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In outdoor sound propagation, an inherent problem of the ray tracing method is its inability to
determine the sound pressure level in the shadow zone, where geometrical rays do not penetrate.
This is a serious problem in a turbulent atmosphere where significant sound energy will be scattered
into the shadow. Empirical corrections that are determined from measurements or numerical
simulations are limited to situations within the bounds of the empirical corrections. This paper
describes a different approach where the ray tracing model is modified analytically into a scattered
ray model. Rays are first diffracted from the shadow boundary, which is determined by the
geometrical ray paths. The diffracted rays are then scattered by turbulence in their way to the
receiver. The amount of scatter is determined from turbulence statistics that are determined from a
Gaussian turbulence model. Most of the statistics are determined analytically except one element,
which is determined empirically from numerical simulations. This turbulence scattered ray model is
shown to have good accuracy against calculations based on the parabolic equation, and against
previously published measurement data. It was found that the agreement is good both with and
without turbulence, at distance up to 2 km from the shadow boundary.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3076928�
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I. INTRODUCTION

The calculation of outdoor sound propagation is an im-
portant element in environmental noise assessments. Since
the outdoor environment is complex, it is necessary for such
calculations to take into account a large number of environ-
mental factors, such as ground attenuation and atmospheric
effects. A number of significant advancements have been
made in the past few decades, and there now exist several
accurate methods for calculation.1–3 The parabolic equation
�PE� method is particularly useful for long range sound
propagation because of its accuracy and its ability to take
into account range dependent ground and atmospheric con-
ditions. Recent advancements in accelerating the calculation4

also greatly enhanced its practical applicability. However,
despite these advances, the method is still expensive to use at
high frequencies, and is not readily usable in complex sur-
roundings such as in urban cities where sharp changes in
topography, meteorology, or material conditions frequently
occur. For calculations in such surroundings, the ray tracing
method5 provides a more practical alternative approach. For
example, in the current noise mapping exercise in Europe,
most of the calculations are based on ray models.

Ray models in outdoor sound propagation come in dif-
ferent forms.6–9 All are based on geometrical considerations.
The variations come from the different degrees of approxi-
mation they place on the wave behavior along the propaga-
tion path. The ray tube approach and the semi-analytical ray
model take into account more of the wave behavior, but can
suffer from singularity effects such as caustics. The heuristic
ray approach and its variant, which only use the ray paths to
provide information on the phase and wave coherence, are

easier to use, and can provide acceptable accuracy for engi-

1340 J. Acoust. Soc. Am. 125 �3�, March 2009 0001-4966/2009/12

Downloaded 06 Oct 2011 to 146.87.65.141. Redistribution subject to ASA license
neering calculations. However, these ray models suffer from
the same inherent problem that they cannot determine the
propagation of sound into the shadow zone. By nature of
their geometrical assumption, it is not possible for rays to
penetrate into the shadow. There are various suggestions to
overcome this problem. If the atmosphere can be assumed to
be non-turbulent, range independent, and has a linear vertical
sound speed profile, then the residue series approach10 can be
used to calculate the diffraction of sound into the shadow.
However, this solution requires the determination of the roots
of a complex function, which is difficult to obtain accurately
deep in the shadow. Moreover, the inability to account for
turbulence is a serious limitation for calculations involving
real atmospheres. In realistic environments, a more practical
approach is to apply empirical adjustments to the sound level
in the shadow zone. For example, a recent suggestion11 uses
corrections that are determined empirically from a large
number of numerical simulations. However, purely empirical
corrections are fundamentally limited by the conditions un-
der which they are developed. In contrast, an analytical ap-
proach will be more flexible, and could provide a better un-
derstanding of the underlying problem.

This paper describes the development of an analytical
approach based on ray tracing to calculate the propagation of
sound into the shadow zone. The basic ray tracing model is
based on a discretized implementation of the heuristic
model.8 In an upward refracting case where a shadow is
formed, the diffraction of sound into the shadow is assumed
here to be analogous to the geometrical diffraction by an
equivalent barrier in a homogeneous atmosphere. The scat-

tering into the shadow zone due to turbulence is calculated
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from statistics that are determined from a Gaussian turbu-
lence model of the atmosphere. The accuracy of the model
will be tested against the PE using published cases in litera-
ture.

