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Abstract 
Forecasting demand at the individual stock-keeping-unit (SKU) level often necessitates the use of 

statistical methods, such as exponential smoothing. In some organizations, however, statistical 

forecasts will be subject to judgemental adjustments by managers. Although a number of 

empirical and ‘laboratory’ studies have been performed in this area, no formal OR modelling has 

been conducted to offer insights into the impact such adjustments may have on supply chain 

performance and the potential development of mitigation mechanisms. This is because of the 

associated dynamic complexity and the situation-specific nature of the problem at hand. In 

conjunction with appropriate stock control rules, demand forecasts help decide how much to 

order. It is a common practice that replenishment orders may also be subject to judgemental 

intervention, adding further to the dynamic system complexity and interdependence. The system 

dynamics (SD) modelling method can help advance knowledge in this area, where mathematical 

modelling cannot accommodate the associated complexity. This study, which constitutes part of a 

UK government funded (EPSRC) project, uses SD models to evaluate the effects of forecasting 

and ordering adjustments for a wide set of scenarios involving: three different inventory policies; 

seven different (combinations of) points of intervention; and four different (combinations of) 

types of judgmental intervention (optimistic and pessimistic). The results enable insights to be 

gained into the performance of the entire supply chain. An agenda for further research concludes 

the paper.  
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1. Introduction 

Judgemental adjustments constitute one of the few practical ways for organisations to 

take account of internal and external performance drivers in their demand forecasts 

(Fildes et al, 2009). Experts may know that institutions will change, that events have a 

specific impact that is not included in the model being used, or that a variable difficult to 

measure is missing from the model. Such knowledge is often reflected by adjustments to 

the statistical or model-based forecasts produced by software solutions.  

 

A number of empirical and ‘laboratory’ studies have been conducted to evaluate the 

effect of such adjustments on the forecasting task. A few attempts have also been made to 

model adjustments to offer some insights into their underlying properties (Fildes et al, 

2009; Franses, 2007). However, no formal modelling has been conducted that could offer 

insight into the impact such adjustments might have on the entire supply chain 

performance and the potential development of mechanisms to mitigate any adverse 

effects. This is because of the associated dynamic complexity that precludes the 

development of closed-form mathematical models, unless rather simplifying (and thus 

not particularly realistic) assumptions are employed for such an exercise. 

 

Moreover, while the effect of judgemental adjustments on forecast accuracy has received 

attention in the academic literature, its inventory implications have been largely ignored. 

A number of research projects have demonstrated that the efficiency and effectiveness of 

inventory systems do not relate directly to demand forecasting performance, as measured 

by standard forecasting accuracy measures. Syntetos et al (2009b, 2010) examined the 
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stock control implications of judgementally adjusting statistical forecasts through the 

consideration of relevant accuracy-implication metrics (inventory and service level 

achieved). They found that the inventory performance could not be explained in terms of 

the forecast accuracy alone and that the inventory benefits were of a completely different 

order of magnitude to the forecast accuracy gains. Both results can be attributed, 

conceptually at least, to the interdependence between forecasting methods and stock 

control rules in inventory management systems (Syntetos and Boylan, 2008). However, 

presently, the dynamic effects of such interactions are not fully understood. In particular, 

the reasons why relatively small forecast accuracy changes may translate into significant 

inventory benefits requires more investigation. It is the contention of this paper that the 

system dynamics (SD) modeling method can play a crucial role in advancing knowledge 

in this area, where mathematical modeling cannot accommodate the associated dynamic 

complexity. 

  

In an inventory setting, demand forecasts are used in conjunction with appropriate stock 

control rules in order to decide how much to order. Kolassa et al (2008) examined the 

inventory systems of three major German retail corporations and reported that 

replenishment orders may also be subject to judgemental intervention. (This may, or may 

not, occur in conjunction with judgementally adjusting sales forecasts.) Our study 

constitutes part of a UK government (EPSRC) project and all our industrial partnering 

organisations in this project rely, to a certain extent, on adjusting forecasts and/or 

replenishment orders. This is also true for a number of other companies we have 



 4 

examined. The effects of judgementally adjusting replenishment orders have never been 

studied before or explored in the academic literature. 

 

Judgemental adjustments should have a considerable effect on supply chain performance 

and the creation of bullwhip-type phenomena through, for example, stock amplification 

as we move upstream in the supply chain. The purpose of our work is to study this effect 

in detail. Our investigation entails the application of SD models on a wide-range of 

scenarios, to evaluate the effects of forecasting and/or ordering adjustments on supply 

chain performance. A three-stage supply chain is considered (Retailer, Wholesaler 

(Home Office/Co-ordinating Unit) and Factory) and results are presented for three well-

known stock control policies: i) the linear Anchor and Adjust (AaA); ii) the re-order point 

s, order-up-to-level S (s,S); and iii) the order-up-to-level S (utS). Other control parameters 

include the point of intervention (the stage at which the supply chain managers intervene 

to make the adjustments, including all possible combinations), and the nature of the 

adjustments (purely optimistic, purely pessimistic and mixed downward and upward 

optimistic and pessimistic). The performance metric we employ is the factory stock 

amplification ratio (Sterman, 2000, p. 673), which relates the maximum change in stocks 

at the factory level to the maximum change in forecasts or orders, as a consequence of 

judgemental adjustment. The results enable insight to be gained into the effects of 

judgemental interventions on bullwhip amplification in the supply chain.  

 

The remainder of our paper is structured as follows: in the next Section the research 

background is presented, followed in Section 3 by the experimental structure employed 
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for the purposes of our research. Details related to SD modelling are presented in Section 

4. Section 5 contains the results of our investigation and their analysis and interpretation. 

The paper concludes with an agenda for further research in Section 6. 

 

2. Research background 

In this section the literature related to our research is reviewed under three main sub-

sections. First, we discuss studies that have considered the effects of judgemental 

interventions in supply chain management. Second, we review contributions in the area 

of the bullwhip effect; its contributory factors are synthesized in a diagram that illustrates 

the potential effects of judgemental interventions. Third, we consider a number of SD 

projects that focus on supply chain modelling and management.  

 

2.1 Judgemental interventions in supply chain management 

Franses (2007) investigated judgemental adjustments to model-based forecasts and 

explored whether they contributed to forecasting accuracy, i.e. is there any value being 

added? He also examined whether the contribution of the model forecast and that of the 

expert added value (as opposed to expert forecast) are of equal importance, i.e. does the 

50% model – 50% manager rule (advocated by Blattberg and Hoch, 1990) hold?  

 

In the above study, the null hypothesis that the root mean squared error prediction 

(RMSPE) of the expert is equal to that of the model (against the alternative that the expert 

is better) was tested based on recommendations proposed by Clark and McCracken, 

(2001, 2005 – one-sided tests). The empirical dataset consisted of monthly observations 
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(demand realizations, model and expert forecasts) for a wide range of pharmaceutical 

products belonging to different categories and sold across many countries. 

 

The main conclusions are that the expert’s added value frequently matters and when it 

matters it also frequently occurs on a 50-50 basis, but the experts put too much emphasis 

on their own added contribution. The implications of this research project are viewed as 

very important: i) the way the statistical model works should be better communicated to 

the experts; ii) experts should start documenting what they effectively do when they 

adjust model based forecasts; iii) the experts should become aware that they may be 

putting too much weight on their expertise. When expert judgement is useful, there is no 

problem, but when it is not, forecasts can become dramatically bad.  

