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Abstract: In the present study, a mathematical model is developed by combining the Tiwari-Das nanofluid 

formulation with the Eringen micro-morphic model to simulate the thermo-solutal natural convection chemically 

reacting micropolar nanofluid flow from a permeable stretching surface with non-uniform heat source/sink effects. 

The transformed ordinary differential equation boundary value problem features linear momentum, angular 

momentum, energy and species conservation boundary layer equations with appropriate boundary conditions. 

This ninth order nonlinear system is solved with Runge-Kutta 45 Fehlberg method (Maple dsolve routine). 

Several nanoparticles i.e., gold, and silver with aqueous base fluid are studied. The influence of the effect of the 

emerging parameters on the velocity, angular velocity, temperature, nanoparticle concentration, skin friction, 

couple stress, Nusselt number and Sherwood number distributions are visualized and tabulated. It is observed that 

Increasing volume fraction decreases velocity whereas it elevates microrotation, temperature and nanoparticle 

concentration. Nanoparticle concentrations are elevated for stronger destructive chemical reaction effect whereas 

they are suppressed with constructive chemical reaction. With greater micropolar boundary condition parameter, 

the velocity is elevated, microrotation but reduces temperature and thermal boundary layer thickness. Increasing 

nanoparticle volume fraction enhances both skin friction and couple stress but marginally reduces the Nusselt 

number. Finally, Au-water micropolar nanofluids achieve the highest skin friction and couple stress magnitudes, 

then Ag-water and finally Cu-water. Validation of solutions with earlier non-reactive studies in the absence of 

nanoparticle mass transfer are included.   

 

Keywords: Non-uniform heat source/sink; chemical reaction; Sakiadis flow; micropolar nanofluids; gold and 

silver nanoparticles.  
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1. INTRODUCTION  

Non-Newtonian materials processing constitutes a rich arena for mathematical modelling [1]. 

Many industrial processes feature significant rheological characteristics of working fluids 

which are fundamental to their performance. Examples include paints, smart coating, 

electroconductive polymer enrobing, hydrogels etc. The accurate simulation of manufacturing 

processes involving such fluids requires more elegant formulations than the classical Navier-

Stokes Newtonian viscous model. Non-Newtonian constitutive models for polymeric materials 

processing are available in many diverse formulations including viscoplastic, viscoelastic, 

memory fluids etc., [2-4]. Khan et al. [5] employed the PTT (Phan-Phien-Tanner) viscoelastic 

model for optical fiber coating simulation. Zevallos et al. [6] employed both the Oldroyd-B 

and the FENE-P (Finitely Extensible Nonlinear Elastic-Peterlin) models for roll coating 

analysis, noting that the elastic stresses modify flow near the film splitting meniscus by 

reducing and eventually eliminating the recirculation present at low capillary number. Chang 

et al. [7] employed the Walters-B elastic-viscous short memory model to study unsteady 

species diffusion in polymeric Sakiadis flow with wall transpiration effects. Garg et al. [8] used 

the Reiner-Rivlin differential second order viscoelastic model to study Falkner-Skan flows of 

polymers. These models however ignored the microstructure of the non-Newtonian fluid. 

Eringen [9] first proposed the theory of micropolar fluids to describe liquids such as colloidal 

solutions, liquid crystals, fluids with additives, low concentration suspensions, blood etc. 

Physically, micropolar fluids belong to a larger family of much more complex non-Newtonian 

fluids, namely micromorphic fluids or “simple microfluids” which contain fluid elements with 

deformable microstructure, admitting intrinsic motion characteristics and possessing a non-

symmetrical stress tensor. Micropolar fluids can sustain rotation with individual motions which 

support stress and body moments and are influenced by spin-inertia. A particular advantage of 

the micropolar model is that the classical Navier-Stokes model for Newtonian fluids can be 

retrieved as a special case. Micropolar fluids provide a significantly more amenable model for 

computation than general micromorphic fluids and can represent fluids consisting of rigid, 

randomly oriented (or spherical) particles suspended in a viscous medium (e.g., proteins, 

erythrocytes, leukocytes, polymeric suspensions, paints, sediments, slurries, fuels, 

pharmacological agents etc.,) where the deformation of fluid particles is ignored. In micropolar 

fluid dynamics, the classical continuum and thermodynamics laws are extended with additional 

equations, which account for the conservation of micro inertia moments and the balance of first 

stress moments which arise due to the consideration of micro-structure in a fluid. Hence new 

kinematic variables (gyration tensor, microinertia moment tensor), and concepts of body 

moments, stress moments and micro-stress are combined with classical continuum fluid 

dynamics theory. Micropolar theory has been experimentally verified [10] and has been utilized 

successfully in many areas of engineering fluid mechanics. Representative studies include 

