
Proceedings of the Institute of Acoustics 

Vol. 32. Pt. 5. 2010 

FDTD/K-DWM SIMULATION OF 3D ROOM ACOUSTICS ON 
GENERAL PURPOSE GRAPHICS HARDWARE USING 
COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA) 
 
J Sheaffer School of Computing, Science and Engineering, the University of Salford, UK.  
B Fazenda School of Computing, Science and Engineering, the University of Salford, UK. 
 

 

1 INTRODUCTION  

Computer-based modelling is becoming standard practice in modern room acoustics. Its 
applications range from prediction of design parameters, visualization of sound propagation and 
auralisation [1]. Traditional architectural acoustic modelling methods, such as Ray-Tracing [2] and 
Image-Source models [3], draw on geometrical assumptions and therefore may be confidently 
applied only to an explicit class of design problems. Wave-based methods, on the other hand, 
attempt to solve the acoustic wave equation under specific boundary conditions, and are therefore 
more precise in predicting sound propagation, albeit at a much higher computational cost. Common 
methods such as Boundary Element [4] and Finite Element [5] analyses are considered highly 
accurate; however they impose two major limitations: a) their computational requirements grow 
exponentially with frequency, thus rendering them inadequate for wide band problems; and b) 
traditionally, their solution correspond to a steady-state analysis which neglects discrete time-
domain transient responses. Throughout the past decade much attention has been shifted towards 
numerical time domain methods, particularly the Finite Difference Time Domain (FDTD) [6] and the 
Digital Waveguide Mesh (DWM) [7]. Even as being able to provide discrete time-space 
approximations to the N-dimensional wave equation, these methods have two major drawbacks. 
First, the entire acoustic space must be modelled resulting in large computational domains, hence 
higher calculation times. Second, as finite difference approximations are employed, these methods 
exhibit dispersion errors that increase with frequency and vary with direction of propagation [8]; thus 
imposing a high-frequency calculation limit. Various methods for reducing these errors have been 
studied, most noticeably by considering non-rectangular mesh topologies [9], [10], by spatial 
interpolation and frequency warping [11]. One feasible trade-off is to oversample the mesh, 
consequently extending the high frequency limit at the expense of a considerably large 
computational problem. Evidently, a way to efficiently solve such large problems at reasonable 
calculation times would diminish the aforementioned restrictions.  
 
As grid-based time-stepping methods are easily parallelizable, multi-core implementations for the 
digital waveguide mesh have been suggested in the past [12]. However, commonly available CPUs 
are still based on dual or quad core architectures, with octa-core processors only recently 
introduced.  Nevertheless, graphics processing units (GPUs) employ a many-core scheme, with 
typical high-end consumer devices providing up to 240 cores. Harnessing the power of graphics 
processors for general purposes (GPGPU), is gaining high popularity in many computational 
sciences, with recent evidence of successful finite difference applications in electro-dynamics [13] 
and seismic modelling [14]. In acoustics, an implementation for a 2D waveguide mesh has been 
recently suggested by Southern et al. [15], and a 1D spectral method has been demonstrated by 
Angus and Caunce [16]. The introduction of nVidia‟s CUDA platform [17] provides an attractive 
solution for implementing naïve code on GPGPUs at a comfortable learning curve; thus allowing 
scientists and engineers to easily and quickly adapt their codes to run on graphics hardware. 
 
In this paper we present a GPGPU algorithm for solving the 2

nd
 order acoustic wave equation in 

three dimensions using the FDTD/K-DWM method. We evaluate two different boundary 
formulations and suggest two methods for implementing 3D data structures on the native 2D grid 
provided by the GPU. The methods are benchmarked at different sampling rates and tested against 
a CPU reference algorithm. Emphasis is given to computational costs, memory requirements and 
accuracy. It is worth noting that aside from general GPU programming „thumb-rules‟, mostly 



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

described in this text, no particular optimisation is performed on the GPU code; as we wish to show 
that even a naïve GPU implementations can considerably improve calculation speed. This is an 
important point as it emphasises the fact that adapting algorithms for GPU execution is simple 
enough for users having even little programming experience.  As one of the goals of this paper is to 
encourage acousticians to appreciate the advantages of recent GPU technology, we wish to show 
that writing GPU code using CUDA is extremely beneficial relative to the little amount of time 
required to learn coding for the platform.   

