
Obligations of Trust for Privacy and Confidentiality in
Distributed Transactions

U.M.Mbanaso1, G.S. Cooper1, David Chadwick2, Anne Anderson3

1Informatics Research Institute (IRIS), University of Salford, UK
2Computing Laboratory, University of Kent, UK 3Sun Microsystems Inc, Burlington MA

USA

Abstract
Purpose – This paper describes a bilateral symmetric approach to authorization,
privacy protection and obligation enforcement in distributed transactions. We
introduce the concept of the Obligation of Trust (OoT) protocol as a privacy
assurance and authorization mechanism that is built upon the XACML standard.
The OoT allows two communicating parties to dynamically exchange their
privacy and authorization requirements and capabilities, which we term a
Notification of Obligation (NoB), as well as their commitments to fulfilling each
others requirements, which we term Signed Acceptance of Obligations (SAO). We
describe some applicability of these concepts and show how they can be integrated
into distributed authorization systems for stricter privacy and confidentiality
control.

Design/Methodology/Approach – Existing access control and privacy
protection systems are typically unilateral and provider-centric, in that the
enterprise service provider assigns the access rights, makes the access control
decisions, and determines the privacy policy. There is no negotiation between the
client and the service provider about which access control or privacy policy to use.
We adopt a symmetric, more user-centric approach to privacy protection and
authorization, which treats the client and service provider as peers, in which both
can stipulate their requirements and capabilities, and hence negotiate terms which
are equally acceptable to both parties.

Findings – We demonstrate how the Obligation of Trust protocol can be used in a
number of different scenarios to improve upon the mechanisms that are currently
available today.

Practical Implications – This approach will serve to increase trust in distributed
transactions since each communicating party receives a difficult to repudiate
digitally signed Acceptance of Obligations, in a standard language (XACML),
which can be automatically enforced by their respective computing machinery.

Originality/Value – This paper adds to current research in trust negotiation,
privacy protection and authorization by combining all three together into one set
of standardized protocols. Furthermore, by providing hard to repudiate Signed
Acceptance of Obligations messages, this strengthens the legal case of the injured
party should a dispute arise.

Keywords XACML, trust, privacy, obligations, trust negotiation, SAML,
authorization

1. Introduction

Trends in emerging access management systems raise an interesting paradox. On the
one hand, service providers’ applications require identity/attribute related information
in order to validate a user’s request. On the other hand, users may not wish to disclose
their information or attributes to a remote Service Provider (SP) without determining
in advance whether the service provider can be trusted to comply with their privacy
preferences. Conventionally, privacy is often considered from the users’ perspective,
just as access control is considered from the SP’s standpoint. That is, the user is
concerned about the confidentiality of their personal identifying information (PII),
and the resource provider is concerned about the confidentiality and integrity of the
resource information. These assumptions have resulted in unilateral asymmetric
approaches. Yet the user’s PII may become the SP’s resource once it has been
transferred, and the SP may also have sensitive attributes such as membership
certificates of consortia, or trust relationships with third parties (TTPs) or policies of
various kinds that a resource user may demand to see before releasing their PII. This
suggests a symmetrical approach may be more appropriate, and has led to the research
topic called trust negotiation where each party’s attributes are released incrementally
to the other, as trust is established between them (Bertino et al. 2004).

Often, confidentiality is used as a substitute for privacy but they are not identical.
It is important to accurately differentiate between them in order to identify the
associated challenges and risks. Simply put, whilst confidentiality is the process of
making sure that only the right (‘legitimate’) party gets access to information, privacy
ensures that this legitimate party treats the information in the right way and only uses
it for the purposes for which it is intended. Privacy is governed by factors such as
legislation, laws, guidelines and principles that cut across national borders (OECD,
2000).

1.1 Overview of Privacy and Confidentiality Challenges

In distributed environments, there are three functional security components that peers
in communication have to address: Authentication, Authorization and Trust. Whilst
authentication addresses the question of ‘who are you?’, authorization answers the
question ‘what can you do?’ after we know who you are. In contrast, trust deals with
‘how reliable are you?’ which has to be based on ‘who says this about you?’ when the
trustor has no prior direct knowledge about the trustee. This requires the trustor to
have confidence in the entity that makes assertions about the trustee. The new
federated architecture shows that authentication and authorization can operationally
be managed in autonomous security domains, and it is trust which binds the domains
together. For example, authentication could be handled at the initiator’s domain,
whilst access control could be handled at the service provider’s domain based on
attributes asserted by a third domain. Consequently trust relationships must be
established between all the interacting domains, so that the service provider can trust
the authentication statement made by the initiator’s domain, and the attribute
statements asserted by the third domain. Trust provides the mechanism for validating
the authenticity of the various attribute and privilege assertions that the interacting

domains use as the basis for allowing access to protected resources. Trust may be
direct or indirect/transitive e.g. A trusts B (direct trust), B trusts C (direct trust) and A
trusts C because of B’s trust in C (indirect/transitive trust). Often, in distributed
environments, the common practice is to rely on indirect trust brokered by trusted
third parties (TTPs) that issue signed assertions to multiple clients. These clients can
then use these assertions, and their mutual trust in the TTP, as a basis for trusting each
other. This is how public key infrastructures work today, and it is a foundation upon

which federated systems are built.

However, web services provisioning introduces a far more extensive and dynamic
environment for complex transactions that makes brokered trust insufficient to protect
the privacy and confidentiality of all transactions. Figure 1 depicts the multiple actors
in federated access management. Service clients can have multiple identities issued by
autonomous identity providers, and the identity providers can broker trust among
many clients and providers. It is imperative therefore that trust in this case has to be
established between people and people, between people and services, and between
services and services. This highlights the following challenges and risks:

 What is the accountability of parties in relation to compromised personal
identifying information (PII)?

 What level of audit takes place regarding how PII is accessed?
 How can a user be assured that a service provider’s privacy promises will be

supported by robust technological means?.
 How are disputes and liabilities handled? There is a need to establish a

respected channel for handling and resolving disputes.
 How can the process of contractual negotiations be automated? Traditional

methods are overly time consuming and costly.

