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ABSTRACT 

Most conventional diffusers take the form of a surface based treatment, and as a result can only 

operate in hemispherical space. Placing a diffuser in the volume of a room might provide greater 

efficiency by allowing scattering into the whole space. A periodic cylinder array (or sonic 

crystal) produces periodicity lobes and uneven scattering. Introducing defects into an array, by 

removing or varying the size of some of the cylinders, can enhance their diffusing abilities. This 

paper applies number theoretic concepts to create cylinder arrays that have more even scattering. 

Predictions using a Boundary Element Method are compared to measurements to verify the 

model, and suitable metrics are adopted to evaluate performance. Arrangements with good 

aperiodic autocorrelation properties tend to produce the best results. At low frequency power is 

controlled by object size and at high frequency diffusion is dominated by lattice spacing and 

structural similarity. Consequently the operational bandwidth is rather small. By using sparse 

arrays and varying cylinder sizes, a wider bandwidth can be achieved. 

 

PACS numbers: 43.55.Br, 43.20.El, 43.20.Fn, 43.55.-n. 
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I. INTRODUCTION 

Diffusers can reduce unwanted artifacts such as strong echoes and coloration by breaking 

up reflections without removing excess energy
1
. In the 1970s, Schroeder introduced the concept 

of using Maximum Length Sequences (MLS) in the design of diffusers to improve sound 

diffusion in concert halls and reverberation chambers
2
. Since then a variety of number theoretic 

concepts have been developed
3-5

. Most conventional diffusers are put on the surfaces of rooms, 

and as a result can only operate in (2π) hemispherical space. In addition their low frequency 

performance is often restricted by available depth. By considering a structure placed in the 

volume of the room, it becomes possible to operate on 4π space, with sound being received from 

and scattered into all possible directions
6
. This provides a possible increase in efficiency

7
 and is a 

solution adopted in many reverberation chambers. Furthermore by providing many reflection 

paths a volume device may promote multiple scattering, spreading energy temporally as well as 

spatially, and potentially bypassing the low frequency limitation. A constraint on these structures 

is that they cannot be placed where they interfere with a room’s functionality, for example in the 

line-of-sight of an audience. It may be possible however, to find a number of suitable locations 

for their application, depending on the use of the space. 

Volumetric diffusers, whether by accident or design, are not an entirely new topic; a 

chandelier may be considered to be a volume diffuser, whilst large curved panels suspended in 

reverberation chambers
8
 and overhead stage-canopies

9
 provide examples of purpose built 

structures. These designs are application specific, and would make unsuitable ready-to-install 

units intended for a variety of room types. There is therefore a need for an appropriate 

methodology for their design, measurement and analysis. 



Volumetric diffusers: Pseudorandom cylinder arrays on a periodic lattice, Hughes, RJ; Angus, 

JAS; Cox, TJ, et al., Journal of the acoustical society of america 128(5) 2847-2856  Published: 

Nov 2010, DOI 10.1121/1.3493455 

 

4 

Recent investigations into the use of slats
10

 demonstrated a volumetric equivalent to the 

Binary Amplitude Diffuser (BAD)
5
, whereby transmission is analogous to absorption. Uni-polar 

binary sequences determined the arrangement of the slats, with a value of 1 or 0 representing the 

inclusion or omittance of each element respectively. This was shown first for a single layer, 

before depth was added through multiple layers allowing cancellation of the back-scattered 

specular lobe.  Arrangements however were heavily dependent on line-of-sight through the array, 

with insufficient energy penetrating into the structure. Cox et al.
11

 extended the concept to a 

percolation structure allowing both vertical and horizontal slats to promote energy channeling. 

Preliminary results indicated that improvements could be made. 

In this study a new kind of volumetric diffuser is considered, and builds upon previous 

results presented by the authors
12

. Considering arrangements akin to a sonic crystal
13,14

, periodic 

arrays of cylinders are investigated. Previous work in this area has predominantly focused on 

attenuation by arrays at specific frequencies, known as band-gaps, rather than on the spatial 

distribution of its scattered field. A typical sonic crystal will spread energy temporally, but 

produces inherent grating lobes and therefore makes a poor diffuser whose behavior varies 

significantly with position and frequency. In this study, the arrays have relatively low occupancy 

as shown in Figure 1, which makes the periodicity effects less dominant. The reasons for keeping 

an underlying periodicity are that it could make manufacture easier and allows the application of 

number theoretic concepts. 

