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Introduction

Looking out over the South Pennines in mid-winter, through
the driving rain, we can see flat topped hills, drab and unin-
viting. The heather, dark at this time of year, gives them a

foreboding aspect. When walking and faced with a choice to go
over or around, their flat tops mean that the over-the-top route is
usually quicker. Of course, we may be out for a leisurely day in the
hills and may not be concerned with speed. Then again, the rain
may be stinging our face and a warm fireside and a pint of ale
may be beckoning. Muddy, coal-black paths may define our
route. Perhaps the choice is not so simple. There may be a multi-
tude of paths, relics of local industry and agriculture with greater
human input than at present. The population density on the
moorland fringe was significantly higher in 1900 than at the end
of the millennium. As elsewhere, the human population has given
way for sheep. These hill flocks play a role in maintaining the
upland path network. They also assist the mountain runner and
navigator—grazed upland makes good running. This runner,
when competing in events such as the Original Mountain Mara-
thon (2006), will be concerned with fastest routes and not with
route aesthetics. Then, a good over-or-around decision will save
time. Choosing the best line between checkpoints, one that mini-
mizes climb and distance travelled and has good running, is part
of the art of mountain navigation. The Original Mountain Mar-
athon is an “adventure race” for teams of two. It takes place over
two days in late October. Competitors in the elite class cover over
80km in two stages in mountainous terrain, navigating from
point to point, and camping overnight at a remote location. All
pairs have to be self-supporting, carrying all their food and gear
for the two stages.

In the Lake District, the fells have more of a conical quality.
Here it may be quicker to go around than over. The Howgill Fells,
sandwiched between the Lakes and the Pennines, are geographi-
cally and topographically intermediate—they are more rounded
in character. Well grazed and offering a multitude of routes over,
around or in between, difficult route choices abound. With a pair
of checkpoints carefully selected by an event planner, perhaps the
execution times for all routes between them are approximately
equal. That is, all routes may be isochronic (of equal duration). A
mountain runner and navigator may then ask the question: can
isochronic routes be characterized? We may imagine a hill such
that all routes over it are equal it time terms. What does such a hill
look like? We might call such a hill, if it existed, isochronic. A
cone is a simple hill. Does there exist an isochronic cone? If a
runner knew what an isochronic hill looked like when repre-
sented topographically (with contours), he or she could poten-
tially make faster decisions regarding over or around when
competing in mountain navigation races. The runner might be
trained to spot a hill that was flatter than isochronic (go over) or
steeper than isochronic (go around). The recreational walker
may also want to find the quickest way to the pub! In this paper,
we attempt to find descriptions of simple hills (cones, pyramids,
and domes) that are isochronic.

First we have to consider a rule that relates climb to distance.
(Note, in this article, climb will refer to the vertical component of
distance. Distance will mean the horizontal component of dis-
tance.) Consider the problem of travelling on foot from one side
of a hill to the other in the shortest time. The obvious solution is
to run faster. Therefore, consider this problem for an athlete who
runs at a fixed speed. Then the solution will be to go by the short-
est route—over the top. But the effect of the climb is to slow the
runner on the ascent. If the over-the-top route involves signifi-
cant climb, it may not be quicker than going round. Therefore, to
pose the problem more usefully, we will assume that the athlete
travels horizontally, on level ground, at a constant speed, and
ascends (travels vertically) at a rate that implies 1 unit of distance
vertically is equivalent in time terms to α units of distance hori-
zontally. This equivalence between distance and climb was pro-
posed by Scarf (1998), and is based on Naismith’s rule
(Naismith, 1892) which states that “men in fair condition should
allow for easy expeditions, namely, an hour for every three miles
on the map with an additional hour for every 2000ft of ascent”.
Thus, 2000 feet of climb is equivalent to 3 miles (=15,840 feet) of
distance and so Naismith’s rule implies α = 7.92. We call α = 7.92
Naismith’s number. If a route comprises of a horizontal distance
component of x units and a vertical distance component of y
units, then Scarf calls x y+ α the equivalent distance of the route.