Figure 1 Actors in Federated Access Management

 Whose fault is it in the event of a problem with shared attributes or data?
Who is financially liable? Is there any hard-to-repudiate evidence that parties
can use in courts of law to support their claims?

We conclude that technological means alone will never be able to answer all the
above questions, and that regulatory compliance, disputes resolution and assurance
mechanisms will require underpinning with local and trans-border legislation, laws,
guidelines and principles. Thus the legal and regulatory system is the only significant
trusted third party that is big enough and ubiquitous enough to broker trust between
all the parties involved in federated web services. However, technology should be
able to contribute to the resolution of the above challenges, by providing high quality,
difficult to repudiate information that can be utilized by the legal and regulatory
system when the need arises.

The emerging web services provisioning may require that in B2B transactions,
both parties dynamically exchange service level agreements (SLA) or business level
agreement (BLA) in order to assess the mutual benefits and associated risks. This will
eliminate the static contractual agreements that are too time consuming to establish in
order to address the opportunities that arise in dynamic business environments. One
way to achieve this would be for each party to issue to the other a proof of acceptance
of the requirements contained in the SLA or BLA of the other party. Enabling the
runtime exchange of these requires a bilateral symmetric approach to allow the
communicating parties to indicate their willingness to accept the constraints imposed
by the other party, before being prepared to reveal their sensitive information. There
is therefore some overlap between user privacy requirements and business
requirements.

To address confidentiality and privacy problems simultaneously and
symmetrically, the parties in distributed transactions should have a standard means of
declaring their privacy requirements and the respect they will give to the other party’s
privacy requirements before sharing their resources. All parties need to evaluate the
risk of giving out their PII and determine the degree to which they are prepared to
trust the other participating actors. They will need to identify any constraints and
obligations they may wish to place on the others. Trust negotiation (Bertino et al.,
2004) has been proposed to address this dilemma, but as will be pointed out later it
has its limitations. We therefore approach the topic in a slightly different manner. We
propose a technical solution that derives its concepts and message exchanges from
open standards, and a business solution that derives its trust from the enforcement that
is provided by the legal and regulatory infrastructure. We describe the concept of an
Obligation of Trust (OoT) protocol, whereby two parties can exchange difficult-to-
repudiate1 digitally signed obligating constraints (or Notification of Obligations
(NoB) which detail their requirements for sending their sensitive information to the
other party), and proof of acceptances (or Signed Acceptance of Obligations (SAO),
which acknowledge the conditions they have accepted for receiving the other party’s
sensitive information). The OoT protocol provides the negotiating mechanism for

1 We use the term “difficult-to-repudiate” rather than non-repudiation, since repudiation is a

legal issue that has to be determined in a court of law. The technical constructs proposed in
this paper should make it more difficult for an entity to repudiate their actions.

carrying obligating constraints and proof of acceptances between security domains.
Being signed, they help the communicating parties to produce difficult-to-repudiate
technical evidence in the event of disputes. The OoT protocol also provides a
mechanism for dynamically exchanging other obligating documents such as service
level agreements (SLAs), business level agreements (BLAs), contractual documents,
etc. In effect, the OoT protocol merges technical solutions (mechanical exchange and
matching, digital signature) with potential social/judicial solutions (non-repudiation,
technical legal recourse). The rest of this paper is structured as follows. Section 2
describes related research. Section 3 presents the OoT protocol and also describes
how the matching of obligation constraints and proof of acceptances is achieved using
the XACML standard. It also describes the binding of the OoT protocol onto the
standard SAML protocol. Section 4 provides an example of the use of the model
whilst section 5 concludes the paper.

2. Related Research

The Platform for Privacy Preferences (P3P) (W3C, 2002b) is one approach that
attempts to address privacy in commercial service provider (SP) websites. Whilst it
has provided some degree of privacy awareness, it has not particularly addressed
privacy concerns in distributed access control systems. The fact that P3P is widely
implemented by most websites and processed by compliant user-agents by comparing
the P3P policy statement against an APPEL (W3C, 2002a) statement that describes
the user’s privacy preferences is beneficial. By contrast, in distributed access control
systems, SPs don’t usually convey their privacy policy statements to the service users
during access request. Even if a user in a distributed access control system retrieves
the remote P3P policy, the policy may not necessarily meet the user’s preference.
Thus, the user may abort the service or continue without the choice for further
negotiations. Also P3P doesn’t support provider-side requirements; the SP may have
some privacy constraints that require enforcement at the client’s side. The main
components of a P3P privacy statement include the recipient of the data, the purpose
for which that data is requested, the retention period at the collector’s store, and the
data category. It can include other components such as disputes and remedies, as
well as whether disclosure to third parties is allowed. Although P3P covers most of
the basic principles of privacy (OECD, 2000), the fact that it has not satisfactorily
resolved the requirements for bilateral privacy negotiation limits its use in access
control.

Shibboleth (Morgan et al., 2004) from Internet2 provides a mechanism for
federated access management based on the SAML security standard (OASIS, 2005).
Shibboleth provide single sign on (SSO) and a mechanism for an IdP in one security
domain to securely convey attributes about a web-browsing user to a SP in another
security domain. In Shibboleth, privacy is addressed in two ways. Firstly, after the
user authenticates to the IdP, the Shibboleth authentication service generates a one
time handle to identify the user and transmits this to the SP. Secondly, the IdP uses
Attribute Release Policies (ARP's) to decide whether to release specific attributes to
the SP or not. This is fine as long as the remote site doesn’t require any personally

identifying attributes to complete the service. But this is unlikely to be the case in
most business transaction scenarios. Furthermore, the Shibboleth infrastructure
doesn’t provide any support for bilateral negotiation of service parameters. If the user
doesn’t provide the requested attributes, access to the services is unilaterally denied.
Another significant privacy flaw is that the ARP is coarse and doesn’t support most of
the known privacy principles (OECD, 2000).

ID-WSF from the Liberty Alliance (Liberty Alliance Project, 2006) is an open
standard for federated identity management that is built upon the extensibility of
SAML security assertions (OASIS, 2005). It provides a framework for the discovery
and communication of identity information among federated organizations. When a
client authenticates to an IdP, a SAML-based assertion handle (SSO) is generated and
communicated to a relying party or SP with optional information which the relying
party may use to call-back the user’s IdP. The ID-WSF framework provides a flexible
security model for a highly distributed set of federated organizations.