At first single layer diffusers are considered, before multilayer square lattice structures 

are explored. Later alternative lattice shapes are considered as well as the effect of varying 

individual cylinder size. A simple Fourier approximation is used to inform potentially suitable 

sequences, whilst a Boundary Element Method (BEM) based on the Helmholtz-Kirchhoff 
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integral equation is used to gain more accurate predictions
15

, and this is verified through 

selective measurements. All predictions are performed in 2D considering scattering in one plane 

only and assume rigid surfaces to ensure maximum preservation of energy. 

II. DEFINING APPROPRIATE METRICS 

 To assess a volume diffuser’s effectiveness it is necessary to expand on current criteria 

for more conventional devices
16

. Consider the setup shown in Figure 2 where a volume diffuser 

is subject to a sound from a source. Unlike scattering from surface diffusers where a 

hemispherical area is considered, the whole field must be taken into account, which for the 2D 

case here means a full circle of receiver locations, rather than the conventional semicircular arc. 

Both source and receivers are assumed to be in the far-field
16

 of the diffusing structure of width 

D, centered on the origin. Unless otherwise stated, normal incidence (θ = 0
°
) is assumed. 

A. Scattering Uniformity 

The standard diffusion coefficient
16

, δθ, is used to assess scattering uniformity, given as: 
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Where ps,n represents the pressure scattered from the diffuser at the n-th receiver over the 

evaluated region. Each receiver though observes the total sound field - a summation of both the 

incident sound direct from the source, and a scattered sound due to the presence of the diffuser. 

The back-scattered zone (BSZ, θ - 90
°
≤ θr ≤ θ + 90

°
) can be straightforwardly treated, as the 

scattered component is sufficiently separated in time from the incident sound to be considered 

separately. This is the way in which many conventional surface diffusers are analyzed. 
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The remaining forward-scattered zone (FSZ, θ + 90
°
< θr < θ + 270

°
) is more complex. In 

the geometric shadow zone (GSZ) behind the diffuser, where direct line of sight between source 

and receivers may be blocked, the incident and scattered sound will arrive at comparable times 

and their interference cannot be ignored. Here therefore the scattered pressure alone becomes 

meaningless, and it is the attenuation properties of the array which are more of concern. Between 

the back-scattered and shadow zone, there is a region of ambiguity where it becomes unclear 

whether the total or scattered pressure should be used. In reality however, a receiver located 

close to the shadow zone implies a diffuser installed near to an observers line of sight of an 

acoustic source, which in spaces such as auditoria for example – where the audience requires an 

unobstructed view of a stage – should be avoided. Sound scattered into these angles however will 

continue to propagate and contribute towards a diffuse field, and so uniformity is still desirable. 

A diffusion coefficient for volume diffusers is therefore proposed, considering all receiver angles 

excluding the shadow zone. This region is referred to as the geometric visible zone (GVZ), and 

hence this coefficient is given as δθ,GVZ. 

B. Scattered Power 

A diffuser whose elements are much smaller than wavelength can generate uniform 

scattering, however, it actually causes little perturbance to the sound field and is effectively 

almost acoustically transparent. For this reason the scattered power also needs considering. This 

is done via a scattered intensity ratio, LIR,θ,BSZ. This compares the back-scattered energy to that of 

a reference structure whose scattering properties are well understood – in this case a flat plate of 

equal width, D, to the diffuser - whilst normalizing to account for differences in model setup. 

The ratio is defined as: 
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Where pdiff,n and pref,n are the scattered pressures at the n-th receiver in the back-scattered 

zone for the diffuser and reference structure respectively. 

A value of -3dB relative to the reference plate forms a suitable design target for a volume 

array. This means that half the incident energy is back-scattered. The choice of -3dB was 

somewhat arbitrary, and it would be possible to design for other target values. 