 

A further attempt to investigate the properties of expert adjustments on model-based SKU 

level forecasts was made by Franses and Legerstee (2009). They analysed a database 

containing one-step-ahead model-based forecasts adjusted by many experts located in 37 

countries, who make forecasts for pharmaceutical products within seven distinct 

categories. Their results were consistent with earlier findings that the experts make 

frequent adjustments (managers were found to adjust model-based forecasts in 90% of the 

cases) and that these tend to be upward. In addition, they found that expert adjustment 

itself is largely predictable, where the weight of a forecaster’s own earlier adjustment is 

about three times as large as the weight of past model-based forecast errors. Finally, they 

showed that expert adjustment is not independent of the model-based forecasts. They 
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argued that this interaction should be taken into account in any evaluation of the effect of 

the contribution of expert adjustment to the overall forecast quality. 

 

Fildes et al (2009) collected data from more than 60,000 forecasts from four supply chain 

companies. In three of the companies, on average, judgemental adjustments were found 

to increase accuracy. However, detailed analysis revealed that while the relatively larger 

adjustments tended to lead to greater average improvements in accuracy, the smaller 

adjustments often damaged accuracy. In addition, positive adjustments, which involved 

adjusting the forecast upwards, were much less likely to improve accuracy than negative 

adjustments. They were also made in the wrong direction more frequently, suggesting a 

general bias towards optimism.  Models were then developed to eradicate such biases. 

 

Small adjustments have been found not to be very effective. This is confirmed by 

analysis of both intermittent and faster-moving demand data by Syntetos et al (2009b) 

and Fildes et al (2009) respectively. It seems that in this case the experts merely add 

‘noise’ to the forecasts resulting in higher errors however the errors are measured. 

Consequently, it may be useful modelling the adjustments (under those conditions) for 

the purpose of further developing our understanding of their implications. We note that 

the analysis under concern reflects the unfavourable setting where adjustments do not 

perform well, i.e. they do not convey an important piece of information that would be lost 

otherwise. 
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Eroglu (2006) explored the variables that affect a forecaster’s performance when making 

judgmental adjustments to statistical forecasts (see also Eroglu and Croxton, 2010). He 

also looked at the conditions under which judgmental adjustments were beneficial or 

detrimental to forecasting performance. Eroglu (op. cit.) examined two other important 

issues both of which have received insufficient attention in this context in the academic 

literature: learning and biases.  

 

The data set used in the study came from the forecasting records of a company that 

judgmentally adjusted statistical forecasts to improve the forecast accuracy. The original 

(statistical) forecast, the adjusted forecast and the actual sales in the corresponding time 

period were retrieved from the research company’s data warehouse. Forecasting 

performance (accuracy improvement, learning and biases) was calculated using these 

data. The study covered a period of 12 months from the beginning of June 2004 to end of 

May 2005. Most interestingly, the data set was augmented with independent variables 

that were measured with a survey instrument, administered in 390 company stores located 

in several Midwestern and southeastern states in the USA. Pertinent constructs included 

personality, motivational and situational variables. The survey responses were matched 

with corresponding judgmental adjustments made by the respondent. The main 

conclusions can be summarized as follows: i) the analysis of the data provided evidence 

for accuracy improvement; ii) the data analysis provided no evidence of learning; iii) in 

addition to accuracy improvement, data analysis detected evidence of biases (optimism 

bias and overreaction bias).  
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2.2 Factors influencing the bullwhip effect  

The Bullwhip Effect is a term promoted by Lee et al (1997a) but was observed and 

modelled decades earlier by Forrester (1958). It occurs whenever demand becomes more 

variable as it proceeds through the supply chain, away from the consumer and towards 

the supplier. Recent research on the Bullwhip Effect (e.g. Lee et al, 2000; Zhang, 2004) 

has tended to focus on mathematical modelling and has treated one cause of bullwhip 

independently of the others. The potential to use SD to understand the interactions 

between causes of the Bullwhip Effect is partly addressed by the research reported in this 

paper. 

 

Lee et al (2000) discussed four causes of the Bullwhip Effect, namely: demand signal 

processing, rationing/shortage gaming, order batching and price fluctuations.  

 

Demand signal processing refers to the magnification in variance that occurs through the 

interaction between forecasting procedures and inventory rules at each stage of the supply 

chain (see also Chen et al, 2000a, b; Wong et al, 2007; for a review of studies in this area 

please refer to Syntetos et al, 2009a).  

 

Lee et al (1997b) argued that rationing and shortage gaming is a major cause of the 

Bullwhip Effect and occurs in situations where the demand exceeds the production 

capacity. In these situations, the manufacturer may ration or allocate supplies to the 

retailers. On recognising the rationing criteria, the retailer may place orders exceeding the 

required quantity, to secure a greater share of the supplies from the manufacturer. This 
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gives the manufacturer a false impression of the true demand and they in turn place large 

orders on their suppliers. This particular cause of the bullwhip effect has also been 

discussed, amongst others, by Cachon and Lariviere (1999), Cheung and Zhang (1999) 

and Paik and Bagchi (2007). 

 

A common practice in industry is not to place orders on the upstream link as soon as 

demand arises. Instead, the individual demands are batched or accumulated before 

placing the orders (order batching) and thus, instead of frequent orders, weekly, biweekly 

or monthly orders are placed. This is done for various reasons including economies of 

scale and distribution efficiencies, or similar factors (see, for example, Potter and Disney, 

2006; Pujawan, 2004). 

 

Price fluctuations refer to the practice of offering products at reduced prices in order to 

stimulate demand (e.g. Gavirneri, 2006; Reiner and Fichtinger, 2009). For price-elastic 

products, when the price of an item changes, the customer demand will also change. 

Customers buy in bulk quantities when the price of the product is low. Then, customers 

stop buying when the price returns to normal, until they have exhausted their inventory. 

Thus, the actual customer sales do not match the true demand for the product when there 

are price variations. This results in the Bullwhip Effect, as the variance of the order 

quantities amplifies upstream because of the temporary price reductions.  

 

There have been numerous papers investigating these causes individually, but little 

attention has been paid to their interaction. Such interactions may be adequately captured 
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with the help of the SD modeling method. A critical element in any bullwhip effect 

model is the variance of upstream orders. Figure 1 shows a basic map of the most 

important factors that influence the bullwhip effect. 

 

Figure 1. Factors impinging on the bullwhip effect 

 

This example of a generic or archetypal causal map (Figure 1) highlights two behavioural 

factors: i) judgemental changes to forecasts and ii) judgemental changes to orders. The 

second may be distinct from the first, as it is not necessarily based on any expectation of 

a changed demand pattern, but rather on a subjective reaction to external stimuli (e.g. 

change in price, shortage of supply).  However, the former may indeed affect the latter if 

a single person, for example, performs both adjustments. Similarly, in the context of a 

small organization, the judgemental adjustments of the orders may reflect a certain 

reaction mechanism on the part of the stock controller to known adjustment behaviours 

on the forecasting side. The distinction between forecasting and ordering adjustments has 

been neglected in much of the academic forecasting literature, but is very important in 

practice (Kolassa et al, 2008). 
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2.3 System Dynamics modelling of supply chains 

The initial exposition of this application topic in SD was made by Forrester (1958, 1961). 