Microsoft, IBM and VeriSign started to work on a set of specifications for web
services security (called "WS-*”) for their next generation platform of Web services.
The work was then passed to OASIS and W3C for standardization by a broader group
of participants, which has resulted in a number of specifications being published
including Web Services Security (OASIS, 2006), Web Services Trust (OASIS, 2007)
and Web Services Policy (W3C, 2007). WS-Security provides mechanisms for
securing web services SOAP messages with integrity and confidentiality. WS-Trust
uses the messages secured by WS-Security to allow security tokens to be issued,
exchanged and validated by Security Token Services (STSs) as a means of brokering
trust between web services. WS-Policy is designed to enable services to advertise
their requirements (especially authorization requirements) that a requesting party must
satisfy in order to use the services; as well as the capabilities that their services may
offer The idea is that a requesting party can consider what it is willing and able to
accept, before sending attributes that can satisfy the requirements. However, WS-
policies do not necessarily provide a means to enforce access control policies since
typically they are not meant to be consumed by Policy Decision Points (PDPs).

One approach that addresses bilateral access control is trust negotiation (Bertino et
al., 2004), including the Automated Trust Negotiation (ATN) technique
(Winsborough and Li, 2002). ATN introduces a trust negotiation layer for
symmetrical interactions. Research efforts in this area have developed advanced ATN
techniques to cover a variety of scenarios (Seamons et al., 2002) (Winsborough and
Ninghui, 2002) (Seamons et al., 2005) (Bertino and Squicciarini, 2003). Recent
initiatives in preserving privacy (Pau, 2006) (Preibusch, 2006) also favour the use of
negotiation techniques for solving privacy problems. ATN is an access control
technique that permits the gradual release of policies and credentials so that trust can
be incrementally increased until the communicating parties are sufficiently satisfied of
each others trustworthiness to send all their confidential information. However, ATN
doesn’t address the issue of sending obligations for future actions or providing a
mechanism whereby the relying party can convey proof of acceptance of obligating
constraints such as the assurance that the attributes contained in the assertions will be
used in accordance with the party’s privacy preferences. The first researchers to
integrate obligations with trust negotiation were Skogsrud et al. (Skogsrud et al.,
2004). Their Trust-Serv framework uses a finite state machine to model trust

negotiation and has the ability to transfer a signed contract along with credentials
from the service provider to the client. The client may then sign and return the
contract to the service provider. But their contracts are currently without syntax or
semantics, and as the authors point out, the monitoring of these obligations/contracts
is beyond the scope of their work. Our research addresses this gap. Spantzel et al.
(Spantzel et al., 2007) introduce a framework that integrates ATN with Identity
Management Systems (IdM). Based on their comparison of ATN and IdM systems, it
shows that ATNs have not truly explored access security standards such as XACML,
SAML, etc which may limit their practical implementation. We address this issue
here.

To the best of our knowledge, none of the above systems provides a mechanism for
the remote enforcement of privacy obligations. So there is uncertainty that the
receiving party will adhere to them. Further, the receiving party may not accept any
liability if the sender’s PII is compromised. Without privacy assurances there is the
possibility that the receiving party may even misuse the sender’s PII without any form
of liability. Privacy negotiation will provide a mechanism that relies less on trusted
external third parties and more on the communicating parties themselves. Privacy is
governed by laws, legislation and principles requiring that privacy solutions should
provide tenable difficult-to-repudiate technical evidence in the case of a privacy
dispute. Consequently, there is a need to provide a mechanism for providing tamper-
proof technical evidence that may be used in the event of disputes when parties do not
conform to their commitments. One approach to achieve this is to provide a standard
protocol to enable participating parties to exchange digitally signed commitments. We
acknowledge that a technical “non-repudiable signature” on its own may not be
sufficient evidence for a court of law since other factors also contribute to a digital
signature being legally non-repudiable, such as: how much active participation the
user had in deciding to sign, how free the user is to use the signed-for sensitive
information, whether the software automatically generated the signature, and how
complex the signed agreement is. However, these legal issues are not within the scope
of the current paper. We consider the technical issues only that will help to provide
difficult-to-repudiate evidence in a standard format that can be automatically enforced
by computing machinery.

3. Obligation of Trust (OoT) Protocol

Obligation of Trust is a protocol that defines a standard mechanism enabling two or
more communicating parties to exchange obligating constraints as well as proof of
acceptances. The basic concept addresses the problem that a requesting party
currently has no means of enforcing obligations placed on a remote party. In policy
based access control systems, an obligation is an action that should be performed by a
Policy Enforcement Point (PEP) in conjunction with the enforcement of an access
control decision. XACML (OASIS, 2005) describes an Obligation element as a set of
attribute assignments, with an attribute FulFillOn which signifies whether the
consuming PEP must fulfill the obligation if the access control decision is “Permit” or
“Deny”. When a Policy Decision Point (PDP) evaluates a policy containing

obligations, it returns the access control decision and set of obligations back to the
PEP. However, in a distributed environment the SP’s PEP is unlikely to be in the
same security domain as the service requestor; therefore there is no guarantee that any
obligations required by the requestor can either be incorporated into the policy used
by the SP’s PDP, or even if they can, be enforced by the SP’s PEP. Similarly the SP’s
PEP will have difficulty enforcing any obligations that are returned by its PDP that
place requirements on the service requestor. Given this, it makes sense to address the
remote enforcement of obligations by allowing each party to transfer their obligations
to the other party in a standard format, and to convey back to the other party an
acceptance or rejection of the obligations they have received. The OoT protocol
addresses this interaction. We divide the OoT protocol into two steps: Notification of
Obligation (NoB) (which may be signed or unsigned) and Signed Acceptance of
Obligation (SAO) (which must be signed). The OoT protocol is symmetric. An
initiating party sends a NoB outlining the obligating constraints it is placing on the
other party and the commitments it is willing to make if the other party accepts its
obligations. The other party, after evaluation, either (i) sends back a signed acceptance
(SAO) of the constraints it accepts and the commitments it requires, or (ii) initiates
more service negotiations with its own NoB, or (iii) rejects the request and terminates
the session. Because the NoB and SAO are constructed using standard XACML
obligations elements, both communicating parties have a common language for
expressing their requirements and commitments, and are able to feed these obligations
directly into their PDPs for automatic decision making, and ultimate enforcement by
their respective obligations services. Thus our system provides for the automatic
strong technical enforcement of the promises that are made.