III. CONVENTIONAL DIFFUSER DESIGN THEORY 

A. The Fourier approximation 

Consider the arrangement shown in Figure 3, depicting an M×N rectangular grid of point 

scattering elements, with element spacing of dx and dy in the x and y directions respectively. This 

represents the generalized 2D case. The structure is subject to an incident plane wave pi of 

wavelength λ, arriving from angle θ. The scattered pressure, ps, is evaluated for a circle of 

receivers with location determined by angle, θr. Far-field conditions are assumed. If all elements 

are assumed to have the same individual pressure polar response for all angles of incidence and 

reflection, e(θ, θr), with individual reflection coefficients independent of angle, Rn, then for a 

given receiver the following holds. 
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Where only first order reflections are considered for simplicity in this model. This 

follows from the well known theory in optics that the diffraction pattern of a periodic structure is 

equal to the product of the diffraction pattern of the base element and that of the array
17

. Eq. 3 
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represents a Discrete Fourier Transform (DFT), where ps(θ, θr) is the angle dependent scattered 

pressure in the dy(sinθ+sinθr)/λ domain. A set of coefficients whose DFT is maximally flat is 

therefore desired. Wiener-Khinchin theorem states that the power spectrum of a sequence is 

equal to the Fourier Transform of its Autocorrelation Function (ACF). A series of reflection 

coefficients whose ACF is most like a Kronecker delta function is hence desirable. A flat Fourier 

spectrum equates to scattering equal energy into the grating lobes, and this is what Schroeder 

described as ‘optimal’ diffusion
3
. This is not the same as even scattering into all angles. 

IV. A SINGLE-LAYERED DIFFUSER 

A periodic line array of scattering elements is considered first. Ideally these would both 

scatter energy evenly into all receiver angles and promote multiple scattering to increase 

reflection density in the impulse response by breaking up the scattered field in time. This 

structure may be arranged according to a positive binary sequence. Similar arrays have been 

considered previously for surface diffusers, though using semicylinders
6
. 

Consider a volume equivalent to the BAD panel shown in Figure 4a, comprising a series 

of reflecting and absorbing strips. A literal translation would be an array of both reflecting and 

absorbing cylinders for sequence values Rn of 1 and 0 respectively, with scattering from each 

element e(θ, θr) given by that from a single cylinder of diameter, de. Absorption however is not 

necessary as cylinders may simply be omitted, forming the array in Figure 4b, which allows 

transmission rather than removal of energy. This is particularly advantageous where preservation 

of energy is desirable, because sound passing through the array is not lost from the room. 

B. Sequences: redundancy and the Golomb ruler 

It is assumed that a diffuser is not being placed alongside other identical units and 

consequently the Aperiodic Autocorrelation Function (AACF) is most appropriate to the work. 
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The Fourier approximation for the far-field polar pattern is given by the DFT of the reflection 

coefficients padded with zeros (effectively representing free-space), and so a sequence with a 

Kronecker delta like AACF is required. The AACF of a uni-polar binary sequence can be 

described as the number of elements separated by each unique separation distance within a 

sequence
18

. An even spread of separation distances is therefore sought. Repetition will result in 

similarity between scattering from element pairs, leading to lobing and thus uneven scattering
19

. 

Conversely, an even spread of separation distances should avoid emphasis. 

In radar and sonar the AACF is often expressed in terms of redundancy
20

. A distance 

separation, or lag, is described as being redundant if it has one or more repetitions. An 

arrangement is described as being non-redundant if there are no redundancies, whilst a sequence 

with all possible distance separations with the least number of elements is said to have 

minimum-redundancy. One particular type of non-redundant sequences is given by the Golomb 

ruler
18

, an example of which is shown in Figure 4, an imaginary ruler comprising a set of marks 

at integer positions where no two marks are the same distance apart. The total number of marks 

on the ruler is defined as the order, and the maximum separation distance as the length, L = N - 1. 

A Golomb ruler is said to be optimal if no shorter ruler of the same order exists, and is a special 

case of the non-redundant array referred to as the minimum hole array that minimizes the 

number of holes (missing lags) in the AACF. A sequence with no holes is said to be a perfect 

Golomb ruler. 

C. 1D Diffusion 

Figure 5a-b compares two cyclic variations of the same MLS sequence, the first being the 

perfect Golomb ruler shown in Figure 4b, and shows that the sequence with the more Kronecker 

delta like AACF produces better diffusion. At low frequency, the performance is similar to that 
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of the reference plate, as the structures are small relative to wavelength. With increasing 

frequency, and as wavelength becomes comparable to the varying cylinder separation distances, 

progressively more of the sidelobe energy is seen and the Golomb ruler provides a more even 

spread of energy. At higher frequencies, repetitions of the main specular lobe appear due to 

spatial aliasing, the first occurrence being at approximately 1.7kHz, and here the diffusion 

coefficient for both sequences begins to plateau. This agrees with previous investigations into 

periodic arrays of semicylinders, where at high frequency the arrangement was found to have 

little influence as the sidelobe behavior becomes lost within the large number of closely spaced 

grating lobes
6
. This is unavoidable for a 1D sequence. 