 
 

2 FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 

2.1 Propagation of Sound  

Under the assumption of inviscid-adiabatic flow of energy, propagation of sound waves in air may 
be described using Euler‟s equations, namely the conservation of mass and conservation of 
momentum [18], given by 

 
     

  

  
 (1)  

 
      

  

  
 (2)  

Where   and    are the gradient and divergence operators respectively,   is the acoustic pressure, 

  is the density of air, t is time, c is the velocity of sound,   is the particle velocity vector, and 

      ⁄ . Traditional FDTD methods involve a discretisation of equations (1) and (2); however if 
evaluating particle velocity is not necessary, they may be combined to obtain the 2

nd
 order wave 

equation given by 

    

   
       

(3)  

Where    is the Laplace operator.    

 
2.2 Spatio-Temporal Discretisation 

In order to establish a computer model, the domain must be sampled in space and the problem 
solved in discrete time steps. If the physical distance between each spatial sample along the x axis 

is denoted   , and along the y and z axes respectively, we can form a discrete coordinate system 

using a set of space indices          defined as 
 

   
 

  
  ,    

 

  
  ,     

 

  
 (4)  

Similarly, let n denote the state index related to the temporal period    by 
 

 
  

 

  
 

(5)  

For simplicity we assume uniform space discretization steps on the grid, therefore          
  . The spatial and temporal periods are related to each other through the Courant variable   
denoting the numerical stability of the algorithm [8]. Values must adhere to the Courant criterion 
given by 
 

   
  

  
 

 

√ 
 

(6)  



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

Where D denotes the dimensionality of the problem. In order to minimize dispersion it is customary 

to choose the Courant variable at its upper stability limit, namely for a 3D case    √ ⁄  . As 
previously mentioned, phase velocity errors caused by numerical dispersion are the foremost 
handicap of finite difference methods, which limit the accuracy of the algorithm at high frequencies. 
For more rigorous analyses of numerical dispersion and its effects, readers are referred to [8]. 
 
2.3 The Kirchhoff Digital Waveguide Mesh (K-DWM) 

Following the conventions described in (2.2) and employing central finite differences, a discrete 
update equation can be derived; representing the finite difference scheme for equation (3). In this 
case, pressure samples are given on a 3D rectangular mesh as shown in Figure (1). The 
corresponding update equation is given by [19] 

  |     
      ( |       

   |       
   |       

   |       
   |       

   |       
 )

          |     
   |     

    
(7)  

This equation is used to calculate the acoustic pressure at the different air nodes inside the 
discretised domain. However, at the edges of the mesh propagation should be terminated while 
satisfying the boundary conditions enforced on the wave equation. A simple 1D termination is often 
assumed at the boundaries resulting in the classical boundary update equations as formulated by 
Savioja et al.[20], given by 

  | 
          |   

     | 
    (8)  

Where    is the pressure on the boundary node,      is the pressure on the adjacent air node 
parallel to the boundary, and R is the acoustic reflection factor. An improved formulation of 
boundary conditions based on locally reactive surfaces (LRS) theory has been recently proposed by 
Kowalczyk and Van-Walstijn [19]. The update equations for right faces, right-back edges and the 
right-up-back corner of the mesh are given in equations (9), (10) and (11) respectively. Derivation of 
similar update equations for other types of faces, edges and corners is straightforward. 
 

 

 | 
    [

  (  |       
   |       

   |       
   |       

   |       
 )

          | 
  (

 

 
  )

] (
 

 
  )⁄  

(9)  

 

 

 | 
    [

  (  |       
    |       

   |       
   |       

 )

          | 
  (

 

  

 
 

  

  )
] (

 

  

 
 

  

  )⁄  

(10)  

 

 

 | 
    [

  (  |       
    |       

    |       
 )

          | 
  (

 

  

 
 

  

 
 

  

  )
] (

 

  

 
 

  

 
 

  

  )⁄  

(11)  

 
Where          are the components of the acoustic reflection factor in the x, y and z directions 

respectively,       and all other variables as before. Although this method can be viewed as a 
finite difference scheme for the 2

nd
 order wave equation, it can also be derived from a network of 

digital waveguides employing Kirchhoff variables [21], hence its name. 
 

