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Abstract

Background: One of the best and most accurate methods for identifying disease-causing genes is monitoring
gene expression values in different samples using microarray technology. One of the shortcomings of microarray
data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces
the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to
identify potential marker genes for a disease. Among numerous existing methods for gene selection, support
vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its
performance can be reduced because of the small sample size, noisy data and the fact that the method does not
remove redundant genes.

Methods: We propose a novel framework for gene selection which uses the advantageous features of
conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE
to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a
redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene
expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes.
The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small
number of samples and erroneous measurement results.

Results: The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate
cancer datasets. The empirical results show that our method has improved classification performance in terms of
accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened
the hypothesis that these genes are involved in the process of cancer growth.

Conclusions: The proposed method addresses the weakness of conventional methods by adding a redundancy
reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate
cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent
wet-lab verification and might help in the search for a cure for cancers.

Background
One of the most important areas of medical research is
the identification of disease-causing genes. Identification
of these factors can improve the process of diagnosis
and the treatment of diseases. It is known that certain
diseases, such as cancer, are reflected in the change of
the expression values of certain genes. For example, nor-
mal cells may become cancerous due to genetic muta-
tions. These changes affect the expression level of genes.

Gene expression is the process of transcribing a gene’s
DNA sequence into RNA. A gene’s expression level
indicates the approximate number of copies of that
gene’s RNA produced in a cell and it is correlated with
the amount of the corresponding proteins made [1].
The recent advent of microarray technology has made

simultaneous monitoring of thousands of gene expres-
sions possible. Analyzing gene expression data can indi-
cate the genes which are differentially expressed in the
diseased tissues [2]. The main problem of microarray
data is its limited number of samples with respect
to number of genes. Many of these genes have no
role in creation of the disease of interest; therefore
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identification of disease-causing genes can determine
not only the cause of the disease, but also its pathogenic
mechanism. Diagnostic tests and classification of
patients can be done by using marker genes, which will
reduce laboratory costs and increase the accuracy. Iden-
tification and selection of a subset of genes as disease-
causing genes is called gene selection.
Different methods have been proposed in the litera-

ture for gene selection. They can be organized in three
categories: filter methods, wrapper methods and
embedded methods [3]. Filter methods evaluate the
goodness of the genes looking only at the intrinsic char-
acteristics of the data, based on the relation of each sin-
gle gene with the class label by the calculation of simple
statistical criteria [4]. Some of the methods are para-
metric and some are nonparametric. Parametric meth-
ods have strict assumptions on the analyzed data,
including: normal distribution, homogeneous variances
between data groups and continuous measures with
equal intervals. Non-parametric methods do not require
above assumptions, so they are computationally easier
and quicker but statistically less powerful [5].
There is a large variety of parametric methods such as

Signal to Noise Ratio (SNR) [6] and Fisher [7]. More
recently a novel filter method called SDED (Standard
Deviation Error Distribution) is proposed which utilizes
variations within class and amongst-class in gene
expression data [8]. Wilcoxon rank sum test is an exam-
ple of non-parametric filter methods [9]. Filter methods
are fast and simple but they do not consider the correla-
tion of genes and lead to redundancy in the selected
gene sets.
In the ‘wrapper’ approach a search is conducted in the

space of genes, evaluating the goodness of each found
gene subset by the estimation of the accuracy of the
specific classifier to be used, training the classifier only
with the found genes [4]. In [4] forward selection is
used for gene selection and in [10,11] a genetic algo-
rithm is used to find informative genes. Martinez and
co-workers have proposed a swarm intelligence feature
selection algorithm based on the initialization and
update of only a subset of particles in the swarm [12].
In [13] a hybrid Particle Swarm Optimization (PSO) and
Genetic Algorithm (GA) method is used for gene selec-
tion. Wrapper methods consider the correlation of
genes but they have high computational complexity.
In the embedded methods, the search for an optimal

