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Abstract. Early phases of software development are known to be problematic, 

difficult to manage and errors occurring during these phases are expensive to 

correct. Many systems have been developed to aid the transition from informal 

Natural Language requirements to semi-structured or formal specifications. Fur-

thermore, consistency checking is seen by many software engineers as the solu-

tion to reduce the number of errors occurring during the software development 

life cycle and allow early verification and validation of software systems. How-

ever, this is confined to the models developed during analysis and design and 

fails to include the early natural language requirements. This excludes proper 

user involvement and creates a gap between the original requirements and the 

updated and modified models and implementations of the system. To improve 

this process, we propose a system that generates natural language specifications 

from UML class diagrams. We first investigate the variation of the input lan-

guage used in naming the components of a class diagram based on the study of 

a large number of examples from the literature and then develop rules for re-

moving ambiguities in the subset of natural language used within UML. We use 

WordNet, a linguistic ontology, to disambiguate the lexical structures of the 

UML string names and generate semantically sound sentences. Our system is 

developed in Java and is tested on an independent though academic case study.  

                                                           
∗ Corresponding author 
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1 Introduction and Motivation 

1.1 Introduction 

The development of a software system starts from a set of requirements expressed in 

natural language. It is very well documented that requirements specifications is the 

most problematic phase of the software development process [21,24,33,49]. The prob-

lems include difficulties in properly eliciting user requirements, understanding them 

and then transforming these requirements into a computer model that can be semi-

formal, usually refereed to graphical notation such as Object-Oriented (OO) models [9] 

using the Unified Modelling Language (UML) [10,55] or formal using formal specifi-

cations languages such as VDM [37] or Z [69]. Errors made during the early phases of 

software development (requirements and specifications) propagate to all remaining 

phases making them the most expensive to correct particularly if identified only during 

the implementation phase or after system delivery [50]. The diversity of the stake-

holders, informality in the requirements process and contradictions and inconsistencies 

have been often cited [49,59] as the reasons behind these errors. Early correction of 

errors in the life cycle may drastically decrease the overall software development cost 

and reduce the amount of changes during the maintenance phase [30].  

 

Most modern software development methodologies advocate iteration as the best 

way to reduce errors and enforce consistency checking. However, none provide details 

on how consistency between intermediate development steps can be achieved. Even if 

the model itself supports iteration, it is not guaranteed that mapping from source code 

back to the design notation will be performed because software engineers ignore the 

design notation when the project has reached the maintenance phase. For this reason, 

early work on requirements analysis focused on the organization of specifications, 

consistency checking and preparation of the requirements as well as on requirements 

elicitation [31]. Most recent work [5,56] focused on automated consistency checking 

[34] by providing a framework which processes natural language requirements and 

generates concrete views of models, including UML. Moreover, with the introduction 

of a variety of software tools [60,61] the transformation from source code into UML 

can be accomplished in a computerized manner. However, consistency checking does 

not guarantee that there will be no changes at the later stages of the project. In fact 

40% of the errors originate at the later stages of the life cycle and do not correlate with 

requirements gathering and systems specifications stages [21]. In addition, require-

ments tend to evolve over time [21] because stakeholders change their minds [29] or 

they are unable to understand the client’s needs [30] or they are constrained by a vari-

ety of external factors outside of their control [53].  
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1.2 Motivation 

Given that late changes are more likely to occur even if consistency checking has been 

performed, we should consider how these modifications should be accommodated. 

First, it should be noted that late changes in the software life cycle often originate in 

the source code, thus they are first implemented in the source code and are then re-

flected in the design notation and systems specifications. Despite most of the text-

books’ suggestions that changes should start at the highest level and work their way 

down to the source code [24], in most cases this is not feasible due to the expensive-

ness of this approach over its reverse [69]. Therefore, systems enabling automated 

consistency checking in a forward manner (from systems specifications to notation to 

source code) are useless at the later stages of the life cycle since “most of the detailed 

decisions collectively forming the behaviour of a system needs to be specified using a 

programming language” [69]. 

 

To be able to visualize implementation changes, we should provide a tool that en-

ables backwards transformation (from source code to notation to systems specifica-

tions). As previously mentioned source code to notation transformation is achievable 

by various CASE Tools [60,61] which generate C++ or Java code from UML and vice 

versa. With regards to systems that attempt to generate software specifications from 

design, there is relatively little research. These systems lack domain independence 

because they either assume a domain analysis prior to execution [22], or they do not 

perform domain analysis but do not guarantee that the generated text makes sense 

[40]. Although it has been widely recognised [14,36] that users should be involved in 

the early stages of software development and that natural language (NL) is undeniably 

the best medium of communication and understanding between software engineers and 

users, little work has been done in validating the software models in a way users can 

understand them. In this paper, we present the GeNLangUML (Generating Natural 

Language from UML) system which generates English specifications from UML 

class diagrams. The main goal of this research is to translate UML version 1.5 [55] 

class diagrams into NL, English in this case. Our motivation is to link the two specifi-

cations and provide users with two different views of the system specification at any 

time. There are two main benefits in the development of such a system: 

 

a. Tools developed for automatic consistency checking between UML class dia-

grams (and other models) and the original requirements developed in NL increase 

user involvement in the verifications and validation process.  

b. The automatic production of NL requirements for software maintenance purposes. 

It has been widely recognized that very often, system implementations are not 

consistent with the documentation as software developers usually omit to update 

the analysis and design models let alone the original NL requirements when they 

modify the implementation [2 (page 17), 41,47].  



 4 

1.3 Research Scope and Limitations 

A complete OO systems analysis and designs using UML will include various mod-

els. Typically they start with a set of uses cases and will be followed by the devel-

opment of a class diagram, interaction diagrams (sequence and collaboration) and 

state diagrams. Functions will then be specified using activity diagrams, formal 

specifications such as the Object Constraints Language (OCL) [72], decision tree or 

just NL. An ideal system to generate NL specifications from OO models would in-

clude all these models and specifications. However, in the research reported in this 

paper, we only concentrate on class diagrams for many reasons which include: 

 

� Little work is done in translating class diagram models into NL specifications. 

� Class diagrams are the backbone of OO analysis and design systems and most 

other models are derived from class diagrams. They contain most of the infor-

mation, although not in details, needed in systems’ specifications. 

� Use case diagrams are ignored at this stage because they contain descriptions 

that are mainly written in NL and hence will not require a lot of generation and 

are much easier to understand by users. 

� The information contained in interaction diagrams and state diagrams are much 

related to the operations contained in the class diagrams. They are mainly used 

to show how objects interact and collaborate and also how they transit from one 

state to another. The detailed description of the operation is given in their 

specifications. Some more mature research is already published in generating 

NL specifications from OCL [72]. This will be described in the related work  

section. 

 

The research developed so far and reported in this paper is purely academic. All 

case studies used to understand how UML class diagrams are developed and the nam-

ing conventions are taken from text books, usually used for teaching, as is the case 

study used to evaluate our system. These models are developed by experienced aca-

demics, some with good industrial experience but we do not have any detailed infor-

mation with regards to their background and experience. As we did not survey case 

studies developed in an industrial environment.   

 

The remaining of the paper is organized as follows. In section 2, we review some 

related work and in section 3 we present the results of a study on how software devel-

opers name the various components of UML class diagrams. Subsequently, rules are 

defined and used to disambiguate ambiguous names. In section 4, we describe the 

various components of the specification generation system. A case study that is used 

to evaluate our system is presented in section 5 and we conclude in section 6.  



 5 

2. Related Work 

In this section, we review some research that is related to the GeNLangUML sys-

tem. We first review some NL generation systems to justify the choice of our ap-

proach with regards to the NL generation system. This is then followed by the review 

of systems that attempted to generate OO specifications from NL and finally those 

systems that attempts to generate NL specifications from software models. 

2.1. Natural Language Generation Systems 

Simple approaches to Natural Language Generation (NLG) are canned text and 

template filling. The latter approach generates text by filling a set of predefined tem-

plates, such as S�N, V, N which means that a sentence (S) is composed of a noun 

(N), followed by a verb (V) and a noun (N). Canned text generation is rather simple 

given that sentences are generated without any use of grammar rules. The success of 

these approaches is limited to quite restricted domain applications. More sophisticated 

NLG approaches, with a quite wider input variation, fall into three distinct categories 

depending on the input they deal with [57]: 

1. An existing knowledge or database or by some other linguistic input. The genera-

tor performs selection of content and discourse structure and then sentence level 

transformations and surface generation are applied. 