2.4 Computational and Memory Requirements 

The computational costs (in floating point operations per cubic meter of model per second of 
simulation time) and memory requirements (in megabytes per cubic meter of model) for running a 



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

3D K-DWM model in single precision arithmetic are depicted in Figure (2). Clearly the growth is 
exponential in both cases (observe that the y axes are given in a base-2 log scale). 
 

 

 
 

Figure 1: A spatial section of an FDTD/K-DWM grid 

 

 
Figure 2: Computational and memory requirements of K-DWM models. Costs are given in millions of 

floating point operations per second per cubic meter. Memory requirements are given in MB per cubic 
meter. All values refer to single precision arithmetic accuracy. 



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

 
 
 

3 GENERAL PURPOSE MODELLING ON GPU 

3.1 Compute Unified Device Architecture (CUDA) 

CUDA, or “Compute Unified Device Architecture”, is a parallel computing framework designed to be 
employed on nVidia® graphics hardware. One of CUDA‟s main advantages is its accessibility to a 
wide range of programmers; as using it does not require prior knowledge or experience in 
developing applications for graphics hardware. Any CUDA-enabled GPU can be programmed using 
a high-level language termed “CUDA C”, which is essentially C with GPU extensions and some 
restrictions. Programmers may opt to write their code directly in CUDA-C or make use of wrappers, 
binders and plugins currently available for Python, Matlab and Fortran amongst others. 
 
Figure (3) portrays a CUDA program flow for a time-iterative algorithm such as the K-DWM. First, 
memory is allocated on the host computer alongside any other preparations needed. Once data 
have been prepared it is copied onto the device‟s global memory for further processing. Then, a 
loop is initiated on the host, which further executes a kernel for each time iteration. Once the entire 
computation cycle is completed, the required data is copied back to the host memory for further 
post-processing and output. In this model, space computations are performed in parallel by the 
kernel on the device whereas state computations are serially controlled by the host. This matches 
the requirements of finite difference schemes in which space variables, such as pressure or particle 
velocity, are dependent on their state counterparts (i.e. their previous time values). 
 

3.2 Thread Hierarchy 

In CUDA, a prototype function termed „kernel‟ is defined for each series of computations. Whilst 
calculations inside a kernel are performed serially, a launched kernel activates a group of threads 
which are executed in parallel. A kernel can therefore be seen as a set of instructions and an active 
thread would correspond to that set of instructions performed on a designated part of data stored in 
memory. Since threads are executed in parallel, a larger amount of data would be processed at an 
instance in comparison to a traditional CPU implementation. In an ideal parallel environment, the 
number of possible active threads would be comparable to the size of the data, i.e. one thread per 
data point. However, this is not possible due to technological constraints and in reality, the amount 
of active threads is explicitly limited by hardware architecture; hence requiring a mechanism to 
schedule and synchronize their operation. The amount of threads executed at a time can be seen 
from both logical and physical perspectives. 
 
From the programmer‟s viewpoint, threads are grouped into „thread-blocks‟ which are further 
clustered in grids. When a kernel is launched, data in a grid is processed block by block, each 
invoking its own group of threads; each having a unique identifier code. Nonetheless, in order to 
write robust and optimized code, one should also consider the process from a physical point of 
view. The CUDA platform is predicated on an architecture termed SIMT, or “Single-Instruction, 
Multiple-Thread”, which is employed by a scalable array of Streaming Multiprocessors. Once a 
kernel has been launched, active threads in a block execute concurrently on a multiprocessor.  The 
multiprocessor is therefore in charge of administering thread execution; a process which is done in 
groups of 32 threads, or simply “warps”. Whilst warps may execute independently, their operation is 
controlled by a warp scheduler on the multiprocessor. An important point in case is that warps are 
designed to execute a single common instruction, so maximum computation efficiency is achieved 
when all threads in a warp follow a unanimous operation scheme. Divergence and branching due to 
thread-distinctive instructions results in serial execution, which in turn reduces efficiency. 
 



