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The Boundary Element Method (BEM) is a proven numerical prediction tool for computation of

room acoustic transfer functions, as are required for auralization of a virtual space. In this paper, it

is validated against case studies drawn from the “Ground Truth for Room Acoustical Simulation”

database within a framework that includes source and receiver directivity. These aspects are often

neglected but are respectively important to include for auralisation applications because source

directivity is known to affect how a room is excited and because the human auditory system is sen-

sitive to directional cues. The framework uses weighted-sums of spherical harmonic functions to

represent both the source directivity to be simulated and the pressure field predicted in the vicinity

of the receiver location, the coefficients of the former being fitted to measured directivity and those

of the latter computed directly from the boundary data by evaluating a boundary integral. Three val-

idation cases are presented, one of which includes a binaural receiver. The computed results match

measurements closely for the two cases conducted in anechoic conditions but show some significant

differences for the third room scenario; here, it is likely that uncertainty in boundary material data

limited modelling accuracy.
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I. INTRODUCTION

Since its inception 25 years ago,1 auralization has

become an important tool for acoustic engineers to commu-

nicate the sonic benefits of designs to stakeholders—this is

particularly commonplace in architectural and automotive

applications. Historically, auralizations were created by

playing and recording audio inside physical scale models,2

but as technology has advanced, the simulation is now

mostly performed using computer models.

In order for such an auralization to be accurate, the

numerical predictions on which it is based, and the spatial

audio encoding and rendering processes used to present it to

the listener, must all be accurate too. To date, the majority of

simulations for auralization have been conducted using

Geometrical Acoustics (GA),3 for which the spatial audio

encoding aspects are straightforward; for example, a ray

may be mapped to the closest direction in a Head-Related-

Transfer-Function (HRTF) set,4 or panned between nearby

loudspeakers in an array. It is, however, known that these

prediction algorithms are inaccurate in certain circumstan-

ces, especially at lower frequencies or in smaller rooms, and/

or in cases where diffraction or interference effects are sig-

nificant.5 Algorithms that model wave effects fully,6 such as

Finite Element Method (FEM), Boundary Element Method

(BEM), and Finite-Difference Time-Domain (FDTD), are

more accurate and reliable, but processes for encoding their

output for auralization are more involved and less well

established. A common approach has been to include a head

and torso,7 or an idealized equivalent,4,8,9 in the model

geometry so that binaural output data can be directly gener-

ated by placing receivers at the ear locations. This approach

is valid but is inflexible since it fixes the listener position

and does not allow for inclusion of personalized HRTFs.

A more flexible approach is to encode the sound-field

around the receiver as a weighted sum of spherical harmonic

or plane waves. This approach is widely accepted by the

sound-field rendering community as an appropriate encoding

format for both loudspeaker array-based and binaural repro-

duction systems,10,11 and has the added benefit from a

prediction-algorithm verification perspective of separating

validation of the prediction and rendering processes. It is

also consistent with an equivalent representation at high fre-

quencies12 and, noting that a similar approach may be used

to encode source directivity, leads to point-to-point room

transfer functions being thought of as having multiple input

and output channels.13 Encoding to such a format from

BEM, FEM, or FDTD has to date been achieved by simulat-

ing some type of microphone array.14–16 Encoding of this

data is, however, not straightforward and is constrained by

many of the factors that affect real microphone array design,

with tradeoffs having to be made between array size and

density and encoding accuracy.

The only exception to this encoding approach is the

2014 method of Mehra et al.17 that computes the spherical

harmonic coefficients from high-order spatial derivatives of

the pressure field. When a boundary integral is used to com-

pute the pressure field in the domain, as is in principlea)Electronic mail: j.a.hargreaves@salford.ac.uk
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applicable to FEM and FDTD but is best suited to BEM,

these spatial derivatives may be achieved by taking spatial

derivatives of the kernel of the integral (i.e., the Green’s

function). This means that the coefficients may be found

directly by a mapping from the boundary data. Since this

mapping is independent of the actual boundary data—it only

depends on the receiver location—it may be pre-computed

to allow interactive update of the scene data e.g., due to

changes in the source.

The encoding method applied in this paper achieves the

same functionality as the method of Mehra et al.17 but differs

in its mathematical formulation and derivation. In particular,

the mathematical formulation18 is derived from orthogonal-

ity statements for “spherical harmonic basis functions”

(defined in Sec. II) and gives closed-form statements for the

integrals to be evaluated to compute each coefficient,

whereas that of Mehra et al. involves evaluating a larger

number of integrals and then performing a triple summation

to obtain the matrix that maps from boundary data to

receiver coefficients. The approach herein may be consid-

ered a generalization of the array designs of Hulsebos

et al.19 that is applicable for arbitrary array geometries.

These are “open” array designs and are unusual in that they

require both pressure and the surface-normal component of

pressure gradient at each sensor. Since the array geometry

may be chosen freely, it may be taken to be the boundary of

the room, at which the pressure and its surface-normal gradi-

ent are already known. Compared to Ref. 17, this paper

includes substantially more objective validation results and

encodes the HRTF datasets in a manner that considers the

measurement radius, whereas Mehra et al.17 appear to trans-

form the simulation results into a set of plane-wave ampli-

tudes and use the HRTF data directly as if it were measured

in the far-field. The accuracy of the encoding by either of

these approaches will be dictated by the resolution of the

boundary mesh, in the same way that for BEM it dictates the

accuracy of the sound-field calculated in the domain in gen-

eral. This has the benefit that there are no parameters or

design tradeoffs to be decided by the user and, unlike the

mic-array-based encoding methods above, no regularized

matrix inversion is required.

A. Hybrid simulation algorithms

An oft-stated limitation of FEM, BEM, and FDTD in

room acoustic applications is the rate at which their compu-

tational cost increases with frequency. BEM only requires

meshing of the two-dimensional boundary, hence to main-

tain accuracy as frequency f increases the number of

Degrees Of Freedom (#DOF) must grow with Oðf 2Þ, com-

pared to Oðf 3Þ for FEM and FDTD that discretize the

domain. However, BEM produces full interaction matrices,

linking every element to every other element, leading to

computational cost and storage requirements that scale

Oðf 4Þ. This has traditionally made it less efficient than FEM

or FDTD in most scenarios,20 primarily finding application

in computing scattering from small objects under anechoic

conditions,21 but modern matrix compression techniques

such as fast-multipole22 and adaptive-cross-approximation23

can significantly compress the matrices, making BEM com-

petitive in many more scenarios. Even with such develop-

ments, however, the scaling of computation cost and storage

with frequency for these algorithms is still sufficiently unfa-

vorable so as to preclude full audible-bandwidth simulation

for most realistic-sized room acoustics problems of interest.

Auralization of a space, however, requires measured or

simulated data covering the full audible frequency spectrum.