subset of features is built into the classifier construction,
and can be seen as a search in the combined space of
feature subsets and hypotheses [3]. Guyon et al. [14]
proposed an SVM-based learning method, called SVM
recursive feature elimination (SVMRFE). In [15] meta-
heuristic-based methods are used within an embedded

approach for gene selection and in [16] random forests
method is used for feature selection.
Embedded methods have the advantage that they

include the interaction with the classification model,
while at the same time being far less computationally
intensive than wrapper methods.
Most of the gene selection methods remove irrelevant

genes but they do not take the redundancy into account.
Redundancy in selected genes increase computational
costs and decrease the classification accuracy. Some
methods are proposed for redundancy reduction in
selected genes. In [17,18] clustering methods are used
for determining similar genes and reducing redundancy.
In [19] a method called Markov blanket is used for
redundancy reduction. Ding and Peng [20] proposed a
method called MRMR (Minimum Redundancy Maxi-
mum Relevance) which finds a subset of genes which
has minimum redundancy and maximum relevance to
class, simultaneously.
In [21] a combination of MRMR method and

SVMRFE is used for gene selection which takes into
account the redundancy among the genes during their
selection; also [22] presents a hybrid filter-wrapper fea-
ture subset selection algorithm based on particle swarm
optimization (PSO) and MRMR.
In this paper, we propose a new framework for gene

selection which combines the Fisher filter and the
SVMRFE embedded method, with a greedy algorithm to
remove the redundant genes.
The microarray data contains valuable information but

due to the presence of the noise in the data and the low
number of samples, it mostly does not demonstrate the
actual genes functionally. This limitation of microarray
data can be compensated for, at least to some extent, by
using other source of information about genes. In this
paper Gene Ontology information is used in addition to
gene expression data to determine gene redundancy.

Methods
Feature selection using Fisher criteria
In [7], the Fisher criterion score is used for gene selec-
tion. It is a filtering method, in which genes are ranked
by the equation below:

Fisher g
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where m1(g) and m2(g) are means of gene g expression
across the cancerous and normal samples respectively
and s1(g) and s2(g) are standard deviations of gene g
across the cancerous and normal samples respectively.
The Fisher criterion score gives higher values to features
whose means differ greatly between the two classes,
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relative to their variances. Those genes with the highest
scores are considered as the most discriminatory genes.

Feature selection using SVMRFE algorithm
SVMRFE implements the strategy of backward feature
elimination. Backward feature elimination methods start
with all features and then, on each iteration, the least
important feature is identified and removed according
to a ranking criterion and the process repeats with
remaining features, until the stop criterion is satisfied.
In SVMRFE the ranking criterion is (Wi)

2, where Wi is
the corresponding weight of feature i. It iteratively trains
new SVM and eliminates the features whose corre-
sponding absolute weight is the smallest from the
dataset.
Support Vector Machine (SVM), a supervised machine

learning technique, is robust against sparse and noisy
data and has been shown to perform well in multiple
areas of biological analysis including microarray data
expression evaluation [23].
Given a training set belonging to two classes, a linear

SVM finds an optimal separating hyper plane with the
maximum margin between samples of two classes, by
solving the following optimization problem:

Min W W

subject to y W X b
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where Xi and yi are ith sample and its label.
This optimization problem can be solved by below

Lagrangian function:
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In above equation, s shows the number of training
samples and ai denotes Lagrange multipliers.
B y differentiating L with respect to W and b, the fol-

lowing equations are obtained:
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The weight vector W is a linear combination of the
training samples. Most weights ai are zero. The training

samples with non-zero weights are the support vectors
[24].
SVMRFE uses the weight vector of SVM as ranking

criteria. The pseudo code of the SVMRFE algorithm is
as follows [14]:
1. Initialize the dataset to contain all the features.
2. Train the SVM with a linear kernel function on the

dataset and get the weight vector
3. Rank the features by the values of.
4. Remove the feature with the smallest value.
5. If more than one feature remains, return to step 2.
Finally the subset of genes which has achieved the

highest accuracy of classification is selected as disease’s
marker genes [14].
It should be mentioned that although in SVMRFE, one

gene is removed in each step, the interaction between
genes is considered. The weak point of this method is
its large amount of computation. To speed up the algo-
rithm, more than one gene can be removed in each step
[25].