II. THE RAY TRACING MODEL

Our basic ray tracing is based largely on a numerical
approach. Once launched, rays are traced individually
through the atmosphere to find the trajectory of the ray that
forms the shadow boundary. The overall sound speed profile
in the atmosphere can be arbitrary. In our implementation,
the atmosphere is divided into a grid of small rectangular
cells. The cell division is chosen such that the change in the
sound speed within each cell is small enough to be approxi-
mated by a linear profile, so that an analytical solution8 can
be used within each cell to determine the ray propagation
trajectory. The rule of thumb is to set the grid size at 1 /10 of
the length scale of the fastest changing condition. In practice,
in the absence of turbulence, the grid size is typically 1 m in
the vertical direction to accommodate the expected logarith-
mic shape of the sound speed profile near ground. The grid
size in the horizontal direction is set at 5 m to accommodate
likely range dependent variations of the terrain and meteoro-
logical conditions. However, when simulating the scattering
of rays due to atmospheric turbulence, the grid size is set at
1 /10 of the smallest length scale of the turbulence structure.
Since the Gaussian turbulence spectrum used in this paper
has a length scale of 1.1 m, the grid size used is 0.11 m. The
ground terrain, which can be undulating, determines the
lower boundary of the computational grid. Once the reflec-
tion geometry is worked out by the numerical ray tracing, the
effect of the ground at each reflection can then be approxi-
mated by the Weyl–van der Pol formulation.12,13 The height
of the upper boundary of the computational grid is set using
the rule of thumb of 1 /10 of the maximum horizontal range.

In a downward refracting case where there are multiple
rays passing through a sampling area, the effect of turbulence
can be approximated by the reduction in coherence between
the rays using the mutual coherence function.8 However, as
is common in all geometrical ray tracing methods, the pro-
cedure will fail to predict the sound pressure in the shadow
zone of an upward refracting atmosphere. By definition no
geometrical rays can penetrate into the shadow. In literature,
several solutions to this problem have been suggested. In the
simple case of an atmosphere with a linear vertical sound
speed profile and has no turbulence, the sound field can be
represented by an analytical normal mode solution. The resi-
due series solution10 can then be derived for an upward re-
fracting case. However, this is not a practical solution in
view of its limitations concerning the sound speed profile
and turbulence. The comparisons published by L’Espérance
et al.8 show that it can substantially over-estimate the attenu-
ation in real life situations where turbulence is present. For
realistic atmospheric conditions that include turbulence, a
common approach is to introduce empirical scattering to the
ray trajectory9 or to use empirical estimates of the sound
pressure.11 The dependence on empirical values significantly

limits the applicability of such approaches. For example, in
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the ray model of Heimann and Gross,9 the effect of shadow
diffraction is simulated by randomly changing the propaga-
tion direction of a ray when the ray is close to the ground,
where diffraction is thought to be most important. Unfortu-
nately, the physical mechanism for this ray diversion is not
fully formulated. Instead, the implementation relies on em-
pirical constants and assumed dependence on the height from
the ground. Although the model worked well in some cases,9

it is doubtful that it will work equally well in situations out-
side the range of conditions under which the empirical pa-
rameters were derived without a full understanding of the
physics involved. In this paper, we propose to address this
problem by means of an analytical ray diffraction model.

III. SHADOW BOUNDARY RAY DIFFRACTION
MODEL

In here, we use a shadow ray diffraction model that is
based on the analogy between a curved ray path in the pres-
ence of refraction, and a curved surface in a homogeneous
atmosphere in which there is no refraction. This analogy has
been used successfully in studies involving linear sound
speed profiles and analogous cylindrical surfaces.14 In here
we apply the concept to an arbitrary sound speed profile and
a generalized terrain with finite impedance cover. The anal-
ogy is illustrated in Fig. 1.

In the analogous virtual barrier configuration, the sound
level at the receiver is calculated from the diffraction path
from the barrier top to the receiver by applying simple thin
barrier diffraction formulas. Here, one significant point to
note is that the path difference cannot be calculated from the
physical source location in the analogous barrier configura-
tion. This is obvious if one considers the special case when
the source is close to the barrier top �or the ground reflection
point of the shadow boundary ray�. An example is a strong
upward refracting atmosphere where the shadow boundary is
close to the source. In this case the path difference between
the direct source to receiver path and the diffracted path over
the barrier top is always small no matter how deep the re-
ceiver is in the shadow. This will give rise to only small
attenuation even deep in the shadow. This is clearly incor-
rect. One would expect the attenuation to be higher with a
stronger upward refracting atmosphere and a shadow bound-
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FIG. 1. Turbulence scattering of the analogous shadow boundary diffraction
model. Upper half is the scattering of the original shadow boundary ray path
over a flat ground. Lower half is the resulting scattering in the analogous
model of a curved surface in a homogeneous atmosphere.
ary closer to the source. The explanation for this odd behav-
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ior is that the analogy is based on geometrical ray acoustics.
Since a ray is, in fact, an approximation of a plane wave, the
“equivalent straight ray” in the analogous virtual barrier con-
figuration should be considered as a plane wave. The propa-
gation should therefore be from a source that is far away.
Hence the path difference should be calculated with the
source placed at infinity, which is equivalent to calculating
the difference between r1 and d0 in Fig. 1.