Since geometrical acoustics algorithms are inaccurate at low

frequencies and FEM, BEM, and FDTD are prohibitively

computationally expensive at high frequencies, the only way

to currently meet the requirement is to combine the output

data or two or more algorithms, each run on a section of the

frequency spectrum to which they are more suited. This

approach was first pioneered by Granier et al.4 in the mid-

1990s using FEM and geometrical acoustics, and the same

combination has been studied between 2009 and 2014 in

Refs. 7 and 24–27, and by G�omez et al.15 and Tafur et al.8 in

2017. BEM was used as the low frequency method by

Summers et al.9 in 2004 and FDTD was used for lower fre-

quency bands in a multiband framework proposed by

Southern et al.28 in 2013. Mehra et al.17 also used BEM to

compute results for auralization in 2014, but extrapolated

results to higher frequencies rather than combining them

with those of a geometrical acoustics algorithm.

While pragmatic, this hybrid approach opens up another

question: how the results from the two algorithms should be

combined. It was obvious from the earliest attempts that

some form of crossover filter was required between the two

models,4 and that the design of this, e.g., filter lag,9 would

have an effect on the combined Room Impulse Response

(RIR) generated. Another issue is how the filtered transfer

functions from the two algorithms will interfere with one

another once they are combined; Aretz et al.24 considered

this in the most depth and proposed two crossover methods

aimed at addressing different concerns.

This paper circumvents those issues and questions by

only presenting and assessing the accuracy of the BEM-

simulated part of the solution. For frequency-domain results

this is straightforward—only the relevant frequency range

will be presented—but for time-domain results, a low-pass

filter will be employed to minimize Gibbs artefacts; these

will be validated against equivalently low-pass filtered mea-

sured data. This means that the results herein could be read-

ily combined with high-pass filtered geometrical acoustics

results to form a hybrid scheme, so are representative of

what the method’s performance would be in such a case

without opening up questions pertaining to the accuracy of

the high-frequency algorithm or combining approach.

B. Input data

Uncertainties, inaccuracy, unsuitability, or presence of

gaps in input data is widely acknowledged to be a factor that

significantly constrains the accuracy of room acoustic simu-

lations.5 When dealing with FEM and BEM, for which error

bounds can be quantified and which usually produce accu-

rate results for a defined problem if applied correctly, it is
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reasonable to state that error in input data is the main source

of error in output data.

For room acoustics simulations as considered herein, the

input data comprises: (i) the geometry of the space and

source and receiver locations, (ii) suitable data characteriz-

ing the materials present in the space, and (iii) data charac-

terizing the source directivity. For the simulations presented

herein, this data was drawn from the Ground truth for Room

Acoustical Simulation (GRAS) database29,30 that was cre-

ated for the 1st International Round Robin on Auralisation.

This database provides high resolution input and output data

with the aim of allowing the performance of simulation algo-

rithms to be assessed and improved. Crucially, for the pur-

pose of validating the main contribution of the paper, being

an application of the sound-field encoding technique from

Ref. 18, it includes measured Binaural RIRs (BRIRs) plus a

detailed HRTF set for the Head-And-Torso-Simulator

(HATS) used to acquire them.

Real acoustic sources have complex frequency-

dependent directivities, but the vast majority of FEM, BEM,

or FDTD simulations use simple monopole directivity and it

is uncommon to see anything more complicated than a

dipole. Part of the reason for this is that it is not trivial to

implement higher-order sources in an algorithm that discre-

tizes the domain, though higher-order multipoles have been

attempted.31 A directional source model very similar to that

used herein was implemented in FDTD by initializing a

wave in the grid,32,33 but its details appear significantly more

complex than that proposed here and the proximity of the

source to boundaries is presumably limited. Source strength

calibration is in general also non-trivial with FDTD; much

of the detail in the multiband framework of Southern et al.28

is concerned with achieving this.

An alternative approach, as implemented herein and in

Ref. 17, is to state the incident pressure field analytically and

just compute the scattering using the numerical model. This

is standard practice in BEM,34 but is also possible for FEM

and FDTD. It circumvents issues to do with the complexity

and singular nature of the incident pressure field near the

source because the equations for this are only ever evaluated

numerically at boundaries, which are assumed to be some

distance away. There remains potential for difficulties if a

high order source approached a boundary—in this case, the

mesh would need to be locally refined to deal with the more

spatially concentrated pressure fluctuations—but in most

cases, this should not be necessary.

C. Overview of this paper

The primary contribution of this paper is demonstration

of the spatial audio encoding process proposed in Ref. 18.

The secondary contributions are to demonstrate the effec-

tiveness and accuracy of the full processing chain, including

source directivity, BEM simulation, and binaural encoding.

Section II presents the mathematical theory behind the

source and receiver models and how they are interfaced to

BEM. Section III gives more specific implementation details

on how they were applied to the dataset used. Section IV

presents results validating the simulations against

measurements from the GRAS database, then Sec. V draws

conclusions and discusses avenues for future research.

II. THEORY

This paper will assume that the medium of wave propa-

gation, the air in the room, is linear, homogeneous, and iso-

tropic, with frequency and position invariant wave speed c0

and density q0. Real-valued acoustic pressure perturbations

uðx; tÞ, where x is a point in three-dimensional (3D)

Cartesian space and t is time, obey the linear acoustic wave

equation r2u ¼ c�2
0 @2u=@t2. Uðx;xÞ is the complex-valued

Fourier transform of u, where x ¼ 2pf is angular frequency

in radians per second and f is frequency in Hz, which satis-

fies the Helmholtz equation r2Uþ k2U ¼ 0, where k
¼ x=c0 is the wavenumber in radians per meter. In this paper,

e�ixt time dependence is assumed for the inverse Fourier trans-

form, that is, a frequency component Uðx;xÞ would produce a

time-dependent pressure field RealfUðx;xÞe�ixtg. The major-

ity of this paper will be written in terms of the latter quantity

U, since the source and receiver descriptions are more easily

stated as functions of k and the BEM algorithm used was a

frequency-domain code that solves the Helmholtz equation.

The measured source data and desired output data for auraliza-

tion is, however, all time-domain, so the processing necessarily

begins and ends with forward and inverse Fourier transforms,

respectively, implemented in practice using The Fast Fourier

Transform (FFT) algorithm.

A. Source and receiver models

This paper will consider sources and receivers that are spa-

tially compact, so may reasonably be considered as centered

on a point in space; these will be denoted xs and xr, respec-

tively. The mathematical descriptions of the pressure fields in

the vicinity of each point will be based in a spherical coordi-

nate system ðr; a; bÞ. centered on that location, with radius r
and azimuthal and zenith angles a and b, respectively.

