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Abstract.  We report, for the first time, exact analytical boundary solitons of a general-
ized cubic-quintic Non-Linear Helmholtz (NLH) equation.  These solutions have a 
linked-plateau topology that is distinct from conventional dark soliton solutions; their 
amplitude and intensity distributions are spatially delocalized and connect regions of fi-
nite and zero wave-field disturbances (suggesting also the classification as “edge soli-
tons”).  Extensive numerical simulations compare the stability properties of recently-
reported Helmholtz bright solitons, for this type of polynomial non-linearity, to those of 
the new boundary solitons.  The latter are found to possess a remarkable stability char-
acteristic, exhibiting robustness against perturbations that would otherwise lead to the 
destabilizing of their bright-soliton counterparts. 
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1. Introduction 
Solitons are ubiquitous entities in nature.  Whenever linear effects (such as dispersion, diffraction or 
diffusion) are balanced exactly by non-linearity (self-phase modulation, self-focusing or reaction-
kinetic properties, respectively), robust self-trapped structures – solitons – can emerge as dominant 
modes of the system dynamics.  These localized self-stabilizing non-linear waves arise widely in nature 
since quite different physical systems are governed by a relatively small set of universal equations, at 
least to first approximation.  Solitons are often sech (“bell”)- or tanh (“S”)-shaped structures.  The latter 
class are sometimes referred to as kink solitons, and they generally possess topologically non-trivial 
phase distributions. 

Phase-topological kink solitons appear in a range of physically diverse systems, and play the role of 
“fronts” and “domain walls”.  In classical mechanics, for example, they describe collective long-wave 
excitations on a line of weakly-coupled pendula.  In condensed matter, kink solitons arise in simple 
models of one-dimensional lattice-dynamics when studying the motion of dislocations and domain 
walls in ferromagnetic crystals, and they also play a key role in the phenomenological understanding of 
phase transitions.  In chemical kinetics, kink solitons appear as solutions to reaction-diffusion equa-
tions.  They also occur in hydrodynamics, plasma physics, quantum field theory and cosmology.  Com-
prehensive reviews of these systems can be found in Refs. [1-4]. 

Our principle concern in this paper is with spatial soliton beams found in non-linear optics [5,6].  
These types of soliton can arise when the tendency of a collimated light beam to diffract is opposed by 
the non-linear properties of the optical medium.  When these two effects (diffractive broadening, and 
narrowing due to self-focusing) become comparable, then a stationary beam can exist whose transverse 
intensity distribution is invariant along the propagation direction.  Spatial solitons are of theoretical in-
terest as particular solutions to generic non-linear evolution equations, but they are also the subject of 
considerable experimental investigation.  The robustness of these spatial beams against perturbations 
suggests their use as elementary units in future photonic systems, where they could play a central role in 
applications such as all-optical switching, beam steering, optical interconnects and image/information 
processing. 
 
2. Paraxial versus non-paraxial solitons  
In non-linear optics, one is often interested in planar waveguide geometry, where there is a reference 
longitudinal (z) and a single effective transverse (x) dimension.  A simple model of beam propagation is 
provided by the universal Non-Linear Schrödinger (NLS) equation, which allows for the paraxial evolu-
tion of one-dimensional (transverse) diffraction and a Kerr non-linearity (where the refractive index 
varies linearly with the local beam intensity).  The NLS equation is exactly integrable and its bright [7] 
and dark [8] soliton solutions are well known.  The latter are tanh-type kink structures that possess non-
trivial phase topology.  Other, more general, NLS-type models have also been studied.  These tend to 
account for more involved material properties, and allow for broader classes of refractive index de-
pendencies while retaining the possibility of exact analytical soliton solutions.  The most familiar gen-
eralizations are classic cubic-quintic [9-13] and the power-law [14,15] models.  More complicated re-
fractive-index distributions involve polynomial- [16-18] and saturable-type [19,20] non-linearities.  

NLS-type equations provide an adequate description if the optical beams are: (i) much broader than 
their carrier wavelength, (ii) of sufficiently low intensity, and (iii) propagating along (or at near-
negligible angles with respect to) the reference axis.  These criteria define the paraxial approximation.  
If all three conditions are not satisfied simultaneously, the beam is referred to as “non-paraxial”.  Non-
paraxial beams have received much attention in the literature over the last three decades.  Since the 
seminal work of Lax et al [21], a large body of research has considered contexts involving ultra-narrow 
beams, where condition (i) no longer holds [22-26].  As a consequence, the terms ‘narrow beam’ and 
‘non-paraxial beam’ have, to a large extent, become interchangeable.  However, this oversimplified in-
terpretation omits the possibility of other distinct physical regimes of non-paraxiality, such as the 
propagation and multiplexing of broad beams at arbitrary angles with respect to the reference direction.  
This angular context, in which only condition (iii) is relaxed, defines Helmholtz non-paraxiality [27]. 

In other works, we demonstrated that oblique (off-axis) soliton evolution [27,28] and soliton-soliton 
interactions [29] can be described by Non-Linear Helmholtz (NLH) equations.  Since beams are always 
assumed to be broad, narrow-beam corrections [21-26] to the governing equation are not necessary.  In 
NLH descriptions, the electric field may be regarded as effectively scalar (with a single transverse com-
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ponent orientated in the plane of the waveguide), and the refractive-index distributions may also be 
treated within the scalar approximation [23].  Models based upon the NLH formalism omit the slowly-
varying envelope (SVEA) approximation, and thus respect the rotational symmetry inherent to uniform 
media (x and z appear symmetrically in the governing equation).  Diffraction is therefore allowed in 
both spatial dimensions.  x–z equivalence also permits travelling- and standing-wave solutions, and al-
lows description of beams that propagate and interact at any angle relative to the reference direction. 