V. A MULTI-LAYERED DIFFUSER 

A. 2D Fourier approximation 

By extending the single layered concept, a multilayer structure based on a square lattice 

may be envisaged. Consider the arrangement shown in Figure 3, comprising an M×N rectangular 

grid, where now M ≥ 1. If all elements are again assumed to have the same individual polar 

response for all angles of incidence and reflection, e(θ, θr), then the following holds. 
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Eq. 4 is now a 2D DFT of the individual reflection coefficients Rn,m, and is again a first 

order scattering approximation, most valid for low fill factors and when cylinders are small 

relative to wavelength. This neglects multiple scattering effects, though has the benefit of 

allowing fast predictions. The angular variables θ and θr are common to both orthogonal 

directions, and consequently are dependent on one another, resulting in an interfering product 

due to periodicity in the two directions. The forward-scattered specular component interacts with 
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the incident field and determines attenuation in the shadow zone, whilst the sidelobe and grating 

lobe behavior determine the remaining scattered field. Like surface Schroeder diffusers, the 

addition of depth allows cancellation of the back-scattered specular lobe, giving potential for 

more even scattering. 

B. 2D Sequence search 

Again, an array is desired whose reflection coefficients, Rn,m, form a sequence whose 

AACF is optimal, implying a structure with an even spread of vector separations between 

elements. There are quite a few 2D sequences whose periodic autocorrelation properties are 

optimal, for example MLS, however aperiodic equivalents are less common. Furthermore unlike 

for periodic sequences, folding techniques such as the Chinese remainder theorem
21

 cannot be 

applied because these assume periodicity. Consequently optimal sequences such as minimum 

hole arrays are often found using (intelligent) exhaustive computational searching
22

, and so 

produce small arrays. 

In order to obtain a sufficiently large sequence one alternative is to use an optimization 

routine, and for this a genetic algorithm and the Fourier approximation given by Eq. 4 was used. 

This is a simplified version of the process adopted by Romero García et al.
23

 where targeted 

band gaps were created in sonic crystals, and Hakansson et al.
24

 where focusing arrays were 

generated. As the Fourier approximation is based on a simple summation of (scattering) sources 

it is particularly suited to this type of optimization, as elements are assumed to act independently. 

Using this method a sequence comprising a 10×10 grid with 25% occupancy was created, and is 

shown in Figure 1a. 
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C. Measurements 

Scattered pressure distributions were measured at 4:1 scale in a semi-anechoic chamber 

following a boundary plane procedure similar to that outlined in AES-4id-2001
16

. Figure 1b 

shows the setup, where the sample comprises a series of aluminum cylinders of 1m in height, 

arranged according to the optimized sequence of Figure 1a. These were fixed into a central 

sample plate that slotted into a fake floor, assumed to be acoustically rigid. The sample hole was 

filled with a flat board with no sample present for background measurements. An MLS signal 

was produced by a source located a distance of 2.5m from the array centre. Receivers were 

placed in a circle of radius 1.35m from the centre of the array, with an angular step of 9
°
. 

For surface diffusers, the procedure is to separate the direct and scattered sound in the 

impulse responses measured at the microphones by considering time of arrival. However, behind 

the diffuser progressive merging of the incident and scattered field makes this impossible. As 

part of the procedure in AES-4id-2001, a background measurement is made without the diffuser 

present, and this is subtracted from the measured impulse response with the sample. While in 

theory this should remove the incident sound, in reality slight changes in ambient temperature 

can cause sound speed differences, leading to a shift in arrival time
25

. Substantial artifacts of the 

incident field can remain, particularly with increasing frequency and when scattering is 

comparatively weak. 

In order to address this, a solution similar to that proposed by Robinson et al.
26

 was 

adopted. Each sample and background measurement were oversampled (to give a finer resolution 

in time of flight) and cross-correlated, and an effective average sample drift per meter was 

calculated. An appropriate shift was then applied to each sample measurement signal based on 

their distance from the source, before downsampling back to the original sample rate. Figures 6a-
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b compare the measured and BEM polar plot results for the 10×10 array at 1050Hz and 1600Hz 

respectively. The scattered pressure has been normalized to the incident pressure at the back 

receiver (θr = θ+180
°
). Agreement is generally good even for receivers towards the shadow zone, 

though some errors arise due to uncertainty in receiver positioning and the sensitive nature of the 

structure to the sound speed used for the comparison BEM model. 

