Singer 1999]). For
example, one version that is based on a weak learner capable of producing
hypotheses ht that return a confidence rating in the range [-1,1] uses the
following update rule [Schapire 1999]:

௧ߙ ൌ భమln ቀଵିఢ೟ఢ೟ ቁ (9)

ሻݔ௧ାଵሺݓ ൌ ሻሻܼ௧ݔ௧ሺ݄ݕ ௧ߙሻ exp ሺെݔ௧ሺݓ

where the Zt is used to normalize the weights so they add up to 1.

Thus, AdaBoost consists of three key steps: the initialization, the weight
update equations, and the final weighted combination of the hypotheses. The
literature contains a number of algorithms that adapt these three steps of
AdaBoost to develop cost-sensitive boosting algorithms.

In particular, Ting and Zheng [1998], which was one of the first studies to
utilize boosting for cost-sensitive induction, proposed two adaptations: an
algorithm called UBoost (Boosting with Unequal Instance Weights) and another
called Cost-UBoost (UBoost with Cost-Sensitive adaptation).

UBoost utilizes AdaBoost, except that the weights for each example x, of class j
are initialized to the cost of misclassifying an example of class j, and normalized3 :

ሻݔ଴ሺݓ ൌ ሺ݆ሻݐݏ݋ܿ

The cost of misclassifying an example of class i, denoted by cost(i) is defined by
Ting and Zheng [1998] as in equation (4). Below, we also use the notation cost(x)
to denote the cost of misclassifying an example x.

In addition, the composite classification rule of equation (8) is adapted to first
work out the expected cost of classifying an example ECj(x), into class j using the
combined hypotheses:

ሻݔ௝ሺܥܧ ൌ ∑ ,ݔሺܥܧ௧ߙ ݆, ݄௧௧்ୀଵ ሻ

where EC(x,j,ht) is the expected cost if the example x is classified in class j based
on the distribution of examples in the leaf node of the tree ht that leads to the
classification ht(x).

UBoost then selects the class j that results in the minimum expected cost
ECj(x).

3 The presentation here assumes that the normalisation of the weights by a factor is Zt is done at the
end of a trial, therefore simplifying the equations.

Ting and Zheng [1998] also propose a method Cost-UBoost that extends

UBoost by also amending the weight update procedure to take account of costs, so
that:3

ሻݔ௧ାଵሺݓ ൌ .ሻݔ௧ሺݓ ,′ݕሺߚ ሻݕ

where y is the actual class and y’ is the predicted class for an example x and β is
defined by:

,′ݕሺߚ ሻݕ ൌ ൜ ܥ௬௬′ ݕ ݄݊݁ݓ′ ് ′ݕ ݄݊݁ݓ 1 ݕ ൌ ݕ

The empirical trials conducted by Ting and Zheng [1998] suggest that Cost-
UBoost performs better than UBoost in terms of minimizing costs of
misclassification for two class problems. However, they note that this advantage
reduces for multi-class problems and suggest that this is owing to the mapping of
different costs of misclassification into a single misclassification cost by equation
(4). Later in this section, we describe the more recent work of Abe et al. [2004],
and Lozano and Abe [2008]) that develops theoretical foundations for multi-class
cost-sensitive boosting problems.

In a follow up study, Ting [2000] propose further variations, named CSB0,
CSB1, CSB2 and compare their performance to another variation of AdaBoost,
known as AdaCost [Fan et al. 1999]. CSB0 is essentially the Cost-UBoost
algorithm described above, while CSB1, CSB2 and AdaCost utilize increasingly
sophisticated weight update functions for weak learners that produce the
confidence in its prediction ht(x) [1 ,0] א [Ting, 2000]:

CSB1: ݓ௧ାଵሺݔሻ ൌ ,′ݕሺߚሻݔ௧ሺݓ ሻሻݔ௧ሺ݄ߜሻexp ሺെݕ

CSB2: ݓ௧ାଵሺݔሻ ൌ ,′ݕሺߚሻݔ௧ሺݓ ௧ሻߙሻݔ௧ሺ݄ߜሻexp ሺെݕ

AdaCost: ݓ௧ାଵሺݔሻ ൌ ,ݕሺ′ߚ௧ߙሻݔ௧ሺ݄ߜሻexp ሺെݔ௧ሺݓ ሻሻ′ݕ

where δ is -1 if the example is misclassified and +1 if classified correctly, and a αt

is defined as derived in [Shapire and Singer 1999]:
௧ߙ ൌ ଵଶ݈݊ ൬1 ൅ ௧1ݎ െ ௧൰ݎ

and with rt defined as follows for the CSB family:
௧ݎ ൌ ଵே ෍ ሻ௫ఢ௑ݔሻ݄௧ሺݔ௧ሺݓߜ

As well as the update equation, the rt and cost adjustment function β’ are

defined differently for AdaCost:
௧ݎ ൌ ෍ ,ݕሺ′ߚሻݔሻ݄௧ሺݔ௧ሺݓߜ ݄ሺݔሻሻ௫ఢ௑

,′ݕሺ′ߚ ሻݕ ൌ ൜ 0.5 ܿݐݏ݋ሺݔሻ ൅ 0.5, ′ݕ ݄݊݁ݓ ് ሻݔሺݐݏ݋ܿ െ0.5ݕ ൅ 0.5, ′ݕ ݄݊݁ݓ ൌ ݕ

Ting [2000] evaluates these methods empirically and concludes that the
introduction of the αt in CSB2 does not lead to a significant improvement and the
additional parameters used in AdaCost are not particularly effective either.

CSB1 produces more cost-effective results than AdaCost in 30 runs while
AdaCost performs better in 11 runs. Surprisingly, the evaluations also suggest
that AdaBoost produces better results than its cost-sensitive version AdaCost,
which Ting [2000] attributes to the particular definition of β’ that allocates a
relatively low reward (penalty) when high cost examples are correctly
(incorrectly) classified. This is in contrast to the results presented in [Fan et al.
1999], where AdaCost produces better results than AdaBoost when the Ripper
learner is used instead of C4.5 as the base learner.

The above adaptations of boosting presume that costs are well-defined in
advance. Merler et al. [2003] argue that in medical applications, the costs of
false positives or false negatives can only be approximate, and further that during
the classification process there two separate phases. In the first phase, the aim is
to ensure that the classifier is sensitive and the true positives are maximized
whilst the specificity of a classifier is retained within acceptable bounds. In a
second phase, a specialist medical consultant would examine the identified
positives more carefully, filtering out the false negatives. Hence, for this type of
application, they develop a boosting algorithm, SSTBoost (Sensitivity-Specificity
tuning Boosting) that adapts AdaBoost so that the error for the ith example is
defined in terms of measures of sensitivity and specificity:

௜ߝ ൌ ሺ1 െ ାଵܿାଵߨሻݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൅ ሺ1 െ ଵܿିଵିߨሻݕݐ݂݅ܿ݅݅ܿ݁݌ܵ

where π+1 π-1 are the class priors and c+1, c-1 are the costs of misclassification of
the two classes. Sensitivity is the true positive rate and specificity is true
negative rate.