He considered a three-stage supply chain, demonstrating the now well-known 

amplification of orders as they are transmitted upstream. He explicitly considered the 

inventory policy as a cause of this. Orders were determined through a policy which 

considered: (desired – actual inventory) + (desired – actual orders in the pipeline) + 

(actual – normal unfilled orders). To preserve the dimensional consistency, each of these 

terms has to be divided by an adjustment time which Forrester emphasised was a critical 

explanatory factor in the determination of the overall system behaviour. The ‘desired’ 

values were obtained by smoothing an actual demand flow and then multiplying by a 

number of units of coverage. 

 

Barlas and Ozevin (2004) investigated two different yet related research questions about 

stock management in feedback environments. The first purpose was to analyse the effects 

of selected experimental factors on the performances of subjects (players) in a stock 

management simulation game. In the light of these results, the second objective was to 

evaluate the adequacy of standard decision rules typically used in dynamic stock 

management models and to seek improved formulations. In the first part, gaming 

experiments were designed to test the effects of three factors on decision-making 

behaviour: different patterns of customer demand, minimum possible order decision 

(review) interval and, finally, the type of receiving delay. These factors were analysed 

with regards to their effect on 10 different measures of behaviour (such as max–min 

range of orders, inventory amplitudes, periods of oscillations and backlog durations).  
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In the second phase of research, the performances of subjects were compared against 

some selected ordering heuristics (formulations). These included the linear ‘anchoring 

and adjustment rule’ (commonly used in SD studies), several alternative non-linear rules, 

and some standard discrete inventory control rules common in the inventory management 

literature. The non-linear and/or discrete rules, compared with the linear stock adjustment 

rule, were found to be more representative of the subjects’ ordering behaviour in many 

cases, in the sense that these rules could generate non-linear and/or discrete ordering 

behaviours. Another important finding was that the well-documented oscillatory dynamic 

behaviour of the inventory is a quite general result, not just an artefact of the linear 

anchor and adjust rule.  

 

Saeed (2009) examined the use of trend forecasting in driving ordering policies in supply 

chains by comparing it with derivative control in classical control theory. He found that 

although both processes involve the use of trend to determine policies for achieving 

reliable performance, the former often worsens instability while the latter can improve 

stability with certainty. The similarities and differences between the two processes were 

discussed and a framework was suggested for improving the efficacy of trend forecasting 

in ordering policies. 

 

Yasarcan and Barlas (2005) proposed a generalized SD stock control formulation for 

stock management problems involving information delays and delays implicit in 

controlling a primary stock indirectly via a secondary stock. It is well-accepted that the 

behaviour of a standard SD stock management structure can be highly oscillatory if the 
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stock control formulation (typically the linear anchoring and adjustment rule) does not 

take into account the supply line (material) delays. However, such delays do not 

constitute the only type of delay in stock management problems; there are other types 

such as information delays in decision processing, delays caused in trying to control a 

stock indirectly via a secondary stock and combinations of these. Yasarcan and Barlas 

(op. cit.) investigated the implications of ignoring such composite and indirect delays in 

the stock control formulation. They showed that the consequences of ignoring 

information delay in the decision stream or ignoring the delay implicit in secondary stock 

control are both equivalent to ignoring the supply line delay in the standard case: large, 

possibly unstable, oscillations. Subsequently, they proposed a generalised stock control 

heuristic that does take into account these more advanced types of delays and showed that 

the result is stabilised dynamic behaviour. In this research, they introduced the notion of a 

‘virtual supply line’ (VSL), a conceptual generalisation of the standard notion of supply 

line delay to structures involving information delays and ‘secondary stock control-

induced-delays’. They implemented their generalised decision heuristic on a complex 

example involving all three types of delays, demonstrating the usefulness of the proposed 

formulation whilst illuminating some implementation issues.  

 

Croson and Donohue (2005) examined whether giving supply chain partners access to 

downstream inventory information is more effective at reducing bullwhip behaviour, and 

its associated costs, than similar access to upstream inventory information. They used a 

controlled version of the Beer Distribution Game as the setting for their experiment, and 

varied the amount and location of inventory information shared across treatments. They 



 15 

first independently tested whether sharing upstream or downstream inventory information 

helps reduce bullwhip behaviour, and found that only downstream information sharing 

leads to significantly lower order oscillations throughout the supply chain. Subsequently, 

they compared the reduction in order oscillations experienced by supply chain level and 

found that upstream supply chain members benefit the most from downstream 

information sharing. A very important observation of this study is that it is not the 

information per se but the interaction between the information and the decision setting 

that has the potential to improve performance in dynamic tasks. 

 

For some very interesting discussions on the role of system dynamics in supply chain 

management and its usefulness for performance measurement in such a context, the 

reader is referred to Akkermans and Dellaert (2005), Kleijnen and Smits (2003), and Otto 

and Kotzab (2003).  

 

The brief literature review on SD in supply chains presented in this sub-section shows 

that only a small part of the generic map shown in Figure 1 has been addressed using a 

system dynamics approach. In this paper, we go further and incorporate judgemental 

changes to orders and to forecasts into an SD model of a three-stage supply chain. We 

will not examine shortage gaming or price fluctuations. Order batching will not be 

analysed directly, although batching effects will be observed in one of the inventory 

management rules. It is hoped that the work reported here will provide a springboard for 

more comprehensive SD models of bullwhip effects.        
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3. Experimental structure 

Excluding the final user stage, a three-stage supply chain has been considered for the 

purposes of this investigation (Figure 2). It consists of a factory (F) or supplier stage, a 

home office (H) stage, where H takes the role of wholesaler, and a client (C) stage that 

acts as a retailer, serving the final end consumers. Each stage contains three sub-stages 

(called Work-In-Progress, WIP) which may represent such processes as booking in and 

inspection. 

 

Our SD models show the middle stage H (wholesaler) as the home office or Head-

Quarters of a vertically integrated supply chain or, correspondingly, the ‘co-ordinating’ 

unit (in terms of material and information flows) of any supply chain that consists of 

separate business entities. Consequently, the retailer may be viewed as the wholesaler’s 

client (C) that in turn serves customers in the final user stage. 

 

Figure 2.  Supply-chain model structure in this study 
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The demand experienced at the client (retailing) stage is assumed to be deterministic and 

constant at 100 items per week. The time unit chosen for all experimental results equals 1 

(one) week. Other time buckets could have been chosen but weekly periods constitute a 

realistic reflection of various industries, stages in a given supply chain and inventory 

control systems. 

 

With regards to the demand, we considered the possibility of introducing some random 

variations to the underlying pattern, but that would necessitate conducting multiple runs 

(30 at least) for each experimental scenario for the purpose of averaging the results, 

leading to a totally unrealistic size of the simulation output. Likewise, a deterministic sine 

wave could have been introduced. However, the judgemental adjustment effects would 

not then be distinguishable from the deterministic sine wave effects on the observed 

bullwhip. On the other hand, the flat deterministic demand pattern renders the application 

of any forecasting method, such as single exponential smoothing (SES), redundant and 

thus forecasting adjustments cannot be evaluated. To overcome this problem, demand is 

indeed assumed to be forecasted using SES, but the forecast adjustment intervention 

occurs on the input of the SES procedure rather than on its output, i.e., actual demand 

data are adjusted in lieu of the forecast output. We return to this issue later in this section.  