Exact analytical Helmholtz soliton solutions are known for focusing [27] and defocusing [30] Kerr 
media, and also for power-law [31] media.  Vector generalizations of the Kerr solitons have also re-
cently been derived [32].  A wide variety of exact analytical Helmholtz soliton solutions are now 
known for a wide variety of polynomial-type and saturable non-linearities [33].  These new non-
paraxial families include hyperbolic (exponential) and algebraic solutions.  Rigorous numerical simula-
tions have verified that Helmholtz solitons are generally stable robust attractors [29-35]. 

In this paper, we derive a new family of spatially-extended solitons for a polynomial-type NLH 
equation.  These new “boundary solitons” (or “edge solitons”) possess a double-plateau structure in 
their amplitude, as opposed to their phase.  This gives them a rare characteristic amongst non-linear 
optical waves since their intensity distributions share this delocalized feature.  Linear stability analysis 
is considered for non-linear plane wave,s while full numerical simulations reveals remarkable stability 
characteristics for boundary solitons that could not have been predicted a priori.  This enhanced stability 
may allow such non-linear waves to be exploited in future optical device applications. 
 
3. Helmholtz bright and boundary solitons 
 
3.1. Model equation 
We consider a continuous-wave transverse-electric (TE) scalar field ( ), ,E x z t�  with angular frequency 
ω , 

( ) ( ) ( ) ( ) (*, , , exp , exp )E x z t E x z i t E x z i tω ω= − +� +

)

,      (1) 
 
that is assumed to be polarized in the ( ,x z  plane of the waveguide.  Since the complex spatial enve-
lopes are assumed to vary on a scale much larger than the optical wavelength (as they must be for the 
scalar approximation to hold), the envelope ( ),E x z  is governed by an NLH equation, 

 

( ) ( ) ( )
2 2 2

22
2 2 2,E x z n E E x z

z x c
ω ∂ ∂

+ +  ∂ ∂ 
, 0= .      (2) 

 
We consider a generalized polynomial-type scalar refractive-index distribution n n , where  

is the linear index at frequency 
0 NLn= + 0n

ω , 2
2NLn n E n Eσ σ

σ σ= − , nσ  and n2σ  are (positive) non-linear co-
efficients, and the exponent 0σ > .  This model can describe weak saturation effects in some planar 
waveguides [16,17].  For 0n E nσ �σ  and 2

2 nσ
σ � 0n E  one finds that, to a good approximation, 

2
0 2n n E σ

σσ+ −�  and thus equation (2) becomes 2 2
0 02 2n n n n E σ

 

( ) ( ) ( )
2 2 2

22
0 0 0 22 2 2, 2 2 ,E x z n n n E n n E E x z

z x c
σ σ

σ σ
ω ∂ ∂

+ + + −  ∂ ∂ 
0= .   (3) 

 
With an appropriate rescaling, equation (3) may be expressed in the normalized form 
 

2 2
2

2 2
1i 0
2

u u u u u u uσ σκ α γ
ζζ ξ

∂ ∂ ∂
+ + + − =

∂∂ ∂
.                      (4) 
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Here, Dz Lζ = , 02x wξ =  and 2
0 2DL kw=  is the diffraction length of a reference (paraxial) Gaus-

sian beam of waist .  The (inverse) beam-width parameter is 0w ( ) ( )2 2 2 2
0 01 4kw w nκ λ= = 0π .  The 

wave-field u is the normalized envelope of the complex electric field, ( ) ( ) ( )0, , expE x z E u x z= ikz , 
where , 0 0k n k= 0k 2π λ=  and λ  is the optical wavelength.  By choosing a particular scaling such as 

( )10 0 DE n n L k σ
σ= , one may set 1α =  and then (0 2 )E n nσ

σ σγ = .  However, we retain maximum 
flexibility in our model by leaving the formal scaling unspecified and thereby derive exact analytical 
solutions to the most general model (4).  The paraxial model corresponding to equation (4) can be re-
covered if and only if uζζκ∂  is negligible with respect to other terms [16,17].  The single small-
parameter limit  is not, by itself, a sufficient condition for this recovery. 0→κ
 
3.2. Conservation laws 
Integrable models tend to possess a discrete infinity of conserved quantities [7,8].  In contrast, equation 
(4) is non-integrable so, at most, only a few integrals-of-motion can be defined [33].  Three such invari-
ants correspond to the energy-flow W, the momentum M and the Hamiltonian H: 
 

*
2 * u uW d u i u uξ κ

ζ ζ

+∞

−∞

  ∂ ∂
= − −  ∂ ∂   
∫  ,       (5a) 

 
* * *

*

2
i u u u u u uM d u uξ κ

ξ ξ ζ ξ ξ ζ

+∞

−∞

   ∂ ∂ ∂ ∂ ∂ ∂
= − − +     ∂ ∂ ∂ ∂ ∂ ∂    
∫





,     (5b) 

 
( )2 2 1* *

1
2

1
2 1

u uu u u uH d
σ σ

ξ κ α γ
ξ ξ ζ ζ σ σ

+ ++∞

−∞

 ∂ ∂ ∂ ∂= − − +
∂ ∂ ∂ ∂ + +  

∫ 1
 .     (5c) 

 
If an initial condition for equation (4) does not correspond to an exact solution, beam evolution typi-
cally involves the shedding of a small amount of radiation.  Such radiation modes can be regarded as a 
dissipation mechanism that permits a perturbed solitary excitation to lose energy locally while total en-
ergy is conserved globally.  That is, integrals (5) for the entire non-linear solution (which captures both 
solitary waves and radiative components) are still preserved.  A dissipative interpretation of the local-
ized system behaviour is also instructive because it allows the stability properties of various soliton 
families to be classified according to their phase-space portraits.  
 