In these coordinate systems, the pressure of waves that

satisfy the Helmholtz equation at frequency x [with the

exception of Eq. (1) at x ¼ xs] may be represented in the

neighborhood of a xs and xr by10,35,36

UincðxÞ ¼
XOs

n¼0

Xn

m¼�n

Bm;nHout
m;nðx� xsÞ; (1)

UtotalðxÞ ¼
XOr

n¼0

Xn

m¼�n

Am;nJm;nðx� xrÞ: (2)

Here, Uinc is defined to be the incident pressure arriving

from some source under anechoic conditions and Utotal is the

total pressure including reflections too. Equation (1) is valid

when a source is present at xs, and Eq. (2) is valid and will

converge22 for an expansion point xr that is not too close to a

source or boundary. Am;n and Bm;n are sets of complex

frequency-dependent coefficients whose values depend on

the pressure field being represented. It is intended that the

Bm;n coefficients are “input data” arising from the encoding

of the directional frequency response of some source (see
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Sec. III B) and that the Am;n coefficients are the output data

of this simulation process, being the computed total pressure

field encoded as directional coefficients relative to the

receiver position ready for presentation by an auralization

system. They may therefore respectively be used to represent

the directional nature of a source and the directional nature

of sound arriving at a receiver. Note that the inevitable scat-

tering by the receiver is not included in Eq. (2); this mecha-

nism is included either implicitly within HRTFs or

physically if the sound is rendered to a listener over loud-

speakers. The upper limits in n, termed Or and Os, are often

terms the “order” of the expansion and the number of Am;n

and Bm;n coefficients is given by Nr ¼ ðOr þ 1Þ2 and

Ns ¼ ðOs þ 1Þ2, respectively. The functions Hout
m;nðrÞ and

Jm;nðrÞ, plus another Hin
m;nðrÞ that will be required later, are

defined

Hout
m;nðrÞ ¼ Ym

n ðb; aÞhout
n ðkrÞ; (3)

Hin
m;nðrÞ ¼ Ym

n ðb; aÞhin
n ðkrÞ; (4)

Jm;nðrÞ ¼ Ym
n ðb; aÞjnðkrÞ: (5)

Here, hout
n and hin

n are spherical Hankel functions of order n
that are “outgoing” and “incoming,” respectively; with e�ixt

time dependence, as assumed herein, they will be of the first

and second kind respectively. jnðkrÞ ¼ 1
2

hout
n ðkrÞ þ 1

2
hin

n ðkrÞ
is a spherical Bessel function. Ym

n ðb; aÞ is a spherical har-

monic function of order m; n. A number of marginally differ-

ent normalization schemes exists, but in this paper they are

defined22

Ym
n b; að Þ ¼ �1ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ

4p
n� jmjð Þ!
nþ jmjð Þ!

s
Pjmjn cos bð Þeima:

(6)

Here, Pm
n ð� � �Þ is an associated Legendre polynomial.

Spherical harmonic functions are also used to interpo-

late source directivities and HRTFs in geometrical methods

at high frequencies.12,37 There, the radial propagation is

assumed to match that of a monopole regardless of n, so

directivity becomes independent of r; this is equivalent to

replacing all hout
n in Eq. (3) by hout

0 , which is appropriate

since hout
n ðkrÞ � i�nhout

0 ðkrÞ for large kr.38 Representations

like Eqs. (1) and (2) are in contrast used when distance is

considered important, e.g., for near-field compensated

Ambisonics10 or HRTF range extrapolation.39 Directivity is

usually measured over a sphere, and data measured in this

way may be encoded as Am;n and Bm;n coefficients so long as

the measurement radius is known. Alternatively, techniques

that use double-layer array measurements may obtain Bm;n

coefficients directly.36,40,41

B. Boundary integral equations

The Kirchhoff-Helmholtz Boundary Integral Equation

(KHBIE) is found by applying Green’s second theorem to a

pair of acoustic waves over some domain Xþ that contains the

acoustic medium.34 One of the waves is U, the pressure-field

under study, which satisfies the Helmholtz equation every-

where in Xþ. The other is the free-space acoustic Green’s func-

tion Gðx; yÞ ¼ eikjx�yj=4pjx� yj, which satisfies the

Helmholtz equation for all y 2 Xþ x. The result is a surface

integral over the boundary C that contains Xþ. For a scattering

problem with Utotal ¼ Uinc þ Uscat, where Uinc is the aforemen-

tioned pressure-field radiated by the source in anechoic condi-

tions and Uscat is the difference that occurs due to reflections

from the boundary, this may be expressed as

Uscat xð Þ ¼
ð ð
C

Utotal yð Þ
@G

@ny

x; yð Þ � G x; yð Þ
@Utotal

@ny

yð Þ
" #

dCy:

(7)

Here, the notation @=@ny is shorthand for n̂y � ry, where n̂y

is a unit vector pointing normal to C and into Xþ at point

y 2 C, and subscript y means “with respect to or evaluated at

point y.”

Equation (7) is the basis of our BEM formulation. Total

pressure Utotal should equal zero in a domain X� that is on

the opposite side of C to Xþ, hence UscatðxÞ ¼ �UincðxÞ for

x 2 X�. Taking the limit as x approaches C from within X�
produces an inhomogeneous Fredholm integral equation of

the second kind. This may be solved by discretizing the

boundary quantities Utotal and @Utotal=@ny on a boundary

mesh and then solving the resulting matrix equation numeri-

cally. More details on this process are given in Sec. III C.

Consider now the simulation process architecture shown

in Fig. 1. The reader is encouraged to notice the similarities

between this framework and the high-frequency geometrical

acoustics framework given in Fig. 2 in Ref. 12. Blocks 1 and

FIG. 1. (Color online) Processing

blocks, indicating numbers of degrees of

freedom involved: (1) Source directivity,

(2) Source rotation, (3) Source to bound-

ary Uinc mapping, (4) Boundary to

boundary Uinc to Utotal mapping—BEM

solution, (5) Boundary to receiver Uscat

mapping, (6) Source to receiver Uinc

mapping, (7) Receiver rotation, (8)

HRTFs.
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8 are, respectively, the encoding of measured source direc-

tivity as Bm;n coefficients following Eq. (1) and of HRTFs as

Am;n coefficients following Eq. (2). Blocks 2 and 7 are rota-

tions of these, and allow for changes in source and receiver

orientation; this may be readily achieved in the Spherical

Harmonic domain by a matrix multiplication.22 Block 3 is

simply the evaluation of Eq. (1) for points on the boundary

and block 4 is the BEM solution. This leaves processes for

blocks 5 and 6 to be identified. Note that these each sepa-

rately encode Uinc and Uscat in the form of Eq. (2) as separate

sets of coefficients Ainc
m;n and Ascat

m;n that are then summed.