2. A “real user”. The system interacts using an authoring tool with the user to ac-

quire suitable input for the generation process. 

3. Hand-crafted data in a language written by system developers. Where an applica-

tion has been written for accepting an input of a certain format and generation is 

performed assuming the characteristics of that particular input. 

 

Conventional NLG systems employ the following ordered steps to reach their final 

goal [63]: 

 

1. Content determination and text planning: the meaning to be conveyed and its 

structure. 

2. Sentence planning: deals with aggregation, lexicalization and referring expres-

sions generation. 

3. Surface realization: determines the syntactic structure of the final sentence, by 

applying morphological, orthographical and syntactical rules. 

 

There are two approaches for content determination, the deep reasoning approach 

and the domain specific approach. Systems employing the deep reasoning approach 

rely on the design of a set of plans where content determination is achieved by using 

the correct plan for the input structure [51,70]. Systems employing domain specific 
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approaches include a set of rules thus requiring less time to develop and can be very 

effective in constrained domains [17,30,48,62]. Deep reasoning approaches are do-

main independent and expensive. It is worth mentioning that some NLG systems do 

not employ any sophisticated content determination techniques because they assume 

an interaction with the user where the appropriate concepts are specified while the 

input to the system is entered [16,40].   

Aggregation’s main goal is to combine structures together so that the resulted out-

put will be more readable. In addition, it concerns with the removal of redundant in-

formation without losing structures that add meaning to the output language. Horacek 

[35] distinguishes three different types of aggregation: content-based, structurally-

based through syntax and structurally-based through quantification. Content-based 

aggregation requires the access to a rich knowledge base from which structures can be 

assigned a meaning which are then combined together to form a more concise struc-

ture. Syntactic aggregation is performed by processing the syntactic attributes of the 

structures. Structurally-based aggregation through quantification combines informa-

tion without referring to lexical knowledge. Horacek [35] points out that only structur-

ally-based aggregation through grammar does not result into loss of information in 

contrast to content-based and structurally-based aggregation trough quantification 

where information is more likely to be lost. He then points out that a balance of con-

ciseness and accuracy should be achieved. Early efforts on aggregation have em-

ployed simple logic to combine structures without using lexical information, thus only 

direct inferable and simple structures were aggregated [35,45]. More sophisticated 

approaches have taken into account syntactic constituents such as subject, verb and 

object[22,67].  

In the realization component, the structures from the sentence planner are assigned 

a grammatical knowledge. The realization component is responsible for ensuring 

agreement between words in a structure, pronominalisation and lexical selection, 

given that attributes of words (tense, plurality or singularity, etc.) have been specified 

from the sentence planner. For the GeNLangUML system, we use a template based 

realizer because it does not utilize any sophisticated grammar formalism, due to the 

restricted variation of the input language. In these cases morphology is easy to per-

form and the corresponding rules are hard-coded in the application. Syntactic process-

ing is rare because, the syntax to be used for a given structure is specified by a tem-

plate earlier in the architecture. 

2.2.  Modelling from Natural Language Specifications  

The linkage between the linguistics field and software modelling goes back as far 

as the late seventies when Chen [18,19] provided some heuristics to identify the com-

ponents of the Entity Relationship Model. He suggested that common nouns yield 

entity types, transitive verbs relationship types and adverbs attributes for relationships. 

This was followed by suggestions by Abbott [1] that programs can be designed from 

NL descriptions. He proposed assigning nouns to classes, verbs to methods and adjec-

tives to attributes. These concepts were then followed and used in many OO methods 
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[6,8] were it is widely accepted that classes and attributes are nouns or noun phrases 

and operations and relationships are better described by verbs and verb phrases.  

Many systems have been developed to support the transition from NL require-

ments to semi-formal  [28,38,52] or formal specifications [20,39]. In general, the 

developments of these systems have adopted two approaches [33]. The first approach 

is based on applying general Artificial Intelligence (AI) techniques such as schema-

based reasoning and search strategies, to provide intelligent tools. This approach 

claims that analysis and design are very knowledge intensive activities, and should be 

supported by AI based tools. The second approach is based on NL. This approach 

realises the fact that most of the data available to software engineers interested in 

analysing software requirements is expressed in NL where linguistic analysis can be 

used in the early stages of requirement analysis. 

AI based approaches assume in general that an expert system could use its knowl-

edge to ask users key questions, cope with the initial statement of the vague, badly 

organised and contradictory requirements, summarise (i.e. paraphrase) current infor-

mation for the user to review. It can also prompt for missing information, criticise the 

developing requirements (from a semantic and syntactic viewpoint), organise collected 

requirements, and create requirements specification documents in requested formats 

on demand. Among the AI based systems is the IDeA (Intelligent Design Aid) system 

[43] which was built around a knowledge base design schemas. IDeA captures the 

domain knowledge and stores it in IDeA's knowledge base as abstract design schemas, 

essentially dataflow diagrams with inputs and outputs defined in terms of domain 

oriented data types and properties. The analyst obtains requirements for an application 

in the domain, expresses them in an unrefined requirements specification document in 

terms of the predefined system inputs, outputs and functions, and then inputs the 

specification to IDeA which automatically selects the abstract design schema which 

best matches the unrefined requirements specification. Mismatches between the speci-

fication and the abstract design schema are identified by IDeA and placed on an issue 

list for later resolution by the analyst. The FORSEN (FORmal Specifications from 

ENglish) system [49] attempts to produce formal specifications by processing NL 

(English) specifications. The system attempts to assign a unique structure to each 

sentence and whenever there is more than one candidate structure the user is asked to 

select the correct one. The formal specifications are produced in the Vienna Devel-

opment Method (VDM). Nouns are used to identify entities and verbs relationships. 

Quantification and determination of the degree of relationships plays a major role in 

this research.  

NL based systems include the NL-OOPS (Natural Language - Object-Oriented 

Production System) [50], a CASE tool that supports requirements analysis by generat-

ing OO models from NL requirements documents. The system demonstrated how a 

large scale system called LOLITA (Large-scale, Object-based, Linguistic Interactor, 

Translator, and Analyser) is used to support the OO analysis stage. Saeki et al. [65] 

described a process of incrementally constructing software modules from OO specifi-

cations obtained from informal NL requirements. Nouns and verbs were automatically 

extracted from informal requirements but the system could not determine which words 

are important for the construction of the formal specification. Hence an important role 
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is played by human analyst. Dunn and Orlowska [25] described a NL interpreter for 

the construction of NIAM (Nijseen’s Information Analysis Method; also known as 

Natural-Language Information Analysis Method) conceptual schemas. The construc-

tion of conceptual schemas involves allocating surface objects to entity types (seman-

tic classes) and the identification of elementary fact types. The system accepts declara-

tive sentences only and uses grammar rules and a dictionary for type allocation and the 

identification of elementary fact types. A good review and comparison of these sys-

tems can be found in [6,32]. 

2.3. Generating Natural Language from Software Specifications  

In this section, we shall describe two systems. The ModEx system that attempted  to 

achieve  the same objectives as our work in generating NL specifications from OO 

models and the part of the KeY project [4] that generates NL specifications from OCL 

[72]. The latter can be seen as a complement to our work.  

The ModEx  (Model Explainer ) system [40] generates NL from the description of 

OO software models. Its architecture is composed of a text planner, a sentence plan-

ner, a realizer and a formatter. The user interacts with the system by selecting a class 

or relationship of the model to draw and the interaction goes on until the whole model 

has been drawn. The text planner selects a plan based on the user’s input. This plan 

specifies the structure of the output which is fed to the sentence planner. The sentence 

planner performs aggregation and insertion of cue words and transforms the text into a 

lexicalized deep-syntactic tree representation (DSyntR) [64]. The DSyntR is then  fed 

to the realizer which transforms it to a surface morpho-syntactic representation 

(SMorphS). In the realising process, the trees from DSyntR are linearised and the 

morphemes in DsyntR are infected by using the lexicon contents or by applying a 

default infection mechanism. Also, the realizer inserts annotations to notify the for-

matter which words are going to be highlighted. The highlighted words can then be 

associated with examples, and insertion of examples occurs whenever the user clicks 

on an underlined word. For instance, in the sentence “A section must be taught by 

exactly one professor”, “section” can be associated with example “Sect1 is a section”. 