3.3. Soliton solutions 
Since equation (4) retains the full spatially-symmetric (i.e. ‘2nd-order-in-z’) character, it supports both 
forward- and backward-propagating solutions [31,34,35].  By convention, we consider here only the 
forward solutions and note that the corresponding paraxial model [16] has no counterpart to the back-
ward solutions.  An exact analytical bright soliton for equation (4) has recently been derived [33],  

 

( )
( )

( )
1

2 2

2

1 4 2
, exp i exp i ,

2 2cosh , 1 2
u V

V

σ κ µ ση ζξ ζ ξ ζ
κ κξ ζ κ

 +     = −     Θ  + Γ +         

+ − 


 (6a) 

where 

( )
2

, ,
1 2

V

V

ξ ζξ ζ µ
κ

+
Θ =

+
     

2

2
2

2
µ ση
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  +
≡ Γ  
 

,      ( )
1

22 2

2
2

1
12

σµ γ
σσ α

−

2

   +
 −    +

Γ =
   

  .   (6b,c,d) 
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η  and  V  are amplitude and transverse velocity parameters, respectively. µ  is a free parameter deter-
mining the soliton width, and the existence of the solution is guaranteed provided 
 

( )2 1
2CR

σασµ µ
σ γ

+
< =

+
.           (6e) 

 
Here we report, for the first time, a boundary soliton solution of equation (4).  An ansatz approach was 
used to seek the on-axis solution.  Then, by exploiting the invariance relations of. (4) [34], an orthogo-
nal transformation was deployed to derive the (more general) off-axis solution,  
 

( )
( )

( )
1

2 2

2

1 4 2
, exp i

2 2exp , 1 2
u V

V

σ κ µ σ
exp i ,η ζ ζξ ζ ξ

κ κξ ζ κ±

 +     = −     ±Θ  + Γ +         

+ − 


  (7a) 

 

 ( )
2

, ,
1 2

V

V

ξ ζξ ζ µ
κ

+
Θ =

+
           

2

2
2

2
σ µη

α σ

 +
= Γ  

 
,      ( )2 1

2
.

σσαµ
σ γ

+
=

+
        (7b,c,d)     

 
The  sign sets the parity of the solution and ± 0Γ >  is a free parameter.  It is interesting to note that 
relation (6e), defining CRµ  for the bright soliton, coincides with expression (7d), which gives µ  for the 
boundary soliton.  The amplitude parameter η  assumes the same functional dependence in solutions (6) 
and (7), and these solutions also share a common formal phase factor.  The width of transition region 
between the two plateaux of a boundary soliton, which is quantified by 1 µ , decreases as the index σ  
increases.  This is expected intuitively since for a stationary (propagation invariant) solitary wave, an 
increase in the non-linearity must be accompanied by a corresponding increase in the strength of dif-
fraction (i.e. a narrowing of the boundary-soliton width).  µ  is determined uniquely by nominal mate-
rial parameters (i.e. α , γ  and σ ).  However, it should be noted that the ratio α γ , which appears in 
Eqs. (6e) and (7d), may depend on field amplitude 0E , so that the specified value of µ  for boundary 
solitons can actually be attained through variation in light intensity.  Solution (3) has a “linked-plateau” 
topology in both its amplitude and intensity distribution, but there is no intrinsic phase shift across the 
wave profile.  As such, boundary solitons play a natural role as non-linear waves that connect regions of 
finite- and zero-amplitude disturbance.  Such waves are known in other branches of physics [3].  They 
arise in universal models such as the Fisher-KPP and Burgers equations and are sometimes referred to 
as shocks, diffusive solitons or power-balanced solitary waves.  

The distinctive asymmetry of boundary solitons is manifest in the asymptotics of a solution such as 
, where u−

lim 0
V

u
ξ ζ

−
+ →−∞

→             and     
1

1lim
2V

u
σ

ξ ζ

σ α
σ γ−

+ →+∞

  +
→   +   

. 

 
These limits are reversed for the opposite-parity solution .  This amplitude topology differs 
fundamentally from that of more familiar dark solitons [8,30], where definite parity in these latter 
solutions leads to an intensity distribution that comprises a localized (symmetric) “grey dip” on a 
uniform background.  One may consider, for simplicity, on-axis beams and define an inversion 
operation of  (corresponding to reflection in the propagation axis).  Under this operation, 
bright- and black-soliton solutions behave as u  and , respectively.  On the other hand, 
inversion of boundary solitons carries solutions (7) into each other; that is .  Each of the 
above results from inversion transformation is consistent with the distinct topology of the solution 
oncerned, and each provides  

u+

ξ ξ→ −
u→ u u→−

u u u± ±→ ≠∓ ∓

c 
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Figure 1.  Angular beam broadening effect during off-axis propagation.  (a) 1σ =  and (b) 2σ =  bright 
sech-type soliton solutions (6) for 0.9 CRµ µ=  .  (c) 1σ =  and (d) 2σ =  boundary soliton solutions (7) 
with .  Solid line: 1Γ = 0θ = °  (corresponding to the paraxial solution); dashed line: 30θ = ° ; dotted 
line: 50θ = ° ; dot-dash line: 60θ = ° .  For a non-paraxial parameter 310κ −=  ( ), these propa-
gation angles correspond to transverse velocities V