Naismith did not provide any empirical evidence to substanti-
ate his rule. However, the record times for fell races provide
support for Naismith’s number (Scarf, 2007). Norman (2004)
finds evidence for a smaller value of α (in road running and tread-
mill experiments). Others (e.g. Langmuir, 1984; Rees, 2004) have
proposed refinements to the rule particularly for steeper ground.
α may vary between runners. It is important to note that in the
analysis of Scarf (2007), and in Naismith’s original proposal,
there is a presumption that the rule applies to routes that start
and finish at the same elevation—what goes up must come
down—and therefore empirical values of α should be based on
the times for journeys or events that start and finish at the same
elevation. Thus the effect of ascent is confounded with the effect
of descent. While we can therefore only calculate the equivalent
distance of a route that starts and finishes at the same elevation,
we can compare competing routes between two points at differ-
ent elevations because Naismith’s rule implies that the difference
in time only depends on the difference in climb and the difference
in distance between the routes. Alternatively, one can make an
additional assumption that descent has no effect on speed. What-
ever the exact underlying nature of the relationship in time terms
between climb and distance, we will assume that the equivalence
rule holds for our idealized athlete.

For our idealized athlete, the shortest route in time terms from
one side of a hill to the other will be the route with least equiva-
lent distance. There will be an infinite number of routes and so
this approach is only helpful if one can narrow down the choices
to a small number. The two simplest routes are (i) over and (ii)
around. There may be reasonable routes that lie between these.
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During an event, an athlete may attempt to calculate the equiva-
lent distance of a number of competing routes by measuring the
distance of and counting the number of contour lines crossed by
a route. This is often impractical except in the simplest cases.
Instead athletes rely on experience based on the representation of
the hill on a map. An experienced navigator will claim the ability
to recognize when it is quicker to go over than around. However,
the over or round choice can be misleading even on the simplest
hills. Consider determining the fastest route over the leg A to B in
figure 1. The hill here is a cone. Suppose this cone is constructed
so that the direct route AB (over) has the same equivalent dis-
tance as the route on the semicircular contour AB (around).
Then there is an intermediate route which is faster—we establish
this later. The cone is not isochronic with respect to A and B even
if the over and around routes are equivalent.

Consider determining the fastest route between opposite base
corners of a regular pyramid whose base diagonal is 1 unit (figure
2). Further, let the over and around routes be equivalent so that
the height of the pyramid is h = −( ) /2 1 α and both routes have
equivalent distance 2 . Consider now a route ACB which goes
over the shoulder of the pyramid at C. Let the perpendicular dis-
tance of the point C from the direct route AB be x. Then the
equivalent distance of route ACB,| |ACB eq , independent of α, is

2 1 4 2 2 12 1
2

x x+ + − −/ ( )( ),

since the vertical height, y, of the point C above the base is given
by y h x= −2 1

2
( ) and| | . |ACB| |AC ACB|eq eq= +2 αy is a minimum

When x = 0 23. , and min| .ACB|eq = 1325. Therefore the pyramid is

not isochronic with respect to A and B, and furthermore, while
the calculation of the shortest route is straightforward mathe-
matically, it is difficult to imagine using navigational experience
to arrive at this choice of best route. The best route would also
give a time saving of the order of 6% or 4 minutes in every hour.
While few hills are shaped like pyramids, real valleys often appear
like “half-pyramids” and so this result is of practical interest.

The above initial analysis then brings us back to our central ques-
tion: what is the shape of an isochronic hill? To answer this
question, we first define what is meant by an isochronic hill.
Roughly speaking, a hill is isochronic if all sensible routes on it
have the same equivalent distance. To be more precise, we need to
consider two points at equal elevation on the hill, A and B say,
and the shortest route from A to B that climbs to height y above
A, Ry. Then we say that the hill is isochronic with respect to
A and B if the equivalent distance of Ry is the same for all
y y y( )max0 ≤ ≤ . Note that the height of the summit above A (and
the shape of the hill) defines ymax, and Rymax

is the shortest route

with maximum height gain. On a “regular hill”, Rymax
will be the

route over the top. R0 is the route around the base. By specifying
A and B, we are suggesting that a hill can only be “relatively”
isochronic. That is, the shape of an isochronic hill depends on
where one starts and finishes on it.