With this definition of error, they use equation (9) for αt :

௧ߙ ൌ ቀଵଶቁ ln ሺଵିఌ೔ఌ೔ ሻ

The weight update equation takes the form:
ሻݔ௧ାଵሺݓ ൌቊw୲ሺxሻexp ሺെߙ௧ሺ2 െ ,ሻሻሻݔሺݐݏ݋ܿ ሻݔ௧ሺݓ ݕ݈ݐܿ݁ݎݎ݋ܿ ݂݀݁݅݅ݏݏ݈ܽܿ ݏ݅ ݔ ݈݁݌݉ܽݔ݂݁݅ exp൫ߙ௧ܿݐݏ݋ሺݔሻ൯ , ݕ݈ݐܿ݁ݎݎ݋ܿ݊݅ ݂݀݁݅݅ݏݏ݈ܽܿ ݏ݅ ݔ ݈݁݌݉ܽݔ݁ ݂݅

Given specific costs for misclassification, this adaptation of AdaBoost, results
in a classifier with a particular sensitivity and specificity. To enable a search for a
classifier in a target region of sensitivity and specificity, they relate the costs of
misclassifying a positive example, c+, and cost of misclassifying negative example,
c-, in terms of a single parameter ω:
 ܿାଵ ൌ ߱ ܿିଵ ൌ 2 െ ω

This then enables a search over ω by using the method of bisection to find a
classifier that aims to be within a user specified region of sensitivity and
specificity, meeting their application goals.

The above adaptations of AdaBoost amend the procedure to take account of
costs. In contrast, as part of a study that aims to utilize boosting for estimating
conditional class probabilities, Mease et al. [2007] describe how AdaBoost can be
used directly to develop a procedure called JOUS-Boost to perform cost-sensitive
boosting. They use a result owed to Elkan [2001] that shows that it is possible to
change the distribution of the data to reflect the ratio of costs and such that
applying boosting on this changed distribution results in minimization of cost.
More specifically, given the cost of misclassification and number of examples of

class 1 and class 2 are N1, N2 respectively, the distribution of the data is changed
so that the number of examples N1’, N2’ of class 1 and 2, satisfy:
 ܰԢଵܰԢଶ ൌ ଵܰܥଵଶଶܰܥଶଵ

This change of distribution can be achieved by sampling the original data in a

way that results in a smaller data set (under-sampling) or a larger data set (over-
sampling). The sampling itself can be done with replacement, where a selected
example is returned, or without replacement. Under-sampling can result in loss
of data and over-sampling leads to duplication of examples. Mease et al. [2007]
carry out experiments on both artificial and real data showing that the
duplication due to over-sampling leads to over-fitting when boosting. They then
propose a variation, called JOUS-Boost (Over/Under Sampling and Jittering),
that amends the sampling process by adding noise to the features of any
duplicated data and provide empirical evidence to show that this helps to reduce
over-fitting when AdaBoost is used.

Most of the above algorithms are based on using boosting on two class
problems. In two class problems, algorithms such as UBoost are able to set the
weight of an example in proportion to the cost of misclassifying an example.
However, for multi-class problems, an example could be misclassified into several
classes, so determining the weight is less obvious. Several authors have proposed
methods such as utilizing the sum or average of misclassification into the other
classes (e.g. Breiman, et al [1984]; Margineantu [2001]); though as noted above,
Ting and Zheng [1998] suggest that use of these methods may explain a reduction
in the advantage gained by Cost-UBoost over UBoost in their empirical
evaluations. Abe et al. [2004] also argue that these methods do not have a
theoretical basis. Hence, they propose an alternative way of utilizing boosting,
called Gradient Boosting with Stochastic Ensembles (GBSE), for multi-class
problems. GBSE is motivated by first defining a stochastic hypothesis H(y | x)
for a class y for an example x based on the individual hypotheses ht(x) generated
by [Abe et al. 2004]:
ሻݔ|ݕሺܪ ൌ 1ܶ ෍ ሻݔሺ݄௧ሺܫ ൌ ሻ்ݕ

௧ୀଵ

If Ht(y|x) is the composite hypothesis after round t of boosting, then it is
formed by combining the previous composite hypothesis Ht-1 with the new
hypothesis, ht, obtained in round t, weighted by αt:
ሻݔ|ݕ௧ሺܪ ൌ ሺ1 െ α୲tሻܪ௧ିଵሺݔ|ݕሻ ൅ α୲ܫሺ݄௧ሺݔሻ ൌ ሻݕ

where I(E) returns 1 if the expression E is true and 0 if E is false, α = 1/t, and
initially H0(x|y) = 1/k, for a k-class problem.

This enables the definition of the expected cost of misclassification over the

examples, and using gradient descent, Abe et al. [2004] then derive the following
weight update rule, where wx,y is the weight associated with classifying example x
in class y:

௫,௬ݓ ൌ ሻݔு௧ିଵሺݐݏ݋ܿ െ ,ݔሺݐݏ݋ܿ ሻ (10)ݕ

where costHt-1(x) is the expected cost of classifying example x by the composite
hypothesis Ht-1(x).

However, existing boosting methods assume a single weight of importance per
example, and not multiple weights, wx,y. Hence, to utilize existing boosting
methods, there needs to be a mapping to and from multiple weights to single
weights per example. Abe et al. [2004] show that this mapping can be achieved
by expanding an example (x, y, (c1, c2, …ck)), that has features x, class y, and
costs of classification into class i defined by ci, into k examples :
 ܵ ൌ ൛൫ݔ, ,ݕ ௝ݔܽ݉ ௝ܿ െ ܿ௜൯ห݅ ߳ሺ1. . ݇ሻሽ (11)

Abe et al. [2004] prove that minimizing cost over this expanded data set is
equivalent to minimizing the cost over the original multi-class data. They note
that equation (10) can lead to negative weights wx,y which makes it difficult to
utilize existing relational weak learners. They therefore transform the examples
of equation (11) to the following form:
 ቄቀሺݔ, ,ሻݕ ௫,௬ݓ൫ܫ ൒ 0൯, ௫,௬|ቁቚݓ| ݔ א ܺ, ݕ א ܻሽ (12)

A weak learner can be applied to these data and used to induce a relational
hypothesis ht(x,y) and the composite hypothesis revised:

ሻݔ|ݕ௧ሺܪ ൌ ሺ1 െ α୲tሻܪ௧ିଵሺݔ|ݕሻ ൅ α୲ ௧݂ሺݔ|ݕሻ (13)

where ft(y|x) converts the relational hypothesis to a stochastic form:

௧݂ሺݔ|ݕሻ ൌ ቐ ,ሻݔ|ݕ௧ିଵሺܪ ,ݔሺ݄ ݐ݄ܽݐ ݄ܿݑݏ ݔ ݏ݈݁݌݉ܽݔ݁ ݋݊ ݂݅ ሻݕ ൌ ,ݔሺ݄ሺܫ1 ሻݕ ൌ 1ሻ|ሼݕ א ܻ|݄ሺݔ, ሻݕ ൌ 1ሽ| , ݁ݏ݅ݓݎ݄݁ݐ݋

This formulation defines the mapping needed for GBSE to use single weight
boosting methods for multi-class problems.