Gene Ontology
The Gene Ontology (GO) project is a collaborative
effort to address the need for consistent descriptions of
gene products in different databases. GO provides a
structured controlled vocabulary of gene and protein
biological roles, which can be applied to different spe-
cies. It comprises three hierarchies that define functional
attributes of gene products: Molecular Function (MF),
Biological Process (BP), and Cellular Component (CC)
[26]. The Gene Ontology information can be obtained
from [27].

Semantic similarity measure
Semantic similarity measures can be used to calculate
the similarity of two concepts organized in ontology.
The semantic similarity of two concepts is calculated
based on their information content (IC). The informa-
tion content of a concept is inversely proportional to its
frequency in a corpus. The frequency of a concept c ,
Freq (c), can be defined as the number of times that c
and all its descendants occur [28]. An estimate for the
likelihood of observing an instance of a concept c is:

Prob c
Freq c

max Freq
( )

( )=
 

(6)

where maxFreq is the maximum frequency of all
concepts.
The information content of a concept c is defined

as (7):

IC log Prob c= − ( ( )) (7)
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Semantic similarity measures assume that the similar-
ity between two concepts is related to the extent to
which they share information. Given two concepts c1
and c2, their shared information, Share (c1, c2), can be
defined as the information content of their most infor-
mative common ancestor (CommonAnc(c1,c2)) [28]:

Share c c

max IC a a CommonAnc c c

( , )

{ ( ) | ( , )}
1 2

1 2

=
∈

(8)

The most common semantic similarity measures are
Resnik [29],Lin [30] and Jiang [31].

Results and Discussion
Proposed method
As mentioned previously, filtering methods are amongst
the most common methods for gene selection. These
methods have low computational complexity and so can
be used easily in large, high dimensional datasets such
as microarrays; but these methods evaluate the discrimi-
native power of each gene separately and the interaction
of genes are ignored. Also these methods do not take
into account the correlation among genes and so the
selected gene set may have redundancy. SVMRFE is one
of the most successful gene selection methods because
it considers the interaction of genes and it can remove
irrelevant feature using its ranking criterion. However it
is not able to remove redundant features because if one
of the features has a large weight, the redundant feature
will also get a large weight, but according to recursive
feature elimination algorithm, only the features with
small weight are removed; therefore the final gene set
may have redundancy [32,33].
In this paper we have proposed a combined approach

which utilizes the advantages of the filter and embedded
methods and which incorporates a method for reducing
redundancy in the selected genes. The stages of pro-
posed method are:

1. Ranking genes using the Fisher criterion;
2. Redundancy reduction by considering expression
and semantic similarity;
3. Selection of final gene set using SVMRFE method.

Redundancy reduction by considering expression and
semantic similarity
Redundant genes increase the computational time and
decrease the accuracy; so in the proposed method, after
filtering genes using the Fisher criterion and before
applying the SVMRFE method, we reduce redundancy
by considering the similarity of the genes. When there
are sufficient samples, similar genes can be determined
based on Pearson correlation coefficient which considers

the linear correlation and is computed based on gene
expression levels. Due to the low number of samples in
microarray experiments, computing the similarity of two
genes based only on their expression value cannot be
very accurate. On the other hand, the similarity of genes
can be determined from information about their invol-
vement in biological processes and functions. There is
some such information available in the Gene Ontology
(GO) but it is incomplete, e.g., information for some
genes is missing from GO. Therefore GO alone cannot
be used to determine the similarity of genes.
In the proposed approach, gene expression values and

information from GO are combined to determine the
similarity of genes. The similarity measure used is the
average of the expression similarity and the semantic
similarity:

S g g

S g g S g g
i j
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=

+
2
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where Ssem (gi, gj) and Sexp (gi, gj) are the semantic
similarity and the expression similarity of gi and gj,
respectively. The expression similarity of two genes is
computed based on the Pearson correlation coefficient:

S g g

g g g g
k

d

g g g g

exp i j

ik i jk j

ik i jk j

( , )

( ).( )

( ) . ( )

=

− −
=
∑

− −
1

2 2

(10)

where gi is the average value of gene gi expressions

and gik is the value of kth sample in gene gi.
The semantic similarity of two genes is computed

based on Lin’s similarity criteria [30], which is defined
as below:

Sim
Share c c

IC c IC cLin =
+

2 1 2

1 2

* ( , )
( ) ( )

(11)

In the proposed method, a greedy approach has been
used in the second stage, to reduce redundancy by
removing similar genes, which utilizes (9) as similarity
measure.
The greedy algorithm takes as input, from first stage, a

list of 500 genes sorted in ascending order of discrimi-
native power. By selecting the first gene of this list, we
can ignore other similar genes, because they have less
discriminatory power. Genes whose similarity measure
to the first gene exceeds a threshold are removed from
the list. Next the second gene in the list is selected and
again similar genes to it are deleted from the list. This
process will be repeated to the end of the list. The
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remaining genes in this stage are those that have good
discriminatory power and their pairwise similarities are
below a determined threshold. The greedy approach’s
pseudo code is shown below:
Inputs:
List of ranked genes: L = [g1,g2, ..., gk]
Threshold: ts
Similarity matrix: S
Initialize:
RL = []
i = 1
Repeat until L = []
% Select the top ranked genes from L
% and add it to RL
RL = [RL, L(i)]
g = L(i)
% eliminate the ith feature from L
L(:,i) = []
For j = (i+1):length(L)
If s(g,L(j))≥ ts
L(:,j) = []
End

i = i+1
outputs: Reduced list of genes: RL
The threshold is a number between 0 and 1. The smaller

the threshold, the more genes will be removed but this can
lead to losing some informative genes. On the other hand,
when threshold is close to 1, few genes are removed which
can lead to some redundant genes remaining. To deter-
mine an appropriate threshold we varied the threshold
value between 0.1 and 0.95 at intervals of 0.05. The best
threshold value is the one which leads to highest accuracy
on average. Applying this empirical approach to the data-
sets, resulted in the threshold being set to 0.8.

Datasets
In order to evaluate the proposed gene selection
method, following datasets are analyzed.

Colon cancer dataset
In this dataset, expression levels of 40 tumor and 22 nor-
mal colon tissues for 6,500 human genes are measured
using the Affymetrix technology. A selection of 2,000
genes with highest minimal intensity across the samples
has been made in [34]. The dataset we have used is avail-
able at [35]. The data is preprocessed by carrying out a
base 10 logarithmic transformation and standardizing
each sample to zero mean and unit variance.

DLBCL dataset
Diffuse Large B-Cell Lymphoma (DLBCL) is the most
common subtype of non-Hodgkin’s lymphoma. Alizadeh
et.al have shown that there is diversity in gene

expression among the tumors of DLBCL patients,
reflecting differentiation state of the tumor [36]. The
dataset we have used in this paper is available at [37].
This dataset consists of 40 samples that have informa-
tion about overall survival, and each sample has expres-
sion profile of 4026 genes. By setting threshold value of
overall survival at 4 years, data of prognosis can be cate-
gorized into two groups. 19 samples were alive after 4
years and 21 of them lived shorter.
The ratio values in the dataset were log -transformed so

there is no need to carry out logarithmic transformation,
but this dataset has missing value. We have imputed the
missing values by FCM-GO-impute method [38]; also all
the sample vectors in the dataset are normalized in order
to have the zero mean and standard deviation of one.