We could attempt to draw the isochrones for the point B (those
lines joining points that have equal equivalent distances from B)
superimposed onto a hill. In yachting, the study of isochrones is
well developed (Philpott, 2005; Philpott and Leyland, 2006). If
the hill is isochronic with respect to A and B, then that part of the
isochrone near A that lies on the hill will be circular with centre at
A. Then, all routes out of A are equal in time terms, since the
optimum route is perpendicular to the isochrone. However, we
cannot draw the isochrones, because to do so we need to know the
relative speed of progress on all points of the hill. But these
speeds are unknown because ascent is confounded with descent
in Naismith’s rule.

Descriptions of isochronic hills
To determine the shape of isochronic hills, it is necessary first to
restrict the class of hill and then find the hill within the class that
is isochronic with respect to A and B. A simple class consists of
those hills with circular contours with a common origin
(rotationally symmetric hills). This class includes the cone, the
hemisphere, and the hill whose summit is a cusp. Let A and B lie
at opposite ends of a diameter of the base contour of a hill in this
class (figure 3).

The circular contours have a common origin at the summit, S.
The topography outside the base contour need not concern us.
On this hill, consider a contour with radius x and at height y
above the base contour. Our intention is to determine how y is
related to x when the hill is isochronic with respect to A and B. We
will call the function y f x= ( ) so determined the shape of the
isochronic hill (in this class with respect to A and B). Let
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Figure 1. Equally spaced contours of a cone with base diameter AB.

Figure 2. Equally spaced contours of a regular pyramid with base diagonal
1 unit.

Figure 3. Plan view of a hill with circular contours with common centre at
summit S.



| |AB = 2 a. The shortest route from A to B that climbs to height y
above A (with least horizontal distance component), Ry, is along
the tangent to the contour radius x from A to the point C, then
along the arc CD (maintaining a constant height y), and then
along the tangent to B. The distance of this route | |Ry is
2| |AC +xθ, where θ is the angle subtended by the arc CD at S. A
little trig gives

| | sin ( / )Ry a x x x a= − +


−2 2 2 1 .

The equivalent distance of the route Ry, | |R eqy , is | |Ry y+α . The
hill is isochronic if | |R eqy is the same as the horizontal distance

on the base contour (πa) for all y. That is if

2 2 2 1a x x x a y a− +


+ =−sin ( / ) α π .

Rearranging this gives the shape of the isochronic hill:

y a x a x a x a

a x a

= − − −


− ≤ ≤

−π α2 1 22 1( / ) ( / ) sin ( / ) / ,

.

(1)

This function is drawn in figure 4a (with base radius a = 1) with
distance and climb on the same scale. It is remarkable how “flat”
this hill appears in elevation view. Also drawn (figure 4b) is the
quadratic hill (y x x= − − − ≤ ≤( )( ) / , .π α2 1 1 12 ) with same
summit height. We have had to reduce the vertical scale here to
distinguish these functions.

Taking a to be the unit of distance, and using the obvious prop-
erty of rotational symmetry of the hill, implies that in three
dimensions its functional form is given by

y x x x x x x

x x

= − − − − + +


+

−π α2 1 21
2

2
2

1
2

2
2 1

1
2

2
2

1
2

2

sin / ,

2 1≤ .

(2)

The surface, equation 2, is shown in figure 5 along with two map
extracts of hills with approximately circular contours.

Suppose now that A is not on the base contour, and AB is an
extension of the base diameter. Consider the hill drawn in figure
6, with the point B at height c above A. The shortest route that
climbs to height y above the contour through A,Ry, travels along
the tangent AC, then along the arc CD with radius x, and then
along the tangent DB. Its equivalent distance is

| | sin ( / ) sin ( / )

( )

Ry eq b x a x x x b x x a

y c

= − + − + + +

− +

− −2 2 2 2 1 1

α g c a x a( ), ( )− ≤ ≤

where g(c) is an unknown factor for the additional climb c (that
does not have a matching descent). The routeRc travels along the
tangent AE and then on the contour EB. Its equivalent distance is

| | (sin ( / ) / ) ( )Rc eq b a a a b g c= − + + +−2 2 1 2π .