A solution to implementing the process in block 6 and

find Ainc
m;n is in fact well known; it may be achieved in a

straightforward way using a translation operator in the

Spherical Harmonic domain.22 How to achieve the process

in block 5, mapping boundary pressure in a BEM model to

scattered pressure encoded as coefficients Ascat
m;n , is not as well

established, with simulation of virtual mics arrays previously

being the norm as discussed in Sec. I and the direct approach

of Mehra et al.17 being the state of the art. In this paper, the

alternative direct approach by Hargreaves and Lam18 is

implemented. This allows Ascat
m;n to be found by evaluation of

the following boundary integral equation,42 where a bar over

a quantity indicates conjugation

Ascat
m;n ¼ ik

ð ð
C

Utotal yð Þ
@Hin

m;n

@ny

y� xrð Þ

"

�Hin
m;n y� xrð Þ

@Utotal

@ny

yð Þ

#
dCy: (8)

Equation (8) possesses clear similarities to the KHBIE in

Eq. (7). Noting in particular that Hin
0;0ðy� xrÞ ¼ Gðxr; yÞ

�
ffiffiffiffiffiffi
4p
p

=ik and that Jm;nð0Þ ¼ 1=
ffiffiffiffiffiffi
4p
p

if m ¼ n ¼ 0 and is

zero otherwise, hence UscatðxrÞ ¼ Ascat
0;0 =

ffiffiffiffiffiffi
4p
p

, it is apparent

that Eq. (7) is in fact a special case of Eq. (8) for m ¼ n ¼ 0.

Equation (8) may be implemented numerically in a similar

manner to how Eq. (7) is for omnidirectional external

receivers. Hin
m;n contains a higher-order singularity than G for

n > 1, and will also contain angular oscillations that G does

not, but both of these characteristics should be resolved well

by standard quadrature techniques on a mesh that is fine with

respect to wavelength, so long as receivers are not too close

to a boundary and Or is not unnecessarily high at low fre-

quencies. More detail is given in Sec. III C.

Figure 1 also displays the #DOF present at the interfaces

between the various processes; for most the computational

cost of each process will scale with the product of these,

though for a direct implementation of process 6, it scales an

order of magnitude worse.22 In practice, however, processes

3, 4, and 5 involving Ne, the #DOF in the BEM mesh, will

dominate simply because Ne is usually a few orders of mag-

nitude greater than Ns or Nr; for the case studies considered

herein Ns ¼ 25 and Nr ¼ 121, whereas Ne was typically in

the order of the tens of thousands. Process 4, the BEM solu-

tion, is therefore expected to be the most computationally

intensive, since its computation cost is proportional to N2
e . It

will be seen from the test cases that this was, however, not

the case; the libraries used to evaluate this stage are the most

optimized and, combined with the Adaptive-Cross-

Approximation (ACA) solver,23 this stage is neither the slowest

nor the one with the worst computational cost scaling. Values

of Ns, Ne, and Nr are necessary to maintain accuracy as fre-

quency increases all scale Oðf 2Þ, so the total computational

cost of the algorithm is expected to scaleOðf 4Þ.

III. IMPLEMENTATION

The above framework was implemented for a subset of

the scenes from the GRAS database.29,30 The database con-

tains 11 scenes, some with multiple variants, with seven

being fully or hemi anechoic laboratory setups and the

remaining four being room acoustic scenarios. In this paper,

results for the following three scenes are presented:

• Scene 1: Simple reflection (infinite plate) – hard floor

variant
• Scene 3: Multiple reflection (finite plate)
• Scene 9: Small room (seminar room)

Scene 1 actually included two other variants; one with a

mineral wool slab placed on the floor and another with a

Medium Density Fiberboard (MDF) diffuser. These cases

have also been attempted with reasonable success but are not

reported here due to space limitations. It should be noted,

however, that they are numerically challenging in BEM pri-

marily due to the extreme aspect ratio of the samples,43

requiring higher element counts and more accurate numeri-

cal integration than would normally be expected. The hard

floor variant is included since its implementation is essen-

tially image source with directivity, i.e., no BEM mesh, so it

allows the accuracy of the source representation and encod-

ing process to be independently quantified.

Scene 3 comprised two 2 m square 25 mm thick MDF pan-

els separated by a distance of 10 m, with a source and receiver

location both located on the center line between these each

spaced 3 m from one of the panels. This is an interesting con-

figuration to simulate, since it will give a flutter echo the damp-

ing of which is dictated as much by diffraction as by material

absorption.44 Scene 3 is also a good test case for binaural

reproduction, since the HATS was orientated so that reflections

occur from ear to ear across the head.

Scene 9 was a small seminar room with “relatively simple

and easy to describe geometry, but challenging low frequency

behavior,” so it presents another interesting case for which to

apply BEM simulation. It also typifies the input data challenges

that a user of BEM encounters in reality, so it is included to

demonstrate how those affect simulation accuracy.

The room was nominally 8.5 m long by 6 m wide by 3 m

high, though it has various inclusions; for details, see Ref.

30. Material data was provided in the form of third-octave

absorption coefficients that were established through a mix-

ture of in situ measurement and estimation based on pub-

lished database values,29 the latter being required because

the former is known to be inaccurate at low frequencies45

and for materials with low absorption. The result was that

the provided data both did not extend down to the lowest fre-

quencies that were simulated and tended to unrealistically
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small absorption values in this range; if not addressed, this

would have led to very low modal damping and unrealisti-

cally high sound pressure levels (SPLs). Anecdotally, we

were informed that the seminar room had some lightweight

panel walls, and it is likely that full-panel membrane motion,

which is a significant source of absorption and modal damp-

ing at low frequencies, was present but not characterized by

this data. Moreover, a door was present in the room and will

likely give high losses at low frequencies due to transmis-

sion, but no material data was provided for it. A process of

extrapolation, modification and fabrication was therefore

required to achieve an appropriate and realistic set of bound-

ary data; this is briefly outlined in Sec. III E. The RIRs were

measured with a bespoke multiway dodecahedron loud-

speaker,30 but the directional narrowband response data

available for the other loudspeakers was not available for

this, adding another source of uncertainty.

Temperature and humidity data was provided for each

scene in the database, but it was not straightforward to use this

since there was often a slight mismatch between the conditions

when the source and HATS directivities were measured

and those when the full scene was measured. Consequently,

c0 ¼ 343m=s and q0 ¼ 1:21kg=m3 were assumed for all pro-

cesses instead.

A. Fourier transforms and filtering

The simulation process depicted in Fig. 1 will be per-

formed entirely in the frequency domain, as was also the

case for all the BEM and FEM algorithms discussed in Sec.

I A, meaning that an inverse Fourier transform is required in

order to obtain an auralizable IR. It should also be noted that

both BEM and FEM also exist as time-domain solvers,46–48

but these are less mature and have not been applied in any

hybrid framework to date.

