
A Constraint Manager
to Support Virtual Maintainability

Luis Marcelino Norman Murray Terrence Fernando
Centre for Virtual Environments, University of Salford

Salford, U.K.
{L.Marcelino,T.Fernando,N.Murray@Salford.ac.uk

Abstract
Virtual prototyping tools have already captivated the industry's interest as a viable design tool. One of the key
challenges for the research community is to extend the capabilities of Virtual Reality technology beyond its
current scope of ergonomics and design reviews. The research presented in this paper is part of a larger re-
search programme that aims to perform maintainability assessment on virtual prototypes. This paper discusses
the design and implementation of a geometric constraint manager that has been designed to support physical
realism and interactive assembly and disassembly tasks within virtual environments. The key techniques em-
ployed by the constraint manager are direct interaction, automatic constraint recognition, constraint satisfac-
tion and constrained motion. Various optimisation techniques have been implemented to achieve real-time in-
teraction with large industrial models.

Keywords

1. INTRODUCTION
Modern markets not only urge companies to create better
products, but also force them to do so in increasingly
shorter time scales. The concept of Concurrent Engi-
neering (CE) encourages companies to address issues
such as maintenance very early in the design process.
However, the lack of simulation tools hinders the adapta-
tion of CE and therefore further research is required to
develop such tools. A development stage that is still
lacking the appropriate software tools is maintenance
simulation. The simulation of maintenance operations
allows maintenance to be addressed in early design
stages. This reduces unforeseen problems creeping into
the design as it progresses through its life cycle, conse-
quently saving both time and money while improving
product quality.

The Virtual Prototyping Group at the Centre for Virtual
Environments at Salford has been investigating the ap-
plicability of VR to interactive maintenance simulation.
A system that can simulate realistic maintenance opera-
tions interactively is demanded by the industry. This
research inverstigates the use of virtual environments to
assess maintenance operations before any physical proto-
type is available. Besides speeding up the development
process, the assessment of virtual models can also reduce
the number of required physical prototypes. Such a tool
has the potential to reduce the time-to-market and the
development cost.

Maintenance operations are usually performed in a re-
stricted space within a limited timespan. The operator's
movements are often constrained by the surrounding
components and contacts and clashes between compo-
nents are inevitable. Furthermore, the time required for
maintenance needs to be controlled and minimized. For
these issues to be considered in a maintenance simula-
tion, the computer simulation needs to be realistic.

To achieve a real-time realistic simulation we use a geo-
metric constraint approach. Geometric constraints are
relationships established between different geometric
primitives. These relationships constrain the movement
of objects and determine the objects' kinematics. The use
of geometric constraints has two advantages against the
alternative physical simulation: it is less computationally
intensive, and only requires the information already
available in CAD models. The more accurate physical
simulation needs extra information like mass, friction
coefficient, etc.

This paper describes the development and implementa-
tion of a Geometric Constraint Manager (CM). This con-
straint manager is being used in real-time immersive
virtual environments such as the CAVE [Cruz-Neira-93]
and the Workbench [Cutler97] to assess maintainability
of virtual prototypes. The CM can recognize new con-
straints, enforce existing constraints and validate applied
constraints. It is part of a more complex VR system [Fer-
nando00] [Fernando01] [Murray02] that supports assem-



assembly and disassembly operations in immersive vir-
tual environments.

The next section introduces some of the work done in
virtual maintainability. Section 3 describes some of this
system's functionality and Section 4 presents its architec-
ture and implementation. The simulation of maintenance
tasks using a real industrial model required the con-
straint manager to be optimised as described in Section
5. The CM performance using the industrial case study
is presented in Section 6. Section 7 discusses the
achieved results and defines the orientation for future
work.