 

Results have been generated for three stock control policies: i) the linear Anchor and 

Adjust (AaA); ii) the re-order point s, order-up-to-level S (s,S); and iii) the order-up-to-

level S (utS). Details governing the implementation of these three stock control policies 

follow in the next section. We assume that unfilled demand is backlogged, i.e no lost 
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sales occur. All stages in the supply chain are assumed to employ the same stock control 

policy. We recognize that this is a rather restrictive assumption, but computational 

considerations dictate that we implement it in our SD supply-chain models. In addition, 

such a formulation would indeed reflect reality for a vertically integrated supply chain (or 

a supply chain connected through an ERP-type solution that dictates the employment of 

the same stock control policy through its functionality; in the case of SAP this would be 

the re-order point s, order-up-to-level S policy). The lead time has been set to three time 

periods (weeks). This is a convenient assumption based on the real-life organizations we 

have worked with. Lastly, the SES smoothing constant (α) has been set equal to 0.2, 

again something that conforms to generally accepted practices among forecasting 

practitioners. 

 

The point(s) of intervention is also introduced as a control parameter in our modelling 

exercise. There are three stages in the system where adjustments can take place (Retailer, 

Wholesaler and Factory). We explore all possible single interventions (in only one of the 

three stages), dual interventions (in any two of the three stages) and finally a triple 

intervention (adjustments take place in every stage of the supply chain). This is in 

conjunction with the scenarios of: i) adjusting only the forecasts; ii) adjusting only the 

orders; and iii) adjusting both forecast and orders. 

 

The type of adjustment is the last control parameter. Each simulation runs for 100 periods 

and adjustments are introduced periodically (in periods 8, 24 and 40) with a magnitude of 

25%. Fildes et al (2009) analysed more than 60,000 forecasts (along with their 
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adjustments) from four supply chain companies. The median adjustments reported in this 

study, across the four datasets, in terms of their magnitude in relation to the forecasts, 

varied between 13% and 33% (depending also on their direction). Subsets of these 

datasets were also analysed by Syntetos et al (2009b, 2010). Both studies indicate that 

25% constitutes a reasonable descriptive summarisation of the relative magnitude of the 

adjustments. Finally, the selection of this control parameter value has been also 

confirmed as a realistic one by the organisations partnering with us in this project. In one 

case (Electronics Manufacturer) it was disclosed that when human intervention is 

exercised on the size of the replenishment orders, the relative magnitude of the 

adjustments is always (as a rule of thumb) 25%, regardless of the direction of the 

adjustment (plus or minus).  

 

The optimism bias discussed in the previous section is reflected by consistent positive 

(upwards) adjustments introduced in our experiment. Inconsistent behaviour on the part 

of the managers with no sound justification as to why they are adjusting is reflected by a 

structure of alternate positive and negative adjustments. For completeness, consistent 

negative adjustments are considered as well. In all cases, the adjustments are 

unwarranted, as there is no change in the underlying demand pattern, allowing an 

assessment of the effect of un-necessary forecast adjustments on the supply chain.   

 

Returning to the mechanism employed for forecast adjustment purposes, a realistic 

representation of this intervention would be to adjust the SES forecast by 25%. Instead, 

we adjust the demand input to the SES forecast by 25%. Although this may seem 
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unnatural, there is little difference, for simulation purposes, between adjusting forecasts 

in the proposed way and intervening in a manner compatible with real world practices.  

 

As discussed above, the SD models run for 100 periods and the interventions are 

introduced periodically in periods 8, 24 and 40. The different adjustment mechanisms 

introduce pulses, at the designated intervention points to the actual demand, with no 

change to the forecast. Subsequently, the actual demand remains unchanged (with no 

pulse), and the forecast increases upwards as a pulse, and then declines exponentially. 

This closely resembles the behaviour of a judgementally adjusted forecast which 

subsequently declines to adjust to the true level of demand. Most importantly, in this 

research we are concerned with the effects of such interventions on stock amplification. 

Consider the first intervention point as an example: Figure 3 shows a typical response of 

the SES procedure (under the AaA stock policy) to the judgemental adjustment 

introduced in period (week) 8 along with the response of the stock held at the factory. 

The maximum amplification at the factory occurs on week 15 which is time distanced 

enough to justify that had we adjusted the SES forecast output itself, the difference would 

have been imperceptible.  
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Figure 3. SES and factory stock response to adjustments 

 
In addition, the adjustment mechanism used for the purposes of this research introduces 

pulses that are always of lower magnitude that than those resulting from adjusting the 

forecasts directly, because the change in actual demand is immediately smoothed. Thus, 

we are probably conservative with regards to the potential consequences we simulate for 

the whole supply chain. Finally, had the adjustment been of a lower percentage (say 5%), 

the difference between the adjustment mechanisms would have been minor even in the 

intervention points. With regards to the replenishment orders, these are directly adjusted 

(by 25%) upon their generation by any of the policies considered and in any of the SC 

stages.  

 

Taking into account all these concerns, our final experimental design enables us to 

explore various combinations of forecast and order adjustments in terms of their plus or 

minus direction, thereby accounting for multiple scenarios of optimistic and pessimistic 

adjustments. It is likely, in large organisations, that the number of process stages between 

the forecast intervention point and the order intervention point is greater than in a small 
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firm. Thus, the current structure allows simulating varying combinations of forecast and 

order adjustments, i.e., in terms of individuals’ optimism and pessimism. 

 

The experimental conditions considered for the purposes of our investigation are 

summarised in the Table 1. Owing to the very high number of experimental conditions, 

the gradual effect of adjusting forecasts and orders will only be reported for the Factory 

stock, as this is typically the stage exhibiting the greatest amplification in the whole 

supply chain. Also, due to the considerable amount of the output of our investigation it is 

natural that only some results may be presented here. However, an electronic companion 

has been introduced to our paper that may be accessed at: 

http://www.mams.salford.ac.uk/CORAS/Projects/SD/. This contains a more comprehensive 

selection of simulation outputs. The entire exercise has been performed using the iThink® 

Software (Richmond et al, 2009). 
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Control parameter Experimental scenarios # 
Demand pattern Deterministic, Constant 1 

Forecasting Single Exponential Smoothing (SES) 1 
Inventory policies Anchor and Adjust (AaA) 

(s, S) 
up to S (utS)  

 
3 

Intervention  Adjust forecasts 
Adjust orders 

Adjust forecasts and orders 

 
3 

Points of intervention  Stage 1: client (C ) 
Stage 2: home (H ) office 

Stage 3: factory (F ) 
Stages 1 and 2: C and H 
Stages 1 and 3: C and F 
Stages 2 and 3: H and F 

Stages 1, 2 and 3: C, H and F 

 
 
 

7 

Optimism (O) and pessimism (P) Persistent pessimism: P·P·P 
Persistent optimism: O·O·O  

Mixed: P·O·P 
Mixed: O·P·O 

 

 
 

4 

 
Table 1. Control parameters and experimental scenarios 

 

4. Model description 

The subsystem diagram of Figure 2 shows a typical supply-chain (SC), with the SD 

model structures in this article dynamically interconnected through material flows (i.e. 

shipments) and bundled information connectors (i.e. orders). Even small SD modelling 

examples, such as the one in Figure 2, show the interdependencies among variables 

connected through multiple feedback loops, which typically contain time lags and delays. 