A desirable property of any boosting algorithm is that it should converge and
lead to the optimization of its objective. Although this has not been shown for
GBSE, Abe et al. [2004] show that a variant, called GBSE-T, with a fixed α, and
the following amendment of the GBSE weight update equation (10) converges
exponentially:

௫,௬ݓ ൌ ௖௢௦௧ಹ೟షభሺ௫ሻ௞ െ ,ݔሺݐݏ݋ܿ ሻݕ

In a follow up study, Lozano and Abe [2008] develop stronger theoretical
foundations for cost-sensitive boosting in which they derive update equations for
a family of methods, called Cost-Sensitive Boosting with p-norm Loss (Lp-CSB) for
which they prove convergence. Like the above study, they use stochastic
gradient boosting as the methodology, however, instead of aiming to minimize the
expected cost of misclassification at each boosting round, they aim to minimize its
approximation using the p-norm [Lozano and Abe 2008]:
 1|ܵ| ෍ ሺ݄ሺݔ|ݕሻ௣ሺ௫,௬,௪ሻאௌ ሻܿݐݏ݋ሺݔ, ൒ ݌ ݎ݋݂ ሻݕ 1

where S takes the expanded form defined as equation (11).

They use methodology similar to the derivation of GBSE and use gradient
descent to show that optimizing this p-norm based objective leads to finding a
hypothesis ht at each round that minimizes [Lozano and Abe 2008, p507]:
 ෍ ෍ ሻݔሺ݄௧ሺܫ௫,௬ሺݓ ൌ ௑א௒௫אሻሻ௬ݕ

where ݓ௫,௬ ൌ ,ݔሺݐݏ݋ሻ௣ିଵܿݔ|ݕ௧ିଵሺܪ ሻݕ

To facilitate the use of a relational weak learner, the examples are translated
to the following form, into a similar form to equation (12) in GSBE (p508):
 ܵ ൌ ሼሺሺݔ, ,ሻݕ ݈, א ݔ |Ԣ௫,௬ሻݓ ܺ, ݕ א ܻ ሽ

Except that the weights are different from GSBE and defined by:

൞ Ԣ௫,௬ݓ ൌ ௪ೣ,೤ଶ ܽ݊݀ ݈ ൌ ,ݔሺ ݎ݋݂ ,0 ᇱ௫,௬ݓݏݏ݈ܽܿ ݐݏ݋ܿ ݉ݑ݉݅݊݅݉ ݄݁ݐ ݋ݐ ݀݊݋݌ݏݏ݁ݎ݋ܿ ݐ݋݊ ݏ݁݋݀ ݕ ݄݊݁ݓሻݕ ൌ ∑ ௪ೣ,೤೤אೊᇲଶ ܽ݊݀ ݈ ൌ 1, ݐݏ݋ܿ ݈ܽ݉݅݊݅݉ ݄ݐ݅ݓ ݁݊݋ ݄݁ݐ ݐ݌݁ܿݔ݁ ݏ݁ݏݏ݈ܽܿ ݈݈ܽ ݂݋ ݐ݁ݏ ݄݁ݐ ݏᇱܻ݅ ݁ݎ݄݁ݓ

Once, a weak learner is applied and a new hypotheses ht(x,y) obtained, the
revised composite hypothesis is defined as in equation (13) with ft(x|y) = ht(x,y).
Lozano and Abe [2008] prove that this scheme and its related family of schemes
are guaranteed to minimize the p-norm based objective, providing a significant
theoretical result and understanding of cost-sensitive boosting methods.

5.2.2 Cost-Sensitive Bagging. The main principle of bagging is that producing n
re-samples of the data set (with replacement), applying a learning procedure to
each resample and aggregating the answers leads to better classifiers,
particularly for learners that are not stable [Breiman 1996]. This principle is
used in MetaCost [Domingos 1999], which is one of the earliest systems to utilise
cost-sensitive bagging. Thus, MetaCost re-samples the data several times and
applies a base learner to each sample to generate alternative decision trees. The
decisions made on each example by the alternative trees are combined to predict
the class of each example that minimizes the cost and the examples relabelled.
The relabelled examples are then processed by the base learner, resulting in a
cost-sensitive decision tree.

Zadrozny et al. [2003a, 2003b] describe a method called Costing that, like
MetaCost applies a base learner to samples of the data to generate alternative
classifiers. However, the sampling process is significantly different from
MetaCost. Each resample aims to change the distribution of the data so that
minimizing error on the changed distribution is equivalent to minimizing cost on
the original distribution (i.e., as described for JOUS-Boost above). Zadrozy et al.
[2003a] argue that using sampling with replacement can lead to overtraining
because of the potential for duplication, and sampling without replacement is also
problematic since we can no longer assume that the examples selected are
independent. Hence, to overcome these shortcomings, Zadrozny [2003a] utilize
rejection sampling [Von Neumann 1951] in which an example with cost c has a
probability of c/Z of being accepted, where Z is chosen as the maximum cost of
misclassifying an example. Once these samples, which are proportional to the
cost, are generated using rejection sampling, Costing applies a base learner to
generate m classifiers whose outcomes can be aggregated to classify an example.
Notice that, unlike MetaCost, there is no relabeling of the data in order to
generate a single decision tree.

Lin and McLean [2000] develop an approach, in which they use different
learners on the same training sample to generate alternative classifiers. As with
MetaCost, they use the different classifiers to predict the class of each example.
However, the labelling of an example x, by a classifier j is based on the risk of
classification into two classes:
 Risk1,j ൌ π2 * Pሺ2|x,jሻ * C12 (14) Risk2,j ൌ π1 * Pሺ1|x,jሻ * C21

where π1, π2 are the prior probabilities of the examples in the two classes.

The risk of classification of an example x into a class c is then defined as a
weighted sum of the m classifiers:
 Risk୶,ୡ ൌ ෍ w୨Rୡ,୨௠

௝ୀଵ

where wj, which is the weight associated with classifier j, is the accuracy of the
classifier on the training set. The class c that minimizes Riskx,c is used to label
an example x.

Moret et al. [2006] describe a similar method to Lin and McLean [2000], called
Bagged Probability Estimation Trees (B-PETS), but do not utilize the prior class
probabilities, πi, in equation (14) and also estimate the P(i|x,j) using the
distribution of examples in the leaf nodes and Laplace’s correction (equation 7)
which is known to produce better estimates.