2. RELATED WORK
There have been several research efforts to develop as-
sembly simulator environments and much work has been
done allowing users to compose scenes within virtual
environments, such as 3DM [Butterworth-92], and
JDCAD [Liang-94] which tackled many of the issues
involved in the interactive creation of 3D objects. Prob-
lems with such systems are the absence of constraints
when interacting with virtual objects. Users are restricted
to gross interactions and are unable to perform precise
object manipulation [Mine97]. Systems that support con-
straint based assembly of components provide the user
with the support required to position components pre-
cisely in 3D space. There have been several research
efforts to investigate the development of assembly simu-
lation environments. For example, Connachar et al.
[Connacher96] [Jayaram99] describes a system called
VADE (Virtual Assembly Design Environment) inter-
faced with the Pro/Engineer modelling environment. A
CAD database is connected to the Open Inventor API
through Pro/Engineer Pro Develop Toolkit. In this sys-
tem, direct interaction is supported through a Cyber-
Glove. Fernando et al. [Fernando95], Fa et al. [Fa93],
Munlin [Munlin95], and Thomson et al. [Thompson98],
have developed an Interactive Constraint Based Assem-
bly Modelling (ICBAM) environment to bring physical
realism to the assembly simulation arena. Zachmann
[Zach01] developed an assembly simulator that imple-
ment some constrained motion based on the type of con-
tact between objects.

Fernando et al. [Fernando95] describes the methods de-
veloped for allowable motion and constraint recognition
within the system. Automatic recognition of constraints
such as 'against', 'coincident', 'tangential', and 'concen-
tric' are supported in their system. By reading constraint
relationships stored in a Relationship Graph, degrees of
freedom can be computed so that the system can deter-
mine the allowable motions for a given assembly part.
The VR environment is implemented using the IRIS
Inventor graphical toolkit. The system described by Fer-
nando et al. [Fernando95] reported some shortcomings.
They include, inability to support constraint propagation
from child object to parent when the child object is being
manipulated in the assembly, and the absence of a stan-

dard data translator for CAD data import into the virtual
environment.

3. SYSTEM DEFINITION
This section presents the functionality of the constraint
manager that was derived from its requirements. These
requirements are based on previous experience building
an assembly simulator [Wimalaratne01].

The development of a new constraint manager aimed to
create an efficient and independent software toolkit that
could be easily integrated into different virtual reality
systems. The requirements for this system were:

• Multi-platform (UNIX and windows)

• Scene graph independence

• Multiple constraint recognition

• Multiple constraint satisfaction

• Deletion of broken constraints

• Automatic constraint management

The communication between the constraint manager and
the main application uses a defined API with appropriate
data structures. The internal data representation is based
on private classes that are independent of any scene
graph. For this reason the VR system needs to insert into
the constraint manager each component's geometry, be-
cause the constraint manager has its own internal data
representation. This allows the main application to
choose the objects that can be constrained. The virtual
hand, for example, would not be inserted into the con-
straint manager and therefore not be subject to geometric
constraints.

The constraint manager has two types of geometry
nodes: objects and surfaces. An object is an entity that
has surfaces and can be moved. A surface is a face of an
object. The constraint manager supports parametric sur-
faces and uses specific elements that define its paramet-
ric equation. For example a point on the plane and its
normal vector defines a planar surface while a point on
the cylinder axis, its direction and the radius of the cyl-
inder value define a cylindrical surface. Besides surface
specific elements, each surface has a bounding volume.
This volume defines surface's borders because the equa-
tions define limitless surfaces. The constraint manager
has no polygonal representation of surfaces because such
a representation is not relevant to the constraint man-
agement process.

The constraint manager can recognize and apply differ-
ent types of geometric constraints. A geometric con-
straint is rule that determines the relative motion be-
tween two surfaces. This rule reduces the degrees of
freedom of the objects that contain the involved surfaces,
constraining their motion. The constraint manager sup-



ports the three different types of constraints illustrated in
Figure 1.

(a) Against (b) Collinear (c) Concentric

Figure 1: Supported constraints

The constraint recognizer must also be able to validate
recognized and applied constraints. The validation is the
process that determines whether a constraint is still valid
or is broken. A constraint is broken if the involved sur-
faces attempt to move apart beyond a defined threshold.

The preferred way for the VR system to exchange data
with the Constraint Manager is through the use of lists.
The VR system can send to the constraint manager a list
of surfaces with constraints to be added and the con-
straint manager can return a list of surfaces with the
recognized constraints. Lists are a convenient communi-
cation medium because they do not restrict the amount of
data passed to and from the constraint manager and a
list received from the constraint manager can be freely
manipulated by the application and then sent back to the
constraint manager.

The functionality of the constraint manager can be di-
vided in three main tasks:

• To validate existing constraints and determine
the broken constraints;

• To enforce existing constraints and solve con-
strained motion;

• To recognize new possible constraints.