D. Results 

Diffusion properties 

Figure 7a shows the diffusion coefficient for the optimized sequence in Figure 1a. Due to the 

underlying periodicity, the frequencies at which spatial aliasing occurs are dominant despite the 

removal of cylinders. When lobing due to periodicity in the x and y directions occur at the same 

angle, their product results in constructive interference concentrating reflection in one direction. 

These are known as Bragg peaks
27

, and are analogous to the flat-plate frequencies observed in 

Schroeder diffusers, when the difference between reflection paths become equal to a multiple of 

a wavelength and all wells reradiate in phase. They are also intrinsically linked through 

conservation of energy to the attenuation band-gaps observed in sonic crystals. It can be shown
12
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α = 0, 1, 2, …  β = 0, 1, 2, … 

These frequencies for the diffuser tested are shown in Figure 7a. An example of the first 

Bragg frequency when the energy is redirected back towards the source is shown in Figure 6a, 
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compared with the more evenly distributed field of Figure 6b. Although the simplified Fourier 

prediction of Figure 7a results in a slightly optimistic diffusion coefficient, it accurately predicts 

the first significant notch as well as giving an overall indication of diffusive behavior. Low 

frequency performance before the first Bragg frequency is relatively poor, and this is due to the 

limited ability of an individual cylinder to forward-scatter energy when cylinder size is small 

relative to wavelength. Larger cylinders would therefore be preferred, though performance is 

significantly better when considering a more conventional back-scattered diffusion coefficient. 

For arrays with higher occupancy, diffusion notches are broader and more defined and 

continue on to higher frequencies. The presence of the first notch is still obvious even for sparser 

arrays. The ability of the Fourier method to predict these trends is not surprising as the solution is 

inherently linked to the vector separations between elements via the AACF, and hence the 

potential reflection paths within the array. A fuller multiple scattering solution must also depend 

on these reflection paths (though more so for low frequency as some are not possible due to 

shadowing, and separations do not take into account finite cylinder size). Consequently, an array 

whose reflection paths are uncorrelated will tend to diffuse well whether considering a single or 

multiple scatter solution. Cylinders closer together however will have a greater multiple 

scattering influence, and hence these shorter paths will be more dominant. 

Scattered power 

Figure 7b shows the back-scattered intensity ratio for the optimized array from Figure 1. 

At low frequency, the Fourier approximation provides reasonable agreement, though tends to 

provide an overestimate at higher frequencies, particularly at the Bragg frequencies, as 

shadowing and multiple scattering effects are not accounted for. High frequency performance for 

this level of occupancy is determined by percentage line of sight (50%), providing an 
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approximate -3dB plateau, whilst at low frequency there is a roll-off in scattered power. A 

transitional ‘knee’ frequency is evident when cylinder diameter, de, is approximately equal to a 

quarter wavelength. This also tends to coincide with the first Bragg peak. Consequently at low 

frequency the array diffuses well in the back-scattered direction though with limited efficiency, 

whilst at higher frequencies sufficient power is scattered, including in the forward-scattered 

direction, but diffusion suffers from underlying periodicity. The operational bandwidth is 

therefore small, and an array which allows larger cylinders or reduces the effects of periodicity is 

needed. 

VI. ALTERNATIVE 2D CONSTRUCTION TECHNIQUES 

A. The Costas array 

Like the 1D case, an array ideally should have good AACF properties, implying little or 

no redundancy to minimize periodicity effects. The AACF of a 2D uni-polar binary sequence 

may be thought of as the number of elements separated by a given vector spacing – that is not 

only by the same distance but also direction. 2D non-redundant sequences have no repetitions of 

these separation vectors and so should be ideal, providing they have a sufficient number and 

spread of elements for them to be useful. An example is the Costas array, defined as being a 

permutation matrix whose separation vectors between occupied cells are unique
28

. In other 

words, a square N×N grid containing N elements, with one element in each row and each column 

and a maximum out of phase AACF coincidence of one. Costas arrays may be thought of as a 2D 

semi-equivalent to the Golomb ruler, and are commonly used as frequency hop patterns for sonar 

or radar due to their optimum ambiguity function
28

. 