A simple example follows, illustrating how the addition of privacy related
obligations could be beneficial in a transaction involving trust. The example starts
from a relatively simple online transaction whereby a client is accessing a commercial
web site and is required to submit personal information, including his credit card
details. The client duly submits the required information to the SP and the transaction
is completed. In this case, the service provider’s requirements for authentication and
for assurance that payment will be received are based on the provision of the credit
card’s details by the client. However, this is a unilateral arrangement, in which the
SP’s requirements have to be met by the client, but the client has no way of specifying
or placing requirements on the SP. With such sensitive information as a credit card
number, it could be that the client wishes to specify such requirements.

In this case, the respective requirements of the client and the SP may be specified
using the OoT protocol as follows:

1. The client initiates a request to the SP asking for a service and receives a
Notification of Obligation stating the enterprise’s requirements for
personal details and credit card details;

2. The client returns a NOB with requirements specifying that the SP must
delete credit card details immediately after use and only use the personal
details for internal processing purposes;

3. The SP replies with a Signed Acceptance of Obligations agreeing to
both requirements, as well as agreeing to provide the requested services.

4. The user is now able to reply with his own SAO along with his credit
card and personal details.

5. The SP then completes the transaction, providing the requested service
to the client.

In this case, it can be seen that bilateral signed agreements are reached before either
party releases information, goods or services to the other. A key point here is that
each party’s requirements needs to be bound to the other party’s requirements in order
to allow a signed agreement (“OoT”) to be reached.

In web services environments, it may be that in some transactions SPs will want
potential requestors to know exactly what access requirements are needed in order to
invoke their services. In contrast, there may be other situations in which a web service
will not want to publish the full access requirements, but a subset of them which can
act as a first-level filter to minimize undesirable exchanges. This fits scenarios in
which an SP considers it a business risk to release the full access requirements in a
single shot to arbitrary clients, but would prefer to make the access requirements
known incrementally as more trust is gained between it and the client. In fact the
subset could help the potential requestors to know whether they are likely to satisfy
the service requirements before disclosing information of their own, as well as to be
able to calculate the potential risk in the interactions. In other scenarios, some web
services may not have access to the authorization decision policies within their
domain, or simply may be running within constrained environments and are unable to
run a Policy Decision Point (PDP) engine. In such cases, the devices would rely on a
trusted 3rd party’s PDP to provide a signed authorization token to indicate that it has
evaluated the requester’s request against its access policies and certify that the request
is allowed. In other cases, it might be that a web service or client would require a
potential interacting partner to possess a particular role, e.g. ‘Liberty Consortium
Membership’, ‘certified ACCA accountant’, etc. in order to interact. The client, or a
service with the right privileges, can request a client’s role assertion from the
particular Role Attribute Authority (RAA) prior to service interactions, and the
service can then validate the role assertion to determine whether the client actually
possesses such a role or not. Where privacy and confidentiality are considered
important, parties may rely on the facilities of WS-XACML’s Requirements and
Capabilities (Anderson, 2007) to specify their security preferences.

A further example in Figure 2 serves to illustrate the use of the proposed protocol.
We present a scenario involving access control using policy based mechanisms,
security tokens issued by trusted third parties, and then show how the OoT may be
used to enrich the exchange to include additional forms of trust establishment.

In Figure 2 (i), a client requires a role attribute with the value ‘purchasing officer’
in order to invoke a web service to obtain a confidential price list from an Enterprise
SP. The following steps describe the interactions among the various actors:

1. The client initiates and sends a role attribute request to his Role
Attribute Authority (RAA)/Security Token Service (STS) (that is also
trusted by the Enterprise SP). This requires the client to authenticate to
the RAA/STS in order for the latter to determine the role(s) assigned to
this client;

2. The RAA/STS issues a signed role assignment token to the client;

3. The client constructs a request message, containing the role assignment
token, and sends it to the Enterprise SP, asking for the confidential price
list;

4. The Enterprise SP (or its STS) validates the role assignment token
containing the client’s role as a purchasing officer, passes this to its
internal XACML PDP (as a subject attribute) which evaluates the
request against its local policy. If the decision is granted, it returns the
price list to the client

In this example the client can authenticate and obtain identity or role tokens from its
local security domain, which are trusted by the service provider, thereby satisfying the
latter’s requirements that the client is authenticated and authorized. Using our OoT

protocol, it would be possible for the service to express its role requirements in the
Requirements section of a WS-XACML assertion, whilst the client records its
capability to activate the role in the Capabilities section. Whilst this approach is not
really necessary in this simple case, it does provide an important generalization that
will allow for more complicated requirements than simple access control to be
supported. For example, it might be that the service provider also requires an
assurance that the confidentiality of its price list will be maintained. This requirement

Client

Enterprise SP

PEP/PDP

Price list

Request
(price list +
role token)

RAA/STS

Role activation
request

Signed role token
(purchasing officer)

1
2

3

4

ii
Client

Enterprise SP

PEP/PDP

NoB

Request (price
list + role token)

RAA/STS

Role activation
request

Signed role assertion
(purchasing officer)

5
6

1

2

iiii

Trust Trust

SAO 3

SAO

4New Request
message 7

Price List+
Obligation

8

RAA – Role Attribute Authority
SP – Service Provider
STS – Security Token Service
PEP –Policy Enforcement Point
PDP- Policy Decision Point

RAA – Role Attribute Authority
SP – Service Provider
STS – Security Token Service
PEP –Policy Enforcement Point
PDP- Policy Decision Point

Figure 2 WS-XACML Contexts in Distributed Environments

could equally be represented using the WS-XACML assertions mentioned earlier. In
this case, depicted in Figure 2(ii), the exchange will proceed as follows:

1. The client initiates a request to the Enterprise SP for the confidential
price list.

2. The Enterprise SP sends a Notification of Obligation stating the
enterprise’s requirements for the purchasing officer role and
confirmation that the price list will not be disclosed by the recipient

3. The client returns a Signed Acceptance of Obligation confirming that it
will keep the price list confidential and that it is able to furnish the
required role.