When using an Inverse Fast Fourier Transform (IFFT)

algorithm to achieve this, results for many frequencies are

required at a spacing Df ¼ 1=T, where T is the required IR

length; this must be long enough that the IR decays to a negli-

gible level to minimize wrap-around error. For scene 1 it was

taken that Df ¼ 2 Hz, so T ¼ 0:5 seconds, and for scenes 3

and 9, where higher order reflections are expected, it was it

was taken that Df ¼ 0:5 Hz, so T ¼ 2 seconds. This was, how-

ever, found to be insufficient for scene 9, so the room transfer

function was spline interpolated in the frequency domain, as

suggested by Aretz et al.,24 to give Df ¼ 0:25 Hz and T ¼ 4

seconds. The low-pass filter was chosen to be an 8th order

Butterworth filer, following method 1 of Aretz et al.,24 and this

was applied in the frequency domain pre-IFFT.

Running a BEM at so many closely spaced frequencies

is not an efficient application of the algorithm since the inter-

action matrices must be reconstructed from scratch for each

frequency; it is tolerated here for validation purposes.

Multifrequency BEM49,50 provides a solution to this by

interpolating the interaction matrices between neighboring

frequencies. Values from preceding frequencies were, how-

ever, used to “seed” the iterative matrix solver, meaning

fewer solver iterations were required.

It is also necessary to run the algorithm beyond the

intended crossover frequency so that data is available for the

frequency region where the filter “rolls-off.” Aretz et al.24 rec-

ommended this should be at least half an octave above cross-

over frequency, but even this appears rather optimistic when

considered in terms of typical filter roll-off in dB/octave, and

artefacts were reported as being visible in their RIRs. In these

simulations, it was chosen that the simulations should extend

one full octave above the intended crossover frequency. To

mitigate the computational cost that this incurred, the mesh

was not refined further beyond the crossover frequency, mean-

ing that computational cost was fixed but accuracy reduced

with increasing frequency; this is acceptable since those fre-

quencies will be heavily attenuated by the crossover filter. The

crossover frequency was chosen to be 1 kHz for scenes 1 and 3

and 400 Hz for scene 9, hence the maximum frequencies simu-

lated were 2 kHz and 800 Hz, respectively.

B. Source directivity and HRTF encoding

Three sound sources were used in the scenarios chosen;

a Genelec 8020c for scenes 1 and 3, and a QSC K8 and a

custom three-way dodecahedron for scene 9, the former

being used for BRIRs and the latter for RIRs. The only data

available on the dodecahedron loudspeaker was that it aimed

to be omnidirectional with a flat frequency response above

40 Hz, so it was assumed to follow this. For the Genelec and

QSC loudspeakers extremely high-resolution data was avail-

able, being a set of 64 442 impulse responses measured at

points on a sphere centered on the source; this was 2 m

radius for the 8020c and 8 m for the K8. These were first

zero-padded to match the intended output RIR length and

then FFT’d to acquire a set of complex frequency-domain

transfer functions (units Pa/V); these were taken to be the

incident pressure Uinc measured at each point. To encode

them to a set of coefficients Bm;n, one solution is to create a

matrix equation to be inverted where each row is Eq. (1)

applied at a different measurement point. However, here the

number of measurement points was so great that the orthogo-

nality of Ym
n over a sphere could be exploited to calculate

Bm;n directly. For a given frequency, this integral is approxi-

mated by a finite sum over measurement angles

Bm;n ¼
1

hout
n krð Þ

ð2p

0

ðp

0

Uinc r; b; að ÞYm
n b; að Þ sin bdbda

� 1

hout
n krð Þ

X64;442

p¼1

Uinc r; bp; ap

� �
Ym

n bp; ap

� �
wp:

(9)

Here, wp is equal to the area of the sphere that is closest to

the pth point. Finally, the coefficients for each source were

scaled by a frequency-independent calibration factor so that

an SPL of 80 dB was produced at 2 m at 1 kHz, matching the

procedure performed for the measurements.30

The measurement process used to acquire the HRTF

library is detailed in Ref. 51. This also takes the form of a

set of IRs acquired at different angles, but here they were

measured using a loudspeaker mounted on an arc of 1.7 m
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radius, and for each source location, there are two IRs: left

and right. In the absence of directivity information, the

source will be assumed to be a monopole; this appears not

unreasonable since in Ref. 52 it is validated against BEM

simulations performed by reciprocity using a source at the

ear and an omnidirectional point receiver at the loudspeaker

center. Measured HRTFs were normalized by removing the

microphones from the ears and placing them at the origin

then repeating the experiment.

Fundamentally, HRTFs are linear mappings L and R
from the incoming pressure field UtotalðxÞ, as exists in the

absence of the HATS, to the pressures at the left and right ears

UL and UR. Assuming that Utotal is represented by Eq. (2),

these become discrete mappings UL ¼ AL and UR ¼ AR,

where A is a row vector containing the elements of Atotal
m;n and L

and R are column vectors that are the discrete form of L and

R. Including the normalization by the pressure at the HATS

center, this amounts to the elements of A being defined for the

pth point by Atotal
m;n ¼ 4pYm

n ðbp; apÞhout
n ðkrÞ=hout

0 ðkrÞ, and stack-

ing rows for all the measured points produces a matrix equation

to be solved. Since the number of measurement points was so

great, it was possible to solve without regularization using a

standard least-squares technique.

The accuracy achieved by these encoding processes is

shown for the Genelec loudspeaker and the HATS in Fig. 2; a

similar figure for the QSC K8 is included in the supplementary

material.63 Here, the encoding error is quantified as normalized

L2 error, being the L2 norm of the residual between the mea-

sured data and the encoded version evaluated on the measure-

ment surface, divided by the L2 norm of the measured data. The

surface integrals involved in the L2 norms were approximated

by weighted sums in the same manner as was done in Eq. (9).

In both cases the approximation improves with maxi-

mum spherical harmonic order O, and a higher value of O is

required to maintain the same accuracy as frequency f is

increased. The lower right region of the two plots is quite

similar, but with slightly smaller residual for the HRTFs.

Accuracy deteriorates on the far left of Fig. 2(a) due to the

singular nature of spherical Hankel functions at small kr. In

contrast, a clear change in the trend-lines is seen in Fig. 2(b)

at 200 Hz; it seems likely that this is caused by the transition

between measured and simulated data that was necessary

when creating the HRTF library.52

Figure 2 suggests that the optimal values of Os. and Or

should change with frequency. This was initially attempted,

but sharp transitions between orders were visible in the BEM

results, hence this approach was discarded. For simplicity,

constant values of Os and Or were instead used for all fre-

quencies; these were chosen to be Os ¼ 4 and Or ¼ 10;

hence, Ns ¼ 25 and Nr ¼ 121. The greater value of Or was

chosen to allow the encoding process in Eq. (8) to be tested.