Moret et al. [2006] also propose an alternative way of estimating P(c|x), the
probability of an example x being in a particular class c that makes use of lazy
option trees. A lazy option tree (LOT) is constructed for an example x, using the
usual top-down process except there are two significant differences. First, since
the example is known, only tests that are consistent with the example are
considered at each node. Secondly, instead of selecting a single best test for each
node, the first k best tests are also stored as alternative tests, leading to k sub-
trees. An estimate of P(c|x) is then based on the k leaf nodes that the example x
falls into. In addition, they also use re-sampling and bagging over lazy option
trees (B-LOTs), to produce estimates of P(c|x). These estimates of P(c|x) can
then be used to select the class that minimizes the risk based on the cost of
misclassification.

Given that both MetaCost and AdaBoost each result in improved performance,
it seems plausible that exploring a combination of the two methods could lead to
further improvements. Ting [2000a] investigates this possibility by carrying out
an empirical evaluation of two adaptations of MetaCost: one, called MetaCost_A
where the base learner is AdaBoost, and a second, called MetaCost_CSB, where
the base learner is CSB0. The results of the empirical evaluations suggest that
there is little to be gained by embedding AdaBoost or CSB0 within MetaCost.
Bagging is known to be particularly effective at reducing variance of due to an
unstable base learner [Bauer and Kohavi 1998], which may provide an
explanation of why using bagging over AdaBoost or CSB does not result in
further improvements.

The comparison in Ting [2000a] also shows that using a cost sensitive base
learner for MetaCost does result in improvements over a using a cost-insensitive
learner, which is also apparent in the empirical results presented in Vadera
[2010].

5.2.3 Multiple Structures. Estruch et al. [2002] argue that generating alternative
trees such as in boosting and bagging can consume significant space and
therefore propose a structure, called Multi-Tree, which aims to implicitly include

alternative trees. The central idea is to follow the usual top-down decision
induction process, but instead of discarding alternative choices, these are stored
as suspended nodes that could be expanded in the future [Ferri-Ramírez 2002;
Rissanen 1978]. Figure 9 shows a multi-tree for the example given Table 1 of
‘Television Repair’ data set. The attributes that have been selected are presented
in rectangles, and the suspended nodes, which are in circles, are linked by the
dashed lines. The figure also includes the class distribution in each node and is
given in the format [number of examples in ‘faulty’ class, number of examples in
‘not faulty’ class]. A multi-tree can be expanded to include an additional tree by
selecting a suspended node and developing it into a tree using the top-down
process but retaining potential attributes as suspended nodes. Estruch et al.
[2002] consider alternative methods of selecting which suspended node to expand
and adopt a random selection scheme. Thus a multi-tree will implicitly include
several trees each of which can be used for classification and whose outcomes can
be combined to produce a weighted classification in the same manner to bagging.

Estruch et al. [2002] experiment with different ways of producing this
weighted classification by taking advantage of the fact that different decision
trees may share the same part of a multi-tree. A multi-tree is not as
comprehensible as a single tree, and hence a method for extracting a single tree is
developed.

In contrast to MetaCost, where a single tree is obtained by applying a base
learner on the re-classified examples, a single tree is extracted by traversing a
multi-tree bottom-up, and selecting those suspended nodes that agree the most
with the outcomes of the multi-tree using a randomly created data set. They then
utilize ROC, as described in Section 4.2, to take account of costs. Estruch et al.
[2002] includes an empirical comparison which concludes that it is more efficient
in comparison to bagging and boosting. The results for accuracy suggest that
bagging produces better results at lower number of iterations while the use of
multi-tree produces slightly better results beyond 200 iterations.

Figure 9 Multi-tree using the example data set

5.3 Stochastic Approach

The greedy methods of induction of trees, described in Section 4, select an
attribute after considering its immediate effect on the examples. Several authors
have investigated the potential for utilizing a k-lookahead strategy to select
attributes by considering their effect deeper down a tree (e.g., Murthy and
Salzberg [1995], Dong and Kothari [2001]). That is, for each attribute, a sub-tree
of depth k is developed and the attribute that results in the best sub-tree is
selected. Although increasing the look-ahead depth k has the potential for
increasing the quality of a tree, as Esmeir and Markovitch [2004] point out, this
also leads to an exponential increase in the time required for induction.

Hence, in their work they explore the use of stochastic sampling methods to
assess the attributes and develop ACT [Esmeir and Markovitch 2007, 2008], a
framework for anytime induction of cost-sensitive trees, and TATA [Esmeir and
Markovitch,2011], an anycost framework for learning under limited budgets.

ACT (Anytime Cost-sensitive trees) [Esmeir and Markovitch 2007, 2008] uses a
stochastic tree induction algorithm to generate r samples of sub-trees for each
value of an attribute. The cost of each of these sub-trees is calculated using the
training examples, and the minimum cost utilized as an estimate for the attribute
value. The costs of the sub-trees for the attribute values are aggregated to
estimate the cost of selecting an attribute, and the minimum cost attribute
selected. The first of the r samples is generated using the EG2 algorithm and the
remaining samples are generated using a greedy top-down induction process
except that the probability of selecting an attribute is proportional to its
information cost measure as defined in EG2 equation (2).

In experiments, ACT returned better results than ICET (Section 5.1) and
Decision Trees with Minimal Cost (Section 4.1.2) [Esmeir and Markovitch 2008,
p26].

In a more recent study, Esmeir and Markovitch [2011] note that minimising
the sum of test and misclassification costs implies that the costs should be on
the same scale.4 They argue that a more realistic goal would be to develop trees
that minimise misclassification costs but subject to a constraint that the total cost
of the tests utilised is no more than a specified cost.5 The limit on test costs may
be available prior to learning, after learning but before classification, or may be
unavailable, leading to algorithms they term as pre-contract, contract and
interruptible classifiers. They develop a framework for algorithms for such
situations, called TATA (Tree classification AT Anycost), that is capable of
reducing misclassification costs as the budget for using tests increases.

They develop this framework by first noting that existing top-down tree
induction algorithms can be adapted so that the total test cost for any example
will be no more than a pre-specified cost. This can be achieved during the tree
induction process by only considering those attributes whose cost is below the
current available budget, where the current budget is the initial budget less the
cost of the attributes used from the root to the current node. Then, they adopt
an approach similar to ACT, except that the r samples are obtained using an
adapted version of C4.5 in which attributes that cost more than the available
budget are excluded and attributes are selected stochastically with a probability
proportional to their information gain. The samples for each available attribute
are used to estimate the misclassification cost and the one with minimal
misclassification cost selected. Given a maximum budget available for testing and
a suitable sample size r, this achieves the requirements for a pre-contract
algorithm.