In addition to the shadow boundary diffraction, the
sound level at the receiver is also affected by attenuation due
to ground reflection. This is clearly the case if one considers
the sound level just before and after the shadow boundary.
Before the boundary both direct and ground reflected rays
are present and therefore the sound level will suffer ground
attenuation, which can be as much as 20 dB at frequencies
where ground attenuation is strongest. Just after the bound-
ary, the shadowing �virtual barrier� effect is still small, and
the attenuation will be of the order of only 5 dB �the usual
line-of-sight barrier attenuation�. Obviously, one would not
expect the ground attenuation to just disappear when the re-
ceiver passes from one side to the other of the shadow
boundary into the shadow. Hence it is necessary to correct
for ground attenuation in the analogous virtual barrier model
as well. As a first approximation, the ground attenuation is
determined simply from the geometry of the geometrical re-
flection from the barrier top to the receiver. The local slope
of the ground near the reflection point is used to correct for
the ground reflection angle.

The prediction from this shadow boundary diffraction
model is compared against a standard Crank–Nicolson
PE15,16 prediction using the benchmark case 3.17 This bench-
mark case has a flat ground with finite impedance. The at-
mosphere is strongly upward refracting with a linear sound
speed profile of −0.1 /s, but has no turbulence. The refraction
is very strong. The shadow boundary at the receiver height is
about 300 m from the source. The PE solution is a well
established technique for outdoor sound propagation.17 It has
been shown to have very good accuracy in the benchmark
cases.17 It is therefore chosen to be the reference in this and
subsequent comparisons. Figures 2�a�, 2�b�, and 2�c� show
the comparisons at the frequencies of 10, 100, and 1000 Hz,
respectively. The y-axis is in terms of the transmission loss
�TL� as defined in the benchmark paper.17 The lower limit of
the y-axis is set at −80 dB as is set in the benchmark paper.
The horizontal distance is shown to be 10 km, which covers
a large range deep into the shadow. Also shown in the figures
is the predicted sound pressure in free field in a still atmo-
sphere �with air absorption�. This is to allow the attenuation
due to ground effect and atmospheric refraction alone to be
easily identified. The figures show that the simple model
proposed here for the shadow diffraction effect has good
accuracy in this benchmark case. On the whole, the predic-
tion agrees well with the prediction by the PE. The increases
in the TL due to ground attenuation �most dominant at
100 Hz in Fig. 2�b�� and due to frequency �Fig. 2�c�� are well
predicted. Given the simplicity of the shadow diffraction
model, the agreement is quite remarkable. The simple dif-
fraction model produces some artifacts at around the shadow

boundary �at around 300–400 m�. This is due to the simple
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ground correction used in the model. The equivalent ground
is circular in this benchmark case. Since the ground reflec-
tion angle is determined by simple straight lines �see Fig. 1�,
the angle changes markedly near the shadow boundary �top
of the circular arc�, thus producing some sudden changes in
the sound attenuation. A more elaborate diffraction model
that takes into account the ground curvature could improve
the accuracy. Nevertheless, the simple model is thought to be
close enough to the PE solution to be usable in practice.

IV. TURBULENCE SCATTERING

The ray based shadow boundary diffraction model of
Sec. III provides a convenient basis for extending the calcu-
lation to account for the effect of turbulence scattering in the
shadow zone. Turbulence can be simulated as temporal and
spatial fluctuations of the sound speed along the propagation
path. Let the refractive index be n=c0 /c. c0 is a nominal
constant sound speed, typically taken as the mean speed on
the ground. c is the instantaneous sound speed at the position
of interest. The effect of turbulence can be represented as the
fluctuating part, �, of the refractive index at the position of
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FIG. 2. TL versus distance predicted by the shadow boundary ray diffraction
model �broken line� and PE �solid line� for the upward refracting benchmark
case 3. The dotted line is for free field in a homogeneous still atmosphere.
interest,
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n = n̄ + � , �1�

where n̄=c0 / c̄. c̄ is the mean sound speed at that position,
which is taken to be the value in the absence of turbulence.
The fluctuation � can be simulated by random realizations,
which can be generated based on known models of the tur-
bulence structure. Once � is realized, Eq. �1� can be used to
calculate the variation in the sound speed gradient due to
turbulence within each of the grid cells in the numerical ray
tracing algorithm. The ray trajectories will be scattered by
these variations. When averaged over a large number of re-
alizations, the result could be used to simulate the scattering
of the sound energy by turbulence. For shadow zone calcu-
lation, which is the main interest of this paper, the scattering
of the shadow boundary ray produces variations of the analo-
gous equivalent diffraction geometry that will in turn change
the attenuation detected at the receiver. However, even
though ray tracing is faster than other numerical techniques
such as the PE solution, performing a complete set of ray
tracing for each random realization over a large number of
realizations is still too time-consuming for practical use. We
will therefore proceed to develop a model that can simulate
the scattering of the rays at the receiver without tracing the
rays through all the realizations.