Hung et al. [11] (on hydrodynamic stability of gravity driven micropolar fluids), Gupta et al. 

[12] (heat transfer in contracting polymeric sheets), Chen et al. [13] (swirling disk flows in 

which Eringen’s micropolar parameter i.e. ratio of vortex and Newtonian dynamic viscosities 

was shown to stabilize the thin film flow), Shamshuddin et al. [14] (thermo-solutal oscillating 

Sakiadis flow),  Sheremet et al. [15] (unsteady free convection in corrugated surface 

enclosures),  Madhavi et al. [16] (enrobing heat protection shield flows for rocket geometries), 

Chiu et al. [17] (unsteady heat transfer in concentric spherical bodies), Chaube et al. [18] 

(electrokinetic propulsion in microfluidics), Ali et al. [19] (anti-fouling coating slime 

dynamics), Srinivas and Bég [20] (nuclear hydromagnetic duct heat transfer control), Akbar et 

al. [21] (cilia-generated pumping of physiological liquids), Bég et al. [22]) (Hall ocean 

magnetohydrodynamic power generation generators), Hiremath et al. [23] (nanofluid flow 

external to heated cylinder), Hiremath et al. [24] (heat transfer in third-grade fluid flow from 
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isothermal vertical plate) and Reddy et al. [25] (third-grade flow over a vertical cylinder) . All 

these studies have verified the significant modification in momentum, heat and also mass 

transfer characteristics computed with micropolar theory and the significant deviation from 

Newtonian and simple non-Newtonian models. Further studies include Chand et al. [26] 

(convection in a layer of micropolar nanofluid), Yadav and Wang [27] (thermal transport in a 

porous layer saturated with non-Newtonian nanofluid) and Yadav [28] (convective rolls in a 

porous medium saturated with ananofluid).    

A significant development in 21st century engineering has been the emergence of 

nanomaterials. Engineers are increasingly designing systems at the nanoscale and important 

progress has been made in nanotube-embedded gels, nano-lubricants, electro-conductive nano-

polymers etc. An important sub-group of liquid nanomaterials is nanofluids. Introduced in the 

1990s by Choi et al. [29], these complex fluids were developed primarily to achieve substantial 

improvements in thermal enhancement. They are synthesized by doping conventional working 

fluids e.g., water, polymers, ethylene glycol etc., with either metallic or carbon-based 

nanoparticles with average particle sizes below 100 nm. The resulting colloidal suspension 

achieves superior thermal conductivity, heat capacity and viscosity properties compared with 

macroscopic fluids. Although many different formulations exist for simulating nanofluids, the 

most appropriate for evaluating the impact of volume fraction i.e., percent doping of the base 

fluid is the Tiwari-Das model [30]. However, this model is restricted since it neglects mass 

(species) diffusion of the nanoparticles.  Buongiorno [31] resolved this issue by formulating a 

double-diffusive model for nanofluids including thermophoresis and Brownian motion effects, 

although his model neglects volume fraction. Both approaches have been adopted in many 

simulations of nanofluid systems. In nanomaterials processing, Sakiadis flows are a key 

method for producing nano-based coatings. They involve the controlled extrusion of the 

material over a continuously moving surface and constitute a special type of boundary layer 

problem. This features in for example nano-slurry machining methods [32], oxalate processing 

of zirconia- and silica-doped zirconia nano-powders [33] and aluminium oxide metallic 

nanofluid fabrication via plasma arc deposition on conveying surfaces [34].  In modern 

oleophobic or superhydrophobic nanocoating processes e.g., NasiolTM Sakiadis flows are also 

utilized [35]. Many diverse studies of nanofluid dynamics from stretching surfaces have been 

communicated in recent years.  Uddin et al. [36] used Maple quadrature to compute the g-jitter 

effects on time-dependent hydromagnetic nanofluid flow from a stretching sheet. Hayat et al. 