For a contract algorithm, the budget for test costs in not available until the
classification stage. To handle such applications, Esmeir and Markovitch [2011]
propose inducing a sequence of trees, t1, … tk, which they term a repertoire, with
respective budgets c1,…,ck, where c1 is set to the cost of the cheapest test, and ck is
set to the maximum cost, where all the tests are used. The number of trees, k,
that are used, depends on the amount of time and memory available but also
impacts on the time available for the number of stochastic samples, r, that are
possible. The k trees could be obtained by discretising the interval from c1 to ck
into k-1 uniformly spread intervals or in a more sophisticated manner by

4 As mentioned in section 4.1.1, Zhang et al. [2007], also make the same observation, though they
adapt the measure used in the Performance algorithm to represent the trade-off between costs of tests
and costs of misclassification.
5 Greiner et al. (2002) provides some theoretical results for active learning under such budgets.

repeatedly using hill-climbing to subdivide an interval that has the largest gap
in terms of expected errors and test cost budgets. 6

To achieve the goals of an interruptible algorithm, where neither the budgets
for learning or the total tests costs are available, they propose developing a
repertoire of trees and then to start classification using the tree with the
minimum possible budget, and then repeatedly moving on to the tree with the
next higher budget until interrupted or reaching the final tree.

An empirical evaluation of TATA shows that misclassification costs reduce
more rapidly with increasing budget when compared to EG2, an adapted version
of EG2 where only attributes within budget are considered and C4.5. The
misclassification cost also reduces as the number of stochastic samples, r,
increases, with the most significant improvement occurring when one, two or
three samples are used, but minimal improvement after three samples.

6. CONCLUSIONS

There has been significant interest in the introduction of costs into decision tree
induction. Many ways of introducing costs within the decision tree process have
been developed. Whilst there have been accounts of different types of costs, there
has been no synthesis of the wide range of studies on cost sensitive algorithms.
Hence this paper has carried out an extensive survey of the field with a view to
providing an appreciation of the different approaches and algorithms that have
been proposed.

A new taxonomy of cost sensitive algorithms has been developed, organizing
the algorithms into classes representing the way cost sensitivity has been
introduced. The survey revealed two major approaches; greedy, which induces a
single tree making decisions with no backtracking and non-greedy, which uses
multiple trees and multiple choices to induce trees. Seven classes are defined:

(a) Use of costs during construction, whereby attribute selection measures are

adapted to include costs. The main differences between the algorithms in this
class are the selection measures used and whether costs of tests,
misclassification costs or both are incorporated.

(b) Post construction, developed when costs are unknown at training time or if the
costs are subject to many changes. Differences between these algorithms arise
from how the labels for leaf nodes are chosen.

(c) GA methods, which utilize evolution, producing populations of decision trees
which are evaluated with regard to costs with the fittest being retained and
combined. The algorithms vary in the way trees are generated or represented
and how the fitness is measured.

(d) Boosting, which generates a number of decision trees in sequence using
instance weights. The algorithms differ in the way that these weights are
initialized, and updated. Other differences between algorithms include how
the sampling is done, and how error rates or confidence rates have been
calculated in order to give the trees with least error more importance in
composite voting methods.

(e) Bagging, which generates a number of independent decision trees using re-
samples from the training set, thus differing from the trees generated by
boosting, being independent of each other similarly to those in the GA
methods. Generally these algorithms are wrapping methods, using the
decision tree as a sub-routine and wrapping the incorporation of costs around
it. Differences between these algorithms are how sampling occurs and in the
composite voting method used.

6 More formally, they select an i for which (Ei – Ei+1) (Ci+1 – Ci) is maximum where the Ei and Ci are
the expected error and budgets for the ith tree.

(f) Multiple structures, which expands the ideas of generating alternative trees
and combining the outcome by having alternative trees in one structure. This
shows all possible alternative choices of attribute selection in one decision tree
so that alternative choices are not discarded as in the usual decision tree
process but are stored and can be expanded in the future.

(g) Stochastic Approach, which induces decision trees created by generating r
stochastic samples of trees rooted at each potential attribute and selecting the
attribute that results in the best tree. Varying the number of r samples results
in the anytime behaviour where quality can improve with more time. As well
as anytime behaviour, this approach has been used to produce a framework for
anycost behaviour, where misclassification costs reduce as the available total
cost for testing increases.

The survey also includes a timeline showing how the field has developed from

early algorithms that simply amend selection measures to take account of costs,
to the more recent and sophisticated stochastic algorithms that use sampling to
induce anycost trees.

Selecting the most appropriate algorithm amongst the many algorithms will
depend on various factors including whether an application needs to minimise
costs alone, minimise costs of tests and misclassifications, whether there is a
fixed budget for test costs, and whether there is a need for anytime or anycost
learning. Although, the particular experimental methods, data sets utilised (see
Table A.1 in the Appendix) and related systems compared vary, it is possible to
form a general view from the empirical evaluations presented in the studies.

A number of the non-greedy algorithms show the benefits of generating
multiple trees. Based on the original study by Turney [2005] and the independent
comparisons in [Lomax and Vadera, 2011], ICET performs well when aiming to
minimise the sum of costs of misclassification and tests, especially when costs of
misclassification are uniform7.

ACT, a system based on stochastic sampling, improves upon the results from
ICET for both uniform and non-uniform misclassification costs [Esmeir and
Markovitch, 2008].

The use of boosting has developed from the pioneering work on systems such
as Cost-UBoost [Ting and Zheng,1998] and AdaCost [Fan et. al, 1999] to JOUS-
Boost [Mease et al., 2007] that shows the benefits of adding noise to the sampling
process to reduce over-fitting. Lozano and Abe [2008] have advanced our
understanding of cost-sensitive boosting by deriving methods such as Cost-
Sensitive Boosting with p-norm Loss (Lp-CSB) that are guaranteed to converge.
The recent work of Esmeir and Markovitch [2011] on TATA provides a novel
framework for applications where the maximum cost for testing is available in
advance, at the classification stage or even later.

Given the relative success of non-greedy algorithms for cost-sensitive tree
induction, a fair question is:

“Is it worth using or even pursuing future research on greedy cost-
sensitive decision tree induction algorithms?”

The primary advantage of the greedy algorithms is that they are very efficient

and therefore represent a good starting point for applications, and where
performance with respect to costs is very good, there may be little benefit in using
the more computationally expensive multi-tree methods. Producing similar
results to multi-tree methods using single tree methods does represent a major
research challenge, but as the work on non-linear decision tree shows [Vadera,
2010], it is possible to produce results comparable to MetaCost and ICET for
minimisation of misclassification costs at a fraction of the computational time.

7 Costs of misclassification are said to be uniform when they are the same for all the classes.

Whether it is possible to extend this to applications that need to take account of
costs of tests or budgeted learning remains an open question.