This functionality can be combined to achieve three
stage fully automated constraint manager. Once a com-
ponent's transformation is passed to the constraint man-
ager, the model is searched for possible broken con-
straints that are removed. The remaining constraints are
enforced and a resulting transformation computed. Once
in a position, the constraints manager searched for new
constraints between the moved component and the sur-
rounding.

4. SYSTEM ARCHITECTURE
This section describes the architecture of the imple-
mented constraint manager. Figure 2 shows a graphical
representation of this architecture.

The constraint manager has a hierarchical data graph
that maintains all relevant information from objects and
surfaces. The data graph is available to all modules of

the constraint manager: the constraint solver, the con-
straint recogniser and the filters. The constraint manager
modules are independent and their interaction is defined
by the application.

Figure 2: The Constraint Manager Architecture

4.1 The data-graph
The data graph is a hierarchical data structure that
maintains the information relevant to the constraint
manager. It represents all the knowledge the constraint
manager has about the components within the virtual
environment. This means the constraint engine has its
own insight of the virtual environment. Virtual objects
and surfaces that are not to be constrained are simply not
added to the constraint engine and so are not considered
during the solving and recognition process.

The data graph is organized like a flat scene-graph with
the top-level nodes representing objects and the leaf-
nodes representing surfaces. All objects and surfaces
added to the constraint manager are in the data graph. A
data graph's object is a node that has a list of surfaces
and can be transformed. Valid transformations are trans-
lation and rotation, but not scale. An object can be trans-
formed through direct manipulation or as a result of
other object's movement. An object can be fixed in the
3D space to prevent it from being moved.

4.2 The constraint solver
The constraint solver is the module that manages applied
geometric constraints. The solver determines the trans-
formations to be applied to unfixed objects so that ap-
plied constraints are enforced. It is also the solver that
applies new constraints, removes existing ones and fix
objects in the 3D environment. Underlying this module
is D-Cubed 3D DCM[dcubed01] library that computes
the motion of constrained objects.



The constraint solver maintains a list of the applied con-
straints. Applied constraints are the constraints to be
enforced and that condition objects' transformations.
Constraints apply to surfaces of distinct objects only,
because this library only supports rigid bodies. This
means that different surfaces of the same object are al-
ways fixed relative to each other and no constraint can
be applied between them.

All transformations pass by the constraint solver. A new
transformation for an object means that this object is
being moved from its current position to a new one. The
solver determines whether this motion is possible or not
and, if not, it computes an alternative position. An ob-
ject's motion can also affect the position of other con-
strained objects. The solver also computes the new posi-
tion of constrained objects and updates these objects po-
sition.

4.3 The constraint recognizer
The constraint recognizer identifies new possible con-
straints and validates existing ones. The application
specifies a list of objects to be searched for new con-
straints and possibly the surfaces to be tested for new
constraints. If the application can determine collisions
between surfaces, it can send those colliding surfaces to
the constraint recognizer. This speeds up the recognition
process because it cuts the number of surfaces to be
tested.

The constraint recognizer has two lists of recognized
constraints. Figure 2 shows only one of these lists for
clarity. One list has the new recognized surfaces while
the other has the existing constraints that failed to be
recognized. These list of constraints are returned to the
application, which then decides what to do with them. It
is under the application's control to apply all, some or
none of the recognized constraints, as it can control
which constraints to break: all of those recognized, some
of them or none of them.

The methods used for recognition of new constraints are
also used to validate existing constraints. The validation
process is based on the principle that a recognizable con-
straint is still a valid one. Validation takes place before
existing constraints are enforced, otherwise existing con-
straints would always be recognized. Existing constraints
that fail to be recognized are added to the list of broken
constraint.

The constraint manager has a set of variables that define
the tolerance of the recognition process. These tolerances
determine the threshold under which constraints are rec-
ognized and can be adjusted dynamically by the applica-
tion. The three recognition tolerances are the linear tol-
erance, the angular tolerance and the breaking factor.
The linear tolerance is the maximum distance between
two surfaces (or axis if two cylinders are involved), the
angular tolerance is the maximum angle between two
surfaces and the breaking factor is the scaling factor that
multiplies the linear and angular tolerances when con-

straints are being validated. A breaking factor greater
than 1 means it is easier to recognize new constraints
than to break existing ones. Increasing the breaking fac-
tor makes constraints more difficult to break.