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

3.3 Memory Hierarchy 

Memory management is a key aspect in GPGPU development. In traditional CPU programming 
paradigms computational operations are thought of as „expensive‟ whereas memory access is 
„cheap‟. That is, programmers prefer to pre-calculate any elements that are intended for reusability 
and store them in memory until needed. Conversely, un-cached GPU memory usage may exhibit a 
latency of up to 400-600 clock cycles; hence memory transactions are considerably more time-
expensive than most typical computations. It is important to identify four types of memory; Host 
memory is the term used to describe the RAM provided by the hosting computer, Global memory is 
the RAM available on the GPU, Shared memory is a specifically dedicated amount of cached 
memory that can be shared between threads inside the same block, and local memory is a small 
amount of cached per-thread memory. 
 
It is often necessary to control memory usage on a thread or warp level to ensure maximum 
performance. Memory coalescing is a common technique to minimize memory latency for a given 
set of instructions, allowing access to 16 words in a single memory transaction. In general, three 
conditions must be met [22]: 1. Data should be stored in 4, 8 or 16-byte words; 2. All accessed 
words must reside in the same memory segment; and 3. Words must be sequentially accessed by 
threads in a half-warp. Nevertheless, as CUDA technology progresses memory coalescing is 

becoming less and less of a concern, with newer “Compute Capability 2.x”
1
 devices providing 

cached access even to global memory. 
 

 
Figure 3: Program flow of a time-iterative algorithm in CUDA. Operations performed on the GPU are 

marked in italics. 

3.4 Implementation of 3D Data Structures 

Whilst thread blocks may be one, two or three dimensional, grids may have only up to two 
dimensions. This imposes a difficulty in orchestrating ties between thread indices and data indices, 
as three-dimensional arrays cannot be naïvely represented in a respective CUDA grid, at least for 
the time being. Nevertheless, it is not a requirement for block and grid dimensions to exactly match 
their data counterparts, as long as correct index translation is exercised. This entails a 
computationally effective method to compute 3D data using a 2D threading system. In this section 
we suggest two methods to overcome this obstacle. To avoid confusion, the term “data index” will 
be used to identify an arbitrary point in one processed array, and the term “thread index” will be 
used to identify an arbitrary thread within a block or grid. 

                                            
1
 Compute Capability is the term used by nVidia to identify the different architectures supported by 

their GPUs. 



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

 
Let us consider a computational domain with          denoting the discrete dimensions of the 

array, and (i,j,k) denoting the data index of a point in the array. Similarly, let         and         

denote the dimensions of the GPU grid and thread-block respectively. The goal is to map the 
problem in such way that a given thread with a 2D index will point to its corresponding 3D indexed 
data point. It should be noted that it is not necessary for the mapping scheme to follow a logical 
pattern, as long as indices are repeatedly translated correctly.  
 
The straightforward way would be to slice the volume, for example along its k-dimension, resulting 
in a group of 2D slices whose amount corresponds to   . The problem may then be computed slice-
by-slice, where each slice is considered an individual 2D array. This can be rather simply 
implemented in finite difference methods, as calculated values depend only on their predecessors; 
hence read-after-write hazards are naturally avoided. With this method it is possible to create a 
logical 1:1 map between thread and data indices by setting        and       , as shown in 

Figure (4a). In other words, grid dimensions are designed to match data dimensions of each k-slice. 
This method will be further referred to in this text as the “Slicing Method”. 
 
There are two main advantages to using this method: 1) it is logical and therefore easy to 
implement; and 2) as a 1:1 map is employed no computations of index translation are required. 
Nevertheless, it has a major handicap as a considerable amount of parallelism is lost due to serial 
computation of the k-slices. It is worth noting that variations in performance are observed when 
slicing along different dimensions. This is because 3D data structures are stored in linear memory, 
and access patterns vary with different stride orderings which in turn affect memory coalescing. The 
sliced dimension should therefore be chosen based on the highest stride variable. For example, if 
the amount of memory offset is calculated by 

             (12)  

Then slicing should be applied by looping over the i-dimension.  