In conclusion, the field of cost-sensitive decision tree learning has a rich and
diverse history, providing a strong base for future research that could include: (i)
carrying out an independent and comprehensive empirical evaluation that could
help method selection based on application requirements (ii) building upon recent
advances to develop new algorithms that improve performance or meet new
requirements and (iii) developing theoretical foundations that improve our
understanding of convergence and the trade-offs between learning time and cost
optimisation.

ACKNOWLEDGEMENTS

The authors are grateful to the reviewers and associate editor for their useful
comments that have led to improvements to the content and presentation of the
paper.

REFERENCES

ABE, N., ZADROZNY, B., LANGFORD, J. 2004. An iterative method for multi-class cost-sensitive

learning. Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD '04, 3, August 22-25, Seattle, WA, USA, Kim W., Kohavi R., Gehrke J.,
DuMouchel W. (Eds).

AFIFI, A. A., CLARK, V. 1996. Computer-aided multivariate analysis. 3rd Edition, Chapman & Hall,
London.

BAUER, E., KOHAVI, R. 1999. An empirical comparison of voting classification algorithms: bagging,
boosting and variants. Machine Learning Vol 36, Issue 1-2, 105-139.

BIGGS, D., DE VILLE. B., SUEN, E. 1991. A method of choosing multiway partitions for classification
trees. Journal of Applied Statistics, 18 (1), 49-62.

BRADFORD, J. P., KUNZ, C., KOHAVI, R., BRUNK, C., BRODLEY, C. E. 1998a. Pruning Decision
Trees with Misclassification Costs. 10th European Conference on Machine Learning (ECML-98),
April 21-23 1998, Chemnitz, Germany, 131-136.

BRADFORD, J. P., KUNZ, C, KOHAVI R, BRUNK, C, BRODLEY, C. E. 1998b. Pruning Decision
Trees with Misclassification Costs. Long version: online at
http://robotics.stanford.edu/~ronnyk/prune-long.ps.gz (Accessed 8 April 2011).

BREIMAN, L., FRIEDMAN J. H., OLSEN R. A., STONE C. J. 1984. Classification and Regression
Trees. Chapman and Hall/CRC, London.

BREIMAN, L. 1996. Bagging Predictors, Machine Learning, 24 (2), 123-140.
DAVIS, J. V., JUNGWOO, H., ROSSBACH, C. J. 2006. Cost-sensitive decision tree learning for

forensic classification. In Proceedings of 17th European Conference on Machine Learning (ECML),
LNCS 4212, Springer, 622-629.

DOMINGOS, P. 1999. MetaCost: A general method for making classifiers cost-sensitive. In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM New York, NY, USA, 155–164.

DONG, M., KOTHARI, R. 2001. Look-ahead based fuzzy decision tree induction. IEEE Transactions
on Fuzzy Systems , Vol 9, No 3, 461–468.

DRAPER, B. A., BRODLEY, C. E., UTGOFF, P. E. 1994. Goal-Directed Classification using Linear
Machine Decision Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (9)
September, 888 – 893.

ELKAN, C. 2001. The Foundations of Cost-Sensitive Learning. In Proceedings of 17th International
Joint Conference on Artificial Intelligence (IJCAI’01), Morgan Kaufmann, San Francisco, USA, Vol
2, 973 – 978.

ESMEIR, S. AND MARKOVITCH, S. 2004. Lookahead-based algorithms for anytime induction of
decision trees. Twenty-first international conference on Machine learning - ICML '04, 33, Brodley
C.E. (Ed), 257-264.

ESMEIR, S. AND MARKOVITCH, S. 2007. Anytime induction of cost-sensitive trees. In Proceedings
of The 21st Annual Conference on Neural Information Processing Systems (NIPS-2007),
Vancouver, BC, Canada, 1-8.

ESMEIR, S. AND MARKOVITCH, S. 2008. Anytime Induction of Low-cost, Low-error Classifiers: a
Sampling-based Approach. Journal of Artificial Intelligence Research 33, 1-31.

ESMEIR, S. AND MARKOVITCH, S. 2010. Anytime Algorithms for Learning Resource-bounded
Classifiers. In Proceedings of the Budgeted Learning Workshop, ICML2010, Haifa, Israel, June 25.

ESMEIR, S. AND MARKOVITCH, S. 2011. Anytime Learning of Anycost Classifiers. Machine
Learning, Vol 82, No 3, 445–473.

ESTRUCH, V., FERRI, C., HERNÁNDEZ-ORALLO, J., RAMÍREZ-QUINTANA, M. J. 2002. Re-
designing cost-sensitive decision tree learning. In Workshop de mineria de datos y Aprendizaje.
Iberamia, Seville, November 2002, 33–42.

FAN, W., STOLFO, S. J., ZHANG, J. CHAN, P. K. 1999. AdaCost: misclassification cost-sensitive
boosting. 16th International Conference on Machine Learning, June 27-30 1999, Bled, Slovenia,
97-105.

FERRI, C., FLACH, P., HERNÁNDEZ-ORALLO, J. 2002. Learning decision trees using the area
under the ROC curve. In 19th Machine Learning International workshop then conference,
University of New South Wales, Sydney, Australia, 139–146.

FERRI-RAMÍREZ, C., HERNÁNDEZ, J., RAMIREZ, M. J. 2002. Induction of Decision Multi-trees
using Levin Search. In International Conference on Computational Science, ICCS02, April 21 – 24,
Amsterdam, The Netherlands, LNCS, Vol 2329, 166-175.

FRANK, E. AND WITTEN, I. 1998. Reduced-error pruning with significance tests. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.2272 (Accessed 8 April 2011).

FREAN, M. 1990. Small Nets and Short Paths: Optimizing Neural Computation. Doctoral thesis,
Centre for Cognitive Science, University of Edinburgh.

FREITAS, A., COSTA-PEREIRA, A., BRAZDIL, P. 2007. Cost-Sensitive Decision Trees applied to
medical data. DaWak, September 3-7, Regensburg, Germany, LNCS 4654, 303-312.

FREUND, Y., SCHAPIRE, R.E. 1996. Experiments with a new boosting algorithm. 13th International
Machine Learning workshop then conference, July 3-6, Bari, Italy, 148-156.

FREUND, Y., SCHAPIRE, R.E. 1997. A decision-theoretic generalization of on-line learning and an
application to boosting, Journal of Computer and System Sciences, 55 (1), Academic Press,
Orlando, Florida, USA, 119-139.

GREINER, R, GROVE, A.J. and ROTH, D. 2002. Learning cost-sensitive active classifiers, Artificial
Intelligence, Vol 139, No 2, 137-174.

HART, A. E. 1985. Experience in the use of an inductive system in knowledge engineering. In
Research and development in expert systems. M. A. Bramer (Ed.), Cambridge University Press.

HUNT, E. B., MARIN, J., STONE, P. J. 1966. Experiments in Induction. New York, Academic Press.
KNOLL, U., NAKHAEIZADEH, G., TAUSEND, B. 1994. Cost-Sensitive Pruning of Decision Trees.