A. Sound speed gradient due to turbulence

Since the numerical ray tracing assumes that the sound
speed gradient is linear within each small grid cell in the
propagation domain, we will need to relate the change in the
gradient to the turbulence fluctuation �. Rewriting Eq. �1�
explicitly in terms of sound speeds, we have

c

c0
=

1

c0

c̄
+ �

�
c̄

c0
�1 −

c̄

c0
�� for � � 1. �2�

The vertical sound speed gradient is given by

�c

�z
=

�c̄

�z
− � c̄2

c0

��

�z
+

2�c̄

c0

�c̄

�z
� . �3�

In the absence of turbulence, the grid cells are assumed to be
small enough that the vertical sound speed gradient within
each is approximately linear. Therefore,

c̄ = c̄1�1 + a0z� , �4�

where c̄1 is the mean sound speed at the lower boundary of
the cell, and a0 is the linear gradient in the absence of tur-
bulence. Generally � is small and we may ignore the second
term in the parentheses in Eq. �3� compared with the first
term in the parentheses. Also, a0 and the cell height are small
enough such that c̄2 /c0� c̄1. The effect of turbulence is
therefore to modify the linear gradient by an extra term. The
total gradient, a, is then given by

a =
�c

�z
� a0 − c̄1

��

�z
. �5�

In the shadow diffraction calculation, the refracting atmo-

sphere is replaced with a still atmosphere with a modified

J. Acoust. Soc. Am., Vol. 125, No. 3, March 2009

Downloaded 06 Oct 2011 to 146.87.65.141. Redistribution subject to ASA license
curved ground terrain. In this analogous case, a0 and c̄1 in
Eq. �5� are 0 and c0, respectively.

The value of � and its derivative can be determined for
specific turbulence structures. Here we will use the simple
Gaussian turbulence model.18,19 Although the Gaussian
model is not strictly correct for real atmospheres, it can be
adapted to specific frequency ranges to give acceptable
results.20 Later, we will also show that the Gaussian model
provides a convenient basis to simplify the simulation.

The random realization of ��r� where the position vec-
tor in 2 dimension is �x ,z� can be obtained by a spectral
decomposition21

��r� = �4��k	
n=1

N

cos�kn · r + �n��F�kn�n�k , �6�

where kn= �knx ,knz�= �kn cos �n ,kn sin �n� and kn=n�k for n
=1,2 , . . . ,N. N is the number of harmonics �or modes� used
in the superposition, �n and �n are independent random polar
angles between 0 and 2�, and �k is the spectral wavenumber
resolution.

For a Gaussian turbulence model, the spectral density
function depends on the standard deviations of the tempera-
ture and longitudinal wind velocity fluctuations, and the cor-
relation length of the Gaussian spectrum �. As an approxi-
mation, the standard deviation terms are commonly
represented by a single �0

2, the square of the standard devia-
tion of the fluctuating part of the index of refraction. We can
then write

F�kx,kz� = �0
2 �2

4�
e−�kx

2+kz
2��2/4. �7�

The derivative of ��r� is then

���r�
�z

= − �4��k	
n=1

N

knz sin�kn · r + �n��F�kn�n�k . �8�

This equation can be used to determine the sound speed gra-
dient within a grid cell in the presence of turbulence accord-
ing to Eq. �5�.

B. Turbulence scattered rays

In the presence of turbulence, the shadow boundary ray
is scattered as it propagates through the atmosphere. This is
illustrated in the upper part of Fig. 1. Each random realiza-
tion will produce a different scattered path. In principle, an
analogous equivalent curved ground can be used to calculate
the diffraction from each of this scattered boundary ray.
However, this will be very time-consuming since a complete
ray tracing will have to be done for each realization. Instead,
we note that the dominant effect on the diffraction amplitude
is due to the change in the height, denoted by hr in Fig. 1,
between the shadow boundary and the receiver. Hence our
objective is to find a simple way to simulate this change in
height due to turbulence.

Consider the propagation of a ray through a randomly
realized turbulent atmosphere. The ray is traced numerically
through a series of grid cells within each the sound speed

gradient is approximately linear, as calculated by Eq. �5� in
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the presence of turbulence. Note that the grid cell size in this
case is set at 1 /10 of the Gaussian correlation length � to
make sure that the randomly realized refraction index fluc-
tuations are properly sampled.