 
Figure 4: 3D Data Structure sliced along its k-dimension. (A) Slicing Method, where the data is 

processed slice-by-slice; (B) Tiling Method, where the data is processed as a 2D plane in a single pass. 

An alternative approach is to flatten the volume into a tiled plane [23], where each tile would 
correspond to a specific slice of the k-dimension as shown in Figure (4b). Essentially, the 3D 
volume is now reduced to a 2D plane; however the natural data indices (i,j,k) should be translated 



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

to their 2D equivalents. Let    and    denote the number of slices tiled on the width and height of 
the 2D plane, respectively. To avoid confusion we shall use the indexing notation (l,m) to indicate 
the location of an arbitrary data point on the 2D plane. The number of data points on the l and m 
dimensions can be calculated from         and         respectively. Now, a 1:1 map can be 

established between thread and data indices, such that        and       .  Once a kernel is 

invoked and the (l,m) thread indices are given, their corresponding data indices (i,j,k) may be 
obtained from 

            (13)  

            (14)  

 
    ⌊

 

  

⌋  ⌊
 

  

⌋ 
(15)  

It should be borne in mind that since block dimensions would not normally match the dimensions of 
each tile (i.e.        and       ), some threads may point to values outside the bounds of the 

data array. Such threads should be identified and terminated. Also worth noting is that equations 
(13)-(15) can be altered to represent different memory or slicing ordering, depending on the 
programming environment or memory storage method. The main advantage of this method is that 
the entire computational domain can be calculated in a single pass per time sample hence 
maximizing the parallel capabilities of the GPU. However, as seen from equations (13)-(15) index 
translation should be performed for each individual thread. Moreover, division and modulo are the 
most computationally expensive arithmetic operations for the GPU [22], requiring up to 16 clock 
cycles per operation. As such, we propose pre-calculating the quantities (   ⁄     ⁄ ) and using 

built-in integer conversion functions to perform flooring and find the quotient, in order to improve 
efficiency. 
 

4 METHODOLOGY 

A computer model of a typical small room is used to evaluate the benefits of GPGPU 
implementations. Nevertheless, results are also shown in terms of computational problem size, and 
can therefore be induced on any room volume with respect to different sampling rates. 
 

4.1 Room Description 

We have chosen to model a 28 cubic meters room, with a length of 3.82m, width of 2.7m, and 
height of 2.72m, for which we have acoustic measurements. The floor, walls and ceiling are made 
of 30cm reinforced concrete, with a standard size steel door and a single 12mm PVB laminated 
window. Such room represents an idealised case of a rigid-reflective construction, and therefore 
serves as a standard reference for our models. The room was measured at 48,000 Hz using a 5.9 
seconds weighted sweep, with a studio loudspeaker and a pressure transducer situated at opposite 
tri-corners. Since the investigation of accuracy will be limited to lower frequency modelling, the 
loudspeaker radiation may be adequately assumed omni-directional. 
 

4.2 Computer Model 

Based on the details presented above, we have created computer models of the room, for each of 
the methods presented in this paper. We have chosen to write our codes directly in CUDA-C, in 
order to avoid any performance bottlenecks that may be introduced by third party wrappers. The 
reference algorithm is implemented in plain C, in order to maximize the compatibility between the 
CPU and GPU programs, which have both been compiled with nVidia‟s NVCC compiler. The room 
was modelled using the aforementioned methods, with uniform frequency independent boundary 
conditions analogous to a real acoustic impedance of               . The chosen source 
function is a Gaussian pulse, band-limited to 1/8

th
 of the sampling frequency, and injected into the 

mesh as a filtered „soft-source‟ [21].  