ModEx does not semantically verify the final output. Furthermore, ModEx assumes 

that meaning verification is done by the user by comparing the diagram with the sys-

tem specifications generated. This simplifies the overall architecture of the system and 

at the same time makes it extensible to any domain of application. In fact the authors 

[40] state “it lacks domain knowledge. This means that the system is fully portable 

between modelling domains and is not overly costly in use”. ModEx expects classes to 

be singular nouns and relationships to be active verbs, passive verbs or nouns. Over-

all, the system performs successfully for models which comply with the assumptions 

for how classes and relationships should be named. However, as the author notes “this 

also means that the system cannot detect semantically modelling errors”. Semantically 

incorrect sentences are more likely to be generated due to the absence of a meaning 

verification mechanism. It is the user’s responsibility to compare the diagram with the 

generated text, to check for semantic agreement between the two, otherwise the sys-
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tem’s output language will be nonsensical. Our work has extended on ModEx capa-

bilities by first considering wider naming convention for the components of the class 

diagram by conducting a study on the naming conventions. We then used WordNet to 

validate the semantic correctness of the generated sentences.  

Part of the KeY project is to automatically translate formal software specifications 

into NL [14,15,36]. The system is built around the Grammar Framework (GF), a for-

malism for defining grammars. A GF grammar consists of one part which describes 

abstract syntax, and another part which describes concrete syntax [14]. The abstract 

syntax part is formulated in a version of Martin-Löf’s type theory [46], and can be 

seen as a description of how to construct abstract syntax trees. The concrete syntax 

then consists of linearization rules telling how to present these trees as expressions of 

a particular language [16]. To translate OCL to NL, the OCL specifications are first 

input to an OCL parser. The parser has been derived based on a context-free grammar 

of OCL [14]. Using this parser, a syntax tree in the context-free OCL grammar can be 

produced for a given OCL specification. This tree is then fed into an OCL type 

checker/annotator together with a file containing information about the UML class 

diagram, which adds a lot of type annotations and other disambiguating annotations 

[14]. The generated parts of the grammar are derived from the UML model, and con-

sist of default rules for the generation of the user defined entities of the model. The 

work is very domain specific and a CF is created for each specification. However, the 

results produced are good. Similar to our work, other UML diagrams such as the in-

teraction diagrams, state diagrams and activity diagrams are not used.  

3. Understanding and Interpreting UML Class Diagrams 

A class is the basic element of an OO class diagram. There are many levels of de-

tail that can be shown when developing a class depending on which phase the class is 

developed for. For example, more details are shown during the design then the analy-

sis phase. A class diagram is a collection of classes interconnected by a list of rela-

tionships which can be associations, aggregations or generalizations. The number of 

objects involved in a relationship is known as its multiplicity and is represented as an 

integer or a “*” to denote many or a pair of integers to represent a range of values.  

To understand how UML users name these components, we examined 45 class dia-

grams from the OO literature, mainly text books that include [2,3,7,8,11,13,42,44]. 

This might be too restrictive and may differ from the standards used in the industry. 

However, for an academic study, we believe that this is an acceptable sample. We 

observed the following : 

� The language used in UML, is a controlled subset of NL. A sentence S represents 

a class name, sometime including a stereotype, an attribute, an operation or a rela-

tionship name and will be described in terms of its syntactic components. Only 

Nouns (N), Verbs (V), Adjectives (A) and prepositions (P) are used in naming the 

different components of the class diagram. For example S�N, V denotes that the 
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sentence S is composed of a Noun (N) followed by a Verb (V). This notation will 

be used in this paper. 

� In the surveyed literature, software developers often use Java conventions to 

name the various components of a class diagram. Details will be provided in the 

next subsections. 

3.1 UML Class Naming Conventions and Tagging  

“A class name may be text consisting of any number of letters, numbers, and certain 

punctuation marks and may continue over several lines. In practice, class names are 

short nouns or noun phrases drawn from the vocabulary of the system you are model-

ling. Typically, you capitalise the first letter of every word in a class name” [10, p50].  

These principles have been confirmed by our study and we did find that the language 

used for naming Classes in UML is as summarised in Table 1. The names given to 

classes are either a noun (N), a pair of nouns (NN) or a sequence of three nouns 

(NNN). These represent 97% of all the names surveyed in this study. An exception to 

these rules is an Adjective followed by a Noun (AN) which is found is nearly 3% of 

the surveyed class names. 

Table 1. Distribution of Class Naming in UML Class Diagrams 

String Structure N NN NNN AN 

Number of Occurrences 202 178 35 10 

Percentage of Occurrences (%) 47.3 41.7 8.2 2.8 

Cumulative distribution (%) 47.3 89 97.2 100 

 

Ambiguous words in class names are always assigned a noun as Part of Speech 

(PoS) tag if a Noun is a candidate tag otherwise an Adjective is used. Class names are 

used in our system for generating simple sentences of the form <Class 

Name><Association><Class Name>. Class names are treated and tokenized as noun 

phases and checked if they are valid to perform an action described by the associa-

tion’s verb or to be performed by this action. 

At the detailed or implementation level, “an optional stereotype keyword may be 

placed above the class name within guillemets” [55]. If a class is abstract for example, 

we may place the stereotype {abstract} next to it. Other stereotypes that can be used in 

class naming include the class types such as “control”, “entity” and “boundary” [8]. 

When we generate NL specifications, we mainly take into account “entity” classes as 

they are the ones that contain the information about the system being developed. Con-

trol classes play mainly a role of requesting services and return the result to the calling 

classes and boundary classes are used to show the interactions between the users and 

the system.  
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3.2 UML Relationships Naming Conventions and Tagging  

The language used for naming relationships in UML is given in Table 2. Associations 

are in most cases composed of a single verb in 3
rd
 person singular (V) or the verb is 

followed by a preposition (VP).  However, we found that sometimes the verb is fol-

lowed by a noun (VN), a preposition and a noun (VPN) or a preposition and a verb 

(VPV). Ambiguous words in relationship names are always assigned a Verb as PoS 

tag if a Verb and a Noun are candidate tags and if the element is in the first position of 

the string name. If the element is in the second position, then it is assigned a Noun 

PoS. The verb is used in the generation process to verify that certain noun phrases are 

allowed to perform or performed by the action described by the verb. 

Table 2 Distribution of Relationship Naming in UML Class Diagrams 

String Structure V VP VPN VN VPV 

Number of Occurrences 110 31 6 5 3 

Percentage of Occurrences (%) 66.7 18.8 3.7 3 1.8 

Cumulative distribution (%) 66.7 85.5 89.2 92.2 94 

 

The multiplicity of the relationships is used to associate articles to the generated noun 

phrases and these are based on Meziane’s work [49]. This is summarised in Table 3 

where a = {1,2..,n,*}, b = {1,2,..,m,*}, n and m are natural numbers and “pl” and “sg” 

stands for plural and singular respectively.  

Table 3. Translating Cardinalities into Articles 

Form Values Translation 

a a=1 The + sg 

 a=2,3,…,n Two, Three,…, Many + pl 

 a=* Many + pl 

a…b a=1,2..,n b=* a=One, Two, ..,n b=Many + pl 

 a=2,3,..,n  b=a+1,a+2,..,m a= Two, Three, .., n b=Three, Four, m+ pl 

3.3 UML Class Attributes Naming Conventions and Tagging   

“An attribute name may be text, just like a class name. In practice, an attribute 

name is a short noun or noun phrase that represents some property of its enclosing 

class. Typically, you capitalise the first letter of every word in an attribute name ex-

cept the first letter” [10, p.50]. These principles are again verified by our study. The 

most frequently used strings for naming attributes in UML class diagrams are shown 

in Table 4. As it can be observed, nouns  are frequently used and 85% of the strings 

are single nouns (N), pair of nouns (NN), triplets of nouns (NNN) or a noun preceded 

by an adjective (AN). Verbs are rarely used and if used, they are in the past tense. 

Only the verb “be” is found to be used in some cases in the present tense and only in 

the first position of Verb-Adjective (VA) strings and they usually denote attributes of 

type Boolean, such as the attribute “isElligible”. However, there is less then 1% of 
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such occurrences. We also noted that verbs can occur in any position of the string 

where they appear; however, they occur in the first position in 94% of the strings. 