4. The Enterprise SP replies confirming the SAO.
5. The client initiates and sends a role attribute request to its Role Attribute

Authority (RAA)/STS (that also is trusted by the Enterprise SP). This
requires the client to authenticate to the RAA/STS in order for the latter
to determine the role(s) assigned to this client;

6. The RAA/STS issues a short lived signed SAML attribute assertion
(containing the role) to the client;

7. The client constructs a request message, containing the role assertion,
and sends it to the Enterprise SP, asking for the confidential price list;

8. The Enterprise SP validates the client’s role assertion as a purchasing
officer of the Enterprise and passes the client’s valid role to its internal
XACML PDP (as a subject attribute) which evaluates the request against
its local policy and returns granted and an obligation to keep the price
list confidential. The SP returns the price list and obligation to the client.

In an even more complicated variant of above, the client might wish that the
Enterprise SP does not publicize that it has requested the price list. In this case the
client, in step 3, would send a NoB to the Enterprise requiring it to keep its identity
information private and to use it only in the current transaction. The Enterprise could
then decide to either accept this obligation or not. The examples shown in this section
illustrate just some of the needs that are addressed by the OoT protocol. A more
substantial example, involving more complex combinations of requirements, will be
given in section 4.

3.1 OoT Encoding Scheme

The Web Services Profile of XACML (WS-XACML) (Anderson, 2007) describes a
way of encoding XACML related information so that it can be transferred between
communicating parties. WS-XACML specifies the format of four types of
information:
• an authorization token or credential for carrying an authorization decision between

web services,
• a policy assertion for carrying policy requirements and capabilities between clients

and servers. Both authorization and privacy policy assertion types are specified,

• P3P policies using the privacy policy assertion type mentioned above, so that both
parties can specify their privacy preferences and have them matched by the
receiving party, and

• XACML Attributes as SAML assertions, to be carried in SOAP Message Headers.

More formally, the WS-XACML Assertion Type is an abstract framework that

describes an entity’s Web Services policy in the context of different policy domains,
such as authorization or privacy domains. The name of the Assertion’s element
indicates the domain to which it applies, i.e. XACMLPrivacyAssertion for the privacy
domain and XACMLAuthzAssertion for the authorization domain. The
XACMLPrivacyAssertion deals with privacy specific assertions which can carry
Requirements (i.e. what the asserter requires of the other party), and Capabilities (i.e.
what the asserter is willing and able to do for the other party if its own Requirements
are satisfied). The inner (green) box in Figure 3 depicts the WS-XACML Privacy
Assertion. This allows constraints on a policy vocabulary to be expressed as XACML
Apply functions. The XACMLAssertion contains two sets of constraints as shown in
Figure 3. The first set, called Requirements, describes the information or behavior
that the policy owner requires from the other party. The second set, called
Capabilities, describes the information or behavior that the policy owner is willing
and able to provide to the other party. One instance of the XACMLAssertion is the
XACMLPrivacyAssertion whose Capabilities element describes the Obligations that
are being accepted and the information that will be provided. The Requirements
element specifies the Obligations that the sender requires of the other party in order to
proceed.

Using the built-in extensibility mechanism of WS-XACML and SAML Assertions,
we can conveniently encode the components of the OoT protocol as extensions of
these standard elements. The NoB can be expressed as an instance of a
XACMLPrivacyAssertion in which the desired obligating constraints are placed in the
Requirements section of the Assertion, and any obligations that the sender is willing
and able to fulfill in the Capabilities section. The SAO can be expressed as an
instance of a XACMLPrivacyAssertion in which the Requirements section specifies
the sender’s understanding of what the recipient has committed to do and the
Capabilities section specifies the obligations that the sender has committed to
undertake. By signing the SOA the sender is stating in a difficult-to-repudiate form
their commitment to fulfill the Obligations contained in the Capabilities element, so
long as their Requirements are satisfied. The recipient duly returns its SOA to the
sender, only now the placement of the obligations has been reversed, since its signed
Capabilities contain the obligations from the original sender’s Requirements and vice
versa. This is equivalent to today’s exchanges of signed paper contracts, which
contain the commitments and obligations of both parties. Figure 3 shows the
extensions of WS-XACML and SAML that map into our Obligation of Trust model.
The OoT schema is available at (University of Salford, 2006), but basically it defines
a new SAML protocol request type (the Obligation of Trust Query Type) and a new
SAML statement type (the Obligation of Trust Statement Type).

In the privacy domain, these elements can be used to describe either the acceptable

(Requirements) or supported (Capabilities) P3P policy contents. For example, if a
recipient will only use the sender’s sensitive information for the “current” transaction
and “admin” purposes, and the information is only for this recipient, this can be sent
as a P3P policy STATEMENT of PURPOSE expressed as a WS-XACML constraint
as shown in Figure 4.

Figure 4 Example of WS-XACML constraint on P3P PURPOSE.

Figure 3 SAML Obligation of Trust Model

3.2 OoT Protocol Scheme

Figure 5 is a simplified sketch of the OoT protocol in operation, and shows how two
parties may exchange signed components of the OoT. Party A wishes to access item
X from party B, but it is assumed that party A knows nothing about the privacy or
access control requirements for item X. Similarly, Party B knows nothing about the
privacy requirements of Party A’s attributes. Party A sends a request for item X and
Party B responds with a NoB containing its Requirements and Capabilities. Figure 6
shows an outline of an algorithm for the decision making when a party receives a
NoB. Party A checks whether it can satisfy Party B’s Requirements, and whether
party B’s Capabilities can satisfy its own (party A’s) Requirements. If Party B’s
Capabilities are acceptable and sufficient for Party A, and A can fully meet B’s
requirements, then A can send an SAO to B stating its pick of the offered capabilities
and its own capabilities to meet party B’s requirements. If B’s capabilities are
acceptable but not sufficient, or A has additional requirements, A may send a counter
NoB to B containing its additional or alternative Requirements. A’s Requirements will
determine the subset of B’s Capabilities that it requires, and A may supplement them
with additional ones of its own. A’s Capabilities will include the subset of B’s
Requirements that it can provide, along with any additional ones it may be willing to
provide. If Party B’s Capabilities are unacceptable or insufficient for Party A, then A
will either terminate the session or return a NoB with Requirements that supercede

Figure 5 OoT Protocol Sketch

B’s stated Capabilities. If A cannot meet all the stated requirements of B, then A may
decide to terminate the session or add a reduced set of Capabilities to the NoB.