 

In order to show the different causal structure behind each stock policy used in this study, 

this section presents only the middle, home office (H) stage (Figure 2), model sectors 

under each stock policy. In all three cases, the causal structure behind the client (C, 
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Sector 1: not shown) and factory (F, Sector 3: not shown) supply-chain stages is almost 

identical to the one of the home office (H) stage (Sectors 2a, 2b and 2c, Figure 4). The 

only difference is in the factory (F) stage, which has to account for its own backlog only, 

thereby excluding a prior-stage backlog, simply because, under each stock control policy 

considered, the factory stage is assumed to be the very beginning of the entire chain. 

 

Figure 4 shows the stock and flow diagram of the home (H) supply-chain model sectors, 

under the anchor and adjust (AaA) stock policy. There is a one-to-one correspondence 

between the model diagram on Figure 4 and its equations (Table A1, Appendix A). 

Building the model entailed first drawing the model structure and then specifying simple 

algebraic equations and parameter values. The iThink® Software enforces consistency 

between diagrams and equations, while its built-in functions help quantify parameters and 

variables pertinent to the causal structure of each stock control policy. As discussed in the 

previous section, we assume that all stages use the same stock policy consistently within 

their supply chain. 

 

In the SD modelling method, rectangles represent stocks or level variables that can 

accumulate, such as the Work-In-Progress (WIP) A Home and Stock Home stocks (top of 

Figure 4 and Equations 1 and 2, Table A1). Emanating from cloud-like sources and 

ebbing into cloud-like sinks, the double-line pipe-and-valve-like icons that fill and 

deplete the stocks represent flows or rate variables that cause the stocks to change. The to 

stock home flow (Equation 7), for example, at once feeds the Stock Home stock and also 

depletes the WIP C Home stock, modulated by the WIP C Home level (Equation 4) and 
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the lead time home (Equation 15). Single-line arrows represent information connectors, 

while circular or plain text icons depict auxiliary converters where behavioural relations, 

constants or decision points convert information into decisions. The coverage home 

auxiliary converter, for example, depends on both the lead time home converter and the 

Est D (estimated demand) Home stock (Equation 23). 

 

 

Figure 4. Stock and flow diagram of the home (H) supply-chain model sectors, AaA 

 

Supply chains always entail a stock and flow structure like the one on the top panel of 

Figure 4 for the acquisition, storage and conversion of inputs into outputs, and decision 

rules (middle of Figure 4) governing the flows.  
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The causal structure of auxiliary variables and parameters in the middle of Figure 4 

shows the decision rules pertinent to the AaA stock control policy. This set of rules first 

‘anchors’ the order from factory decision (Equation 19) on the adjust stock home 

converter (Equation 11) and then adjusts according to the adjust SC home (Equation 10). 

The order decision also takes into account the Est D Home stock (Equation 23), which 

essentially is the output of a SES forecasting procedure with α = 0.2 (Equations 26, 27 

and 28).  

 

Figure 5 shows the stock and flow diagram and Table A2 (Appendix A) the corresponding 

equations of the home (H) supply-chain model sectors, under the (s,S) stock control 

policy. Both the stock and flow structure on the top panel of Figure 5 and the 

corresponding equations in Table A2 are identical with the AaA stock policy model 

(Figure 4). So are the causal structure and corresponding equations of the home backlog 

and home forecast sectors on Figure 5 and Table A2. The only difference between the 

two models lies in the middle of Figure 5, showing the (s,S) decision rules governing the 

stocks and flows of the supply chain on the top panel of Figure 5. 

 

The middle right of Figure 5 now shows the stock position home converter (Equation. 

39), which takes into account the Stock Home level, plus the SC home and its supplier’s 

Backlog Factory, but it must subtract its own Backlog Home level of orders already 

placed but not yet received by its downstream client (C) stage. The middle left of Figure 

5 shows the variables and auxiliary constants that drive the (s,S) based order from factory 

decision converter (Equation 33). In addition to the stock position home, the decision also 
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depends on the (re-order point) s home converter (Equation. 36) as well the order up to S 

home converter (Equation 35). 

 

 

Figure 5. Stock and flow diagram of the home (H) supply-chain model sectors, (s,S) 

 

As the middle left of Figure 5 shows, the Est D Home SES forecast output and the order 

from factory decision point are closely positioned. The large safety stock home (Equation 

37) guards against large backlogs and renders the (s,S) model robust to large bullwhip 

effects. Also, it helps to easily initialize the model at steady state, a condition crucial if 

the computed simulation results are to make sense. Unless a SD model is initialized at 
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steady state, then one might simply observe artefact dynamics attributable to initial 

transient conditions. 

 

Figure 6 shows the stock and flow diagram and Table A3 (Appendix A) the corresponding 

equations of the home (H) supply-chain model sectors, under the order up to S (utS) stock 

policy. Both the stock and flow structure on the top panel of Figure 6 and the 

corresponding equations in Table A3 are again identical with the AaA stock policy model 

(Figure 4). So are the causal structure and related equations of the home backlog and 

home forecast sectors on Figure 6 and Table A3. Once more, the only difference between 

the two models lies in the middle of Figure 6, where the utS decision rules govern the 

stocks and flows of the supply chain on the top panel of Figure 6. 

 

As under the (s,S) policy, in the supply-chain rules on the middle of Figure 6, the stock 

position home converter (Equation 47, Table A3) takes into account the Stock Home 

level, plus the SC home and its supplier’s Backlog Factory, but it must once more 

subtract its own Backlog Home level of orders already placed but not yet received by its 

client (C) downstream. The middle of Figure 6 shows the variables and auxiliary 

constants that drive the utS -based order from factory decision converter (Equation 44). 

In addition to the stock position home, the ordering decision also depends on the order up 

to S home converter (Equation 45) as well as the time to order home auxiliary constant 

(Equation 48). 
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Figure 6. Stock and flow diagram of the home (H) supply-chain model sectors, utS 

 

An important difference between the utS and the other two stock control policies used in 

this study has to do with the unit specification of the coverage home converter (Equations 

13, 30 and 40). Under the first two stock policies, AaA and (s,S), Equations 13 and 30 

have volume units, while for the utS policy equation 40 has time units. Amplifying the 

time inventory coverage under the utS stock control policy helps to easily initialize the 

corresponding SD model at steady state, again, a point utterly crucial to the validity of 

simulation results.  
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4.1 Performance measurement 

The assessment of supply chain performance takes place through the factory stock 

amplification ratio (FSAR). Figure 7 shows the stock and flow diagram and Table A4 

(Appendix A) the corresponding equations of the SD model sector that computes the 

FSAR, in order to assess the independent and joint effects of judgemental forecast and 

order adjustments on supply chain performance. 