It can be shown8 analytically that the horizontal angle at
which the ray enters the cell, �1, is related to the angle at
which the ray exits the cell, �2, by the following equations:

sin �2 = sin �1 −
x2 − x1

R
�9�

and

cos �2 = cos �1 +
z2 − z1

R
, �10�

where �x1 ,z1� and �x2 ,z2� are, respectively, the coordinates of
the entry and exit points. R is the radius of the ray curvature
given by

R =
1

a cos �1
. �11�

The change in height, �z=z2−z1, after the ray passes through
this cell, is then

�z = R�cos �2 − cos �1� . �12�

Now, let us consider the analogous curved ground diffraction
model, in which the shadow boundary ray is equivalent to a
straight ray in the absence of turbulence. In this model, the
effective linear sound speed gradient in each of the grid cells
is created by the turbulence alone, i.e., a0=0 in Eq. �5�, and
is the sole cause of the scattering and the change in ray
height. The ray horizontal angle will be small, especially in
long range propagation, and we can approximate Eqs. �12�
and �9� by

�z � R��1
2 − �2

2

2
� � �x��2 + �1

2
� , �13�

where �x=x2−x1. In the numerical ray tracing procedure,
each cell has the same length �x. For the ith cell, and for
small horizontal angles, Eq. �9� gives

�i+1 � �i −
�x

Ri
. �14�

Note that the entry horizontal angle into cell i is the same as
the exit horizontal angle from cell i−1. Applying this for-
mula recursively, and taking the initial horizontal angle of
the ray at source to be �0, we have

�i+1 � �0 − 	
j=1

i
�x

Rj
. �15�

Substituting this into Eq. �13� for the ith cell gives the cu-

mulative height change at the exit of cell i to be
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�zi+1 � �x
��i+1 + �i�

2

� �0 +
�x

2
�	

j=1

i
− �x

Rj
+ 	

j=1

i−1
− �x

Rj
�

= �0 − �x2�	
j=1

i
1

Rj
−

1

2Ri
� . �16�

Again, taking the assumption that the horizontal angles are
small, we can approximate Eq. �11� by Rj 
1 /aj. Equation
�16� then becomes

�zi+1 � �0 − �x2�	
j=1

i

aj −
ai

2
� . �17�

The gradient ai is different for each cell. However, for a
homogenous turbulence structure, all the ai’s are determined
from the same turbulence model, Eqs. �5� and �8�. They are
all proportional to the turbulence strength represented by the
square root of �0

2, i.e., the square of the standard deviation of
the fluctuating part of the index of refraction for a Gaussian
turbulence model. Hence we can write

aj = qj
��0

2, �18�

where the proportional factor qj is determined from Eq. �8�
for each cell. We can now rewrite Eq. �17� as

�zi+1 � �0 − ��0
2�x2�	

j=1

i

qj −
qi

2
� . �19�

This equation is independent of frequency. Moreover, all the
variables in the equation except �0

2 are independent of the
turbulence strength. For long range propagation, and for the
analogous shadow boundary diffraction model, the initial
horizontal ray angle �0 is small and close to zero. This
means that the ray tracing simulation needs only be done
once, for one turbulence strength, and the result can be ap-
plied to other turbulence strength through a simple scaling.
Although the factor qj is dependent on the Gaussian correla-
tion length �, in practice, � is generally taken as a constant
1.1 m in a Gaussian model.

C. Changes in shadow ray height due to turbulence

Since we are using a Gaussian turbulence model to gen-
erate the random realizations, we expect the resulting change
in height ��z� to exhibit Gaussian behavior. Figure 3 shows
the result of a simulation of the scattering of a horizontal ray
through a Gaussian turbulence atmosphere with �0

2 set to
3�10−6. The correlation length � is set to 1.1 m in this and
all subsequent calculations. The result is from 100 random
realizations of the turbulent atmosphere. The size of each
grid cell is set at 0.11 m, which is 1 /10 of the Gaussian
correlation length � to make sure that the randomly realized
refraction index fluctuations are properly sampled. The
changes in the ray height due to turbulence scattering at a
distance of 1 km were recorded. The cumulative probability
distribution function �CDF� of the height change is plotted in

the figure. It can be seen that the CDF looks similar to that of
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an ideal Gaussian distribution of zero mean. From here on,
we assume that we could take the distribution of height
change ��z� in Eq. �19� over many random realizations to be
Gaussian with zero mean, and can be characterized by its
standard deviation.