There are a number of methods for making Costas arrays, though particularly suited to 

this application is the Taylor T4 variant to the Lempel L2 construction
28

. This method ensures a 
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minimum separation distance between elements, allowing larger cylinders for increased low 

frequency power. For a generating prime power, q
k
, where q is any prime and k is an integer, the 

Lempel L2 construction forms an N×N array, ai,j, where N = q
k
 – 2, and is defined as follows: 

NjNi
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Where u and v are primitive roots of prime q, and the operation is carried out modulo q
k
. 

Lempel constructions have reflective symmetry about the main diagonal. The nearest possible 

neighboring elements therefore lie one diagonal step apart either side of the main diagonal. A 

special case, of which the L2 square array in Figure 8 (top left) is an example, is formed when 

u
1
 + v

2
 = 1 (and u

2
 + v

1
 = 1, though this is automatically satisfied due to symmetry) which places 

these two elements (highlighted by gray hatched squares) in the first two rows and columns. 

Removal of these elements forms a new N = q
k
 – 4 Costas array known as the Taylor T4 variant. 

With the closest element pair having been removed, this now has the property of 

‘non-attacking chess kings’ - that is no element lies within the eight surrounding cells of another. 

Now it is possible to form an oversampled array where the cylinder size can be greater than grid 

spacing, allowing sufficient scattered power to be achieved well before the first Bragg frequency. 

This, for a given cylinder size, effectively pushes the first Bragg peak to a higher frequency. 

Figure 9a-c shows the diffusion coefficient, intensity metric, and 2D AACF for the T4 15×15 

Costas array in Figure 9d. Low frequency diffusion is improved due to the larger cylinders 

ability to scatter energy into the forward-scattered region, whilst at high frequency the effects of 

periodicity are significantly reduced due to the lack of redundancy. Even though larger cylinders 

are present and the line of sight is completely blocked, the resulting scattered power falls within 

±1dB of the -3dB target. This is due to the sparse nature of the array, with the geometric angles 
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of reflection no longer tending to back-scatter sound incident upon the structure via multiple 

scattering.  

B. Alternative Lattice Shape 

Ideally an array will display isotropic behavior, meaning that performance is consistent 

for all angles of incidence. A potential downside of an arrangement such as that of Figure 9d is a 

changing appearance upon rotation, which can lead to variation in scattered power due to the 

change in line of sight. Introducing rotational symmetry could help. Even-fold rotational 

symmetry however, that is when an arrangement appears the same an even number of times for 

one complete rotation, implies redundancy and so is undesirable. An alternative is the hexagonal 

(or triangular) lattice, whose potential odd three-fold rotational symmetry permits unique vector 

spacings. Although examples have been considered
6
, these arrays do not lend themselves as 

easily to surface diffuser design, both in application of number theory and in terms of 

construction, and consequently have received little attention. Golomb et al.
28

 however 

demonstrated that a hexagonal arrangement may be formed by a simple ‘shear-compression’ 

transformation of an existing square lattice array using the transformation given by:  

ncompressioshearshearncompressio
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01
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 (7) 

Where xt and yt are the coordinates of the original x and y row vector element locations, 

when altered by transformation matrix, A. This was applied specifically to Costas arrays, though 

is applicable to any arrangement, and is represented pictorially in Figure 8 for a 7×7 Lempel L2 

construction, where first the array is sheared in the horizontal dimension, then compressed in the 

vertical dimension. Applying a spatial transformation to the element locations also applies the 
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same transformation to the vector separations, and hence the AACF. This means that a 

non-redundant square grid arrangement will, when transformed, also produce a non-redundant 

hexagonal one. In order to form a more isotropic array, a sequence is preferred whose elements 

fall close to the main diagonal, and consequently the Lempel L2 construction is well suited. This 

is evident from Figure 8 where it can be seen that a ‘square-footprint’ array (including gray 

squares) would transform to a ‘rhombus-footprint’ array, as opposed to the hexagonal array 

shown (excluding gray squares). The resultant arrangement has the property of ‘non-attacking 

bee-rooks’ (from the game of hexagonal chess), whereby no two elements lie on the same line of 

adjacent hexagons
28

. This, like the Costas array of Figure 9d, ensures an increased minimum 

separation distance. 