[37] employed a non-Fourier thermal relaxation model to study stretching sheet nanofluid flow 

with variable thickness and conductivity effects. Bhatti et al. [38] used a sucessive linearization 

algorithm to compute the slip dynamics in magnetic Fe3O4-water-based nanofluid flow from a 

nonlinear stretching sheet adjacent to a permeable material with cross diffusion effects. These 

studies however neglected rheological effects. Non-Newtonian characteristics of nanofluids 

have been confirmed at higher volume fractions in many experimental investigations including 

Maghsoudi et al. [39] (for micro-nanostructured polymers deployed in injection molding) and 

Anil et al. [40] (in heat exchangers where rheology of Fe2O3, Al2O3 and CuO nanoparticles in 

aqueous carboxymethyl cellulose (CMC) base fluid was studied). Non-Newtonian nanofluid 

modelling therefore comprises a more robust approach than Newtonian simulation of 

nanofluids. A number of different models have been used for a variety of complex flows in 

rheological nanofluid transport phenomena. These include the Stokes’ couple stress model 

[41], Sisko viscoelastic model [42] and Ostwald-deWaele power-law model [43]. Micropolar 

nanofluid flows have also received some attention. Lund et al. [44] studied the heat transfer 

characteristics in micropolar nanofluid flow from a tilted permeable shrinking/stretching 

surface with the Buongiorno two-component model. They computed dual solutions for a 

specific range of shrinking/stretching surface parameters and the mass suction parameter for 

the opposing flow case. They also showed that skin friction coefficient, heat transfer 
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coefficient, couple stress coefficient the concentration transfer rate is reduced with increasing 

micropolar parameter. Gaffar et al. [45] used the second order accurate Keller box difference 

scheme to analyse the flow of micropolar nanofluid from an inverted conical geometry with 

strong thermal buoyancy forces. Das and Duari [46] simulated the reactive micropolar 

nanofluid stagnation point flow on a stretching sheet using a Runge–Kutta–Fehlberg 

integration procedure. Hussanan et al. [47] investigated the unsteady free convection flow of 

micropolar nanofluids from a vertical plate for five types of oxide nanoparticles namely copper 

oxide, titanium oxide, alumina oxide, iron oxide and graphene oxide suspended in three 

different types of fluids such as water, kerosene and engine oil. They derived exact solutions 

using the Laplace transform method and observed that temperature of graphene oxide 

suspended micropolar nanofluid is higher than other oxide nanoparticles based nanofluids. 

Prasad et al. [48] studied the enrobing thermal convection flow of micropolar nanofluids on a 

horizontal cylinder using finite difference methods. They observed that micropolar parameter 

exerts a stronger influence on velocity characteristics whereas Brownian motion and 

thermophoresis more prominently influence the temperature distributions. Shah et al. [49] used 

an optimal homotopy method to compute the combined effect of magnetic and electric fields 

on micropolar nanofluid in a rotating channel with Hall current and secondary (cross) flow. 

Latiff et al. [50] studied the time-dependent micropolar nanofluid slip dynamics from an 

extending/contracting sheet doped with gyrotactic micro-organisms. They observed that skin 

friction and Nusselt number are reduced whereas microorganism density number is increased 

with greater values of micropolar parameter, velocity slip, thermal slip and microorganism slip 

effect. 