We now need to determine the dependence of �z on
range. This comes out from the term in parentheses on the
right hand side of Eq. �19�. Again, the propagation of a hori-
zontal ray through 100 random realizations was used to
simulate the height changes due to turbulence. The turbu-
lence model is again Gaussian, with �0

2 set at 3�10−6. The
values of the standard deviation of the height change at every
20 m up to 10 km were calculated from the simulated real-
izations. Note that 0 m corresponds to the start of the shadow
zone. Figure 4 shows the result. The standard deviation’s
dependency with range is smooth, and is almost linear on a
log-log scale. The dependency is almost linear at short to
medium range up to 1 km. At longer range the standard de-
viation grows faster and a higher order curve is needed. It is
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apparent that, up to the range of 10 km, the dependency on
range can be represented easily by simple regression curves.
This is a useful result since a simple regression curve would
allow us to calculate the standard deviation at any range
without needing to perform time-consuming ray tracing
through many random realizations again. Note that the size
of each grid cell in the numerical ray tracing is again set at
0.11 m, 1 /10 of the Gaussian correlation length �, in order to
sample the turbulence properly. Since the maximum range in
the simulation is 10 km, this requires calculation of ray re-
fractions over approximately 91 000 cells for each random
realization. This is obviously time-consuming, and the ability
to replace this with a simple regression formula is signifi-
cant.

As a simple choice, we used a linear regression for the
range from 0 to 1 km, and then a third order regression from
1 to 10 km. The resulting coefficients are listed in Table I.
An equation for the standard deviation of the height change,
�zSTD, for near horizontal propagation ��0
0� can now be
written as

�zSTD�x� =� �0
2

�ref
2 a11x for 0 	 x 
 1 km

=� �0
2

�ref
2 �a31x + a32x

2 + a33x
3� for x � 1 km.

�20�

The scaling, with respect to the turbulence strength, is taken
from Eq. �19�. The reference turbulence strength is set at
�ref

2 =3�10−5 to give more convenient values to the coeffi-
cients.

Equations �19� and �20� predict that �z can be described
by a Gaussian distribution and that it is proportional to ��0

2.
To test the dependence of the height changes on the strength
of turbulence, ray tracing simulations were repeated over a
range of �0

2 values from 1�10−6 to 7�10−5. The standard
deviations of the height changes at a number of distances
from the shadow boundary are plotted against the square root
of �0

2 in Fig. 5. It can be seen that the standard deviation
does indeed scale very well with ��0

2 at all the ranges. Also
shown in the graph as dotted lines are the standard deviations
that are calculated simply from Eq. �20�. The prediction from
the simple formula matches fairly well with the simulated
result from the full numerical ray tracing. The error is largely
less than 10%. In the 500 m case where the height change is
small the error can go up to 30%. There is also a tendency
for the simulated standard deviation to be slightly larger than
that from Eq. �20� at the extremes: when the range is �2 km
�very deep in shadow� and the turbulence strength is very
high ��5�10−5�. Overall, the simple equation is a good re-
placement of the time-consuming ray tracing simulation un-

TABLE I. Coefficients for the estimation of the standard deviation of height
changes in Eq. �20�.

Coefficient a11 a31 a32 a33

Value 0.13 0.10 3.2�10−5 −1.2�10−9
der realistic conditions.
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V. TURBULENCE SCATTERED SHADOW RAY „TSSR…

MODEL

With the results from Sec. IV, we can now calculate the
shadow zone sound pressure in the presence of turbulence by
the following steps.

�1� The limiting ray that defines the shadow boundary in an
upward refracting atmosphere is first determined by a
single numerical ray tracing process in the absence of
turbulence.

�2� The shadow boundary geometry is replaced with an
equivalent configuration of a straight horizontal ray pass-
ing just above the top of a curved ground with geometry
defined by the original curve shadow boundary ray, as
shown in Fig. 1. This horizontal ray effectively defines
the line of sight in the modified ground geometry. In the
absence of turbulence, the sound pressure level in the
shadow zone is simply calculated as a barrier diffraction
problem with an impedance ground.

�3� In the presence of turbulence, the turbulence structure is
modeled as Gaussian, with the strength represented by
�0

2. The correlation length of the Gaussian spectrum � is
assumed to be fixed and equal to 1.1 m. The effect of
turbulence is to be represented by the scattering of the
ray height above the receiver.

�4� Equation �20� allows the standard deviation of the ray
height changes, �zSTD, due to turbulence to be calculated
at any range up to 10 km from the shadow boundary, and
for any turbulence strength �0

2.
�5� �zSTD is then used to generate random height changes

from a Gaussian distribution with zero mean. A positive
height change increases the height of the ray and there-
fore extends the height separation between the receiver
and the line of sight. This will then increase the attenu-
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FIG. 5. Variation of the standard deviation of the simulated height changes
against the square root of �0

2 of the Gaussian type turbulence. The symbols
are results from numerical ray tracing using 100 random realizations for
each turbulence strength. The dashed lines are direct calculations from the
approximate formula.
ation due to diffraction. Conversely, a negative height
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change decreases the height of the ray and therefore re-
duces the height separation between the receiver and the
line of sight. The will then decrease the attenuation due
to diffraction. With each height change, a new diffracted
sound pressure level is calculated from the modified dif-
fraction geometry.

�6� Finally, the attenuation values calculated from all the
realizations are energy averaged to give the mean attenu-
ation due to shadowing in the presence of turbulence.