4−10=κ
0=  (V 0= ), 1V 2.91≈  (V ), 40.≈ 82 26.65V ≈  

(V ) and V  (V ), respectively.  Material parameters: 84.27≈ 38≈ .73 1≈ 22.47 1α γ= = . 
 
a snap-shot of the full rotational consistencies that only arise from spatial soliton representations in a 
Helmholtz framework. It is interesting to compare the phase topologies of bright, boundary and dark 
solitons.  Phase-topological dark solitons can be expressed as ( ) ( ) ( )0, , expD i k kξ ζu uξ ζ ξ ζ ξ ζ = +  , 

where ( ,D )ξ ζ  represents the localized solitary dip that modulates a plane wave.  If the factor ( ),D ξ ζ  

is omitted, the solution ( ) ( )0, exp i k kξ ζu uξ ζ ξ ζ = +   still satisfies the governing equation; indeed, it 

is a non-linear plane-wave solution.  This kind of separation does not occur for bright and boundary 
solitons, where the phase distribution is non-topological and spatial inhomogeneity connects to a zero 
background.  

Solutions (6) and (7) describe bright and boundary solitons, respectively, whose transverse velocity 
V is related to the propagation angle ( )1tan 2 Vθ κ−=  with respect to the reference (z) axis.  When 

, the width of each solution is characterized by 0V = 0 1 µΛ = , while for a non-zero transverse veloc-

ity, one has that ( )1 22
01 2 Vκ+ ΛΛ = .  An observer in the ( ),x z  frame therefore ‘sees’ the width of the 

obliquely-evolving beam, through a geometrical projection [34], as increased by a factor of 

( )1 22 secVκ+ =1 2 θ  relative to its on-axis value (see figure 1).  The Helmholtz correction term 22 Vκ  

is determined solely by the propagation angle θ , and may be of arbitrary order.  For example, one can 
have an off-axis regime where , even though (22 V Oκ � )1 ( )1Oκ �  is satisfied since the Helmholtz 
beam is broad. 

Thus, when the only source of non-paraxiality is due to oblique propagation, narrow-beam models 
derived from single-parameter (i.e. -based) order-of-magnitude considerations of Maxwell’s equa-
tions [23-26] are inappropriate.  To emphasize the physical context of this, consider a broad optical 
beam propagating in a uniform medium.  One has freedom to choose the orientation of the coordinate 

κ
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frame since there is no ‘preferred’ direction.  One may align the reference (z) axis along the propagation 
direction of the beam, or define a coordinate system where there is a finite angle between the beam’s 
propagation direction and the z axis.  When narrow-beam corrections are redundant in the first frame 
(because the beam is broad), they are also redundant in the second frame.  These two representations 
are, after all, of the same beam.  On the other hand, when the beam propagation angle becomes arbitrar-
ily close to  then the Helmholtz correction term 90° 22 Vκ  becomes arbitrarily large (by trigonometric 
identity).  Accurate descriptions of off-axis evolution [27,28,30-35] and oblique interactions [29] need, 
instead, to respect x–z symmetry.  

)2 →

( )

0

i
2

Vξ ζ ξ− +

( )ξ ζ ξ− +

0ζζκ ∂ →u

0=

( , ;uξ ξ ζ Ω

One can recover the bright and boundary solitons of the corresponding paraxial model [16] from the 
(forward) Helmholtz solutions (6) and (7) by enforcing the simultaneous limits  (broad beams), 0κ →

( 2 2κ µ σ  (moderate intensities) and  (axial, or near-axial, propagation).  We find that 

bright soliton (6) becomes 

2Vκ →0

( )

1
2

2
2, exp i

cosh
u V

V

ση µ ζ
µ ξ ζ σ

    
−      +  + Γ        

� ,        (8) 

 
while boundary soliton (7) reduces to 

( )

1
2

2
2

i, exp i
2exp

u
V

ση µ ζ
µ ξ ζ σ±

    
−   ± +  + Γ 

      
� .                   (9) V V

 
It is this triple limit that defines paraxial solitons and these conditions are captured by the single state-
ment .  We stress that the paraxial solutions (8) and (9) cannot be obtained simply by set-

ting  in the corresponding Helmholtz solutions.  For solution (9), the particular case of 0κ = 2σ = , 
 and V  (on-axis propagation) was reported many years ago by Gagnon for a cubic-quintic 

NLS-type equation [36].  The existence of such boundary-soliton solution families could have been in-
ferred from noting the mathematical similarities between the (dispersive) cubic-quintic NLS model and 
the pinned front-bearing (diffusive) Fisher-KPP equation.  Although Gagnon’s paraxial boundary soli-
ton appears to have received little subsequent attention in the literature, its fascinating delocalized char-
acter has motivated our Helmholtz generalization. 