Other naming strings for attributes which percentage of occurrences is less then 1% 

include strings of the form Adjective-Noun-Noun (ANN), Noun-Preposition-Noun 

(NPN), Verb-Noun-Adjective (VNA), Verb-Noun-Noun (VNN) and Verb-

Preposition-Verb (VPV). 

The following are some examples of attributes and their parsing structures: cost 

(N), timeCompleted (NV), overallCost (AN), completionDateSet (NNV). Most of 

these strings are ambiguous i.e. “completionDateSet” is ambiguous since “date” may 

be a verb or a noun, and “Set” may be a verb or a noun. Based on the identified strings 

used for naming class attributes, we developed the following rules: 

 

A1.  If an element is ambiguous and the string size is 1 then assign the ambiguous 

word the PoS tag:  

a. Verb if candidate tag is a verb in the past tense 

b. Noun otherwise  

A2.  If the last element is ambiguous, assign the ambiguous word the PoS tag: 

a. Verb, if candidate tags are a verb in past tense and an adjective. 

b. Noun, if candidate tags are a noun and a verb in present tense or a 

noun and an adjective. 

A3.  If an element is ambiguous and the next element is a verb, assign the ambigu-

ous word the PoS tag Noun 

A4.  If a candidate tag is an Adjective or Verb in the past  then select Adjective 

A5.  If an element is ambiguous and the previous element is an Adjective, then se-

lect a Noun.   

A6.  If an element is ambiguous and candidate tags are a Noun and a Verb in the 

present tense, then select a Noun.   

 

Based on these rules we can show how ambiguous strings are uniquely interpreted. 

For example the string “campaignStartDate” has eight possible interpretations: NNN, 

VNN, NVN, NNV, VVN, VNV, NVV and VVV. By using rules A2 and A6 respec-

tively, the string is disambiguated and is interpreted as NNN.  

Table 4 Distribution of Class Attributes Naming in UML Class Diagrams 

String Structure N NN AN NNN NV VA NNNN 

Number of Occurrences 504 402 168 111 50 48 41 

Percentage of Occurrences (%) 36.5 29.1 12.1 8 3.6 3.5 3 

Cumulative distribution (%) 36.5 65.6 77.7 85 88.6 92.1 95.1 

3.4 UML Class Operations Naming Conventions and Tagging    

“An operation name may be text, just like a class name. In practice, an operation name 

is a short verb or verb phrase that represents some behaviour of its enclosing class. 

Typically, you capitalize the first letter of every word in an operation name except the 
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first letter.” [10, p.51]. These recommendations are correct and the most frequently 

used strings for naming operations in UML class diagrams are shown in Table 5. 

More then 84% of the strings are V, VN and VNN forms. Verbs are always in present 

tense. We did not come across verbs in the past tense. In addition, verbs are in 98 % 

of the cases in the first position. Other naming strings for operations which percentage 

of occurrences is less then 1% include strings of the form NA, VNA, VANN, NPN 

and VAPV. 

Table 5. Distribution of Class Operations Naming in UML Class Diagrams 

String Structure VN VNN V VAN VA VPN VV VNPN AN 

# Occurrences 930 181 92 43 33 31 24 22 21 

%Occurrences  65.3 12.7 6.5 3 2.3 2.2 1.7 1.5 1.5 

Cumulative (%) 65.3 78 84.5 87.5 89.8 92 93.7 95.2 96.7 

 

From the analysis we have presented we assume the following facts about the lan-

guage used in naming UML operations: 

a. Verbs are used in present or past tense.  

b. Verbs in the present tense may appear in the first position only. 

c. Verbs in the past tense may appear at any position except the first with the ex-

ception of a string of size 1.  

 

The following are some examples of operation names with their parsing structures: 

archiveCampaign (VN), getOverallCost (VAN), removeBreakPlan (VNN), setCam-

paignActive (VNA), computeCampaignCostEstimated (VNNA). Most of these strings 

are ambiguous since they have more than one candidate syntactic structure. For exam-

ple, the string “computeCampaignCostEstimated” is ambiguous because “Campaign” 

can be interpreted as a verb or as a noun, “Cost” may be interpreted as a verb or as a 

noun and “Estimated” may be interpreted as an adjective or as a noun. The following 

rules have been defined for naming operations.  

 

O1. If ambiguous, the first element is always a verb. 

O2. If last element is ambiguous, then it is a Noun if the String’s size is 2, 5 or 6. 

O3. If an element is ambiguous and its successor is a preposition, then it is a Noun. 

O4. If candidate tag is an Adjective or a Verb in the past then select an Adjective. 

O5. If an element is ambiguous and its predecessor is an Adjective, then select a 

Noun.   

O6. If element is ambiguous and candidate tags are a Noun and a Verb in present 

tense then select a Noun.   

 

Based on these rules we show how ambiguous strings are uniquely interpreted. For 

example the string “archiveCampaign” has four possible interpretations: VN, NV, VV 

and NN. By using rules O1 and O2 respectively, the string is disambiguated and is 

interpreted as VN. 
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4. Generating Natural Language Specifications  

The Architecture of the GeNLangUML system is summarised in Fig. 1. The Natural 

Language generation process is composed of 4 components, the pre-processor and 

tagger, the sentence planner, the realizer and the document structurer. The full specifi-

cation and design of the GeNLangUML system is described in [6]. The following 

sections describe each of these components.  

 

 
 

Fig. 1. The GeNLangUML System’s Architecture 

4.1 The UML Class Diagram Interface 

The inputs to the system are UML class diagrams. A tool for drawing the components 

of an UML class diagram was developed and supports the following five menus: File, 

Draw, Move, Edit and Delete. The file menu is used for saving and loading a project. 

The draw menu enables users to draw the components of a class diagram and includes 

tools to draw classes and objects, class attributes, class operations and the relation-

ships between classes. The move menu allows users to move classes and relationships 

within the drawing area. The edit menu is used for editing and updating the class dia-

gram components. The delete menu allows the deletion of class diagram components. 

We use XML as the internal representation for the UML class diagrams. Each class 

diagram is saved using two files. One file to store the classes, their attributes and op-

erations and the other file is used to store the relationships between classes.   

4.2 Pre-processing and Tagging 

Ambiguity in NL has been a major problem in NL processing. An input is ambiguous 

if there are multiple alternate linguistic structures that can be built for it. A NL proc-

essing system should always select a part-of speech (PoS) for a given input. The 

mechanism for assigning a PoS or other lexical class marker is known as tagging. 
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Restriction of the input language may result into fewer ambiguities as the input’s 

variation is limited. Controlled languages [23,66] have been in wide use in the last 

decades and have bin Machine Translation Systems [54]  and helped to reduce the 

amount of ambiguities in domain-specific applications [29] . The introduction of con-

trolled languages serves as a justification to our research that a subset of NL will be 

less ambiguous than the whole NL, allowing us to successfully resolve ambiguous 

strings without applying a sophisticated tagger. 

A simple algorithm for tagging will be to choose the interpretation that occurs most 

frequently in the training set and this is shown to achieve 90% success [26] when half 

of the words in the corpus used, are not ambiguous. We should wonder what will 

happen if more than half of the words are ambiguous in a given corpus. The authors in 

[26] suggest that we could probabilistically derive the tag for an ambiguous word 

given the previous word’s tag, this model is also known as the bigram model.  We 

could also look at the two previous tags, and this is known as the trigram model, to 

derive the word’s tag. For instance in the sentence “I am going to fly to Athens tomor-

row”, we could ask, what is the probability of a fly being a verb with the previous 

word (to) being a preposition. Clearly, if the probability of a verb being the PoS tag is 

the highest then the system will have made the right choice. These types of taggers are 

known as probabilistic taggers. 

Similarly we could use a set of rules to disambiguate PoS and these are know as 

rule based taggers. A rule based PoS tagger suggests the creation of a set of conditions 

that will limit the chances of having a word being ambiguous. A rule-based tagger will 

be composed of a set of rules. For instance, for the sentence “I am going to fly tomor-

row” an example of rule to resolve the ambiguous word “fly” will be as follows: 

 

“If a word is ambiguous and the previous word is a preposition then select a verb.” 

Another category of taggers, is the transformation-based taggers. In contrast with 

probabilistic taggers, in the transformation-based taggers each word has a set of possi-

ble tags that can occur, with the most probable tag highlighted. A set of rules such as 

“Change tag to B if previous is A” is also defined. Brill’s [12] tagger is an example of 

transformation-based taggers, and its accuracy is around 95 percent. Brill also sug-

gested a mechanism for deriving tags for unseen words (words that were not found in 

the lexicon). 