The constraint recognition algorithm compares surfaces
and verifies if their relative positions and orientations
are within the specified tolerances. The application de-
fines a list of surfaces that the recognizer uses to search
possible constraints. Alternatively objects can be inserted
into this list, in which case the recognizer searches all
surfaces of those objects for possible constraints. The
recognition process starts with a bounding box intersec-
tion test. To include the tolerance in the bounding box
test, both surface boxes are enlarged by half the tolerance
values. If bounding boxes are overlapping, the surfaces
relative position and orientation is assessed to recognise
possible constraints.

A constraint is recognized between two planes when the
angle between their normals is less than the angular tol-
erance and that the distance between the planes is less
than the linear tolerance. Two cylinders have a potential
constraint when their axes make an angle within the
angular tolerance and are less than the tolerance apart.
The constraint between a plane and a cylinder is recog-
nized if a plane's normal it perpendicular within the tol-
erance to the cylinder's axis and if the distance between
the cylindrical and the planar surface is less than the
linear tolerance.

4.4 Filters
Filtering is required to reduce the number of recognized
constraints to a minimum. It takes three constraints to
completely fix an object to other. Filters are functions
that selectively remove recognized constraints from their
list. The need for a filtering mechanism was raised when
we tested the constraint manager with industrial case
studies. These models do not have optimised surfaces
and what could be one surface is sometimes a collection
of small surfaces of the same type. As a result, recogni-
tion of geometric constraints often generates a large
number of possible but redundant constraints. Filters
reduce the constraint list according to their criteria and
are mutually independent. The application chooses what
filters to apply to the list of recognized constraints and in
which order.

Some of the filters currently provided by the constraint
manager include:

• Surface displacement: filters the constraint of a
specified type that have closer surfaces;

• Cylinder radius: remove concentric constraints
detected between cylinders of different radii;

• Cylinder definition: removes duplicated cylin-
drical constraints involving different cylindrical
surfaces with identical geometry;

• Constraint type: remove all constraints of a
specified type;



5. SYSTEM OPTIMISATION
The use of the constraint manager with real industrial
case studies revealed that the constraint manager did not
scale up to support real industrial models. The models
used by the industry are significantly more complex than

the models used during the implementation of the con-
straint manager. The test model shown in Figure 3 in-
volved assembling components with approximately 20
surfaces each while the industrial case study involved
one

Figure 3: An interface to the Constraint Manager with the original model

component with more than 800 surfaces and others with
more than 50.

An assessment using the industrial case study revealed
two bottlenecks in the constraint manager. One was the
recognition process and the other was the transformation
of objects. Using the industrial model the constraint
manager needed nearly 200 milliseconds to recognize
constraints and 80 milliseconds to move constrained
objects. Surprisingly the constraint solver also needed
approximately 70 milliseconds to move unconstrained
objects. These two bottlenecks resulted in unacceptably
low frame rate.

Several techniques were implemented to improve the
performance of the constraint manager. This paper only
presents the adopted solutions that are now part of the
constraint manager.

5.1 The recognizer optimisation
The constraint recognizer was integrated in a VR frame-
work that was adding pairs of objects, instead of pairs of
surfaces, into the list to be recognized. The recognizer

ognizer then created a list of surface pairs from all pos-
sible surfaces combinations. One object with X surfaces
and another with Y surfaces resulted in X*Y surface
pairs. Recognizing constraints between two components
from the original model required 400 surface pairs to be
tested while with the industrial case study this number
increased to 40000 surface pairs.

To reduce the number of surface pairs to be tested, spa-
tial information was added to each surface. This spatial
information aimed at reducing the number of surfaces to
be considered at a very low computational cost. For this
reason we implemented a flat data structure of axis
aligned cells. The advantage of axis aligned regular
grids is their low computational load compared to ori-
ented bounding boxes. This advantage is at expense of
accuracy, but once the intention is to swiftly discard sur-
faces that are clearly beyond the region of interest, it
offers a good compromise. Different bounding volumes
could have been used which are described in the colli-
sion detection literature [Jiménez01].



The spatial filtering is a pre-processing step that is done
when a component is added to the constraint manager. A
bounding box is created for each component by adding
the bounding boxes of all its surfaces. The component's
bounding box is then divided into eight equal spatial
cells and each surface is assigned to the spatial cells it
uses.