Party B evaluates party A’s NoB and if satisfied with A’s Capabilities and
Requirements it returns a signed SAO stating in its Capabilities that it can fullfil all of
party A’s Requirements, and in its Requirements which of Party A’s Capabilities it
has chosen. If B is satisfied with A’s Capabilities but not with A’s Requirements, B
may either send another NoB to A showing less Capabilities than A requires (along
with its own Requirements), or terminate the session. If B is not satisfied with the
Capabilities of A’s NoB, it will either terminate the session or return a NoB with
increased Requirements. If Party A receives another NoB, and this is satisfactory, it
returns a signed SAO, otherwise it behaves as last time around. If Party A receives
party B’s SAO, and if satisfied with it, it returns its own signed SAO. Thus the parties
continue to exchange NOBs until either one party terminates the session (negotiated
agreement not possible) or returns a signed SAO. Once a signed SAO has been
delivered the recipient must either accept this by returning its own signed SAO or
terminate the session. It is not allowed to return a NoB in response to a signed SAO,
since this is in effect rejecting what one had previously offered in a prior protocol
exchange. Once the negotiation is complete, and each party is in possession of the

 • Set flag initially to “SAO”
• Evaluate received requirements to determine whether I can meet them with my
capabilities
o If so, construct offered Capabilities to match received requirements
o If not, either

 terminate or
• determine* whether additional capabilities should be offered to match, and/or
• construct capabilities to match a subset of the received requirements, plus
additional alternative capabilities to be offered, and set flag to “NOB”

• Analyse capabilities to be offered by me (as determined above) and construct a revised
list of (my) requirements.

• Analyse sets of capabilities received and compare with my list(s) of requirements (as
determined above).
o If all my requirements are met from one set of offered capabilities, keep the above‐
defined requirements.

o If all my requirements are met from merged sets of offered capabilities, construct
Requirements from these, set flag to “NOB”

o If my requirements are not met, either
 terminate or
 determine* whether requirements can be relaxed due to alternative capabilities
being offered and modify requirements accordingly and set flag to “NOB”

• If SAO flagged, send SAO, else send NOB.
(* “determine” could include the possibility to ask a human operator.)

Figure 6 Outline Algorithm for handling a NoB

signed SAO of the other party, then the parties deliver their respective commitments.
Note that there is scope for efficiency gains in the combined number of OoT and
application level protocol exchanges, depending upon which party is the first to send
the SAO, and the nature of the application exchange. For example, in Figure 5 party
A, having already received party B’s SAO, could send its attribute assertions to B in
the same message as its SAO i.e. combine messages 5 and 7, in which case party B
could then combine messages 6 and 8 in its response. The exact sequence of OoT and
application level message exchanges can be defined by each specific application
according to its needs.

As indicated above, in some transactions it will be the case that either a user’s
configured capabilities are insufficient to match an SP’s requirements, or a user’s
requirements are too great for an SP’s capabilities. In this case the software might
indicate to the user that the SP’s (or user’s) requirements are not covered by any of
the user’s (or SP’s) sets of capabilities. The user should be able to view the NoB
request and possibly extend their capabilities or reduce their requirements. As an
example, suppose a user has configured his requirement’s policy so that recipients are
not to reveal the user's PII to 3rd parties, but a Service X offers very generous
compensation to Service C's users who are willing to sign up for X’s new services. In
this case, Service C could send the user a NoB containing a Requirement to provide
permission for Service C to release PII to Service X, in exchange for a Capability to
provide compensation. The user’s agent does not have a Capability to match this
Requirement, so the user's client software could display Service C’s Requirement for
the granting of permission to forward the PII to Service X, along with Service C’s
Capability to offer compensation to the user. If the user dynamically chooses to
accept this contract, a new XACMLPrivacyAssertion containing a Capability (able to
release PII to third parties) and a new Requirement (level of compensation required)
are added to the user's set of XACMLPrivacyAssertions, for this and future use, and a
signed SAO is sent to Service C.

XACML Assertion Type

Alice’s Requirements
What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,
if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements
What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,
if conditions in

Requirements
are met

Alice Bob

XACML Assertion Type

Alice’s Requirements
What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,
if conditions in

Requirements
are met

XACML Assertion Type

Alice’s Requirements
What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,
if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements
What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,
if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements
What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,
if conditions in

Requirements
are met

Alice Bob
Figure 7 Matching of Two WS-XACML Assertion Type

Matching and Evaluation

Requirements are logically connected by AND: the policy owner requires the other
party to satisfy all of the constraints listed in the Requirements section. Capabilities
on the other hand are logically connected by a non-exclusive OR: the policy owner is
willing and able to provide any subset of the capabilities described by these
constraints. Figure 7 illustrates the matching of two WS-XACML Assertions. Two
XACMLAssertions match if, for each assertion, all constraints in the Requirements
section are satisfied by (at least) one of the statements in the Capabilities section of
the other assertion. WS-XACML specifies efficient generic algorithms for
determining that one constraint “satisfies” another. We can use this mechanism to
evaluate an XACML-P3P policy against an XACML privacy profile (or any policy
expressed in XML), provided we have matching semantics between them. Once the
matching is done, the next step is to extract the capability that matches the recipient’s
requirements, produce the SOA and generate the signatures.