 

Figure 7. Computing the factory stock amplification ratio (FSAR) 

 

Sterman (2000) defines the amplification ratio as “the ratio of the maximum change in the 

output to the maximum change in the input (p. 673)”. Accordingly, the Stock Factory ∆  

stock on Figure 7 (Equation 49, Table A4) accumulates the maximum change in the Stock 

Factory via the add ∆  flow (Equation 50). This flow feeds the Stock Factory ∆  stock, 

incrementally, only when judgmental forecast and/or order adjustments cause Stock 

Factory to change and to reach a level higher than its previous one. Subsequently, the 

factory stock % ∆ converter (Equation 52) becomes the numerator of the FSAR (Equation 

53). Its denominator is the auxiliary constant parameter input % ∆  = 0.25 (Equation 55) 

because all the judgmental forecast and/or order adjustment interventions in this study, 
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equally spaced in time, entail either a downward or an upward adjustment of 25% change 

in the input, always independent from any previous change. 

 

5. Analysis of results 

Our results have been summarised as follows: each FSAR figure shows five graphs that 

reflect different experimental conditions, also summarised within each figure. Within 

each figure, graphs a and b summarise the independent (within only one stage at a time: 

Client, Home, Factory) intervention effects on FSAR. Each line represents results for a 

different stock control policy, and each point represents a run with a particular type of 

intervention, details of which are presented on the right hand side of each graph. Switch 1 

indicates an alternate plus-minus adjustment pattern or an only positive adjustment 

pattern. Switch -1 indicates an alternate minus-plus adjustment pattern or an only 

negative adjustment pattern. Similarly, graphs c and d show the 2-way interaction effects 

of judgemental interventions at: Client & Home (C H), Client & Factory (C F), Home & 

Factory (H F).  On the x-axis the stages at which we intervene are preceded by a plus (+) 

or minus (-) sign, for the switch 1 and switch -1 respectively, to indicate the type of 

adjustment that has been considered for the stage under concern. Finally, graph e shows 

the effects of intervening in all stages of the SC (with a similar notation used on the x-

axis). 

 

Figures on time domain results indicate, for the specified control parameter 

combinations, the inventory level in units over time at each of the supply chain stages 

considered (Client, Home and Factory) for all three stock control policies investigated in 

our experiment. 
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Overall, the results indicate that judgemental interventions have a considerable effect on 

supply chain performance. This is true for both forecast and order adjustments. The 

impact varies according to the intervention point in the supply chain.  

 

Relatively speaking, the judgemental forecast adjustments seem to have the most 

prominent effects, while the judgemental order adjustments appear to have the least 

prominent effects on the Factory Stock Amplification Ratio. This implies that it would be 

difficult for managers to compensate for the effects of judgemental forecast adjustments 

through judgementally adjusting replenishment orders.  

 

Figures 8a and b show the independent effects of judgemental forecast adjustments at the 

C, H and F stages. Irrespective of the mixed intervention pattern assumed, adjustments 

that take place at the C stage result in the highest FSAR. This is true for all stock control 

policies considered. Conversely, reducing the number of stages between the forecast 

adjustment intervention point and the Factory stock causes its amplification to decline. 

That is, the impact of the forecast adjustments is less prominent as the intervention point 

moves upstream in the supply chain, from Client to Home to Factory.  

 

Figures 8c and d assess the effects of adjustments applied concurrently at two 

intervention points. The results are consistent with those discussed above: adjustments 

that take place at the Client stage have the greatest impact. The AaA policy appears to be 

the least sensitive to the location of the intervention points considered. This issue is 

further discussed later in this section.  



 33 

 

Figure 8. FSAR results of client, home and factory sector forecast adjustments, with mixed 
optimism (O) and pessimism (P), under the AoA, (s,S) and utS stock policies 

 

The results shown in Figure 8e, where forecast adjustments are performed in all three 

stages of the supply chain, indicate a rather variable behaviour of the stock control 

policies depending on the combination of optimistic and pessimistic adjustments at the 

various stages. However, they do demonstrate that, for each specific combination, the 

stock control policy affects the FSAR. We also further elaborate on this issue later on in 

this section.  
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Figure 9. FSAR results of client, home and factory sector forecast adjustments, with 
persistent optimism (O) and pessimism (P), under the AoA, (s,S) and utS stock policies 

 

The results presented in the Figure 9 confirm overall those discussed above with the only 

difference related to the response of the (s,S) stock policy which is highly sensitive to 

pessimistic adjustments (especially at the Client stage).  On Figure 9e, as we move from 

persistent pessimism to persistent optimism at the Client stage, the FSAR drops 

dramatically. The implicit order batching design of this policy introduces a delay in the 

system’s upwards response, so if the Factory stock has been depleted due to pessimistic 
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forecast adjustments then it takes longer for this policy (as compared to the other two) to 

rebuild inventory. 

 

Figure 10 shows the results of the last run of Figure 9e (persistent optimism reigns across 

all stages of the supply chain) for all three stock control policies. This figure 

demonstrates the reason we chose the FSAR as a proxy to assess the overall supply chain 

performance. In all three cases, the Factory stock clearly shows the highest amplification, 

irrespective of the underlying stock policy. The Home stock rates second in terms of 

amplitude while the Client stock appears as the most resistant to these persistent 

optimistic adjustments.  In the case of the Home stock (line no. 2) there are indications of 

phase-doubling particularly in the AaA and utS policies but this is somewhat subdued in 

the case of the (s,S) stock policy. 

 

 
Figure 10. The time-domain results of run #8 on Figure 9e 
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Figure 10b shows that the initial equilibrium of the (s,S) stock policy driven system is an 

unstable one. This is very easy to understand if one looks at Equation 33 (Table A2). The 

if-then-else structure of the Order from Factory converter creates sharp discontinuities 

that do not allow the system to return to its initial unstable equilibrium. In addition, 

Figures 10a and c clearly show that the highest FSAR emanates from the initial ‘shock’ 

that the first forecast adjustment introduces into the system. Subsequent judgemental 

forecast adjustments continue to create ‘shocks’ but their amplification amplitude is not 

as great as the initial one. This downward sloping trend that the FSAR shows in the time 

domain is not always followed, as demonstrated by other experimental results not shown 

in this paper. Our electronic companion presents cases where subsequent adjustments 

may increase the factory stock amplification progressively, thereby creating an upward 

trend in FSAR. 

 

Figure 11 shows the effects of judgemental order adjustments under a mixed (Optimistic 

and Pessimistic) intervention mechanism. Graph 11e shows the resistance of the (s,S) 

policy to order adjustments across all mixed optimistic and pessimistic conditions. 

Conversely, the other two stock policies (AaA and utS) appear sensitive to all optimistic 

and to all pessimistic mixed order adjustments and less sensitive to the scenarios that 

deviate from those extremes. 
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Figure 11. FSAR  results of client, home and factory sector order adjustments, with mixed 
optimism (O) and pessimism (P), under the AoA, (s,S) and utS stock policies 

 

Figure 12 shows the interaction between optimistic forecast adjustments and persistent, 

either optimistic or pessimistic, order adjustments. The most important results are as 

follows: under conditions of optimistic forecasts in all sectors and persistent optimistic 

and pessimistic order adjustments the (s,S) inventory policy seems to be the least 

sensitive to them. On all graphs of Figure 12, the FSAR is the lowest under the (s,S) 
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policy. Perhaps this is good news for SAP users since the inventory modules of the ERP 

package under concern is explicitly based on (s,S) policies. 