Prior to recognising constraints between surfaces of two
components the recognizer determines which cells of
each component are intersecting. This information is
then used to filter the surfaces pairs to be tested: only
surfaces that are in intersecting cells are searched for
possible constraints.

The association of spatial information to surfaces re-
duced considerably the number of surfaces to be consid-
ered in the recognition of new constraints. Using this
new implementation the recognizer does in less than 30
milliseconds what previously took nearly 200 millisec-
onds for the chosen industrial case study.

5.2 The solver optimisation
All components are transformed using the constraint
manager. The constraint manager receives a requested
transformation and passes it to the solver. The solver
determines the final transformation of objects enforcing
applied constraints. The performance assessment showed
that the 3D DCM library was using most of the time,
even for unconstrained objects. The experiments also
revealed that the time required to transform components
depended more on the complexity of the components
than on the applied constraints.

From the obtained results it was clear that to improve the
solver performance we needed to reduce the number of
surfaces inserted into the 3D DCM. All components
added to the constraint manager are inserted into the
DCM as bodies without surfaces. The data graph still
maintains both objects and surfaces data and only infor-
mation inserted into the 3D DCM library is simplified.
Surfaces are only inserted into the DCM as required, i.e.
when they are constrained. This way the DCM library is
abstracted from the complexity of components and only
deals with very simple bodies. As a result the perform-
ance of the constraint solver now depends on the number
of applied constraints.

6. EXPERIMENTAL RESULTS
This section presents the performance results of the con-
straints manager using a real industrial case study. The
three main processing stages are assessed.

The computer used to this experiments was an SGI
ONYX2 with 128MB of RAM and two MIPS R10000
CPUs clocked at 180Mhz. However, the constraint man-
ager is single threaded and only one CPU was used at a
time.

Figure 4: The Sener electronic box and its brackets

The model used in this experiment is a real case study
from Sener, one of our industrial partners. The model
has one electronic box and four brackets where it
clamps. Some pipes and tubes are also part of the model
but were not constrained. The electronic box is a compo-
nent that has 872 surfaces and each bracket has 275 sur-
faces. This experiment consisted of the manipulation of
the electronic box so it automatically recognizes con-
straints with one of the brackets. Once the electronic box
clamps into the bracket it then moves along with the
electronic box because it is not fixed within the world.

Figure 5: Automatic constraints recognition of two
components with 872 and 275 surfaces.

The recognition process benefited significantly from
adding spatial information to surfaces. Figure 5 shows
that the time required to recognize constraints between
the electronic box and a bracket was reduced from more
than 180 milliseconds to 30 milliseconds.



Figure 6: Time required transforming a component.

The time required to move objects was also reduced sig-
nificantly due to the solver optimisation discussed in
section 5.2. Figure 6 shows how the time to move the
electronic box relates with the applied constraints. The
"static surface" shows the time when all surfaces are
inserted into 3D DCM while the "dynamic surface"
when only constrained surfaces are inserted into the 3D
DCM. Besides showing the performance improvement
achieved by dynamically adding surfaces Figure 6 also
shows the time 3D DCM needs when constraints are
applied. This jump is due to the resetting of 3D DCM
and happens every time constraints or geometries are
added into, or removed from the library.

Figure 7: Time to validate existing constraints.

The validation time was inferior to the other two proc-
essing stages. Figure 7 shows that less than four milli-
seconds are needed to positively validate 14 existing
constraints.

7. CONCLUSIONS AND FUTURE WORK
The results presented in the previous section demon-
strate that the constraint manager can be used in interac-
tive maintenance simulation of industrial models. The
initial implementation of the constraint manager re-
quired approximately 250 milliseconds per interaction
for fully automated constraint management and as a re-
sult could not be used interactively. The optimised ver-

sion of the constraint manager needs approximately 50
milliseconds to do the same job. We find this is an ac-
ceptable simulation time given the complexity of the
used components.

Despite the good results there is plenty of work to be
done to achieve a mature system that can be used as a
virtual prototyping tool. Further improvements to the
existing constraint manager are now being considered.
These improvements consist of developing a more effi-
cient spatial data structure and applying filters before the
recognition of new constraints.

8. ACKNOWLEDGEMENTS
This work has been supported by the EPSRC through a
joint project with Rolls-Royce, EDS Parasolid and D-
Cubed.