Prostate dataset
The prostate dataset was first published in [39]. This
dataset was created using Affymetrix platform and pro-
vides the expression levels of 12,600 genes for 50 nor-
mal tissues and 52 prostate cancer tissues. The dataset
is available at [40]. The original dataset is normalized so
that each sample vector has 0 for mean and 1 for stan-
dard deviation.

Experimental results
After preprocessing of data, we applied the proposed
method on 3 public datasets to identify the most discri-
minatory genes; also we compared the proposed method
with some other common methods. In order to be able
to compare the results, in all gene selection methods,
support vector machines with linear kernel function is
used for classification step.
The performance of different methods is measured in

terms of accuracy, sensitivity and specificity of classifier.
Accuracy is the fraction of correctly classified samples
over all samples.

Accuracy
TN TP

TN FN FP TP
= +

+ + +
(12)

where TP, TN, FP, and FN, stand for the number of
true positive, true negative, false positive and false nega-
tive samples. A true positive (TP) is a positive sample
which is predicted correctly as positive. A true negative
(TN) is a negative sample which is predicted correctly as
negative. A false positive (FP) occurs when the outcome
is incorrectly predicted as positive when it is actually
negative. A false negative (FN) occurs when the out-
come is incorrectly predicted as negative when it is
actually positive.
Sensitivity is the fraction of the real positives that are

correctly predicted as positives and specificity is the
fraction of the real negatives that are correctly predicted
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as negatives. Sensitivity and specificity describe how well
the classifier discriminates between case with positive
and with negative class.

Sensitivity
TP

TP FN
=

+
(13)

Specificity
TN

TN FP
=

+
(14)

Due to the limited number of samples, performance is
evaluated using 10 fold cross-validation. The data is ran-
domly divided into 10 non-overlapping partitions of
approximately equal size. Each one is used in turn for
testing while the remainder is used for training, i.e., 9/
10 of data is used for training and 1/10 for testing. This
is repeated 10 times. The overall error rate is the aver-
age of error rates on each partition.
In some papers, such as [14,18], the feature selection

process is applied to the entire set of data and cross-
validation is only applied on the classifier construction
process, not taking into account feature selection. This
approach is referred to as internal cross-validation.
Using cross-validation in this manner leads to selection
bias, as the feature selection would not be based on the
particular training set for each cross validation (CV)
run. Hence, overly optimistic error rates would be
obtained. To prevent this selection bias from occurring,
an external cross-validation process should be imple-
mented following the feature selection at each CV stage,
that is, the feature selection is performed based only on
those samples set aside as training samples at each stage
of the CV process, external to the test samples at each
stage [41].

Statistical analysis
In continue the result of applying the proposed method
is presented and it is compared by some other conven-
tional methods based on accuracy, sensitivity and speci-
ficity of the classifier which is built on selected genes.
Table 1, Table 2 and Table 3 show the average accuracy,
average sensitivity and average specificity of different
methods respectively. In each of these tables the number
of selected genes in each method is shown as well.
As Table 1 shows, the classifier performance is

improved when a gene selection method is applied
before classification, with the exception of the Fisher
method which uses the Fisher ranking to select the
informative genes. As Table 2 and Table 3 show, the
sensitivity and specificity of the classifier is reduced
when the Fisher method is used in the gene selection
step, as compared with case where we have not used
gene selection method before classification. Table 4

shows the number of selected genes in different
methods.
Comparing the results of Fisher-R (using the Fisher

criteria and the redundancy reduction greedy approach
for gene selection) and SVMRFE-R (using the SVMRFE
algorithm and the redundancy reduction greedy
approach for gene selection) with Fisher and SVMRFE
respectively, demonstrates that reducing the redundancy
of selected genes, leads to a better performance. Com-
paring Fisher-RG (using the Fisher criteria and the
redundancy reduction greedy approach with GO infor-
mation) and SVMRFE-RG (using the SVMRFE algo-
rithm and the redundancy reduction greedy approach
with GO information for gene selection) with Fisher-R
and SVMRFE-R, shows that using GO information in
addition to the gene expression data, can have a positive
effect. Our proposed method (Fisher-RG-SVMRFE) has
a better performance than any of the other methods, in
terms of accuracy, sensitivity and specificity.
Table 5 lists the published results on the colon cancer

dataset. Comparing the results of our proposed framework

Table 1 Comparison of different gene selection methods
based on accuracy

Methods

dataset M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Colon 86.1 86.8 89.9 91.6 89.7 91.8 93.3 91.2 93.2 94.7