 

 

Figure 12. FSAR results of the interaction among all-sector optimistic forecast and all-
sector order adjustments with persistent optimism (O) and pessimism (P), under the AoA, 

(s,S) and utS stock policies  
 

In the time domain, the phase plot of Figure 13d shows the relation between the Factory 

Stock and its autocorrelation (r), sampled once every five weeks. On the horizontal axis, y 

represents the Factory Stock. Although the axis is bounded on the lower side at 0, the 
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scale has been extended only for presentational purposes. Phase plots hide the time 

dimension, but the little arrows on Figure 13d show how the relation between Factory 

Stock and r evolves through time. The wildly oscillating r suggests that the highly 

interdependent variables in supply chains may be too ill-behaved to assess with 

mathematical models. 

 

 
Figure 13. The time-domain results of run #8 on Figure 12e 

 

It is worth noting that, with regards to the phase-doubling component of the bullwhip 

effect, contrary to the results presented in Figure 10, where the Home stock shows signs 

of phase doubling under the AaA and utS stock control policies, on Figure 13 the Home 

stock amplification shows clear signs of phase doubling under the (s,S) stock policy.   
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 6. Conclusions and extensions 

Pioneered by Forrester (1958, 1961) and influenced by engineering control theory, SD 

calls for formal simulation modelling that provides a rigorous understanding of system 

behaviour. Simulation modelling has become an essential research tool in social science 

because “people’s intuitive predictions about the dynamics of complex systems are 

systematically flawed (Sterman, 1994, p. 178)”, mostly because of our bounded 

rationality. SD is a modelling method with high descriptive ability and theory building 

potential (Davis et al, 2007; Georgantzas, 2001; Lane and Schwaninger, 2008). 

 

Adapted predominantly from Sterman (2000, Ch. 17 and 18) and other colleagues, who 

model supply chains with SD (Barlas and Ozevin; 2004; Georgantzas, 2003, 2009; 

Yasarcan and Barlas 2005), the SD model sectors in this study explain the sources of 

oscillation, amplification and phase lag generally seen in client-supplier chains; 

phenomena which executives at 3M, Bristol-Myers Squibb, Hewlett-Packard and P&G 

collectively call the bullwhip effect (Lee et al, 1997b). Locally rational policies that 

create smooth and stable adjustment of individual business units can, through their 

interaction with other functions and firms, cause oscillation and instability, i.e. bullwhip-

type dynamics. The models incorporate policy parameters pertinent to decision making 

and timing that allow testing the sensitivity of client-supplier value chains to exogenous 

judgmental forecast and order adjustments. The results reveal policies that managers and 

their suppliers can use to improve performance. 

 



 41 

Our study indicates that judgemental interventions may have a substantially adverse 

effect on supply chain performance if undertaken unnecessarily. Judgemental forecast 

adjustments have more prominent effects than judgemental order adjustments on the 

Factory Stock Amplification Ratio. To the best of our knowledge, this differential effect 

has not been reported previously in the literature. As discussed in the previous section, 

this finding implies that it may be more difficult for managers to compensate for the 

effects of judgemental forecast adjustments through judgementally adjusting 

replenishment orders. 

 

Our investigation also shows that the impact of the forecast and order adjustments is less 

prominent as the intervention point moves upstream in the supply chain, from Client to 

Home to Factory. For the Anchor-and-Adjust (AaA) policy, this finding is consistent with 

results from system dynamics studies of multi-echelon inventory systems as far back as 

Forrester (1958).  For the order-up-to-level S (utS) policy, the result is consistent with the 

amplification of variance through the supply chain, quantified by Lee at al (2000), 

although his paper did not address the issue of judgemental adjustments to forecasts or 

orders. For the re-order point, order-up-to-level (s,S) policy, we have provided new 

results on the effect of adjustments on the Factory Stock Amplification Ratio. 

 

Most previous papers on the Bullwhip Effect have focused on the order-up-to-level S 

policy. In this paper, we have shown that the (s,S) policy is less sensitive to order and 

forecast adjustments than the order-up-to S policy (utS). The only exception to this result 

is that (s,S) systems are more adversely affected by pessimistic forecast adjustments. In 
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this case, the implicit order batching means that it takes longer for this system to rebuild 

inventory. The findings on the (s,S) system are important, as this policy is frequently 

adopted in practice.  

 

6.1 Further research 

The research described in this paper constitutes an initial attempt to explore the effects of 

judgemental interventions on supply chain performance. Naturally, there are many 

avenues for further contributions in this area. In particular, the standardisation of the 

magnitude of the adjustments to 25% is viewed as rather restrictive. We have attempted to 

capture a wide range of possible interventions in terms of the direction of the forecast and 

order adjustments and the point of intervention in the supply chain. However, the 

magnitude of such adjustments has not been introduced as a control parameter. Although 

some empirical justification has been offered to support our choice, further research 

should look at the effect that the size of the adjustments may have on supply chain 

dynamics. In addition, demand has been assumed to be deterministic and constant for the 

purposes of our study. Experimentation with variable demand and/or deterministic 

demand patterns that may be associated with ramp or step changes over time should offer 

valuable insights on the performance of the system. Moreover, we have assumed that 

each stage in the supply chain employs the same stock control policy. Perhaps under 

some circumstances a more realistic representation of the problem would involve a 

combination of such policies. Finally, other stock control policies could have been 

introduced as well. The re-order point s, order quantity Q (s,Q) policy for example would 
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enable a more thorough investigation of the effects of order batching in conjunction with 

judgemental adjustments. 

 

Future research must necessarily render both the judgemental forecast and the 

judgemental order adjustments endogenous. Depending on managers’ own mood 

desposedness towards pessimism and/or optimism as well that of the organisation they 

are affiliated with or manage, they may respond differentially to an initial system ‘shock’. 

Consequently, they may alter their subjective interventions on forecast and replenishment 

orders according to how initial ‘shocks’ shape their personalised organisational goals.  

System Dynamics can play a crucial role in evaluating the impact of any learning effects 

(i.e. the adjustments get better over time) in the process of intervening with forecasts 

and/or orders. No evidence of such effects has been found through empirical studies and 

this constitutes a very promising area for further research.  

 

Most importantly, our research focused on the implications of people making an 

adjustment when such adjustment is not needed. That is to say, in all the experimental 

conditions considered the adjustments are unwarranted, as there is no change in the 

underlying demand pattern. This allows for an assessment of the effect of un-necessary 

forecast adjustments on the supply chain. Although such a scenario is realistic and 

supported by empirical evidence, further research should also look at the effect of fully or 

partially warranted adjustments to forecasts and/or orders, in response to changes in the 

demand patterns or to other organisational factors.  