Overall, probabilistic taggers may produce better results from rule based but prob-

abilistic taggers are indirectly referring to linguistic information via the access of 

probability tables [12]. Rule based taggers require time for the design of the rules, but 

they do not require any tables or corpus or training and could perform quite well in 

specific domains where linguistic input is constrained. In cases, where an appropriate 

corpus is difficult to find or training is difficult to perform then a rule based tagger is 

the right choice and this is the rational for adopting a rule based tagger for our system.  

In addition, it is impossible to use probabilistic and transformation-based taggers as 

they are based on documents that obey NL grammar rules. Any tagging mechanism 

based on NL documents will be invalid since UML class diagrams grammar rules are 

different.   
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4.3 The Sentence Planner  

The sentence planner component receives the tags and the corresponding words from 

the tagger and generates sentences following a template based approach where sen-

tences are generated from combining words in attributes, operations, classes and asso-

ciations names as described in the following subsections. The general approach is 

given in Fig. 2. 

 

For all classes {    

     For all attributes { 

              // generate from attributes routines 

     } 

     For all operations { 

              // generate from operations routines 

    }  

} 

For all associations { 

             // generate from associations routines 

}  

 
Fig. 2 General Description of the Sentence Planner 

4.3.1 Generating from Attributes 

For all attributes within a given object the following three routines are applied: 

 

a. Formation of ‘has’ Sentences (‘Object Name’ has ‘attribute’). The generator 

tokenizes the object name and the attributes which are expected to be Noun 

Phrases (sometimes represented as simple nouns). Then the two Noun Phrases 

(the object name and attribute name) form a sentence with the verb ‘has’ being 

the main verb. In Fig. 3(a), “Campaign” and “overallCost” will generate “Cam-

paign has an overall cost”.  This rule always involves the use of the class name as 

the subject of the verb and covers attributes of the form N, NN, NNN, NNNN and 

AN. 

b. Formation from verbs at first position (‘verb’ ‘right Noun Phrase’ or ‘object 

name’). This routine is applied whenever an attribute has a verb in its first posi-

tion. A verb refers to the Noun Phrase on the right or to the object name if there is 

no Noun Phrase. The routine combines the verb and the right Noun Phrase or the 

object name to form a sentence. In Fig. 3(b), “Campaign” and “completed” will 

generate “complete campaign”. This rule involves the use of the class name and 

covers attributes of the form VA. 
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c. Generating from verbs elsewhere (‘verb’ ‘right Noun Phrase’ or ‘left Noun 

Phrase’). This routine tokenizes the verb and proceeds by examining whether 

there is a Noun Phrase to the right of the verb and if it exists it tokenizes it. If 

there is no Noun Phrase to the right of the verb the routine examines whether a 

Noun Phrase is on the left of the verb and if it exists it tokenizes it. Then a sen-

tence is formed with the verb and the right or the left Noun Phrase. In Fig. 3(c), 

the sentence “estimate cost” will be generated. This rule usually does not involve 

the use of the class name and covers attributes of the form NV. 

 

Campaign

estimatedCost

overallCost

completed

estimateCost

addCostEstimated

validate

 
(a) 

Campaign

estimatedCost

overallCost

completed

estimateCost

addCostEstimated

validate

 
(b) 

Campaign

estimatedCost

overallCost

completed

estimateCost

addCostEstimated

validate

 
(c) 

Fig. 3. Generating Sentences from Class Attributes 

4.3.2  Generating From Operations 

The following routines are applied to the class operations for sentence generation: 

 

a. Generating a Sentence from a verb in the first position (‘verb object name’). The 

generator checks whether there is a Noun Phrase to the right of the verb, if there 

is it combines the two together otherwise it combines the verb with the object 

name. In Fig. 4(a) the sentence “validate campaign” is generated. This is usually 

used with operations having the structure V, VN, VNN, VPN etc. 

b. Generating from Verb elsewhere (‘verb’ ‘right Noun Phrase’ or ‘left Noun 

Phrase’). This routine tokenizes the verb (not in the first position) and proceeds 

by examining whether there is a Noun Phrase to the right of the verb and if it ex-

ists it tokenizes it otherwise the routine examines whether there is a Noun Phrase 

to the left of the verb and if there is, it tokenizes it. Then a sentence is formed 

with the verb and the right or the left Non Phrase. In Fig. 4(b) the following sen-

tence is generated “add cost estimated”.  This rule is usually used with operations 

having the structures VV, VNV, AV etc.  

c. Planning from all words in operations. This routine, uses all words in an operation 

name. It expects a verb in the first position, and it checks whether a preposition 

follows immediately after the verb. If the condition is true, it adds the object name 

after the verb and then the rest of the words in the operation. In Fig 4(c) the fol-

lowing sentence is generated “add income to estimated balance”. This rule is used 

with the remaining operations such as those having the structure VPVN. 
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Campaign

estimatedCost

overallCost

completed

estimateCost

addCostEstimated

validate

 
(a) 

Campaign

estimatedCost

overallCost

completed

estimateCost

addCostEstimated

validate

 
(b) 

Income

addToEstimatedBalance

 
(c) 

Fig.4. Planning Sentences from Class Operations 

4.3.3  Generating From Relationships 

There are three fundamental types of relationships in OO: Associations, Aggregations 

and Generalizations. An association is a functional relationship between two or more 

objects such as “Professor teaches a module”. An aggregation, also known as “part-

of” or “part/whole” relationships, are used to denote that one object is “part/whole” of 

another object for example to represent a relationship between a lecture and a module.  

A generalisation, also know as “kind-of” relationships, denote that one object is a 

special case of another for example a lecturer is a kind of an academic, the others can 

be a professor or an associate professor. Generating sentences from associations is 

based on the template shown in Fig. 5. 

 

 

Fig. 5. Template Used for Generating Sentences from Relationships  

 

For example, if Object1 = “Author”, object2 = “Book” and the association name = 

“writes” and the cardinality of the association is “1, 1…*” then the following sentence 

is generated “The author writes one or many books”. 

 

Sentences generated from aggregations take the form “whole is composed of 

parts”. Using the example given in Fig. 6 (a), the sentence “A module is composed of 

lectures” is generated.  Sentences generated from generalisation take the form “spe-

cific object is a general object”. Again using the example given in Fig 6(b), the sen-

tence “a Lecturer is an academic staff” is generated. In our developed system, we use 

the capabilities of WordNet [27] to check that the sentences generated from all rela-

tionships are semantically correct. This is explained in details in section 4.3. 
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(a) 

 
(b) 

 
Fig. 6 Generating Sentences from Aggregations and Generalisations 

4.4  The Realizer 

Sentences generated from the sentence planner are fed to the realizer responsible 

for ensuring agreement between words and aggregations. From the analysis on the 

syntactic variation of the strings used to name the various components of a class dia-

gram as described in section 3, agreement should handle cardinality to noun phrase 

agreement and noun phrase to verb agreement. Verbs are either in present tense or in 

past participle and this significantly reduces the amount of morphological rules 

needed. Aggregation includes subject grouping where ‘has sentences’ (section 4.2.1) 

are combined together and joint grouping of verb phrases referring to the same enti-

ties. The morphological processor and the aggregator are described in the following 

subsections.   

4.4.1 Morphological Processor 

The morphological processor is responsible for cardinality to noun phrase agree-

ment and for noun phrase to verb agreement. Cardinality to noun phrase agreement 

requires that the sentence planner has set the ‘+sg’ or ‘+pl’ indicators as described in 

section 3.2 based upon which the morphological processor applies changes whenever 

necessary. If the indicator is set to the ‘sg’ there is no further processing since Word-

Net [27] returns the singular form of the noun. Applying plurality to a noun phrase 

requires us to locate the main noun within the noun phrase and then call the morpho-

logical processor. The main noun within a noun phrase is always the rightmost noun. 

For example in ‘starting date’ the word ‘date’ is the main noun. For cardinality to verb 

agreement the same procedure is followed where the main verb is located and then a 

set of hard coded rules are applied to the main verb.  The verb phrase is either a verb 

in present tense or in passive voice. If the verb is in present tense the ‘es’ or ‘s’ is 

added to the morpheme returned by WordNet. If the verb is in the passive voice form 
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the verb ‘be’ changes to either ‘is’ or ‘are’. The rules of the morphological processor 

are hard coded within the application. 