Again setting a = 1, we can now parameterize the isochronic hill
with respect to A and B with two parameters b and c. The hill is
isochronic if | | | |R Req eqy c= for all c y y≤ ≤ max. That is, if

y c b x b x b

x x x

= + − − − − − + +

− −

−

− −

{ / sin ( / )

sin sin

2 2 2 2 1

1 1

1 1 2 1π

( / )} / , ( ).x b xα − ≤ ≤1 1

If c = 0 and b = 1, we obtain equation (1) above. If c = 0 and b > 1,
then we are approaching the hill on a flat plane from a distance
( )b −1 , and the further A is from the foot of the hill (at F), all else
being equal, the more likely one is to go around. Or, as b
increases, the isochronic hill will become flatter in comparison to
equation (1). Note the topography between the contours through
A and F need only be regular—“uphill only”.

If A and B lie on the base contour but AB is not a base contour
diameter, then the isochronic hill will have a different shape.
Suppose B is at a perpendicular distance b a( )≤ from the base
contour diameter through A (figure 7). Then, the equivalent
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Figure 4a. Isochronic hill with circular contours and AB a diameter of base
contour. Elevation view with equal vertical and horizontal scales.

Figure 4b. Isochronic hill as above (solid line), quadratic hill with same base
contour and summit height (dotted line). Both hills with circular contours and
AB a diameter of base contour. Elevation view with unequal vertical and

horizontal scales.

Figure 5. Top, Middle Fell, below left Kirk Fell in the Lake District. Below
right, isochronic hill (with respect to A and B) with circular contours, with
base diameter 1km and contour interval 15m, drawn to same scale and

contour interval as map extracts (© Harvey Maps, 2008).



distance of the shortest route that climbs to height y above the
base contour through A and B is given by

| | sin ( / ) sin ( / ) ,

( )

Ry eq a x x x a x b a y

a x a

= − + − +

− ≤ ≤

− −2 22 2 1 1 α

.

The route on the base contour from A to B has length
πα α α| cos ( | )2 1+ − b and so the hill is isochronic if

y a a b a a x x x a

x b a

= + − − −

+

− −

−

{ / cos ( / ) sin ( / )

sin ( /

π 2 2 21 2 2 1

1 )} / .α
(3)

This is only true for a b a x asin( sin ( / ))1
2

1− ≤ ≤ . This is because

when x a b a= −sin( sin ( / ))1
2

1 , the line AB is perpendicular to the

contour with radius x, and therefore the line AB is the direct

“over-the-top” route. A route that climbs higher than this direct
route must also go further horizontally. Therefore, the hill with
circular contours cannot be isochronic with respect to A and B

for x a b a< −sin( sin ( / ))1
2

1 . If it were then the height of the hill at

S for example must be less than that at C. But then the contours
would no longer be circular. This though suggests another exten-
sion—the description of an isochronic hill with contours that are
circular arcs that are reflected in the line AB and that have
common focus (figure 8). A contour of this hill is a (symmetric)
lens.

Again let the perpendicular distance to the point B from the base
diameter be. Let the diameter through A have centre at O, and let
the hill have summit at S. Then the horizontal distance OS is

s a b a= −sin( sin ( / ))1
2

1 . Replacing x in equation (3) by ′ = −x x s

we will obtain the shape of the isochronic hill with lens contours
for − − ≤ ′ ≤ −( )a s x a s.

Next we can ask what is the effect if AB is the minor axis of
such a hill (figure 9). A little more trigonometry gives the shape
of the isochronic hill as

y a s a l x= −−{ cos ( / ) ( )} /2 1 α,

where

l x

a s x s x x s x

a s
( )

( ) {sin ( / )

sin ( (=

− + + + +

− −

−

−

2 22 2 2 2 2 1 2 2

1 2 2 2

2

2 2 22

+

− ≤ ≤ + −

+ − < −

x a

s a s x a s a s

x a s x s a s

) / )},

( ) ( )( ),

( ) , ( ).














Such a hill is shown in figure 9, along with Yewbarrow in the Lake
District, a hill with contours that are remarkably like a symmetric
lens.

Haycock (figure 10) suggests consideration of a hill with con-
tours that are equilateral triangles with a common centre. Let B
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Figure 6. Hill with circular contours with common centre at summit S and
base diameter AF extended to a point A, some height c below F.

Figure 7. Hill with circular contours with common centre at summit S, with
AB not a base diameter.

Figure 8. Symmetric lens contours of a regular hill with summit at S defined
by the common chord AB of the circles centre O. Base contour diameter is2α.