For simplicity, we abbreviate this procedure as the TSSR
model. To test the accuracy of the model, it was used to
calculate the sound pressure level in the shadow zone of
benchmark case 3 with the addition of turbulence. Since the
published benchmark case result does not include turbulence,
it is necessary to compare the result with a numerical calcu-
lation that has established accuracy. In this case, the standard
PE solution with the addition of the randomization procedure
of Gilbert et al.1 for the simulation of turbulence is used as
the reference. The same Gaussian turbulence structure is
used in both the PE calculation and the ray tracing calcula-
tion. The result for a moderate turbulence strength of �0

2=3
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FIG. 6. Excess attenuation versus distance predicted by the TSSR model
�broken line� and PE �solid line� for the modified upward refracting bench-
mark case 3 with turbulence added. A Gaussian turbulence model is as-
sumed with a strength of �0

2=3�10−6. The dotted line is the PE prediction
for no turbulence. The vertical chained line indicates the estimated shadow
boundary at 300 m.
�10 is shown in Fig. 6. The PE prediction with no turbu-
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a G
lence is also shown in the figure to let the effect of turbu-
lence to be seen clearly. As mentioned before, this bench-
mark case is strongly upward refracting, with the shadow
boundary starts at about 300 m from the source, as shown by
the vertical chained line in the figure. Most of the range
shown in the figure is therefore in the shadow zone. At the
lowest frequency, 10 Hz, a sharp transition can be seen at the
shadow boundary at around 300 m where the calculation
changes from the normal ray tracing calculation before the
shadow boundary to the TSSR calculation beyond the
shadow boundary. The sharp change is of the order of 5 dB.
This change can be easily explained. Before the shadow, the
ground reflection detected by the ray tracing will be largely
in phase with the direct sound at this low frequency. Hence
the sound level increases by around 6 dB due to the ground.
Immediately behind the shadow boundary, the calculation
switches to the TSSR model since no rays arrive. Right at the
boundary, the diffracted ray is at line of sight between source
and the receiver. The attenuation given by the geometrical
diffraction model at line of sight is about 5 dB. Hence a
sudden increase in attenuation of about 5 dB is seen when
the calculation switches to the TSSR model at the shadow
boundary. Note that the 6 dB pressure level increase due to
ground reflection is still retained as the TSSR model also
accounts for the reflection by the ground behind the shadow
boundary. Hence the drop is only 5 dB. If the ground effect
is not included in the calculation behind the shadow, an
11 dB difference would have been seen. This shows the im-
portance of accounting for the ground effect even in the
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FIG. 7. Same as Fig. 6�b� but with
shadow zone in this model. In principle, this sudden change
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can be avoided if the effect of diffraction is introduced
gradually before the receiver hits the shadow boundary.
However, since the ray tracing model is not aimed at low
frequency applications, we have not made such adjustments
in our current model. Further into the shadow, the TSSR
prediction agrees very well with the PE prediction.

At the higher frequencies, 100 Hz and 1 kHz, the sud-
den change at the shadow boundary is no longer observable.
This is because the ground reflection is no longer in phase
with the direct sound at higher frequencies, and attenuation
starts to appear even before the shadow. At 100 Hz, the
TSSR prediction matches the PE prediction closely all the
way up to about 1 km. From then on, the PE result shows an
unexpected increase in level at ranges up to 4 km, then a
slight decrease afterwards. This variation resembles some
form of interference effect. Further testing of the PE suggests
that this is related to the combination of the specific 100 Hz
frequency and the particular Gaussian turbulence parameters
used, and is exaggerated by the extremely large sound speed
gradient of the benchmark case. For example, changing the
Gaussian length scale from 1.1 to 4 m changes the shape
notably, as shown in Fig. 7. Also, as shown later in Fig. 8,
this spurious increase is not seen when a higher turbulence
strength is used. Further investigation into this spurious be-
havior of the PE in combination with a Gaussian turbulence
model is, however, outside the scope of this paper, although
it could be an interesting subject for future work. Otherwise
the overall trends of the excessive attenuation predicted by

0 6000 7000 8000 9000 10000
e (m)

Hz

aussian correlation length of 4 m.
500
Rang

100
the two models appear to agree.
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At 1 kHz, the TSSR predicts consistently smaller mag-
nitude of attenuation compared with the PE prediction. The
difference is around 5 dB up to 2 km, and increases to
around 10 dB or more at longer ranges.