DLBCL 89.2 89.6 91.9 93.7 92.5 94.4 95.8 93.6 95.4 96.8

Prostate 80.7 91.1 92.8 93.1 92.2 93.8 94.2 93.8 95.1 95.9

M1 = No-sel: classification without gene selection.

M2 = Fisher: classification after using Fisher criteria for gene selection.

M3 = Fisher-R: classification after using Fisher criteria and redundancy
reduction greedy approach for gene selection.

M4 = Fisher-RG: classification after using Fisher criteria and redundancy
reduction greedy approach considering Gene Ontology information for gene
selection.

M5 = SVMRFE: classification after using SVMRFE algorithm.

M6 = SVMRFE-R: classification after using SVMRFE algorithm and redundancy
reduction greedy approach for gene selection.

M7 = SVMRFE-RG: classification after using SVMRFE algorithm and
redundancy reduction greedy approach considering Gene Ontology
information for gene selection.

M8 = Fisher-SVMRFE: classification after using combination of Fisher criteria
and SVMRFE algorithm for gene selection.

M9 = Fisher-R-SVMRFE: classification after using proposed framework
without considering Gene Ontology for gene selection.

M10 = Fisher-RG-SVMRFE: classification after using proposed framework for
gene selection.

Table 2 Comparison of different gene selection methods
based on sensitivity

Methods

dataset M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Colon 82.1 81.9 84.9 86.6 84.5 86.8 88.4 86.4 88.5 90.1

DLBCL 85.3 83.4 87.2 89.0 87.1 89.2 91.0 88.3 91.1 92.6

Prostate 82.1 83.1 88.9 89.4 88.4 91.7 92.3 90.1 92.4 93.5
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with the results presented in this table shows that the
accuracy of our method is higher than that for the other
methods, except [14]. However, it should be mentioned
that in [14], the feature selection process is applied to the
entire set of data and cross-validation is applied on the
classifier construction process. In other words, it suffers
from the selection bias problem discussed earlier. This
problem exists in [18] as well.
Table 6 shows the results of some papers which have

studied DLBCL dataset. Comparison the results of our
proposed framework with the results presented in this
table shows that the accuracy obtained from our method
is better than the results obtained in other methods,
except [42] which suffers from the selection bias
problem.

Biological analysis
In addition to the evaluation of the gene selection
method based on the classification performance, the
selected genes were analyzed from a biological view.
This revealed that there is an overlap between the gene
set selected by the proposed method and genes which
are predicted as marker gene for DLBCL or colon can-
cer in other articles. In addition, the study of the mole-
cular function of the genes selected by our method
strengthened the hypothesis that these genes are
involved in the process of cancer growth and
progression.
Table 7 lists the genes predicted by our method to be

colon cancer markers. Seven of these (highlighted with a
* in Table 7) were also reported in [43]. Six of genes in
Table 7 (NDP kinase, Complement factor D, Collagen
alpha 2 (XI), Desmin, Myosin and CD37) are recognized
as marker genes for colon cancer in [11]. These genes
are marked with + in Table 7.