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

 

4.3 Technical Specifications 

Models are executed on an AMD Opteron 2210 based SUN workstation with 8GB of RAM, running 
Windows XP professional x64 edition. The computer is attached to an nVidia Tesla S1070 
computing system, featuring four Tesla T10 GPGPUs with a total of 16GB of RAM, and 4.14 
TFLOP/s computational capabilities. The GPU programs are restricted to make use of only one of 
the T10 GPUs, allowing for results to be analogous to more widely accessible hardware, such as 
the Tesla C1060 or the Geforce GTX285/295.  All models are tested using both „tiled‟ and „sliced‟ 
3D data structures, using both types of boundary formulations, in single precision accuracy. The 
CPU reference program is a single-core implementation running on the same hosting computer as 
the GPU programs. The CPU and GPU algorithms were coded according to their respective 
programming paradigms; however no special optimisation was performed aside from the basic 
thumb rules provided in this document. Special care was given to the way the two algorithms treat 
coefficients and access multidimensional array structures. Nevertheless, no changes were made to 
the data structure in order to improve memory coalescing, since as previously mentioned, with new 
device architectures this is becoming less crucial.   
 

5 RESULTS  

A comparison of model computation times (in minutes) is provided in Figure (5). It is evident that 
significant accelleration can be achieved even for naïve code, with speed-up factors ranging 
between x20 to x30, depending on boundary formulation and data access structure. The average 
speed-up factor for models having at least 1 million elements, is x3.8 for the Sliced method and 
x25.5 for the Tiled method.  
 

 
Figure 5: Benchmark of different devices, boundary formulations and 3D data structures. 

It can also be seen that for the CPU and GPU-Tiled algorithms there is no significant difference 
between the two boundary formulations. However, the GPU-Sliced algorithm shows substantial 



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

divergence in computation time between the two boundary formulations, for models having over ca. 
250,000 elements. Although we have benchmarked up to a sampling rate of 48,000 Hz, the Tiled 
GPU method was further tested in order to demonstrate the potential of GPGPU computing. Using 
this method we were able to model the room at 88,200 Hz (over 90 million elements) in a 
computation time of 2.32 hours, which is reasonable for most scientific applications.  
 
An accuracy comparison is provided in figures (6) and (7). As expected the K-DWM model follows 
measured results with slight differences in level and peak/trough depth; which may well be a result 
of differences in modelled vs. measured surface impedances. It is also clear that there are no 
differences between the two boundary formulations (mostly due to the fact that only reflective 
surfaces were modelled), and that the differences between the CPU and GPU algorithms are 
negligible. 
  

 
Figure 6: Low frequency comparison of modelled vs. measured response. Analytically calculated first 

order modes are indicated in dashed lines. 

 

6 CONCLUSIONS 

In this study we have shown that the K-DWM method is well suited for parallel computation. 
Substantial acceleration in computation time can be achieved even with naïve GPU code; which 
can be designed with simple understanding of the GPU programming paradigm. We have 
suggested and benchmarked two methods for processing 3D data structures in CUDA, which have 
clearly indicated that the Tiled method is superior in terms of computation time; whereas the 
performance of the Sliced method is more sensitive to variations in data structures.  
 
Although benchmarks were conducted on a professional GPGPU, for this research its capabilities 
were limited to processing power equivalent to a high-end consumer GPUs; hence showing that 
good results can be achieved even with lower-cost hardware. Nevertheless, we expect a significant 
improvement had these tests been performed using the entire computational power of the GPU. 
Moreover, with new GPGPU devices on the market and the introduction of the new Fermi 
architecture, even lower calculation times can be expected for naïve code; mostly due to hardware-
level memory caching.   



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

 
In sum, we hope to encourage acousticians to embrace GPGPU computing as a simple, robust, and 
cost effective solution for accelerating finite difference algorithms; which in turn will allow for the 
modelling of rooms in higher sampling rates, hence lower dispersion errors. 
 

 
Figure 7: Accuracy comparison of the CPU and two GPU algorithms. 

 

ACKNOWLEDGEMENTS 

The authors would like to thank Jamie Angus and Eldad Klaiman for the insightful discussions on 
GPGPU computing, and John O‟Hare for his technical assistance with the Tesla systems at the 
University of Salford. 

 

REFERENCES 

[1] M. Kleiner, B. I. Dalenbäck, and P. Svensson, “Auralization-an overview,” Journal-Audio Engineering 
Society, vol. 41, pp. 861–861, 1993. 

[2] A. Kulowski, “Algorithmic representation of the ray tracing technique,” Applied Acoustics, vol. 18, no. 6, 
pp. 449–469, 1985. 