1Γ =

 
4. Stability criteria for bright and dark solitons  
For NLS-type equations with generalized non-linearities [16], insight into the potential instability of a 
localized bright solution can sometimes be gained through examination of the well-known Vakhitov-
Kolokolov integral criterion [37].  The absence of unstable eigenmodes with real instability growth rate, 
for a solution ( ) ( ), ; exp iu u ξ ζ ζ= Ω Ω  that is constrained by vanishing asymptotics (i.e. 0u →  and 

 as 0uξ∂ → ξ → ±∞ ), is indicated by 
 

( ) 0
dP

d
Ω

>
Ω

,       where        ( ) ) 2P d
+∞

−∞

Ω ≡ ∫ .               (10a,b) 

 
Here,  is the beam power and Ω  is the longitudinal wavenumber.  Criterion (10) turns out to be a 
solvability condition for a linearized eigenvalue problem [18,38] and is usually valid for examining sta-
bility against sufficiently small perturbations.  Enns et al. [39] showed that (10) does not guarantee the 
stability of bright solitons against arbitrarily-large perturbations, and that numerical analysis is essential 
to address the issues of about ‘robust’ soliton stability.   

( )P Ω

A linear-stability criterion for dark-type solitons in NLS-type systems has been established in a 
mathematically rigorous manner only recently (see Ref. [6] and references therein).  This framework is 
based on a renormalized field momentum and is valid for solutions with dark soliton-type non-
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vanishing asymptotics, where as ξ → ±∞ , .u cons→ t  and 0uξ∂ → .  The continuous infinity of de-
grees of freedom associated with the plane-wave background are subtracted in a self-consistent way, so 
that dark solitons can be stable if 
 

( )0

0
0RdM V

dV
> ,       where       ( )

2*
* 0

0 21
2R

ui u uM V d u u
u

ξ
ξ ξ

+∞

−∞

  ∂ ∂ ≡ −  ∂ ∂  
∫ −


           (11a,b) 

 
is the renormalized momentum and V  is the intrinsic velocity. 0

Boundary solitons (7) and (9) possess asymptotics that correspond to neither bright- nor dark-
soliton excitations.  Firstly, the integral in Eq. (10b) is formally infinite for solution (9).  We note, in 
passing, that the integrals in conservation laws (5) are also divergent for the Helmholtz boundary soli-
ton (7).  Secondly, the renormalization procedure for dark solitons is not appropriate because there is no 
infinitely-extended plane-wave background field.  Since neither integral criterion quoted above can be 
applied, the stability of boundary solitons in non-linear optics appears to have remained an unanswered 
question. 
 
5. Stability of Helmholtz solitons 
In this Section, the stability of the boundary- and bright-soliton solutions of equation (4) is examined 
through numerical perturbative techniques.  Consideration of linear stability analysis of plane-wave 
backgrounds is presented in the Appendix. 

We have examined the stability of a range of Helmholtz solitons under perturbations to their angu-
lar spectrum using well-tested numerical methods [29-31,33,34].  In the course of these stability analy-
ses, there have arisen four broad classes of behaviour in the parameters (amplitude, width and area = 
amplitude × width) of the reshaping beam: (i) monotonically-decreasing oscillations that eventually 
vanish to leave a stationary state, (ii) rapid emergence of a stationary state with no accompanying oscil-
latory features, (iii) sustained self-oscillations that survive in the long-term evolution, or (iv) diffractive 
spreading toward a zero-amplitude state.  Kerr bright beams [21] exhibit behaviour (i), while dark 
beams [22] evolve as described in (ii).  We have classified these solitons as weakly- and strongly-
attracting fixed-points of the system, respectively, due to their distinct rates of convergence toward sta-
tionary states.  Perturbed power-law soliton beams tend to display the oscillatory behaviour described in 
(iii).  We have classified these solution families as stable limit cycles, and have attributed the oscillatory 
characteristic to the excitation of an internal mode [31].  Bright solitons of a polynomial-type non-
linearity have been found to display the characteristics described as (i), (iii) and (iv), depending upon 
system parameters [33]. 
 
5.1. Bright solitons 
We first examine the stability of bright solution (6) under angular perturbations.  Since Helmholtz non-
paraxiality requires ( )1Oκ �  and ( ) ( )2 22 Oκ µ σ � 1 , the transverse phase gradient of solution (6) is 

well approximated by 
 

( )2 2

2 2

1 4 2 sin
21 2 1 2

VS V
V V

κ µ σ θ
κκ κ

+
= =

+ +
� .           (12) 

 
An initial condition for equation (4) is then chosen to be the exact paraxial solution (8), 
 

( ) ( ) ( )
1

0,0 exp
cosh

u i
ση Sξ ξ

µξ
 

=  + Γ  
− .            (13) 
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By applying a rotational transformation [34] to (13) and examining the beam in the θ  direction, it can 
be seen that the initial condition may be regarded, in this new coordinate system, as an on-axis soliton 

whose width has been decreased by the Helmholtz factor ( )1 22sec 1 Vθ κ= + 2 , where 

( ) 1 22
0 01 2V S Sκ

−
= − .  We present results for the non-linearity powers 1σ =  (quadratic-cubic non-

linearity), 2 (cubic-quintic non-linearity), 3 and 4, where the input beams are launched at the non-
paraxial angles 15θ = ° , 3  and .  For 0° 45° 310κ −=  ( 410κ −= ), these angles correspond to 0 5.79S ≈  
( ),  ( S ) and 0 18.30S ≈ 0 11.S ≈ 18 0 35.36≈ 0 15.81S ≈  ( S0 50.0= ) respectively.  The curves shown in 
figures 2 and 3 are universal in the sense that they hold for any combination of  and V  so long as the 
product 

κ
2 1

2 tanVκ = 2θ  is preserved.  The scalings of equation (4) are such that as  becomes smaller 

(i.e. the beam becomes broader), the length-scale of the reshaping oscillations increases in the 

κ

( ),x z  
frame since 2z kζ κ= .  Without loss of generality, the material parameters are set to 1α γ= = + ; these 
coefficients can be eliminated through a rescaling of equation (4), and one thus expects the same quali-
tative behaviour to arise for arbitrary choices of α  and γ .  This has been confirmed by direct simula-
tion. 