Figure 9. Left, Yewbarrow in the Lake District (© Harvey Maps, 2008). Right,
isochronic hill (with respect to A and B) with symmetric lens contours with

a=b, drawn to same scale and contour interval as map extract.



lie at a vertex of the base and let A be the midpoint of the oppo-
site side of the base, a distance a from B (figure 10). Consider a
contour at height y above the base and let C be a vertex of this
contour. Let the perpendicular distance from C to the line AB be
x. Then the hill is isochronic with respect to A and B if

y a x x a

x

a x a x

a a

= − + − − + +

− ≤ ≤

{ ( ) ( ) } / ,3 2
3 3

2 2 2
3 3

2

3 3

This is obtained by noting that the route with no climb (y=0, with
C a base vertex) has length a 3. The other term in equation (4) is
the length of route ACB. The height of the isochronic hill is
a( ) /3 1− α. Note here that this is the only hill we have consid-
ered in which the ascent and the descent have different gradients.
This will have a small effect in practice since normally it will be
marginally faster to go AB than BA. This is because a steep
descent will be slower than a shallow descent. This is an example
of a case where Naismith’s rule is violated—hence the correction
for steep ground (Langmuir, 1984).

In plan view, hills and valleys are indistinguishable and there-
fore all the analysis above applies equally to valleys. The
isochronic surface in figure 9 is a case in point. Also, the analysis
extends to depressions, although in the Lake District, these tend
to be of the meteorological kind. Other hill shapes could be inves-
tigated, for example, hills with elliptical contours. The lengths of
elliptic arcs are more difficult to handle and so we have not con-
sidered these.

Conclusions
In mountain navigation events, maps are typically not seen in
advance and so route choices have to be made “on the run”. For
the most part, competitors have to rely on experience. Even
simply shaped hills can be misleading in terms of best route. In
this article, we draw isochronic hills in a number of simple cir-
cumstances. The topographical representation of an isochronic
hill will depend on the map scale and the contour interval, but
they can be drawn for typical scales encountered (1:40000, 15m;
1:25000, 10m; etc.). Such isochronic hills could then be used for
armchair training—mountain navigators could train themselves,
in the warmth of their own sitting rooms, to recognize such hills.

However, a hill can only be isochronic with respect to some
chosen points A and B. Therefore, spotting isochronic hills and
valleys will be difficult in a race. Arm chair training will also be

problematic due to the fact that most hills have non-standard
shapes and a leg (defined by its start and end points) could be
anywhere. However, we have been gained some insight.
Isochronic hills are rounded. Isochronic hills are surprisingly
flat. (As an aside, this suggests that the analysis here is robust to
departures from Naismith’s rule on steeper ground.) If the flat
route and the straight route on a conical hill are isochronic then
there exists a faster route over the shoulder of the hill. This result
is more practically useful for half-cone and half-pyramid like
valleys. When taking a shoulder route on a hill with smooth con-
tours, on ascent one should choose to climb to a particular eleva-
tion, meeting the contour through the chosen elevation at a
tangent.

The value of Naismith’s number may differ from that assumed
here. If it is smaller, then isochronic hills get higher—their shape
remains the same. Naismith’s number may vary between individ-
uals. If the functional form of Naismith’s rule changes then the
shape of an isochronic hill will change. In principal we could seek
that equivalence rule between climb and distance that makes a
conical hill isochronic. We have only looked at very simple,
regular hills. We have also ignored the existence of paths. Paths
and their location have an important bearing on the route choice
problem, and their effect in flat terrain has been studied (Kay,
2006). In terrain with varying topography their effect is more dif-
ficult to model. On more complex hills and real topography,
route choice can be effected by using dynamic programming
(Hayes and Norman, 1984).

Looking out again over the South Pennines, with their summits
like flat-caps, perhaps straight over is not so quick after all. From
the shape of the isochronic hills that we study and draw, it
appears that climb will slow our progress to a surprisingly large
degree. If we are determined to go over the top and admire the
view, don’t buy the round of ale just yet—we may be a little
longer than you expect.❏
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Figure 10. Left, Haycock in the Lake District (© Harvey Maps, 2008). Right,
hill with contours that are equilateral triangles with common centre at the

summit S.