[3] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room acoustics,” J. Acoust. 
Soc. Am, vol. 65, no. 4, pp. 943–950, 1979. 

[4] S. Kirkup, The Boundary Element Method in Acoustics. Integrated Sound Software, 1998. 

[5] M. J. Crocker, Handbook of Acoustics, 1st ed. Wiley-Interscience, 1998. 

[6] D. Botteldooren, “Finite-difference time-domain simulation of low-frequency room acoustic problems,” 
The Journal of the Acoustical Society of America, vol. 98, no. 6, pp. 3302-3308, Dec. 1995. 

[7] S. A. Van Duyne and J. O. Smith, “Physical modeling with the 2-D digital waveguide mesh,” in 
Proceedings of the International Computer Music Conference, pp. 40–40, 1993. 

[8] S. D. Bilbao, Wave and scattering methods for numerical simulation. Wiley, 2004. 

[9] L. Savioja and V. Valimaki, “Reduction of the dispersion error in the triangular digital waveguide mesh 

100

40 

20 

0 

-20 

CPU vs. GPU Accuracy

(dB)  Level dB, Magnitude

Frequency  (Hz)

30 40 50 60 70 80 90

50 

30 

10 

-10 

-30 

CPU Model

GPU Model (Tiled)

GPU Model (Sliced)



Proceedings of the Institute of Acoustics 
 
 

Vol. 32. Pt. 5.  2010 

 

using frequency warping,” IEEE Signal Processing Letters, vol. 6, no. 3, 1999. 

[10] S. A. Van Duyne and J. O. Smith III, “The tetrahedral digital waveguide mesh,” in IEEE ASSP Workshop 
on Applications of Signal Processing to Audio and Acoustics, 1995., pp. 234–237, 1995. 

[11] L. Savioja and V. Valimaki, “Interpolated 3-D digital waveguide mesh with frequency warping,” in IEEE 
INTERNATIONAL CONFERENCE ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, vol. 5, 
2001. 

[12] G. Campos and S. Barros, “The Meshotron: A Network of Specialized Hardware Units for 3-D Digital 
Waveguide Mesh Acoustic Model Parallelization,” in Audio Engineering Society Convention 128$}$. 

[13] S. Adams, J. Payne, and R. Boppana, “Finite difference time domain (FDTD) simulations using graphics 
processors.” 

[14] P. Micikevicius, “3D finite difference computation on GPUs using CUDA,” in Proceedings of 2nd 
Workshop on General Purpose Processing on Graphics Processing Units, pp. 79–84, 2009. 

[15] A. Southern, D. Murphy, G. Campos, and P. Dias, “Finite Difference Room Acoustic Modelling on a 
General Purpose Graphics Processing Unit,” in Audio Engineering Society Convention 128$}$. 

[16] J. A. Angus and A. Caunce, “A GPGPU Approach to Improved Acoustic Finite Difference Time Domain 
Calculations.” 

[17] C. Nvidia, “Compute Unified Device Architecture Programming Guide,” NVIDIA: Santa Clara, CA, 2007. 

[18] H. Kuttruff, Room Acoustics, 5th ed. Taylor & Francis, 2009. 

[19] K. Kowalczyk and M. van Walstijn, “Formulation of Locally Reacting Surfaces in FDTD/K-DWM 
Modelling of Acoustic Spaces,” Acta Acustica united with Acustica, vol. 94, pp. 891-906, Nov. 2008. 

[20] L. Savioja, T. Rinne, and T. Takala, “Simulation of room acoustics with a 3-D finite difference mesh.” 

[21] M. Karjalainen and C. Erkut, “Digital waveguides versus finite difference structures: Equivalence and 
mixed modeling,” EURASIP Journal on Applied Signal Processing, pp. 978–989, 2004. 

[22] C. NVIDIA, Best Practices Guide Version 3.0. nVidia Corporation, 2701 San Tomas Expressway Santa 
Clara. 2010. 

[23] M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for High-Performance Graphics and 
General-Purpose Computation. Addison-Wesley Professional, 2005. 

 

 