C. BEM

The BEM simulations were performed using

BEMþþ23,53,54 version 3.1. This is an open-source BEM

library that is invoked from Python scripts, creating a flexi-

ble interface that allows the boundary integral operators pro-

vided to be assembled in customizable ways. BEMþþ
implements a Galerkin BEM algorithm in 3D and includes an

ACA solver that accelerates matrix assembly and solution.

For the solution, the Helmholtz equation, BEMþþ pro-

vides four standard boundary integral operators that each

map, in a different way, a quantity U defined on a boundary

section C to a location x

SfUgðxÞ ¼
ð ð
C

UðyÞGðx; yÞdCy; (10)

D Uf g xð Þ ¼
ð ð
C

U yð Þ
@G

@ny

x; yð ÞdCy; (11)

A Uf g xð Þ ¼
ð ð
C

U yð Þ
@G

@nx

x; yð ÞdCy; (12)

H Uf g xð Þ ¼
ð ð
C

U yð Þ
@2G

@nx@ny

x; yð ÞdCy: (13)

Here, S, D, A and H are, respectively, termed: the single-

layer potential, the double-layer potential, the adjoint

double-layer potential, and the hypersingular operator. Note

that the definition of H has here been written negated com-

pared to the convention used in the library. Additionally, an

identity operator IfUgðxÞ ¼ UðxÞ is also defined. The

Python objects representing these operators may be added,

FIG. 2. Normalized source and receiver directivity encoding error versus frequency f and maximum spherical harmonic order O for: (a) Genelec 8020c, (b)

HATS HRTFs.
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multiplied by each other or scalars, or concatenated to form

blocked operators, as required by the problem being studied.

The discretized versions of these boundary operators, for

surface to surface mappings, are found using the Galerkin

method. Rather than solving a boundary integral equation

(BIE) for a finite set of points on the boundary, as is done in

the colocation method, this solves the “weak-form” of the BIE

on average over the entire boundary, and hence involves a sec-

ond surface integral.34 A set of weighting functions are chosen

to spatially weight this “testing” process and produce each row

in the matrix equation; in a Galerkin scheme these are equal to

the basis functions used to discretize the boundary quantities.

An operator K 2 fS;D;A;H; Ig is therefore mapped to its

discrete matrix form K 2 fS;D;A;H; Ig with entries given by

Kði; jÞ ¼
ð ð
C

biðxÞKfbjgðxÞdCx: (14)

Here, bj is basis function drawn from the set used to repre-

senting the “radiating” quantity, and bi is a basis function

drawn from the set used to representing the “receiving”

quantity that is being “tested”; these sets are not necessarily

the same and may be chosen differently on different bound-

ary sections or for representing a different quantity. A simi-

lar statement maps a user-defined Python function f ðxÞ,
typically used to compute the incident wave Uinc, onto the

“receiving” set of basis functions. This produces a vector f

with entries defined

fðiÞ ¼
ð ð
C

biðxÞf ðxÞdCx: (15)

This interface is extremely flexible, but can be slow for com-

plicated functions, since Python is an interpreter language and

the functions are evaluated on a per-abscissa basis. In this

scheme for instance, f ðxÞ is typically a Spherical Harmonic

basis function (or its spatial derivative), in accordance with

the source definition. It will be seen in Sec. IV E that this

operation, which is normally assumed to trivially quick com-

pared to assembly and solution of the linear system, actually

takes the longest due to the complexity of these functions and

the slow nature of native Python code compared to the com-

piled core libraries that BEMþþ in built on.

The KHBIE in Eq. (7) can be written using D and S as

UscatðxÞ ¼ DfUtotalgðxÞ � Sf@Utotal=@nygðxÞ. In order to

implement the spherical harmonic encoding in Eq. (8), two

new boundary operators are defined

Sin
m;nfUgðxÞ ¼

ð ð
C

UðyÞHin
m;nðy� xÞdCy; (16)

Din
m;n Uf g xð Þ ¼

ð ð
C

U yð Þ
@Hin

m;n

@ny

y� xð ÞdCy: (17)

This allows Eq. (8) to be written as Ascat
m;n

¼ ikDin
m;nfUtotalgðxrÞ � ikSin

m;nf@Utotal=@nygðxrÞ. It follows

that Sin
0;0 ¼ S �

ffiffiffiffiffiffi
4p
p

=ik and Din
0;0 ¼ D�

ffiffiffiffiffiffi
4p
p

=ik, hence

Din
m;n and Sin

m;n may be viewed as a generalization of the stan-

dard operators D and S.

The discrete form of Din
m;n and Sin

m;n have matrix entries

given by equations similar to Eqs. (16) and (17) but with bj

appearing in place of U. These are, unsurprisingly, not built

into BEMþþ, but Eq. (15) provides a method to evaluate

them. Python functions that compute Hin
m;nðy� xrÞ and

@Hin
m;n=@nyðy� xrÞ may be passed to the routine that imple-

ments Eq. (15), and the result is a coefficient from the dis-

crete matrix form of Sin
m;n and Din

m;n, respectively. Note that

evaluating this in this way is an extremely slow process; the

reasons stated above all still apply, but are compounded by

the fact that every spherical harmonic order must be evalu-

ated separately, and the associated Legendre polynomials

therein are much more efficiently evaluated simultaneously

for all m of an order n rather than separately. For the verifica-

tion purposes herein, however, this inefficiency is tolerated.

The GMRES iterative matrix solver included with

SciPy55 was used to solve the matrix equations produced using

the BEMþþ operators. The ACA accuracy and maximum

block size parameters, and the GMRES solver tolerance, were

left at their default values of 1� 10–3, 2048 and 1� 10–5,

respectively, for scene 3. For scene 9, the former two were

reduced to 1� 10–5 and 128, respectively, due to some conver-

gence issues with matrix solver; this improved accuracy of the

matrix approximation at the expense of increased storage and

computational cost. Meshing was performed using the open-

source meshing tool Gmsh.56,57 Maximum element size at any

given frequency followed k=8, with a minimum limit chosen

to match k=8 at the crossover frequency.

D. Scene-specific implementation

1. Scene 1H

This scene comprised a loudspeaker above a hard floor

in a hemi-anechoic chamber; this was assumed to be per-

fectly reflecting. When applying BEM in half-space prob-

lems such as this, it is common to apply an image-source

principle and reflect the source and all the obstacle bound-

aries in the rigid ground plane. Here, there is no additional

obstacle, so there is actually no BEM solution at all; there is

just the source and the image source, which has reflected

directivity. Finding the pressure at a point is as simple as

finding Uinc from both sources and summing. Similarly, Am;n

coefficients may be found by applying the translation techni-

ques in Ref. 22 to each source and then summing.