. 
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APPENDIX A: Model equations 

Sector 2.a: Home stock level (state) or stock variables {unit} Eq. # 
Stock Home(t) = Stock Home(t - dt) + (to stock home - ship to client) * dt 
 INIT Stock Home = demand home * time to order home {SKU} 
WIP A Home(t) = WIP A Home(t - dt) + (receive home - to WIP B home) * dt 
 INIT WIP A Home = Stock Home {SKU} 
WIP B Home(t) = WIP B Home(t - dt) + (to WIP B home - to WIP C home) * dt 
 INIT WIP B Home = Stock Home {SKU} 
WIP C Home(t) = WIP C Home(t - dt) + (to WIP C home - to stock home) * dt 
 INIT WIP C Home = Stock Home {SKU} 

(1) 
(1.1) 
(2) 

(2.1) 
(3) 

(3.1) 
(4) 

(4.1) 
Sector 2.a: Home stock flow or rate variables {unit}  
receive home = MAX (0, ship to home) {SKU/week} 
ship to client = MIN (need for client, Stock Home / time to order home) {SKU/week} 
to stock home = MAX (0, WIP C Home / (lead time home / 3)) {SKU/week} 
to WIP B home = MAX (0, WIP A Home / (lead time home / 3)) {SKU/week} 
to WIP C home = MAX (0, WIP B Home / (lead time home / 3)) {SKU/week} 

(5) 
(6) 
(7) 
(8) 
(9) 

Sector 2.a: Home stock auxiliary or converter variables and constants {unit}  
adjust SC home = gap SC home / time to order home {SKU/week} 
adjust stock home = stock gap home / adjust stock home time {SKU/week} 
adjust stock home time = 1 {week} 
coverage home = lead time home * Est D Home {SKU} 
gap SC home = coverage home - net SC home {SKU} 
lead time home = 3 {week} 
need for client = demand home + (Backlog Home / time to order home) {SKU/week} 
net SC home = Backlog Factory + SC home {SKU} 
net stock home = Stock Home - Backlog Home {SKU} 
order from factory = MAX (0, (Est D Home + adjust stock home + adjust SC home)) {SKU/week} 
SC home = WIP A Home + WIP B Home + WIP C Home {SKU} 
stock gap home = demand home - net stock home / adjust stock home time {SKU/week} 
time to order home = 1 {week} 

(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 

Sector 2.b: Home backlog level (state) or stock variables {unit}  
Est D Home(t) = Est D Home(t - dt) + (alter est D home) * dt 
 INIT Est D Home = demand home {SKU/week} 

(23) 
(23.1) 

Sector 2.b: Home backlog flow or rate variables {unit}  
alter backlog home = demand home - ship to client {SKU/week} (24) 
Sector 2.c: Home forecast level (state) or stock variables {unit}  
Est D Home(t) = Est D Home(t - dt) + (alter est D home) * dt 
 INIT Est D Home = demand home {SKU/week} 

(25) 
(25.1) 

Sector 2.c: Home forecast flow or rate variables {unit}  
alter est D home = demand gap home / alter est D time home {SKU/week/week} (26) 
Sector 2.c: Home forecast auxiliary or converter variables and constants {unit}  
alter est D time home = 5 {week} 
demand gap home = demand home - Est D Home {SKU/week} 
demand home = order from home {SKU/week} 

(27) 
(28) 
(29) 

Table A1. The home (H) supply-chain model sector equations, under the AoA stock policy 
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Sector 2.a: Home stock level (state) or stock variables {unit} Eq. # 

Identical with Eqs 1 through 4.1 on Table A1  
Sector 2.a: Home stock flow or rate variables {unit}  

Identical with Eqs 5 through 9 on Table A1  
Sector 2.a: Home stock auxiliary or converter variables and constants {unit}  
coverage home = lead time home * Est D Home {SKU} 
lead time home = 3 {week} 
need for client = demand home + (Backlog Home / order time home) {SKU/week} 
order from factory = IF (stock position home <= s home) THEN (MAX (0, (order up to S home - stock 
 position home) / order time home)) ELSE (0) {SKU/week} 
order time home = 1 {week} 
order up to S home = s home + Est D Home * order time home {SKU} 
s home = coverage home + safety stock home {SKU} 
safety stock home = 100 {SKU} 
SC home = WIP A Home + WIP B Home + WIP C Home 
stock position home = Stock Home + SC home + Backlog Factory - Backlog Home {SKU} 

(30) 
(31) 
(32) 
(33) 

 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 

Sector 2.b: Home backlog level (state) or stock variables {unit}  
Identical with Eqs 23 through 23.1 on Table A1  

Sector 2.b: Home backlog flow or rate variables {unit}  
Identical with Eq. 24 on Table A1  

Sector 2.c: Home forecast level (state) or stock variables {unit}  
Identical with Eqs 25 through 25.1 on Table A1  

Sector 2.c: Home forecast flow or rate variables {unit}  
Identical with Eq. 26 on Table A1  

Sector 2.c: Home forecast auxiliary or converter variables and constants {unit}  
Identical with Eqs 27 through 29 on Table A1  

Table A2. The home (H) supply-chain model sector equations, under the (s,S) stock policy 



 49 

 
Sector 2.a: Home stock level (state) or stock variables {unit} Eq. # 

Identical with Eqs 1 through 4.1 on Table A1  
Sector 2.a: Home stock flow or rate variables {unit}  

Identical with Eqs 5 through 9 on Table A1  
Sector 2.a: Home stock auxiliary or converter variables and constants {unit}  
coverage home = lead time home + (alter est D time home - lead time home) {week} 
gap home = order up to S home - stock position home {SKU} 
lead time home = 3 {week} 
need for client = demand home + (Backlog Home / time to order home) {SKU/week} 
order from factory = MAX (0, gap home / time to order home) {SKU/week} 
order up to S home = coverage home * Est D Home {SKU} 
SC home = WIP A Home + WIP B Home + WIP C Home {SKU} 
stock position home = Stock Home + SC home + Backlog Factory - Backlog Home {SKU} 
time to order home = 1 {week} 

(40) 
(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 

Sector 2.b: Home backlog level (state) or stock variables {unit}  
Identical with Eqs 23 through 23.1 on Table A1  

Sector 2.b: Home backlog flow or rate variables {unit}  
Identical with Eq. 24 on Table A1  

Sector 2.c: Home forecast level (state) or stock variables {unit}  
Identical with Eqs 25 through 25.1 on Table A1  

Sector 2.c: Home forecast flow or rate variables {unit}  
Identical with Eq. 26 on Table A1  

Sector 2.c: Home forecast auxiliary or converter variables and constants {unit}  
Identical with Eqs 27 through 29 on Table A1  

Table A3. The home (H) supply-chain model sector equations, under the utS stock policy 

 

Sector 4: FSAR stock level (state) or stock variables {unit} Eq. # 
Stock Factory ∆(t) = Stock Factory ∆(t - dt) + (add ∆) * dt 
 INIT Stock Factory ∆ = 0 {SKU} 

(49) 
(49.1) 

Sector 4: FSAR flow or rate variables {unit}  
add ∆ = IF (change in Stock Factory > Stock Factory ∆) THEN (change in Stock Factory / DT) 
 ELSE (0) {SKU/week} 

(50) 

Sector 4: FSAR auxiliary or converter variables and constants {unit}  
change in Stock Factory = ABS (Stock Factory) - INIT (Stock Factory) {SKU} 
factory stock % ∆ = Stock Factory ∆ / initial stock factory {unitless} 
FSAR: factory stock amplification ratio = factory stock % ∆ / input % ∆ {unitless} 
initial stock factory = INIT (Stock Factory) {SKU} 
input % ∆ = 0.25 {unitless} 

(51) 
(52) 
(53) 
(54) 
(55) 

Table A4. Computing the factory stock amplification ratio (FSAR) 

 