3.3. SAML OoT SOAP Binding Profile

The SOAP model provides “extensibility”, allowing other messaging protocols to
be layered on top of it in a standardized way. This convenient flexibility provides a
rich mechanism for layering the OoT protocol with other existing security protocols
including Web Services security (WS-Security), which are a set of specifications that
describe the means for providing various types of security protection for SOAP
messages. Whilst WS-Security has defined SOAP profiles for authentication, data
integrity and data confidentiality at the message layer, it does not cater for privacy
protection as described in this paper. Consequently there is a need to describe a
standard way to use WS-XACML to address mutual privacy and confidentiality in
Web services scenarios. First we define a SOAP binding profile for OoT. This
provides an appropriate mechanism to ensure that independently implemented
compliant systems can interoperate using standard messaging protocols. The OoT
protocol is an extended variant of the SAML request-response mechanism, which
allows us to layer the OoT within a <wsse:security> container in the SOAP header
context as depicted in Figure 8. The consequence is that the OoT mechanism can be
added to the existing suite of security provisions. Figure 8 shows the layers of
individual components that provide a standard way to enable compliant systems to
process the assertions in context.

4. Example of WS-XACML Aware Applications

The OoT protocol provides a platform which permits two or more communicating
parties to negotiate obligating constraints in a tamper proof manner.

XACMLPrivacyAssertions (ITS)
XACMLPrivacyAssertions1
Requirements

Client Name
Capabilities

Standard Price List
PURPOSE: PII used internally for this transaction
RETENTION: PII kept only until transaction is completed
RECIPIENT: PII not given to any 3rd party

XACMLPrivacyAssertion2
Requirements

Client Name
IATA membership certificate
Certified Quarterly Sales
Price List not publicized to 3rd parties

Capabilities
 Tailored Price List

PURPOSE: PII used internally for this transaction
RETENTION: PII kept only until transaction is completed
RECIPIENT: PII not given to any 3rd party

Fig. 9. ITS’s Internal XACMLPrivacyAssertions

Figure 8 SAML OoT SOAP Binding Profile

As an example, an Internet-based ticket service (ITS) provides online ticketing
services to both consumers and partners through automated Web services. The ITS
can provide special price offers to certain categories of clients in particular seasons,
for example, increasing discounts to customers with larger sales figures. The ITS
requires prospective clients to provide proof of possession of certain properties and
then to make firm commitments that they will not disclose its price list to third parties
(i.e. competitors) before it can decide whether they qualify for special offers. On the
other hand, the clients may not wish to give out their sensitive attributes such as sales
figures, without receiving proof from the ITS that it will not disclose them. The ITS
therefore needs to assure the clients that their attributes will be held according to their
privacy preferences. Figure 9 depicts the ITS’s internal XACMLPrivacyAssertions
and figure 10 is the customer’s internal XACMLPrivacyAssertion. Looking at the
assertions, the customer’s Requirements are really “Obligations” to be fulfilled by the
ITS. Similarly, the ITS’s Capabilities are really “Obligations” that the ITS is able and
willing to meet. The OoT provides the mechanism to assure each participant of the
other’s commitment to respecting their security preferences. Each party can save the
digitally signed XACMLPrivacyAssertion with the complete Capabilities as difficult-
to-repudiate evidence that may be used in the case of disputes.

Figure 11 illustrates the interactions between the ITS and customer.
1. The customer requests an authentication token from a third party

authentication provider that is trusted by the ITS.
2. The signed token is returned to the customer.
3. The customer requests a price list from the ITS and presents the

authentication token.
4. The ITS sends its two sets of requirement and capabilities as shown in

Figure 9 in the form of a NoB.
5. The customer determines that the capabilities offered by the ITS can

satisfy its own requirements, and that its capabilities can satisfy the ITS’s
stringent requirements for a Tailored Price List, so creates and signs an
SAO based on this and returns it to the ITS.

6. The ITS acknowledges the SAO by returning its own
7. The customer provides the requested information, including its IATA

certificate, Certificate of Incorporation and certified sales figures.

XACMLPrivacyAssertion (customer)
Requirements

RETENTION: PII kept only until transaction is completed
RECIPIENT: PII not given to any 3rd party
Tailored Price List

 Capabilities
Name
IATA membership certificate
Certificate of Incorporation
Certified Quarterly Sales
Price List not publicized to 3rd parties

Fig. 10. Customer’s Internal XACMLPrivacyAssertion

8. The ITS sends the requested price list to the customer.

Each party now has in its possession a signed agreement from the other party
indicating agreement to the terms that were agreed. Other variations of this exchange
are possible as determined by the specific application. For example in Step 1 the
customer could contact a public service of the ITS before authenticating with a trusted
third party, and could be returned a NoB based on the first Privacy Assertion only.
The customer could decide this is not good enough and return its own NoB stating its
requirement for a Tailored Price List based on the contents of Figure 10, to which the
ITS could then return a signed SAO containing its second Privacy Assertion. The OoT
protocol we have defined is flexible enough to fit any of these application
requirements.

5. Conclusion

This paper describes one concrete approach to enhancing privacy assurance, by
permitting the bilateral exchange of privacy Requirements and the Capabilities to
satisfy them. The OoT mechanism provides technical solutions to support possible
social/judicial solutions for security assurance in distributed open systems. This
mechanism demonstrates a secure way of using P3P and other policies in WS-
XACML which provides a framework for the dynamic exchange of requirements and
capabilities, meaning that this framework can support the P3P platform with minimal
effort. Our solution demonstrates significant improvement in the provision of privacy
in distributed transactions where technically “difficult-to-repudiate” services are vital.

Figure 11 The ITS and Customer Interactions

Again, the benefit of this framework is that the same security engine can apply to the
four types of information described in WS-XACML, meaning that privacy and
confidentiality can be achieved simultaneously for both service providers and
consumers.

An additional benefit of this approach over traditional ATN is that it has the
potential to reduce the number of interactions between parties and therefore the
effects of network latency since both requirements and capabilities can be transmitted
in a single payload rather that separately. A mechanism that assures each party that
their information will be used in accordance with their wishes, through the use of
standard XACML policies, has the potential to increase the level of trust and
confidence between the communicating parties, and may even reduce the liabilities of
regulated organizations.