2. Scene 3

This scene included panels that were much thinner in

one dimension than the other two. Following standard BEM

practice,43,58 the obstacle was replaced by one of zero thick-

ness lying on its center line. The material had a specific

admittance Y that was uniform over both sides of the panel;

under this condition the formulation given in Ref. 58 can be

simplified to solving the following pair of coupled BIE for

all x 2 C: Df~UtotalgðxÞ þ ½ikYS � 1
2
I�f�UtotalgðxÞ ¼ �UincðxÞ

and ½H þ 1
2

ikYI�f~UtotalgðxÞ þ ikYAf�UtotalgðxÞ ¼ �@Uinc=
@nxðxÞ. These two boundary integral equations were
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combined as a blocked operator in BEMþþ. Here, �Utotal and
~Utotal are respectively the sum of, and the difference between,

the pressures acting on the front and back surfaces of the panel.

A discontinuous piecewise-constant space was used to discre-

tize �Utotal and to “test” the first equation. A continuous

piecewise-linear space was used to discretize ~Utotal and to

“test” the second equation. This arrangement is consistent with

the expectation that ~Utotal ! 0 at the edge of the panel59

and meets the continuity requirements of H.60 Pressure at

receiver locations can be evaluated by UscatðxÞ ¼ Df~UtotalgðxÞ
þikYSf�UtotalgðxÞ. Following the same logic used to derive

this statement,61 it can be asserted that the equivalent statement

for spherical harmonic coefficients will also hold: Ascat
m;n

¼ ikDin
m;nf~UtotalgðxÞ � k2YSin

m;nf�UtotalgðxÞ.

3. Scene 9

Scene 9 is a standard interior admittance problem, so is

simpler in its formulation than scene 3. The boundary inte-

gral equation to be solved for all x 2 C is ½D � 1
2
I

þikSYðyÞ�fUtotalgðxÞ ¼ �UincðxÞ. The scattered pressure

may be found by UscatðxÞ ¼ ½D þ ikSYðyÞ�fUtotalgðxÞ, and

equivalently the spherical harmonic coefficients may be

found by Ascat
m;n ¼ ik½Din

m;n þ ikSin
m;nYðyÞ�fUtotalgðxrÞ: Here, the

only significant complication is that Y is position dependent

so cannot be brought outside S. There are, however, a finite

number of materials present in the room, each of which has a

uniform value of Y. It is therefore possible to partition the

boundary into segments for which Y is uniform and may be

brought outside S; this leads to a blocked operator in

BEMþþ. Uscat and Ascat
m;n can be found by evaluating the con-

tribution from each material segment separately and then

summing the results.

E. Including measured material data

The boundary data provided in the GRAS database was

given as third-octave random-incidence absorption coeffi-

cient a. This was converted to an admittance by assuming

the material was purely resistive and locally reacting; the lat-

ter being a common assumption and the former being accept-

able for materials that are fairly hard and reflective,26 such

as the MDF in scene 3. Using this, and applying the “55

degree rule,”62 the specific admittance can be found by

Y ¼ cos ð558Þ½1�
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

�=½1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

�. This was then

interpolated to the required simulation frequencies using a

spline fit assuming a to be constant below the lowest band

provided (20 Hz).

This approach was, however, not considered adequate for

some of the materials present in scene 9. In particular, it was

expected that some materials, e.g., the glazing and door,

would exhibit reactive behavior that gave significant losses at

low frequencies, and that this was likely to be largely missing

from measured material data because it would be non-locally

reacting. Attempts were therefore made to fabricate plausible

low-frequency resonant damping effects in their place. For

example, the fundamental glazing resonant modal frequency

was estimated from a plausible pane size, and the frequency

of the coincidence dip visible in the measured data. This was

implemented by fitting a mass-spring-damper model and the

admittance data produced was combined with that from the

measured data using the non-linear crossover technique from

Aretz et al.24 Missing data for the door was drawn from stan-

dard tables62 and proprietary field data, then embellished in a

similar way. The result was a more plausible room response

at low frequencies. For full details of the approaches applied

see the code included in the supplementary material.63

IV. RESULTS

In this section, results are presented to validate the pro-

posed approach. First, the new process in Eq. (8) that enco-

des the pressure around a receiver will be verified. Then the

results for the three case studies are validated against mea-

surement, including BRIRs for scene 3.

A. Verification of sound field encoding process

Here, the objective is to verify the accuracy of Ainc
n;m and

Ascat
n;m coefficients. Evaluating a metric on these coefficients

would be the ideal way of quantifying this, but this is com-

plicated by the fact that all other known methods of obtain-

ing them have limitations too.14–16 So here instead, the field

has been decoded at a set of points in the domain and the val-

ues obtained compared to values of Uinc and Uscat computed

directly by Eqs. (2) and (7), respectively. 2427 evaluation

points were used, arranged quasi-randomly within a sphere

of diameter minð1; kÞ centered on xr. The l2 norm of the

residual was computed and then normalized by the l2 norm

of the “correct” field; both were windowed with a Hanning

window centered on xr. The mean and standard deviation

were then computed, averaging with respect to frequency

and over loudspeaker position for scene 9, to obtain the

trends in Fig. 3; error bars indicate 6 one standard deviation.

Note that only frequencies above 343 Hz were included in

these statistics; below that, the simulated array became

smaller w.r.t. k so the accuracy computed by the metric was

unrepresentatively good. More detailed results plotted versus

frequency are included in the supplementary material.63

The residual for Uinc is shown for scene 3 only since the

trends for scenes 1 and 9 were identical. This continues to

reduce over the full range of Or investigated; what is seen

here is just the effect of adding extra terms to the series in

Eq. (2), and it appears the Ainc
n;m coefficients are calculated

FIG. 3. (Color online) Error trends for encoding and decoding of the pressure

field around a receiver, versus maximum spherical harmonic order used Or.
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accurately for all of these. The standard deviation over fre-

quency is extremely small too.

In contrast, the residuals for Uscat converge up to some

value and then stop; here, decoding accuracy has been lim-

ited by error in the Ascat
n;m coefficients, indicating the accuracy

of the encoding process; this is around 0.03% for scene 3

and around 1% for scene 9. These are average values, how-

ever, and the error bars indicate that quite a significant varia-

tion occurs; the maximum residual post-convergence was

0.1% for scene 3 and 7% for scene 9. It is clear from this

that the Uscat encoding process in Eq. (8) works quite well

for scene 3 but rather less so for scene 9. The reason for this

requires further investigation; one possibility is that it occurs

because of the sudden change in boundary condition

between adjacent materials. The accuracy achieved may still

be sufficient for auralization purposes, however; note that

the error metric used here is rather stricter than the ‘within x
dB’ criteria that is often used, and it includes phase error.

B. Scene 1H

The solution of scene 1H did not involve BEM, so it is

included as a means of validating the source directivity

model in Eq. (1) and encoding process described in Sec.