4.4.2 The Aggregator 

The Aggregator receives the sentences from the morphological processor and per-

forms joint grouping of ‘has sentences’ and joint grouping of verb phrases that refer to 

the same entity. More specifically the sentence planner has already integrated sen-

tences generated within the same object so that joint grouping is performed only to 

sentences referring to the same object name. An example of joint grouping of ‘has 

sentences’  is the formation of ‘car has wheels and windows’ from ‘car has wheels’ 

and ‘car has windows’. An example of combining verb phrases referring to the same 

entities is the formation of ‘estimate and calculate cost’ from ‘calculate cost’ and ‘es-

timate cost’. Fig. 7 shows the pseudo code for the aggregator. 

 

For i to sentence size { 

    For j=i+1 to sentence size { 

       If ( sentences have ‘has’ as a verb) {   

           Compare nouns  // subjects 

           Combine sentences 

         } 

     }  

}      

For i to sentence size { 

    For j=i+1 to sentence size { 

       If ( sentences refer to the same entity ) { 

                Combine sentences 

          } 

     }  

}      

Fig.7 The Pseudo Code for the Aggregator 

4.5 The Document Structurer 

The final step before the sentences are displayed, structures the generated sentences 

into an output in a more readable format. Sentences are processed with associations 

first generated and sentences referring to the same entities generated immediately 

after. In that way, sentences referring to the same entities are generated at the same 
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time, so there is a flow in the generated text. The pseudo-code given in Fig.8 summa-

rises the routine we have implemented:  

 

For all sentences to display { 

For all sentences from associations { 

Display sentence from association  

If association’s object name equals a noun in a S � NP 

 <has> NP sentence  

{ 

Display sentence  

} 

} 

} 

Display the rest of sentences  

Fig. 8 Document Structurer Pseudocode 

4.6  Semantics Analyser 

The semantics component is responsible for verifying that the generated sentences are 

semantically correct and displaying related entities to all main nouns of object names 

in the UML class diagram. Associations are divided into simple associations, aggrega-

tions and compositions (where a noun phrase owns another noun phrase), and gener-

alizations (where a noun phrase is of type noun phrase). WordNet’s functionality 

enables the user to display all hypernyms (‘kind of’) for a given noun. For example if 

the user asks for the hypernyms of noun ‘professor’ a list of hypernyms is returned as 

shown in Fig 9. This feature can be used when verifying generalizations where a noun 

phrase (object name) is assumed to be ‘a kind of’ a noun phrase (another object 

name). In these cases, we tokenize the main noun of the noun phrase and get all hy-

pernyms by accessing WordNet’s database. The list of hypernyms is compared to the 

candidate ‘kind of’ noun and if it returns true the generalization is valid. A similar 

approach is followed in aggregation and composition where a list of meronyms (‘part 

of’) of a word are returned from WordNet and compared to the target noun.  Related 

terms are also displayed to the user. This mechanism tokenizes all object names (noun 

phrases) and proceeds by determining the main noun for each noun phrase. The sys-

tem then uses as an index the main noun and displays the meronyms.  
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Fig. 9 Hypernyms of the word ‘professor’ 

 

Sentences generated from attributes and operations are always composed of a verb. 

The verification of these sentences includes the checking for the validity of certain 

noun phrases to follow or precede a specific verb. In WordNet it is possible to get a 

set of frames showing the type of words allowed to precede and / or follow a verb. 

Fig. 10 shows the sentence frames for verb ‘estimate’. Given that the sentences gener-

ated by our system are mostly of the form S�NP, V, NP, the verification of these 

sentences could be done by getting the corresponding sentence frames of the verb and 

then by checking whether the noun phrase is of the target type specified by WordNet’s 

sentence frame. For example ‘Door estimates budget’ is invalid since ‘door’ is of type 

something and none of the frames for verb ‘estimate’ expect a noun phrase of type 

something to precede the verb. Also ‘manager estimates cost’ is valid since manager is 

of type ‘somebody’ and cost is of type ‘something’. To proceed into the validation 

step of the sentences we should categorize noun phrase into three types. Somebody 

(manager, professor), something (knife, window) and social group (university, organi-

zation) with social group being a collection of somebody. To determine the type of a 

given noun phrase we extract the main noun and then get the corresponding mero-

nyms. Then we iterate through the sentence frames, and validate whether any of the 

senses of the noun is of the type specified in the sentence frame. If all noun phrases in 

a sentence return true for a given sentence frame it means that the sentence itself is 

valid. Else if none of the sentence frames for all noun phrases return true, then the 

semantics component outputs a message with the invalid sentence as well as the set of 

the valid sentence frames for the sentence’s verb.  
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Fig. 10 Sentence Frames for the Verb ‘estimate’ 

 

Although it seems reasonable to employ a similar technique for verifying ‘has sen-

tences’, it turns out that relationships between attributes and object names are very 

general. In UML attributes are assumed to be ‘part of’ an object, in the sense that it 

indicates that the attribute resides within the object’s definition and not necessarily 

that the attribute is a part of the entity ‘object’. Consider Fig. 11, where the class Pro-

fessor has attributes instructors and name. This relationship indicates that “instructors” 

is an attribute of professor and not part of it. Thus the relationship between these two 

entities is general and can not be verified from the meronyms definitions of ‘profes-

sor’. In addition for verbs get, set, change, update and insert we perform no semantic 

verification because these actions imply manipulation of data within an object rather 

than manipulation of sub entities within entities. For instance, in Fig.11 we could have 

get instructors (get somebody), get name (get something), implying that there is a 

routine to get the contents of attributes within an object.  

 

 

Fig. 11 Class Professor 
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5. System Evaluation 

5.1  The Case Study  

To illustrate how our system works and the kind of NL requirements it generates, we 

have used a case study taken from [3] and which class diagram is shown in Fig. 12. It 

represents a class diagram for a University system and involves standard functional-

ities such as a professor giving a seminar, a student attending a course etc. The case 

study was chosen by one of the authors and contains the kind of information and com-

plexity our system can deal with at this development stage. In [3], the case study was 

described through a set of use cases from which the class diagram was derived. Hence 

it was not possible to compare the generated NL specifications with the original ones 

but comparison can be made with the description of the use case diagrams. The objec-

tive of this evaluation is twofold: (i) To verify the strings naming used in the class 

diagram and compare them with the results obtained from our study as described in 

section 3 and (ii) to have an idea on the kind of NL specifications generated by our 

system. 

 

 
 

Fig. 12. The UML Class Diagram for the Case Study 
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5.2  String Naming Compliance  

In this case study, class and relationship names are 100% compatible with the rules 

defined in section 3. 94.5% of the attributes are compatible and only 5.5% are not. 

However, these were successfully tagged. 89.8% of the operations names are com-

patible with the rules. 10.8% of the operations (4) were found to be of the form VNA 

which was not identified earlier. If we have used a larger sample to derive the rules in 

section 3, this might have identified this type of strings earlier. Table 6 summarises the 

names distribution for the case study.  

Table 6. Case Study Naming Distribution  

Classes Relations Attributes Operations 
Rules 

N AN NNN VP V N NN NA oth VN VNN V oth 

# 7 1 1 3 2 11 6 1 1 22 10 1 4 

%  77.8 11.1 11.1 60 40 61.1 33.3 5.5 5.5 59.4 27 2.7 10.8 

5.3  Evaluation of Tagging Results  

The tagging of the attributes, operations and relationships between the classes are 

based on the rules defined in section 3. The tagged strings are those obtained from the 

internal representation of the class diagram. 92.8% of the strings are compatible with 

the rules defined in this study for naming the components of a class diagram. 35.7% of 

the strings are ambiguous and our system has assigned the correct PoS for 84% of 

these ambiguous strings.  This high accuracy is explained by the high compatibility 

rates, since the tagger is designed to efficiently tag strings that comply with the as-

sumed rules. 16% percent of the ambiguous strings were not resolved as they were of 

the form VNA which was not included in our initial list of rules, with the adjective 

being interpreted as a verb in the past tense. This rule has now been added to our list 

of rules.  