We would like to thank to Sener for providing the case
study used in these experiments.

9. REFERENCES
[Butterworth-92] Butterworth, J., Davidson, A., Hench,

S., Olano, T., “3DM: A Three-Dimensional Modeler
Using a Head-Mounted Display”, ACM Computer
Graphics (1992 Symposium on Interactive 3D
Graphics), Volume 25 (2), 1992, pp. 135—138

[Connacher96] Connacher, H. and Jayaram, S. and Ly-
nos, K., “Integration of Virtual Assembly with
CAD”, Symposium on Virtual Reality in
Manufacturing Research and Education, October
1996, pp. 32—40

[Cruz-Neira-93] Cruz-Neira, C., Sandin, D., DeFanti,
T., "Surround-Screen Projection-Based Virtual Real-
ity: The Design and Implementation of the CAVE",
Proceedings of the 20th annual conference on Com-
puter graphics, Anaheim, USA, 1993, pp. 135—142

[Cutler97] Cutler, L and Froehlich, B. and Hanrahan, P.,
"Two-Handed Direct Manipulation on the Respon-
sive Workbench", Proceedings of the 1997 Sympo-
sium on Interactive 3D Graphics, Providence, USA,
April 1997

[dcubed01] D-Cubed, Ltd, “The 3D DCM Manual”, D-
Cubed, Ltd, Version 2.5.0, August 2001

[Fa93] Fa, M., “Interactive Constraint-Based Assembly
Modelling”, Ph.D. Thesis, School of Computer Stud-
ies, University of Leeds, Sept, 1993

[Fernando00] Fernando, T, Marcelino, L, Wimalaratne,
P, Tan, K, “Interactive Assembly Modelling within a
CAVE Environment”, 9 Eurographics Portuguese
Chapter Meeting, February 2000, Marinha Grande,
pp.43-49

[Fernando01] Fernando, T., Marcelino, L., Wimalaratne,
P., "Constraint-based Immersive Virtual Environ-
ment for Supporting Assembly and Maintenance
Task", Proceedings of Human Computer Interaction
International 2001, New Orleans, USA, August 2001



[Fernando95], Fernando, T., Fa, M., Dew, P., Munlin,
M., “Constraint-based 3D Manipulation Techniques
for Virtual Environments”, Virtual Reality Applica-
tion, Chapter 6, Academic Press, 1995, pp. 71—89

[Jayaram99] Jayaram, S., Jayaram, U., Wang, Y., Tiru-
mali, H., "Data Sharing and Control in AEC Soft-
ware Integration", IEEE Computer Graphics and
Applications, November/December 1999

[Jiménez01] Jiménez, P., Thomas, F., Torras, C., “3D
Collision Detection: A Survey”, Computers & Graph-
ics, 25(2), 2001, pp. 269–285

[Liang-94] Liang, J., Green, “JDCAD: A Highly Interac-
tive 3D Modeling System”, M. Computer & Graph-
ics, Volume 18 (4), 1994, pp. 499—506

[Mine97] Mine, M., “A Meta-CAD System for Virtual
Environments”, Computer-Aided Design, Volume 29
(8), 1997, pp. 547—553

[Munlin95] Munlin, M., “Interactive Assembly Model-
ling within a Virtual Environment”, Ph.D. Thesis,

School of Computer Studies, University of Leeds,
September, 1995

[Murray02] Murray, N., Fernando, T., Aouad, G., “A
Virtual Environment for the Design Simulated Con-
struction of Prefabricated Buildings, to appear in the
Computer-Aided Civil and Infrastructure Engineer-
ing Journal

[Thompson98] Thompson, M.R, Maxfield, J.H., Dew,
P.M “Interactive Virtual Prototyping”, Eurographics
'98, April 1998, pp. 107-119

[Wimalaratne01] Wimalaratne, P., Fernando, T., “Sup-
porting Assembly and Disassembly Operations
through Direct Manipulation within a Virtual Proto-
typing Environment”,8Th ISPE International Con-
ference On Concurrent Engineering: Research And
Applications, July 2001

[Zach01] Zachmann, G. and Rettig, A., "Natural and
Robust Interaction in Virtual Simulation", Proceed-
ings of the 8th ISPE international conference on con-
current engineering, Anaheim, USA, 2001