III B. Measured and simulated results are compared in Fig. 4,

which is plotted for loudspeaker position 3 from the database

(height 2.6 m angled 60� down) and microphone position 1

(height 1.52 m, 4.1 m from loudspeaker horizontally). In both

cases, it is seen that agreement is extremely good. Figure

4(a), in which the measured results have been low-pass fil-

tered to match the processing applied to the simulations,

shows correct arrival times and polarity, with onset amplitude

well matched. Later, the measured result includes a low-

frequency oscillation that is absent from the simulated data.

Frequency spectrum agreement in Fig. 4(b) is also good, with

measured and simulation within 3 dB except at some notches

and around 50–100 Hz, where there is a boost in the mea-

sured data; this is likely related to the low-frequency oscilla-

tion seen in the measured data in Fig. 4(a).

C. Scene 3

Scene 3 is an attractive verification case because its sim-

ulation involves BEM but it generated a sparse, physically

insightful reflection pattern for both RIR and BRIRs. Figure

5 shows the RIRs. Again, very good agreement can be seen

between simulation and measurement, possibly better than

for scene 1H in fact. The onset times, phases and amplitudes

of the pulses in Fig. 5(a) are all well captured. In Fig. 5(b),

the interference pattern resulting from the flutter echo is very

well matched up to the crossover frequency 1 kHz, after

which the simulation begins to deviate from the measured

result, perhaps because the BEM mesh is no longer being

refined. The results from 1.5 to 2 kHz are hidden from the

plot so the lower frequencies can be seen more clearly.

The BRIRs are plotted in Fig. 6. In the time-domain

results in Figs. 6(a) and 6(b), an instantaneous SPL scale in

dB has been used, so that the decay and relative amplitude of

the pulse can be see for longer. Again, the pulse times and

amplitudes are well-matched and the pattern of which chan-

nel is louder matches and makes physical sense. Reflections

1, 4, 7, 10, and 13 are louder in the right ear that faces the

loudspeaker, being the original incident wave and its subse-

quent reflection back around the system, while others are

similarly loud or louder in the left ear. The frequency

domain match is less good than was seen in Fig. 5(b); the

results can be seen to track each other up to 500 Hz at least.

Deviations above that could occur because the simulation

FIG. 4. (Color online) RIRs for Scene 1H: (a) versus time (low-pass filtered), (b) versus frequency.

FIG. 5. (Color online) RIRs for Scene 3: (a) versus time (low-pass filtered), (b) versus frequency.
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process has combined datasets that have been measured at

different times under different conditions. It should be men-

tioned that Fig. 6 hides a detail that the simulated and mea-

sured BRIR were negated with respect to one another.

Noting, however, that the RIRs in Fig. 5 matched in sign and

that the encoding and decoding was verified in Fig. 3 and

Fig. 2(b), it seems most likely that this originates from the

HRTF dataset. Auralizations for this scene are included in

the supplementary material that accompanies this article.63

D. Scene 9

Scene 9 was included as a more realistic application of

the simulation framework. Accuracy is, however, expected to

be much poorer than for the other two scenes because: (i) as

a closed geometry, the modal and reverberant damping is

controlled entirely by boundary absorption mechanisms; (ii)

these mechanisms were quite crudely quantified, as discussed

in Secs. I B and III E. Results are shown for source position

2, coordinates [0.12, 2.88, 0.72 m], and microphone position

2, coordinates [0.44, �0.15, 0.12 m]; the origin of the coordi-

nate system is roughly the center of the room at floor height.

The RIR is shown in the time-domain in Fig. 7(a) using

an instantaneous SPL scale in dB. It was not expected that

the fine detail would match and it does not, but it can be seen

that the general SPL and the decay rate match well. Figure

7(b) shows the same data in the frequency domain, display-

ing 0–250 Hz since the modal density above this means no

discernable features are observable. The general SPL trend

is captured quite well up to 170 Hz, with matches between

individual modal frequencies identifiable. That some of these

peaks match quite well in SPL and bandwidth is impressive,

since this is largely dictated by the boundary absorption

data, which was heavily extrapolated. BRIR results are not

shown since little detail can be discerned graphically, but

auralizations for this scene are included in the supplementary

material that accompanies this article.63

E. Computation times

Computing times for scenes 3 and 9 are shown in Figs.

8(a) and 8(b), respectively. Here, the main observation is

that all trends scale with #DOF (plotted against the right-

hand axis). This is expected for the “Setup RHS” and the

“Receiver encoding” tasks, being processes 3 and 5 in Fig. 1,

respectively, but not for “Setup LHS” and “Solve,” together

being process 4 in Fig. 1. In a conventional BEM, these

would scale with #DOF2, so it is clear that the ACA solver

has achieved significant computational savings. In contrast,

“Setup RHS” and “Receiver encoding” would normally be

FIG. 6. (Color online) BRIRs for Scene 3: (a) left ear versus time (low-pass filtered), (b) right ear versus time (low-pass filtered), (c) left ear versus frequency,

(d) right ear versus frequency.

FIG. 7. (Color online) RIRs for Scene 9: (a) versus time (low-pass filtered), (b) versus frequency.
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expected to be by far the quickest steps but, due to the afore-

mentioned implementation in as interpreted Python func-

tions, they are much slower than the optimized, compiled

core of the library. This should not however be taken as rep-

resentative of the new source and receiver mapping techni-

ques described herein; it is merely due to implementation

compromises and an efficient, compiled implementation of

them could be readily achieved.

V. CONCLUSIONS AND FURTHER WORK

This paper has proposed a framework for low-frequency

room acoustic simulation, echoing similar frameworks that

have been proposed for geometrical acoustics models at high-

frequencies. A key component of this was the mapping pro-

posed by Hargreaves and Lam18 to encode boundary data to

spherical harmonic descriptions of the pressure field around a

receiver, and verification data, results, and auralizations using

that are provided herein. The full simulation chain was vali-

dated using three case studies drawn from the GRAS database,

one of which was hemi-anechoic, one fully-anechoic, and one

a real room. The simulations were seen to match measurement

well for the hemi-anechoic and fully-anechoic cases, but less

so for the room; this was expected since standardized means of

quantifying boundary material data are not sufficient for the

simulation algorithms brought to bear. Clearly, this latter

aspect is a limiting factor in the simulation chain, and one that

must be addressed if room acoustic simulations are to move

from being plausible to reliably physically accurate.

In terms of future work, it is clear that the current imple-

mentation of the new source and receiver mappings is

extremely inefficient, and an optimized compiled version

would be required for serious usage. It is also clear that

repeated use of a frequency-domain BEM code followed by

IFFT is not an efficient way of generating an impulse

response; convolution quadrature46 or multifrequency49,50

approaches would be far more efficient. More research is

required to set bounds on the accuracy of the new pressure

field encoding process, since this was seen to vary with the

problem modelled. Finally, these simulations have shown

that numerical models can closely match reality when the

input data is of a good quality but that they deviate when it

is not. Hence improved techniques to characterize materials,

ideally in situ, are required.
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