With due attention to molecular function of selected
genes it seems that our proposed method has been able
to select a set of cancer-related genes. For example,
gene p58 is a natural killer cell receptor and it is
thought to play an important role in regulation of the
immune response and cell death, so the incorrect func-
tion of this gene may cause to cancer growth. The pro-
tein encoded by CD44 is a cell-surface glycoprotein
involved in cell-cell interactions, cell adhesion and
migration and its role in tumour metastasis is proved.
GCAP-II is a key component of several intracellular sig-
nal transduction pathways and it can have affective role
in cancer growth too [27].
Table 8 presents the list of genes which are selected

by our proposed method as DLBCL markers. Among
these genes, 6 are overlapped by selected genes in [44]
(these genes are marked with * in Table 8); also E2F-3
and JNK3 are reported in [45] as DLBCL markers (these
genes are marked with + in Table 8). E2F-3 is a tran-
scription factor and its role in cancer growth is reported
in papers [45].
Considering molecular function of erk3, JNK3 and

Receptor protein-tyrosine, strengthen the hypothesis that
they can be cancer-related genes because Kinase family
genes are the main components of signal transduction
system and variation in their expressions may cause can-
cer growth.

Conclusions
One of the most important applications of microarrays
is the identification of disease causing genes. The selec-
tion of these genes is accomplished by analysis of gene
expression data in different samples. However the appli-
cation of microarrays for this purpose is limited by the
fact that gene expression data may be incorrect or
unknown.
In addition, because of the limited number of samples,

gene expression datasets do not represent the real distri-
bution of data. Therefore, to reduce these problems, in
this paper, gene expression data is supplemented with a

Table 3 Comparison of different gene selection methods
based on specificity

Methods

dataset M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Colon 80.2 78.9 81.8 83.6 81.6 83.7 85.3 83.4 85.4 87.0

DLBCL 83.4 82.8 85.7 88.7 85.5 87.9 90.7 87.3 89.4 91.5

Prostate 81.8 82.9 88.8 89.1 88.6 92.3 93.1 89.9 93.2 94.1

Table 4 Number of selected genes in different gene
selection methods

Methods

dataset M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Colon 2000 67 27 23 27 25 23 26 15 12

DLBCL 4026 56 29 28 36 25 23 27 18 15

Prostate 12600 102 32 28 82 31 27 56 21 14

Table 5 The reported results for colon cancer dataset in
some papers

Ref [14] [18] [11] [46] [20] [23] [43]

Accuracy 98.0 91.9 93.0 92.0 93.6 90.3 88.8

Number of selected genes 4 3 15 - 10 - 10

Table 6 The reported results for DLBCL cancer dataset in
some papers

Ref [10] [42] [45] [44]

Accuracy 93.8 99.0 95.0 93.0

Number of selected genes 10 7 5 14
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reliable source of information on genes, namely the
Gene Ontology (GO).
The proposed approach has three stages:
1. Ranking the genes using the Fisher criterion.
2. A greedy redundancy reduction that utilizes infor-

mation from GO, in addition to gene expression levels.
3. Selection of final set of predicted disease marker

genes based on the SVMRFE algorithm.
We have utilized the advantages of both filtering

methods and embedded methods. In stage 1, a signifi-
cant number of irrelevant genes are removed using the
high-speed Fisher filtering method. Since filtering meth-
ods do not take into account the correlation amongst
genes, the remaining genes will still have a large amount
of redundancy. In order to reduce this redundancy, a
greedy approach has been proposed for removing simi-
lar genes. This approach calculates the similarity

between genes using both information from GO and
gene expression data. Finally genes that remain after
this stage are processed more accurately by the
SVMRFE method to derive the disease marker genes.
The results of applying the proposed method on the

colon, DLBCL and prostate cancer datasets showed that
this method can improve classification performance.
In addition to classification performance, the final gene

set has been evaluated from a biological view. This has
strengthened the hypothesis that the selected genes may
have a significant role in cancer. The final approval of
these genes as cancer factors will require more biological
and laboratory investigations. The predictions made in
this study can serve as a list of candidates for subsequent
wet-lab verification and might help in the search for a
cure for colon, DLBCL or prostate cancer. It should be
mentioned that the final approval of these genes as can-
cer factors, require more biological and laboratory inves-
tigations and selected genes, can only provide genetic
researchers some clues for more research.
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