The effect of larger turbulence is shown in Fig. 8, where
the turbulence strength is at a high level of �0

2=3�10−5.
This is considered to be the upper limit of turbulence that
one would normally encounter. With this high level of turbu-
lence, the attenuation in the shadow is severely limited,
reaching just over −10 to −20 dB at 10 Hz, and around
−20 dB at the higher frequencies even at 10 km into the
shadow. At 10 Hz, the TSSR prediction is still fairly close to
that of the PE model, but is consistently less than the PE
attenuation from about 1 km onwards. At 100 Hz, the agree-
ment is very good in the region up to about 5 km. The spu-
rious increase in sound level between 1 and 4 km, seen ear-
lier in the PE result in Fig. 6�b�, at this frequency does not
appear at this higher level of turbulence. From 5 km on-
wards, the TSSR predicted attenuation is again consistently
less than that from the PE. A similar trend is also observed in
the 1 kHz result. Overall, the results show that the TSSR
prediction has good agreement with the PE prediction at
short to medium range from the shadow boundary at all the
test frequencies. At ranges further than 3.5 km, the TSSR
predicts smaller attenuation values than the PE model.

As a further test of the reliability of the TSSR model,
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FIG. 8. Same as Fig. 6 but with �0
2=3�10−5.
predictions were made and compared against the measured
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data of White and Gilbert.22 These data had been used by
L’Espérance et al.8 in their development of a heuristic ray
tracing model, although their comparison was not entirely
successful due to the absence of a proper turbulence model in
the shadow zone. Since the purpose of this paper is on the
diffraction and turbulence effect in the shadow zone, only the
upward refracting data are included in this comparison. The
meteorological parameters used are the estimated values
used by L’Espérance et al.8 �see Figs. 11 and 12 of Ref. 8�.
The estimated linear sound speed gradients for the two up-
ward refracting cases are −0.034 /s and −0.068 /s. The corre-
sponding values of �0

2 for the approximate Gaussian turbu-
lence are 1�10−6 and 2�10−6, respectively. The data set
includes two frequencies—a low frequency of 40 Hz and a
medium frequency of 630 Hz. The two cases are shown in
Figs. 9 and 10. In both cases the TSSR model predictions
agree well with the measured data, except at the shadow
boundary at 40 Hz where a sharp change of about 5 dB is
seen. This sharp change is due to the switch over at the
boundary from a hard ground effect at low frequency to a
diffraction calculation in the TSSR model. This has already
been discussed in detail earlier. It is interesting to note that
even with this sharp change, the predicted values are still
within the minimum to maximum range of the measured
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FIG. 9. Excess attenuation versus distance predicted by the TSSR model
�thick broken line� and PE �solid line� against experimental data published
by White and Gilbert �Ref. 22�. The assumed sound speed gradient is
−0.034 /s, and �0

2=1�10−6. �, �, and � represent the maximum, mean,
and minimum experimental results of White and Gilbert �Ref. 22�.
values. This error is not seen at the higher frequency,
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630 Hz, where the agreement is very good. The agreement
between the TSSR model and the PE model in these realistic
cases is significantly better than that observed in the extreme
benchmark cases shown in Figs. 6 and 8 within the corre-
sponding horizontal ranges.

VI. CONCLUSIONS

In this paper, a simple analytical model has been devel-
oped for the scattering of rays due to turbulence in a shadow
zone. The model is based on the assumption of a Gaussian
turbulence structure, and makes use of the equivalence of ray
propagation in a refractive atmosphere over flat ground and
the propagation in a still atmosphere over a curved ground.
The equations are derived analytically in all but one aspect.
The equation for the standard deviation of the changes in ray
height due to turbulence is obtained from statistics generated
by numerical simulations. Nevertheless, this equation is
shown to be valid for a horizontal distance of 10 km over a
large range of turbulence strengths for an assumed Gaussian
turbulence structure.

This simple analytical model has been tested in a simu-
lated benchmark case and against previously published mea-
sured data at a variety of frequencies and turbulence
strengths. The excess attenuation predicted by the model in
the shadow zone has been shown to agree well with that
predicted by a standard PE solution in all the test cases at
distances up to 2 km from the shadow boundary. Right at the
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FIG. 10. Same as Fig. 9 but with sound speed gradient of −0.068 /s, and
�0

2=2�10−6.
shadow boundary, there is an error of up to 5 dB at low
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frequency where the ground is effectively hard. This is due to
the step change of attenuation from hard ground pressure
doubling to a line-of-sight barrier screening effect in the
model. This error does not appear at frequencies higher than
100 Hz in the test cases. Further into the shadow zone, from
2 to 10 km, the model tends to predict less excess attenua-
tion than the PE.

The comparisons presented in this paper have shown
that the TSSR model provides fairly accurate predictions of
excess attenuation in the shadow zone at distances up to
2 km from the boundary under a variety of turbulence
strengths. The formulation of the model is based on ray trac-
ing, and is therefore well suited to such geometrical models,
which up to now have problems dealing with attenuation in
the shadow zone. The model can also be used as a simple,
standalone prediction tool for the attenuation in a shadow
zone due to turbulence.
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