We begin by considering initial condition (13) with 0.9 CRµ µ= .  Figure 2(a) shows that when 
1σ =

2

, sustained self-oscillations survive in the long-term evolution of the beam parameters.  The oscil-
lation are contained within an envelope that varies quasi-periodically in the propagation direction.  For 
σ =  and 3σ =  [figures 2(b) and 2(c), respectively], the parameters undergo monotonically-
decreasing oscillations that vanish as ζ →∞ .  This behaviour is reminiscent of Kerr bright solitons 
[34].  For 4σ = , weak and moderate perturbations have been found to give rise to monotonically-
deceasing oscillations.  However, for strongly perturbed beams, self-focusing cannot balance diffractive 
spreading and the initially localized state diffracts and disappears as ζ →∞  [dot-dash curve in figure 
2(d)].  This type of conditional stability has been discovered for some power-law [31] and algebraic 
[33] solitons.  Extensive numerical simulations have revealed that the global characteristic (i.e. sus-
tained/decaying oscillations or diffractive spreading) of any reshaping beam appears to be independent 
of µ . 

 
Figure 2.  Evolution of the peak amplitude mu  for initial condition (13) with 0.9 CRµ µ=  for (a) 

1σ = , (b) 2σ = , (c) 3σ = , and (d) 4σ = .  Solid line: 15θ = ° ; dashed line: 30θ = ° ; dot-dash line: 
45θ = ° . 
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5.2. Boundary solitons 
We now choose an initial condition for equation (4) in the form of an exact paraxial boundary soliton 
(9), 

( ) ( ) (
1

0,0 exp
exp 1

u i
ση )Sξ ξ

µξ−
 

= − − +  
,                    (14) 

 
Figure 3 demonstrates that the width of the boundary soliton undergoes monotonically-decaying oscilla-
tions, tending toward an asymptotic linked-plateau intensity distribution that is stationary as ζ →∞ .  
For the cubic-quintic non-linearity ( 2σ = ), the asymptotic width is given precisely by 

( )1 21 2~ 1 2 Vµ κ−
∞Λ + .  For other values of σ , we find that the boundary width that emerges is 

slightly less than that predicted. 
Numerical simulations have revealed three intriguing aspects of boundary-soliton stability.  Firstly, 

despite its asymmetric delocalized structure, perturbed boundary-soliton initial conditions evolve to-
ward their stationary states in a manner reminiscent of exponentially-localized Kerr solitons [34].  We 
suspect that this may be related to their phase distributions being non-topological.  Secondly, in all our 
simulations, a stationary boundary soliton was found to emerge from the initial condition.  Thirdly, this 
stationary state is reached much sooner for boundary solitons than for localized sech-type solitons (one 
can compare the longitudinal length scales in figures 2 and 3).  These surprising results show that the 
new delocalized solutions (9) are generally more robust than their localized (2) counterparts.  In particu-
lar, we have uncovered no evidence of the conditional stability found for 4σ =  bright solitons in the 
corresponding boundary soliton [see figure 2(d)]. 
 

 
Figure 3.  Evolution of the boundary-soliton width for initial condition (10), with  and for (a) 1Γ =

1σ = , (b) 2σ = , (c) 3σ = , and (d) 4σ = .  Solid line: 15θ = ° ; dashed line: 30θ = ° ; dot-dash line: 
45θ = ° . 

 
5.3 Discussion 
Behaviour of dissipative non-linear dynamical systems is often analysed within a phase-space represen-
tation [18,40,41].  One can identify universal attractors (or trajectories) that appear in a particular 
phase plane, such as fixed points or limit cycles.  Fixed points represent stationary states of the system.  
Trajectories that are attracted to such points may involve damped oscillatory motions, such as those 
shown in figures 2(b) and 2(c).  Those 15θ = °  solutions (solid lines) are represented in a phase space in 



Helmholtz bright and boundary solitons        11 

figures 4(a) and 4(b).  Numerical analysis reveals that boundary solitons have qualitatively similar 
propagation properties (see figure 3).  It is in this sense that we classify boundary solitons, and some 
families (i.e. 2σ =  and 3σ = ) of bright solitons, as fixed-point attractors.  Sometimes, periodic and 
quasi-periodic trajectories arise in the evolution of beams, for example the 1σ =  solution shown in fig-
ure 2(a).  In this case, one finds closed-figure or nearly-closed-figure trajectories in the phase plane, as 
shown in figure 3(c).  These phase portraits resemble classic limit-cycle orbits in non-linear dynamics 
[41], and this is the basis for classifying 1σ =  solitons as limit-cycle attractors.  Finally, one sometimes 
encounters trajectories that converge monotonically toward a zero-amplitude asymptotic state.  This 
occurs with strongly-perturbed 4σ =

4

 bright solitons, as shown in figure 2(d).  In this case, the initial 
condition may be interpreted as lying outside the soliton basin of attraction and inside that of a fixed 
point with zero amplitude.  The σ =  bright soliton families are, in this sense, conditionally-stable so-
lutions. 