5.4  Evaluation of the Generator  

We were able to generate sentences describing most of the information from the 

case study class diagram. In fact, the structure of the lexical base proved complete for 

verifying the meaning and generating NL from operations and attributes. Since most 

operations are composed of a single verb, the decision to perform a verb-based search 

to match an entry in the lexical base was sufficient. For attributes, we verified all rela-

tionships between all nouns in a given object, and generated sentences such as “pro-

fessor has date”. For associations we were able to generate sentences, by verifying that 

a “noun” may perform action “verb” and this action “verb” may be performed to an-

other “noun”. We also applied transformations to verbs into third person in singular, 

where necessary and combined already generated sentences. The sentence “get full 

name” is a result of combining the frame “get name” with the adjective-noun entry 



 26 

“full name”. However, we were unable to generate the correct information from incor-

rectly resolved strings. “addSeminarOverseen” generates “add seminar” instead of 

“add Overseen Seminar”. “Overseen” was tagged as a verb, thus the system does not 

check for verification of the “overseen-seminar” pair having as a result the omission 

of the word “overseen” from the generated sentence. A rule is added for future ver-

sions of the system. Fig. 13 shows part of the NL specifications generated by the 

GeNLangUML system for the case study. 

 

 
Fig. 13. A Sample of the Generated Natural Language Specifications 

5.5  Conclusions and Lessons Learnt  

The evaluation of the proposed system has shown both the strengths and weaknesses 

of  our system. In terms of naming the classes, their attributes and operations and the 

relationships, the results obtained are consistent with those of our study. At least, 

within the academic community, there seems to be some kind of consensus on how to 

name the various components of a class diagram.  Although, the generated NL should 

be understandable by most users, it still remains at the same level of abstraction as the 

class diagram. Hence, some users may require some basic understanding of OO con-

cepts to make sense of the generated NL specifications.  For those who can understand 

OO concepts, the generated NL specifications are similar to the language used in the 

description of the use cases used for the development of the class diagram in [3]. 
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6 Conclusion and Future Developments 

In this paper, we presented the GeNLangUML system that generates NL specifica-

tions from UML class diagrams. We studied 45 class diagrams, all academic and 

taken from text books, to understand the most commonly used rules and conventions 

used by software developers when naming various components of a class diagram. A 

set of rules based on the syntactic structures of the string names has been developed 

taking into account statistical information. These rules were used to understand and 

disambiguate the names given to classes, relationships, attributes and operations in a 

UML class diagram. We used WordNet for the syntactic analysis of the input names 

and the verification of sentences generated. The system was evaluated using an inde-

pendent case study.  The results obtained so far are encouraging and the implemented 

prototype demonstrated its feasibility. If fully implemented, such a system will unde-

niably help software engineers in generating NL specifications from class and other 

UML diagrams to use for communicating with those stakeholders who cannot under-

stand UML models. These can also be used as a way of integrating users in the consis-

tency checking process when changes are made to the design or implementation. As 

mentioned earlier, tools such as Rational Rose [61] can reverse engineer code to UML 

diagrams and systems such as   GeNLangUML will help the generation of NL specifi-

cations from UML diagrams. 

However, in its current state, our system presents  few weaknesses and further de-

velopments should address the following  issues. 

 

1. This research is purely developed in an academic environment. The examples 

used to statistically sample the naming conventions in UML class diagrams are 

taken from academic books as is the final example used to evaluate the system. In 

industry, this might be completely different as various organizations may have 

different conventions in naming the class diagrams components. For example they 

may use abbreviations such as “DoB” instead of “DataOfBirth”, the linking of a 

class name to a module or subsystem as in “PM-CustomerName” to show that the 

customer name is related to the purchase module (PM) or the linking of an attrib-

ute to its class name. However, when developing software projects a data diction-

aries are often used and these would contain entries to the class and attributes 

names in particular. Hence, future developments of the system should take into 

account data dictionaries and use them to complement the information already 

available in the class diagrams.  

2. The NL generated remains at a level of abstraction similar to that of the original 

class diagram. Hence, some users may still need to understand some OO concepts 

to make sense of  the generated specifications.  At this stage, our system can be 

used as a tool for teaching requirements engineering and OO modelling.  This will 

help students to have different views of the same model. Further development of 

the system should improve the generated requirements by solving more ambigu-

ous string and improve their final structure to make them more readable and close 

to the way NL requirements are written. 
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3. Class diagrams are not the only models developed during software specification 

and design, use cases, interaction diagrams and state diagrams should also be 

looked at as they may enrich the generated NL requirements.  

4. The work on translating OCL to NL reported in the literature review section can 

be used to complement our work.  

Acknowledgements 

The authors would like to thank the anonymous referees for their helpful com-

ments, suggestions and insightful questions that helped improve the content and struc-

ture of this paper.  

References 

1 A. Abbott, Program design by informal English description, CACM 16(11):882-894, 1983. 

2. S.W.Ambler, The object Primer, the application Developer’s guide to Object Orientation 

and the UML, Cambridge University Press, 2001. 

3 S.W. Ambler, The object primer, Agile - model driven application development with UML 

2.0, Cambridge University Press, 3rd Edition, 2004. 

4  W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mo-

stowski, A. Roth, S. Schlager, P.H. Schmitt, The KeY tool,  Software and System Modeling 

4(1): 32–54, 2005. 

5 V. Ambriola and V. Gervasi, The CIRCE approach to the systematic analysis of natural 

language requirements, Technical Report TR03 -05, University of Pisa, Dipartimento di In-

formatica, March 2003, http://citeseer.ist.psu.edu/ambriola03circe.html.   

6 N. Athanasakis, Generating natural language from UML class diagrams, Master Thesis, 

University of Salford, School of Computing, Science and Engineering, UK, 2006. 

7 K. A. Barclay and J. Savage , Object-Oriented Design with UML and JAVA, Butterworth-

Heinemann Ltd, 2003. 

8 S. Bennet, S. Mcrobb and R. Fenter, Object oriented systems analysis and design using 

UML, 3rd  edition, Mc Graw Hill, 2002.  

9 G. Booch, Object Oriented development, IEEE Transactions on Software Engineering 

12(2):211-221, 1986. 

10 G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language user guide, 

Addison-Wesley, 1999. 

11 G. Booch, Object Oriented Analysis and Design with Applications, Addison Wesley, 2003. 

12 E. Brill, Transformation-based error-driven learning and natural language processing: a 

case study in part-of-speech tagging,  Computational Linguistics, 21(4): 543-565, 1995. 

13 B. Bruegge and A.H. Dutoit, Object-oriented Software Engineering: Using Uml, Patterns 

and Java: International Edition, Prentice-Hall, 2003 

14 D.A. Burke, Improving the natural language translation of formal software specifications, 

Master Thesis, Chalmers University of Technology, Gothenburg, Sweden,  2004. 

15 D. Burke, K.  Johannisson, Translating formal software specifications to natural language: 

A grammar-based approach, Proceedings of the logical aspects of computational linguistics 

conference, Bordeaux, France, pp. 51-66, April 2005. 



 29 

16 D.E. Caldwell and T. Korelsky, Bilingual generation of job descriptions from quasi-

conceptual forms, Proceedings of the 4th ACL Conference on Applied Natural Language 

Processing, Stuttgart, pp. 1-6, 1994. 

17 D. Caragno and L. Iordanskaja, Content determination and text structuring in Gossip, In 

Extended Abstracts of the 2nd European natural language generation workshop, University 

of Edinburgh, pp. 15-21, 1989. 

18 P.P.S. Chen, The entity-relationship model : toward a unified view of data, ACM Transac-

tions on Database Systems 1(3):9-36, 1976. 

19 P.P.S. Chen, English sentence structure and entity-relationship diagrams, Information 

Systems 29:127-149, 1983. 

20 B.H.C. Cheng and L.A. Campbell, Integrating informal and formal approaches to require-

ments modeling and analysis, Proceedings of the 5th International Symposium on Require-

ments Engineering, Toronto, Canada, pp. 294-295, 2001. 

21 M.G. Christel and K.C. Kang. Issues in requirements elicitation, Technical Report 

CMU/SE1-92-TR-12 ESC-TR-92-012, Software Engineering Institute, Carnegie Mellon 

University Pittsburgh, Pennsylvania 15213, September 1992. 

22 H. Dalianis and E. Hovy, Aggregation in natural language generation, Lecture Notes in 

Computer Science, Volume 1036, pp. 88-105, Springer-Verlag, 1993. 

23 L. Danlos, G. Lapalme and V. Lux, Generating a Controlled Language, Proceedings of the 

first international conference on Natural language generation, Volume 14, Mitzpe Ramon, 

Israel,pp 141-147, 2000. 