The OoT protocol has a couple of limitations. Firstly it assumes that both parties
exist as legal entities that can be sued if violations occur. This requires either a robust
PKI system to exist or some other TTP mechanism to establish whether the subject of
a certificate is a legal entity, and will put meaningful identifying information in the
issued certificate. Extended validation certificates (CA/Browser Forum, 2008) are one
such technology that are currently being rolled out to SSL/TLS web servers.
Secondly, it is open to probing attacks. A malicious party can probe another party by
providing bogus capabilities in order to gather the other party’s requirements and
capabilities and then terminate the connection before any actual data is transferred. In
(Mbanaso et al, 2006) we described how XACML can be used to address the probing
attack by a trust negotiation involving the gradual and incremental exchange of
information. This requires that the XACML policy is expressed in such a way that the
level of trust that is established can determine what other information
(policy/attributes) is released at any phase. The order and sequence are controlled by
the crafting of policy rule expressions.

Work is currently being carried out on a reference implementation of the proposed
approach, and the testing and evaluation of this will be published in due course.

6. References

Anderson, A. (2007), “Web Services Profile of XACML (WS-XACML) Version 1.0”, Working
Draft 10, OASIS XACML Technical Committee, 10 August, available at http://www.oasis-
open.org/committees/download.php/24950/xacml-3.0-profile-webservices-v1-wd-10.zip
(accessed 24 October 2008).

Bertino, E.F.E., Squicciarini, A. (2003), “X-TNL: An XML-based Language for Trust
Negotiations”. 4th IEEE International Workshop on Policies for Distributed Systems and
Networks, Lake Como, Italy, June, pp 81-84.

Bertino, E., Ferrari, E., Squicciarini, A. (2004), “Trust Negotiations: Concepts, Systems and
Languages”, Computing in Science & Engineering, Vol. 06, No. 4, pp. 27-34.

CA/Browser Forum (2008), “Guidelines For The Issuance And Management Of Extended
Validation Certificates”, available at http://www.cabforum.org/documents.html (accessed
22nd October 2008).

Liberty Alliance Project. (2006), “Liberty ID-WSF Web Services Framework Overview
Version: 2.0”, available at http://www.projectliberty.org/liberty/specifications__1 (accessed
24 October 2008)

Mbanaso, U., Cooper, G.S., Chadwick, D.W., Proctor, S. (2006), “Privacy Preserving Trust
Authorization using XACML”, Proc. 2nd International Workshop on Trust, Security and
Privacy for Ubiquitous Computing (TSPUC 2006), Niagara-Falls, Buffalo-NY, June, pp.
673-678.

Morgan, R. L., Cantor, S., Carmody, S., Hoehn, W., and Klingenstein, K. (2004), “Federated
Security: The Shibboleth Approach”, Educause Quarterly, Vol. 27, No. 4, available at
http://connect.educause.edu/Library/EDUCAUSE+Quarterly/FederatedSecurityTheShibb/39
889 (accessed 24 October 2008).

OASIS (2005) “Security Assertion Markup Language (SAML) V2.0”, March, available at
http://saml.xml.org/saml-specifications (accessed 24 October 2008).

OASIS (2005), “eXtensible Access Control Markup Language (XACML) Version 2.0”.
February, available at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=
xacml#technical (accessed 24 October 2008).

OASIS (2006), "Web Services Security: SOAP Message Security 1.1 (WS-Security 2004),
OASIS Standard Specification", available at http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
(accessed 24 October 2008)

OASIS (2007), “WS-Trust 1.3, OASIS Standard”, available at http://docs.oasis-open.org/ws-
sx/ws-trust/v1.3/ws-trust.html (accessed 24 October 2008)

OECD (2000), “Fair Information Practices In The Electronic Marketplace A Report To
Congress”, May.

Pau, L.-F. (2006), “Privacy Negotiation and Implications on Implementations”, Proc. W3C
Workshop on Languages for Privacy Policy Negotiation and Semantics-Driven
Enforcement, available at http://www.w3.org/2006/07/privacy-ws/papers/ (accessed 24
October 2008)

Preibusch, S. (2006), “Privacy Negotiations with P3P”, Proc. W3C Workshop on Languages for
Privacy Policy Negotiation and Semantics-Driven Enforcement, available at
http://www.w3.org/2006/07/privacy-ws/papers/ (accessed 24 October 2008)

Seamons, K. E., Winslett, M., Yu, T., Yu, L., Jarvis, R. (2003), “Protecting Privacy during On-
line Trust Negotiation”, LNCS Privacy Enhancing Technologies, Vol. 2482/-1/, Springer,
Berlin / Heidelberg, pp 249-253.

Seamons, K. E., Ryutov, T., Zhou, L., Neuman, C., Leithead, T. (2005), “Adaptive Trust
Negotiation and Access Control”, Proc. 10th ACM Symposium on Access Control Models
and Technologies, Stockholm, Sweden, pp 139-146.

Skogsrud, H., Benatallah, B., and Casati, F. (2004), "A trust negotiation system for digital
library Web services", International Journal on Digital Libraries, Vol. 4, No. 3, pp. 185-207

Spantzel, A.B., Squicciarini, A.C., Bertino, E. (2007), “Trust Negotiation in Identity
Management”, IEEE Security & Privacy, Vol. 5, No. 2, pp. 55 - 63.

University of Salford (2006) “Schema for Obligation of Trust (OoT)”, available at
http://infosec.salford.ac.uk/names/oot/ootSchema/ (accessed 22nd October 2008).

W3C (2002a), “A P3P Preference Exchange Language 1.0 (APPEL1.0)”, available at
http://www.w3.org/TR/P3P-preferences/ (accessed 24 October 2008).

W3C (2002b) “The Platform for Privacy Preferences 1.0 (P3P1.0) Specification” available at
http://www.w3.org/TR/P3P/ (accessed 24 October 2008)

W3C (2007), “Web Services Policy 1.5 - Framework (WS-Policy)” available at
http://www.w3.org/TR/ws-policy/ (accessed 24 October 2008)

Winsborough, W. H., Li, N. (2002), “Towards Practical Automated Trust Negotiation”, 3rd
IEEE International Workshop on Policies for Distributed Systems and Networks, Monterey,
CA, June, pp 92-103.

Winsborough W.H, Ninghui L., (2002), “Protecting sensitive attributes in automated trust
negotiation”, Proc. 2002 ACM workshop on Privacy in the Electronic Society, Washington
DC, November, pp.41-51.