The underlying periodicity remains, though the transformation can lead to a more tightly 

packed yet evenly spread AACF. This is demonstrated in Figure 10 where both original square 

grid (a) and transformed hexagonal array (b) for a 27×27 Lempel L2 Costas array are shown, 

along with their respective AACF distributions (c) and (d). These are expressed as vector 

separation maps where no two separations coincide.  The threefold rotational symmetry of the 

hexagonal array is clear. The result is more consistent behavior with angle of incidence, as well 

as a slight improvement in scattered uniformity compared to a regular square grid due to the 

larger number of separation paths comparable to wavelength across the design bandwidth. 

C. Amplitude Shading 

In order to achieve low frequency power, cylinders of approximately a quarter 

wavelength in diameter are necessary. One option is to use a variety of cylinder sizes, providing 

elements comparable in scale to a range of wavelengths. If the scattered amplitude of each 

element – assumed previously to be contributing equally – could be controlled, then a sequence 
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of reflection coefficients may be sought where |Rn,m| can take any positive real value. The 

scattered energy from a cylinder is approximately proportional to size (though demonstrating a 

high-pass filter shape), and so in a slightly crude manner, size can be used to vary each elements 

contribution. Individual element polar patterns are neglected here and are assumed to scatter 

omnidirectionally. 

In array theory, this process is often referred to as amplitude shading, and typically 

involves the application of a windowing function to a full array in order to maximally suppress 

the sidelobes. Ideally, a sequence is required that aims to achieve equal sidelobe energy rather 

than restrict their level, as it is this that determines diffusive performance. An example is the 

Chebychev window
29

 which provides a series of weightings designed to achieve a specified 

attenuation. Figure 11 shows a 10×10 array of cylinders (a) and f = 593Hz and 1333Hz scattered 

polar patterns (b) for a 2D Chebychev array designed to produce 20dB equally attenuated 

sidelobes. Cylinders less than 2cm in diameter have been omitted as their contribution is 

insignificant over this frequency range. The back-scattered polar response displays near equal 

lobing over a progressively larger area with increasing frequency. Above the first Bragg 

frequency however, notches in the diffusion coefficient become severe due to the high 

occupancy and hence redundancy. Furthermore, a Chebychev array still has cylinders in close 

proximity, and consequently does not allow cylinders larger than grid spacing ( },{ yxe ddd  ), 

meaning low frequency power is insufficient. 

An alternative approach is to apply amplitude shading to an existing array by multiplying 

with a chosen window in the spatial domain. This equates to convolution in the scattered polar 

domain. The objective is to smooth out the polar response by removing the more rapid 

fluctuations and so a window sequence shaped like a low-pass filter is desired, implying larger 
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objects in the centre of the array and progressively smaller objects towards the extents. 

Conveniently, this allows low frequency energy to penetrate into the structure and higher 

frequencies to scatter off the smaller outer elements. In addition, when windowed radially, a 

more isotropic array is formed. A suitable arrangement for amplitude shading is the hexagonal 

grid Lempel L2 Costas array, as these tend to be sparsely populated towards the centre. Figure 12 

shows both measured and modeled random incidence diffusion coefficient (a) and scattered 

power (b) for the hexagonal Costas array depicted in Figure 10b with amplitude shading. The 

original grid spacings were set at dx = dy = 86mm, before the transformation matrix in Eq. 7 was 

applied. To allow measurements to be carried out on the array, three readily available cylinder 

sizes (when scaled) were selected: de ≈ 50mm for the outermost six, de ≈ 200mm for the 

innermost three, and de ≈ 100mm for the remaining eighteen. Random incidence values for both 

the diffusion coefficient and scattered power were obtained by averaging results for θ = 0
°
 to 

θ = 330
°
 taken in steps of 30

°
. 

Like the optimized array, there is general good agreement between measured and 

modeled results, though with slight discrepancies in level at low frequency. The array 

demonstrates an overall reduction in severity of diffusion notches, both for random incidence and 

for specific angles of incidence (not shown). Performance might be improved further if these 

sizes were optimized. 

VIII. CONCLUSIONS 

A BEM model has been used to gain accurate predictions for the scattering from 

pseudorandom cylinder arrangements based on a periodic lattice, and this has been verified by 

measurements. Through considered removal or variation in size of elements informed by number 
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theoretic sequences, a number of design concepts have been shown to create arrays that provide 

suitable levels of diffusion and back-scattered power across the design bandwidth.  