24 A.M. Davis, Software requirements analysis and specification, Prentice Hall, 1990. 

25 L. Dunn and M. Orlowska, A natural language interpreter for construction of conceptual 

schemas, Proceedings of the 2nd Nordic conference on advanced information systems engi-

neering, Springer-Verlag, pp. 371-386, 1990. 

26  D.B Eugenio, M. Glass and M. Trolio, The DIAG Experiments: NLG for intelligent tutor-

ing systems,  Proceedings of the AAAI Spring Symposium on Natural Language Generation 

in Spoken and Written Dialogue, pp. 120-127, 2002. 

27 C. Fellbaum (ed.), WordNet: an electronic lexical database, MIT Press, 1998. 

http://wordnet.princeton.edu/. 

28 S. Fickas, Automating the analysis process, Proceedings of 4th IEEE international workshop 

on software specification and design, Monterey, pp. 58-67, 1987 

29 A.V. Gervasi and A.D. Zowghi, Reasoning about inconsistencies in natural language re-

quirements ACM Transactions on software engineering and methodology, 14(3):277-330, 

2005. 

30 E. Goldberg, N. Driedger and R. Kitteridge, Using natural language processing to produce 

weather forecasts, IEEE Expert 9(2): 45-53, 1994. 

31 L. Goldin and D.M. Berry, AbstFinder, A prototype natural language text abstraction finder 

for use in requirements elicitation, Automated Software Engineering, 4(4): 375-412, 1997. 

32  H.M. Harmain, Building Object-Oriented conceptual models using natural language proc-

essing techniques, PhD Thesis, Department of Computer Science, University of Sheffield, 

UK, 2000.  

33 H.M. Harmain and R. Gaizauskas, CM-Builder: A natural language-based CASE tool for 

object-oriented analysis, Automated Software Engineering Journal, 10(2):157-181, 2003 

34 C.L. Heitmeyer, R.D. Jeffords and B.C. Labaw, Automated consistency checking of re-

quirements specifications, ACM Transactions on Software Engineering and Methodology 

5(3):231-261, 1996. 

35 H. Horacek, An integrated view of text planning, In Aspects of Automated Natural Lan-

guage Generation, Lecture Notes in Artificial Intelligence, Volume 587, pp.29-44. Springer 

Verlag, Berlin, 1992. 



 30 

36 K. Johannisson, Formal and Informal Software Specifications, PhD Thesis, Department of 

Computing Science, Götenborg University, 2005 

37 C.B. Jones, Systematic software development using VDM, Prentice Hall, 1990. 

38 L. Kof, Text Analysis for Requirements Engineering, PhD Thesis, Institut für Informatik 

der Technischen Universität München, Germany, 2006. 

39 S. Konrad and B.H.C. Cheng, Automated analysis of natural language properties for UML 

models. MoDELS Satellite Events, pp. 48-57, 2005. 

40 B. Lavoie, O. Rambow and E. Reiter, The ModelExplainer, Proceedings of the 8th Interna-

tional Workshop on Natural Language Generation, England, pp. 9-12,1996. 

41 T. Lethbridge, J. Singer and A. Forward, How Software Engineers Use Documentation: The 

State of the Practice, IEEE Software, November 2003, pp 35-39. 

42 T. Lethbridge and R. Laganiere, Object-Oriented Software Engineering: Practical Software 

Development Using UML and Java, McGraw-Hill Publishing Co., 2004 

43 M.D. Lubars and M.T. Harandi, Intelligent support for software specification and design, 

IEEE Expert 1(4): 33-41,1986 

44 L. A. Maciaszek, Requirements Analysis and System Design, Developing Information 

Systems with UML, Addison Wesley, 2001. 

45 W.C. Mann and J.A. Moore, Computer as author – results and prospects, Technical Report 

RR-79-82, USC Information Science Institute, Marina del Rey, CA, 1980. 

46 P. Martin-Löf, Intuitionistic Type Theory,  Bibliopolis, Napoli, 1984. 

47 M. Kajko-Mattsson, The State of Documentation Practice within Corrective Maintenance, 

Proceedings of the IEEE International Conference on Software Maintenance, ICSM 2001, 

pp. 354-363. 

48 K. Mckeown, K. Kukich and J. Shaw, Practical issues in automatic documentation genera-

tion, Proceedings of the 4th conference on applied natural language processing, Stuttgart, 

pp. 7-14,1994. 

49 F. Meziane, From English to formal specifications, PhD Thesis, University of Salford, 

1994. 

50 L. Mich, NL-OOPS: From natural language to Object Oriented requirements using the 

natural language processing system LOLITA, Natural Language Engineering 2(2):161-187, 

1996. 

51 J. Moore and C. Paris, Planning text for advisory dialogues, Proceedings of the 27th annual 

meeting of the Association for Computational Linguistics, pp. 203-211, 1989. 

52 A.C. Moreno, N. Juristo and R.P. Van de Riet, Formal justification in Object-Oriented 

modelling: a linguistic approach, Data & Knowledge Engineering, (33):25-47, 2002. 

53 B. Nuseibeh and S. Easterbrook, Requirements Engineering: A Roadmap , Proceedings of 

the International conference on the future of software engineering, Limerick, Ireland, pp. 

35–46, ACM Press, 2000. 

54 E.H. Nyberg and T. Mitamura, Controlled Language and Knowledge-Based Machine 

Translation: Principles and Practice, Proceedings of the First International Workshop on 

Controlled Language Applications, 1996. 

55 OMG, Unified Modeling Language Specification, version 1.5, (http://www.uml.org). 

56 S.P. Overmeyer, B. Lovoie and O. Rambow, Conceptual Modeling through linguistic 

analysis using LIDA, Proceedings of the 23rd International conference on software engi-

neering, Toronto, Canada , pp. 401-410, 2001. 

57 D.S. Paiva, A Survey of applied natural language generation systems, Information Technol-

ogy Research Institute Technical report Series, University of Brighton, July 1998. 

58 F. Pereira and D.H.D Warren, Definite Clause Grammars for language analysis – a survey 

of the formalism and a comparison with augmented transition networks, Artificial intelli-

gence, 13(3):231-278, 1980. 



 31 

59 G. Presland, The analysis of natural language requirements documents, PhD thesis, Univer-

sity of Liverpool, 1996. 

60 Pyut, http://pyut.sourceforge.net 

61 Rational Rose, http://www-306.ibm.com/software/rational 

62 E. Reiter, C. Mellish and J. Levine, Automatic generation of on-line documentation in the 

IDAS project, Proceedings of the 3rd Conference on applied natural language processing, 

pp. 64-71,1992. 

63 E. Reiter, NLG vs. Templates, Proceedings of the 5th European Workshop on Natural Lan-

guage Generation, Leiden, The Netherlands, pp. 95-105,1995.    

64 K. Richard and I. Mel’cuk, Towards a computable model of meaning text relations within a 

natural sublanguage, Proceedings of the 8th International Joint Conference on Artificial In-

telligence (IJCAI-83), pp. 657-659, Karlsruhe, West Germany, August, 1983. 

65 M. Saeki, H. Horai, K. Toyama, N. Uematsu and H. Enomoto, Specification framework 

based on natural language, Proceedings of the 4th IEEE international workshop on Software 

Specification and Design, Monterey, pp. 87-94, 1987. 

66 R. Schwitter, English as a formal specification language, Proceedings of the 13th  Interna-

tional Workshop on Database and Expert Systems Applications, pp. 228-232,  

      IEEE Computer Society,Washington, DC, USA, 2002. 

67 J. Shaw, Conciseness through aggregation in text generation, Proceedings of the 33rd ACL 

pp. 329-331,1995. 

68 Sicstus Prolog http://www.sics.se/isl/sicstuswww/site/index.html 

69 M. Spivey, The Z Notation: A Reference Manual, 2nd edition,. Prentice Hall International, 

1992. 

70 W. Wahlster, E. Andre, S. Bandyopadhyay, G. Winfried  and T. Rist, WIP: The coordinated 

generation of multimodal presentations from a common representation, In O. Stock, J. 

Slack and A. Ortony (Eds), Computational Theories of Communication and their Applica-

tions, Springer Verlag, pp. 75-93, 1991. 

71 K. Walden, Reversibility in software engineering, Computer, 29(9):93-95, September 1996. 

72 J.S. Warmer and A.G. Kleep, The Object Constraint Language: Precise Modeling with 

UML, Addison-Wesley Technology Series, 1998. 