Proceedings of the 8th European Conference on Machine Learning ECML-94. Berlin, Germany,
Springer-Verlag, 383-386.

KOHAVI, 1996. Scaling up the accuracy of Naïve Bayes Classifier: A Decision Tree hybrid.
Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining KDD96,
August 2-4, Portland, Oregon, USA, AAAI Press, 202-209.

KRETOWSKI, M. AND GRZES, M. 2007. Evolutionary induction of decision trees for misclassification
cost minimization. In Proceedings of 8th International Conference on Adaptive and Natural
Computing Algorithms, April 11-14, Warsaw, Poland, ICANNGA, Part 1, LNCS 4431, Springer.

LI, J., LI, X., YAO, X. 2005. Cost-Sensitive Classification with Genetic Programming. IEEE Congress
on Evolutionary Computation, 2114-2121.

LIN, F. Y. AND MCCLEAN, S. 2000. The Prediction of Financial Distress using a Cost Sensitive
approach and Prior Probabilities. Proceedings of 17th International Conference on Machine
Learning, ICML-2000, June 29-July 2, Stanford University, California, USA.

LING, C. X., YANG, Q., WANG, J., ZHANG, S. 2004. Decision Trees with Minimal Costs. ACM
International Conference Proceeding Series 21st international conference on Machine learning,
Banff, Alberta, Canada, Article No. 69, ISBN: 1-58113-828-5. ACM Press New York, NY, USA.

LING, C. X., SHENG, V. S., BRUCKHAUS, T., MADHAVJI, N. H. 2006a. Maximum profit mining
and its application in software development. Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD '06, August 20-23, Philadelphia, USA,
929.

LING, C., SHENG, V., YANG, Q. 2006b. Test strategies for cost-sensitive decision trees. IEEE
Transactions on Knowledge and Data Engineering, 18(8), 1055-1067.

LIU, X. 2007. A New Cost-Sensitive Decision Tree with Missing Values. Asian Journal of Information
Technology, 6(11), 1083–1090.

LOMAX, S., VADERA, S. 2011. An Empirical Comparison of Cost-Sensitive Decision Tree Induction
Algorithms. Expert Systems The Journal of Knowledge Engineering, July, Vol 28, No 3, 227 – 268.

LOZANO, A.C. AND ABE, N. 2008. Multi-class cost-sensitive boosting with p-norm loss functions.
Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD '08, August 24-24, Las Vegas, USA, 506.

MARGINEANTU, D. AND DIETTERICH, T. 2003. A Wrapper Method for Cost-Sensitive Learning via
Stratification. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.1102
(accessed 7 April 2011).

MARGINEANTU, D. 2001. Methods for cost-sensitive learning. Doctoral Thesis, Oregon State
University.

MEASE, D., WYNER, A. J., BUJA, A. 2007. Boosted Classification Trees and Class
Probability/Quantile Estimation. Journal of Machine Learning Research, 8, 409-439.

MERLER, S. 2003. Automatic model selection in cost-sensitive boosting. Information Fusion, 4(1), 3-
10.

MICHALEVICZ, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs. Third Edition.
Springer.

MEIR, R. AND RÄTSCH, G. 2003. An introduction to boosting and leveraging. Advanced Lectures on
Machine Learning, Mendelson, S., Smola, A. (Eds), Springer, 119-184.

MORET, S., LANGFORD, W. MARGINEANTU, D. 2006. Learning to predict channel stability using
biogeomorphic features. Ecological Modelling, 191(1), 47-57.

MORRISON, D. 1976. Multivariate Statistical Methods, 2nd Edition. McGraw-Hill, New York.

MURTHY, S., KASIF, S., SALZBERG, S. 1994. A System for induction of oblique decision trees.
Journal of Artificial Intelligence Research, 2, 1-32.

MURTHY, S. AND SALZBERG, S. 1995. Lookahead and pathology in decision tree induction.
Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada,
1025-1033.

VON NEUMANN, J. 1951. Various techniques used in connection with random digits. Monte Carlo
methods. National Bureau Standards, 12, 36-38.

Ni, A., ZHANG, S., YANG, S., ZHU, X. 2005. Learning classification rules under multiple costs. Asian
Journal of Information Technology 4, 1080-1085.

NILSSON, N. J. 1965. Learning Machines, McGraw-Hill, New York.
NORTON, S. W. 1989 Generating Better Decision Trees. Proceedings of the Eleventh International

Joint Conference on Artificial Intelligence. IJCAI-89, August, Detroit, Michigan, USA, 800-805.
NÚNEZ. 1991. The Use of Background Knowledge in Decision Tree Induction. Machine Learning 6,

Kluwer Academic Publishers, Boston, 231-250.
OMIELAN, A. 2005. Evaluation of a cost sensitive genetic classifier. MPhil thesis, University of

Salford.
PAZZANI, M., MERZ, C., MURPHY, P., ALI, K., HUME, T., BRUNK, C. 1994. Reducing

misclassification costs. In Proceedings of the 11th International Conference on Machine
Learning.New Brunswick, New Jersey, USA, 217–225, Available at:
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Reducing+misclassification+costs
#0 (accessed 7 April 2011).

QIN, Z., ZHANG, S., ZHANG, C. 2004. Cost-sensitive decision trees with multiple cost scales.
Proceedings of the 17th Austrailian Joint Conference on Artificial Intelligence, December 4-6th
Cairns, LNAI 3339, Springer-Verlag, Berlin, G. I. Webb and X Yu (Eds), 380-390.

QUINLAN, J. R. 1979. Discovering rules by induction from large collections of examples. Expert
Systems in the micro electronic age, D Michie (Ed.), Edinburgh University Press, 168-201.

QUINLAN, J. R. 1983. Learning efficient classification procedures and their application to chess
endgames. Machine Learning: an artificial intelligence approach, Michalski, Garbonell and
Mitchell (Eds.) Tioga Publishing Company, Palo Alto.

QUINLAN, J. R. 1986. Induction of Decision Trees. Machine Learning 1, Kluwer Academic
Publishers, Boston, 81-106.

QUINLAN, J. R. 1987. Simplifying Decision Trees. International Journal of Man-Machine Studies, 27,
221-234.

QUINLAN, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufman, San Mateo, CA.
QUINLAN, J. R., COMPTON, P. J., HORN, K. A., LAZARUS, L. 1987. Inductive Knowledge

Acquisition: A Case Study. Applications of Expert Systems, Chapter 9, J Ross Quinlan (Ed), Based
on the proceedings of the second Australian Conference. Turing Institute Press with Addison-
Wesley Publishing Co. ISBN 0-201-17449-9, 137-156.

RISSANEN, J. 1978. Modelling by shortest data description. Automatica, 14, 465-471.
SCHAPIRE, R. E., FREUND, Y., BARTLETT, P., LEE, W. S. 1997. Boosting the Margin: A New

Explanation for the Effectiveness of Voting Methods. In Proceedings of the 14th International
Conference on Machine Learning, Nashville, Tennessee, USA, 322-330.