3σ< ≤ σ >
30θ ≤ °

15° 3

mu
θ 15°

θ =

Figure 5 illustrates what types of trajectory arise from perturbed bright solitons in a section of the 
( , )σ θ  plane.  Generally, one tends to find only limit-cycle behaviour in the region 0 1.5σ< ≤  and 
fixed-point behaviour in 1.5 .  For 3 , the solitons tend to show conditional stability: small 
and moderate perturbations ( ) lead to fixed-point behaviour, while larger perturbations 
( 30θ > ° ) can lead to diffractive spreading. 

 

 
Figure 4.  Phase portraits for the perturbed bright soliton (6) arising from initial condition (13).  (a) and 
(b) correspond to the θ =  curves of figures 2(b) (i.e. 2σ = ) 2(c) (σ = ), respectively.  The trajec-
tories wind asymptotically on to points in the phase plane.  These points lie on the ( ) 0muζ∂ ∂ =  axis 

(indicating that a stationary state has been reached), their position on the  axis depends upon the 
perturbation .  The θ =  limit-cycle trajectory of figure 2(a) ( 1σ = ) is represented here in part (c).  
The trajectory in (d) corresponds to the diffracting beam of figure 2(d), where a (conditionally-
stable) 4σ =  soliton is strongly perturbed ( 45° ). 

  
6. Conclusions 
We have presented, for the first time, a novel family of boundary soliton solutions of an NLH equation 
with a competing polynomial-type non-linearity.  The most general off-axis solution (3) was derived 
from an orthogonal transformation of the on-axis beam, and exhibits a range of non-trivial Helmholtz-
type corrections to its paraxial counterpart (9).  The latter solution appears to have been reported only 
for the cubic-quintic class of non-linearity [36], which our more general model includes as a subset.  
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Extensive numerical simulations have revealed that the stability characteristics of boundary solitons 
closely resemble those of exponentially-localized bright solitons (6), and we have thus classified them 
as stable fixed points of the system.  The fixed-point and limit-cycle classifications discussed in this pa-
per are useful because they describe qualitatively, in simple terms, how various solitary-wave solutions 
tend to evolve when perturbed. 

The new Helmholtz boundary solitons are of fundamental mathematical and physical interest.  They 
expand the range of known exact analytical solutions of fully second-order non-integrable wave equa-
tions.  We have shown that, despite their spatially-extended structure, boundary solitons are remarkably 
stable against perturbations.  These robust structures connect regions of finite- and zero-amplitude dis-
turbance. This feature suggests that they also may be termed “edge solitons”, since they can act as natu-
ral non-linear boundary waves at the outer limits of, e.g. optical, disturbance. Moreover, the full Helm-
holtz framework of their definition permits the application of these exact analytical solutions with any 
orientation in the waveguide plane. Finite-size effects tend to play a profound role in two-dimensional 
transverse pattern formation and it seems quite plausible that our Helmholtz boundary solitons, or 
higher-dimensional counterparts, may also find application in this important subject area [42-44].  
 

 
Figure 5.  Schematic diagram illustrating the asymptotic behaviour of perturbed bright-solitons [initial 
condition (13)] in the ( , )σ θ  plane. 
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APPENDIX 
 
This Appendix is given in three parts. Firstly, we present general considerations of the stability of non-
linear plane-waves that propagate under the combined influence of two-dimensional diffraction and 
non-linear dispersion. Secondly, we detail the (long-wave) stability of plane-waves in dispersive media.  
Finally, we explore the consequences of the elliptic character of Helmholtz non-linear wave equations 
and show that any instability that appears to arise from the additional roots of the stability analysis ac-
tually corresponds to non-physical short-waves. 
 
A1. Plane-wave stability analysis  
Here, stability analysis of plane-wave solutions of the generalized NLH equation,  
 

 ( )
2 2

2 2
1 0
2

u u ui f Iκ
ζζ ξ

∂ ∂ ∂
+ + + =

∂∂ ∂
u ,       (A1) 

 
is considered, where 2I u≡  and ( )f I  is an arbitrary but well-behaved function of the intensity I satis-
fying .  Equation (A1) has the obliquely-propagating plane-wave solution [45], ( )0f = 0

 

( ) ( )2
0 0, exp i i 1 4 , exp i

2 2
u I k k k Iξ ξ

ζ ζξ ζ ξ κ
κ κ

= + + ∆  
  −   

,    (A2a) 

where  
 ( ) ( )2 1

0 0 2,k k I f I k2
ξ ξ∆ = − ,        (A2b) 

 
that evolves in the forward direction.  It is straightforward to show that the transverse wavenumber kξ  

cannot be arbitrarily large.  Instead, it has a maximum value 
max

kξ  given by  

 
( )0

max

1 4 1
2 2

f I
kξ

κ
κ κ

+
= � ,        (A2c) 

 
where the approximation on the far right-hand side holds since in Helmholtz non-paraxiality one has 
that ( )1Oκ �  (broad beams),  and ( )0 1I O≤ ( ) ( )0 1f I Oκ �  (moderate intensities).  Condition (A2c) 
corresponds to the plane-wave propagating in a direction perpendicular to the longitudinal (z) direction 
(i.e. along the x axis).  Solution (A2) reduces to its paraxial counterpart 
 

( ) ( )2
0, exp i i ,u I k k k Iξ ξ 0ξ ζ ξ ζ + ∆� 

        (A3) 

 
in the limit  and 0κ → 0kκ∆ → .  Paraxial theory assumes implicitly that kξ  is sufficiently small for 
the slowly-varying envelope approximation to hold (i.e. waves travel close to or along the z axis), and 
no formal physical limit, analogous to (A2c), arises for solutions (A3).  The stability of plane-wave so-
lutions does not depend on their propagation direction, so for simplicity we perturb the on-axis solution 
(A2), obtained by setting , according to [46,47], 0kξ =