Sequences whose AACF properties are optimal provide the most even scattering. For 

fuller arrays however operational bandwidth is limited, with Bragg peaks affecting diffusion at 

high frequency and cylinder size limiting scattered power at low frequency. By eliminating 

structural similarity the detrimental effects on diffusion are minimized, producing an effectively 

oversampled sparse array. An example is the Costas array, which can allow cylinder size greater 

than lattice spacing, helping to extend the bandwidth of performance by effectively increasing 

the frequency of the first Bragg peak. Further improvements may be gained by transforming to a 

hexagonal lattice, providing more isotropic behavior due to the three-fold rotational symmetry. 

By applying amplitude shading, a hexagonal Costas array can be tuned to provide further 

improvements to diffusion as well as even back-scattered power across the design bandwidth.  

Future enhancement to spatially diffusive performance might use aperiodic or 

randomized arrays, thus removing the restriction of periodicity entirely. This would likely rule 

out number theoretic designs, and optimization routines similar to the GA may be more 

appropriate. Alternative element shapes – perhaps pseudorandomly orientated – may also offer 

advantages, though it is envisaged that the lessons learnt on placement will still apply. Finally, it 

is hoped that the concepts presented here will be extended to a full 3D array. 
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FIGURE CAPTIONS 

Figure 1: Arrangement (a) and semi-anechoic measurement setup (b) for a 10×10 Cylinder array 

with 25% occupancy optimized using a Genetic Algorithm and a 2D Fourier approximation. 



Volumetric diffusers: Pseudorandom cylinder arrays on a periodic lattice, Hughes, RJ; Angus, 

JAS; Cox, TJ, et al., Journal of the acoustical society of america 128(5) 2847-2856  Published: 

Nov 2010, DOI 10.1121/1.3493455 

 

25 

Figure 2: The scattered field around a 2D volume diffuser. Definition of the Back-Scattered Zone 

(BSZ); Forward Scattered Zone (FSZ); Geometric Visible Zone (GVZ); and Geometric Shadow 

Zone (GSZ) around a cylinder array of width D. 

Figure 3: Far field single scattering ps at receiver angle θr, from an M×N periodically spaced 

rectangular grid of point scatterers with unit spacing dx and dy in the x and y directions 

respectively, subject to a plane wave pi, incident from angle θ. 

Figure 4: BAD panel (a) and cylinders (b) arranged according to an N = 7 (perfect) Golomb 

ruler. 

Figure 5: Diffusion coefficient (a) and AACF (b) for MLS cylinder sequences [1 1 0 0 1 0 1] and 

[0 0 1 0 1 1 1], dy = 200mm, de = 100mm. 

Figure 6: Measured and modeled scattered field for a 10×10 array (as per Figure 1), f = 1050Hz 

(a) and 1600Hz (b). 

Figure 7: Diffusion coefficient (a), and back-scattered power (b), including predicted Bragg 

frequencies, fα,β , for the 10×10 array (as per Figure 1). 

Figure 8: Transformation of a 7×7 Lempel L2 Costas array from a square lattice to a hexagonal 

lattice via shearing and then compression (shear-compression) – after Golomb et al.
28

. 

Figure 9: Diffusion coefficient (a), back-scattered power (b), and AACF (c), for a 15×15 T4 

Costas array of cylinders (d). 

Figure 10: Square grid (a) and transformed hexagonal array (b) for a 27×27 Lempel L2 Costas 

construction, along with respective AACF vector spacings (c) and (d). 

Figure 11: Arrangement (a) and scattered pressure at f = 593Hz and 1333Hz (b) for a 10×10 

amplitude shaded array determined by a 2D Chebychev sequence. 
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Figure 12: Measured and modeled random incidence diffusion coefficient (a) and back-scattered 

power (b) for a 27×27 amplitude shaded Lempel L2 Costas hexagonal grid array. 
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Figure 4 
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Figure 7 



Volumetric diffusers: Pseudorandom cylinder arrays on a periodic lattice, Hughes, RJ; Angus, 

JAS; Cox, TJ, et al., Journal of the acoustical society of america 128(5) 2847-2856  Published: 

Nov 2010, DOI 10.1121/1.3493455 

 

33 

 

Figure 8 
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Figure 10 



Volumetric diffusers: Pseudorandom cylinder arrays on a periodic lattice, Hughes, RJ; Angus, 

JAS; Cox, TJ, et al., Journal of the acoustical society of america 128(5) 2847-2856  Published: 

Nov 2010, DOI 10.1121/1.3493455 

 

36 

 

Figure 11 
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Figure 12 

 

 

 