SCHAPIRE, R. AND SINGER, Y. 1998. Improved Boosting Algorithms using Confidence-Rated
Predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory,
July 24-26, Madison, Wisconsin, USA, 80-91.

SCHAPIRE, R. E. 1999. A Brief Introduction to Boosting, In Proceedings of the 16th International Joint
Conference on Artificial Intelligence, IJCAI99, July 31 – August 6, City Conference Center,
Stockholm, Sweden, Vol 2, 1401- 1406.

SCHAPIRE, R. E. AND SINGER, Y. 1999. Improved Boosting Algorithms Using Confidence-Rated
Predictions. Machine Learning 37, (3), 297-336.

SHANNON, C. E. 1948. The Mathematical Theory of Communication. The Bell System Technical
Journal, Vol 27, 379-423.

SHENG, S. AND LING, C. 2005a. Hybrid cost-sensitive decision tree. 9th European Conference on
Principles and Practice of Knowledge Discovery in Databases, October 3-7, Porto, Portugal, LNCS,
3721, 274-284.

SHENG, S., LING, C., YANG, Q. 2005b. Simple Test strategies for cost-sensitive decision trees. In 16th
European Conference on Machine Learning, ECML 2005, October 3-7, Porto, Portugal, LNCS
3720, 365-376.

SHENG, V. S., LING, C. X., NI, A., ZHANG, S. 2006. Cost-Sensitive Test Strategies. Proceedings of
21st National Conference of Artificial Intelligence, July 16-20, Boston, Massachusetts, USA, AAAI
Press.

SWETS, J., DAWES, R., MONAHAN, J. 2000. Better Decisions through Science. Scientific American,
October, 82-87.

TAN, M. AND SCHLIMMER J. 1989. Cost-Sensitive Concept Learning Of Sensor Use in Approach
and Recognition. Proceedings of the 6th International Workshop on Machine Learning. ML-89,
Ithaca, New York, 392-395.

TAN, M. AND SCHLIMMER J. 1990. CSL: A Cost-Sensitive Learning System for Sensing and
Grasping Objects. IEEE International Conference on Robotics and Automation. Cincinnati, Ohio.

TAN, M. 1993. Cost-Sensitive Learning of Classification Knowledge and Its Applications in Robotics.
Machine Learning, 13, 7-33.

TING, K. AND ZHENG, Z. 1998a. Boosting cost-sensitive trees. Proceedings of 1st International
Conference on Discovery Science, Springer-Verlag, London, LNCS, 1532, 244–255.

TING, K. M. AND ZHENG, Z. 1998b. Boosting Trees for Cost-Sensitive Classifications. In Machine
Learning: ECML-98 10th European Conference on Machine Learning, Chemnitz, Germany.
Springer, 190-195.

TING, K. 2000a. An empirical study of Metacost using boosting algorithms. Proceedings of the 11th
European Conference on Machine Learning, Springer-Verlag, London, LNCS 1810, 413–425.

TING, K. 2000b. A comparative study of cost-sensitive boosting algorithms. In Proceedings of the 17th
International Conference on Machine Learning, June 29 - July 2, Stanford University, San
Francisco, USA, 983-990.

TING, K. M. 2002. An Instance-Weighting Method to Induce Cost-Sensitive Decision Trees. IEEE
Transactions on Knowledge and Data Engineering, 14, (3), May/June, 659-665.

TURNEY, P.D. 1995. Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision
Tree Induction Algorithm. Journal of Artificial Intelligence Research, 2, 369-409.

TURNEY, P. D. 2000. Types of Cost in Inductive Concept Learning. Workshop on Cost-Sensitive
Learning at the 17th International Conference on Machine Learning (WCSL at ICML-2000),
Stanford University, California, 15-21.

VADERA, S. 2005a. Inducing cost-sensitive non-linear decision trees. Technical report. Available at:
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Inducing+cost-sensitive+non-
linear+decision+trees#0 (Accessed 8 April 2011).

VADERA, S. 2005b. Inducing Safer Oblique Trees without Costs, Expert Systems: The International
Journal of Knowledge Engineering and Neural Networks, Vol 22, No 4, 206-221.

VADERA, S. 2010. CSNL: A cost-sensitive non-linear decision tree algorithm. ACM Transactions on
Knowledge Discovery from Data (TKDD), Vol 4, Issue 2, May 2010, Article 6, 1-25.

WEISS, S. M. AND KULIKOWSKI, C. A., 1991. Computer Systems That Learn: Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems (Machine
Learning Series). Morgan Kaufmann Publishers Inc, California, USA, ISBN 1-55860-065-5.

WINSTON, P. H. 1993. Artificial Intelligence. 3rd ed. Addison Wesley, USA, ISBN 0-201-53377-4.
ZADROZNY, B., LANGFORD, J., ABE, N. 2003a. A Simple Method for Cost-Sensitive Learning.

Technical Report RC22666, IBM,2003.
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.7947

ZADROZNY, B., LANGFORD, J., ABE, N. 2003b. Cost-Sensitive Learning by Cost-Proportionate
Example Weighting. Third IEEE International Conference on Data Mining, November 19 - 22,
2003, Melbourne, Florida, USA, 435.

ZHANG, S., QIN, Z., LING, C., SHENG, S. 2005. “Missing is Useful”: Missing Values in Cost-sensitive
Decision Trees. IEEE Transactions on Knowledge and Data Engineering, Vol 17, No 12, 1689-
1693.

ZHANG, S., ZHU, X., ZHANG, J., ZHANG, C. 2007. Cost-Time Sensitive Decision Tree with Missing
Values. Knowledge Science, Engineering and Management 4798, 447-459.

ZHANG, S. 2010. Cost-sensitive classification with respect to waiting cost. Knowledge.-Based Systems,
Vol 23, No 5, 369-378.

APPENDIX

Table A1, given overleaf, shows the top 20 data sets used by the studies in this
survey. These data sets have been divided into groups; two class data sets, multi-
class data sets and those which have been used as two class and multi-class data
sets. The table gives details of how many data sets each study used, the average
number of data sets used and how many of the data sets are in the top 20. All
data sets in the top 20 are available from the Machine Learning Repository8.
Some of the studies have used private data sets or those from other sources.

The table also indicates whether the test costs and misclassification costs are
provided.

Other data sets which are not in the top 20 listing but are still useful in order
to measure performance include: (i) the Soybean data set which has 19 classes,
(ii) Thyroid (NN), used by Turney [1995] and others, and is a larger version of the
hypothyroid data set and having 3 classes and (iii) Statlog Shuttle, a large data
set with 58,000 examples, useful to examine how an algorithm performs with a
larger number of examples.

8 http://archive.ics.uci.edu/ml/index.html