 

( ) ( ) ( )( )0, , exp i 1 1 4
2

u I a f I0
ζξ ζ ξ ζ κ
κ

 = + − + +   

 ,    (A4) 
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where ( ,a )ξ ζ  is a complex function.  After substitution into equation (A1), the non-linear function is 
expanded using a Taylor series.  Linearizing around the plane-wave solution then leads to the following 
equation governing evolution of the perturbation field 
 

 ( ) ( )( )
2 2

*
0 0 02 2

11 4 0
2

a a ai f I I f I a aκ κ
ζζ ξ

∂ ∂ ∂ ′+ + + + + =
∂∂ ∂

.    (A5) 

 
One can introduce a quite general ansatz  
 

( ) ( ) ( )1 2, exp expa a i K K a i K Kξ ζ ξ ζξ ζ ξ ζ ξ ζ  = + + − + 
    ,    (A6) 

 
that allows both forward- and backward-propagating waves and where, by convention, Kξ  is a real pa-
rameter.  Modulational instability results whenever Kζ  has a non-zero imaginary part.  Collecting coef-
ficients of the exponential terms and seeking non-trivial solutions gives a quartic polynomial in Kζ : 
 

( ) ( ) ( )2 4 2 2 2 21 1
0 0 0 0 02 21 4 2 2 0K f I I f I K K K K I f Iζ ξ ζ ξ ξκ κ κ κ  ′ ′− + + − + − =  




s

0=

2

.  (A7) 

 
Setting , equation (A7) assumes a quadratic form 2Kζ ≡

 

( ) ( )2 2 2 2
0 0, ,s b K I s c K Iξ ξκ − + ,       (A8a) 

where 
 ( ) ( ) ( )2

0 0 0 0, 1 4 2b K I f I I f I Kξ ξκ κ ′≡ + + −κ ,      (A8b) 

and 
 ( ) ( )2 2 21 1

0 2 2, 2c K I K K I f Iξ ξ ξ ′≡ − 0 0 
 .       (A8c) 

 
A2. Long-wave instability 
It is well-known [47] that plane-waves propagating in polynomial-type nonlinear may be subject to the 
spontaneous growth of transverse modulations. This (long-wave) instability has been studied in the con-
text of paraxial models, and was found to occur when ( )0 0f I′ >  and for a narrow spectral region given 

by ( ) 1 2
0 02K I f Iξ ′<  

( )2
0, Iξ

 . These conditions are dictated by equation (A8c), and a requirement of 

 negative. The predicted gain [47] of perturbations is given by c K ( ) 21
0 0 22 2K I f I Kξ ξ′ − .  

In this paper, / 2( )f I I Iσ σα γ= − , and stability of the finite-amplitude plateau regions has been con-
firmed by fully non-linear numerical simulations.   
 
A3. Short-wave instability 
To examine the character of potential further instability regimes, arising from the quartic character of 
equation (A7), we set  and seek regimes where  is non-zero.  Some algebra reveals 

that this can occur when
RK K iKζ = +

(
I IK

)0 0f I′ < , and hence when ( )2
0, Iξc K  is always positive. In this case, 

 

  ( ) ( )
1 2

2 2
0 0

1Re 2 , ,
2I K I b Kξ ξκ
κ

  = ± −    
K c .     (A9) I 
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One can define an associated modulation growth rate [46], 2 Ig K= , given by 
 

( ) ( ) ( )
1 2

2 2
0 0

1, Re 2 , ,g K I c K I b K Iξ ξκ
κ

 = −   

2
0ξ


  ,     (A10) 

 
and the condition for instability becomes 
 

 ( ) ( ) ( )
22 2 21 1

0 0 0 0 02 2 2
12 1 4 2

4
K K I f I f I I f I Kξ ξ ξκ κ κ

κ
  ′− > + + −  

′  .   (A11) 

 
It is then straightforward to show that unstable wavenumbers are those satisfying 
 

( ) ( )
( )

0 0
1 2

0

1 4 21
2 1 4

0f I I f I
K

f I
ξ

κ κ
κ κ

′+ + >  
   +  

.      (A12) 

 
The expression on the right-hand side contains two factors: a geometrical term 1  and a factor that 
depends weakly upon the system non-linearity.  In Helmholtz non-paraxiality, the second factor is 

 and can be neglected. This gives the (short-wave) instability condition, 

2κ

( )~ 1O
 

min

1
2

Kξ κ
� ,          (A13) 

 
that depends purely on linear propagation effects, and is thus effectively independent of the non-
linearity of the system. The geometrical character of this short-wave feature is uncovered by examining 
the dispersion relation [35] of equation (A1).  Plane-wave solutions such as (A2) lie on an ellipse in 

( ,k k )ξ ζ -space.  The boundary between forward- and backward- propagating waves occurs at 

cr
k kζ ζ it

1 2κ= = − , and at this boundary 
max

1 2k kξ ξ κ= ± ±�  (the ±  sign denotes propagation in 

the x±  directions, respectively).  The potential short-wave instability (A12) is thus unphysical and cor-
responds to waves with transverse spatial wavenumbers which are greater than those that can propagate.  
An interpretation of this feature is that backward evanescent waves (those attenuated in the backward 
direction) could be mistakenly interpreted as amplified forward waves (and similarly for evanescent 
forward waves).  
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