In modern nanomaterials processing, high temperature conditions are often used [51-53]. These 

invoke radiative heat transfer (e.g., via flame spraying) and this can be used to tune optical 

properties of manufactured products. In many mathematical studies of nanofluid radiative 

convection, algebraic flux models are adopted since they circumvent the need for solving the 

formidable general Integro-differential radiative transfer equation. A popular formulation is the 

Rosseland diffusion flux model. Pal and Mandal [54] investigated the radiative hydromagnetic 

micropolar nanofluid transport from a stretching sheet with non-uniform heat source/sink with 

Runge-Kutta-Fehlberg shooting quadrature. They computed the relative performance of 

nanoparticle concentration influence on heat and mass transfer characteristics for four types of 

metallic or non-metallic nanoparticles i.e. silver (Ag), copper (Cu), alumina (Al2O3) and 

titanium dioxide (TiO2) in aqueous base fluids. Hayat and Khan [55] developed homotopy 

solutions for radiative convection micropolar nanoliquid flow from a stretching sheet with the 

Buongiorno model, observing that heat and mass transfer rates are elevated for higher values 

of radiation heat flux and Brownian motion. Kumar et al. [56] used the successive linearization 

method (SLM) to compute the impact of second order slip on electrically conducting mixed 

convective stagnation point flow of a micropolar Buongiorno nanofluid with thermal radiation, 

viscous and Joule dissipation, noting that first order slip exerts contrary modifications in fluid 

velocity and angular velocity (micro-rotation) whereas without second order slip and for strong 

mixed convection the first order slip induces the opposite response. They also the sheet 

employed quadratic multiple regression analysis on skin friction coefficient and local Nusselt 

number distributions, showing that for the case of a free stream with less velocity than 

stretching velocity, a weak variation in microrotation induces a significant perturbation in skin 

friction in comparison to the mixed convection parameter. Further studies of radiative 

micropolar/nanofluid dynamics include Shah et al. [57] for gold-water nanofluids and Ferdows 

et al. [58] for generic aqueous nanofluids with spherical nanoparticles. 

In the current study, as a simulation of high-temperature nanomaterials processing and 

manufacturing fluid dynamics for non-Newtonian liquids nanomaterials, the goal of this study 

is to construct a nonlinear radiative transport of viscoelastic micropolar nanofluid model 

https://www.sciencedirect.com/topics/engineering/nanoparticle


5 
 

incorporating non-uniform heat source/sink and chemical reaction across a stretching sheet. 

Unlike most previous studies, the robust Eringen micro-morphic model in this work correctly 

simulates the microstructural (spin) characteristics of rheological nanomaterials. Other non-

Newtonian models (e.g., Maxwell viscoelastic, Bingham plastic etc.,) completely ignore 

microstructural characteristics which are fundamental to their physics. The combined 

micropolar nanofluid (Eringen and Tiwari-Das models) formulation therefore allows a 

combined multiphase flow analysis which more accurately represents actual nanoliquids used 

in for example engineering coating systems. The novelty of the current study is therefore to 

investigate with a better rheological formulation the boundary layer motion of micropolar 

nanofluid over a stretching sheet with complex high-temperature industrial effects i.e., non-

uniform heat source/sink, thermal radiative flux and chemical reaction. The formulated 

governing partial differential equations with the combined Eringen micropolar rheological and 

Tiwari-Das nanoscale model, and the Rosseland diffusion radiative algebraic flux model, are 

transformed to the system of ordinary differential equations and solved with Runge-Kutta 45 

Fehlberg method (Maple dsolve routine). Extensive computations are presented for the impact 

of key rheological, nanoscale and thermophysical parameters and visualized graphically. The 

computed numerical results are validated with simpler cases from the literature e.g. (Mohapatra 

et al. [59]) to confirm the accuracy of the Maple solutions. The present study will be beneficial 

to materials processing engineers and provides more realistic simulations of actual nano-liquids 

using the combined micropolar nanofluid model, compared with existing simpler rheological 

nanofluid modelling approaches. Furthermore, the Maple solutions also provide a good 

benchmark for further computational fluid dynamics simulations with commercial software 

e.g., ANSYS FLUENT, ADINA-F, CFD-ACE etc.  

 
2. MATHEMATICAL NANOMATERIAL FLOW MODEL 

  

Two-dimensional thermo-solutal radiative flow of an incompressible steady aqueous 

micropolar nanofluid containing spherical nanoparticles from a permeable stretching sheet with 

non-uniform heat source/sink. The velocity of the stretching sheet is assumed as wU x=  with 

0  being a constant, where the x and y axes are orientated along the stretching surface and 

normal to it respectively. The micropolar nanofluid is confined to the region, 0y  (Figure 1). 

It is also assumed that the base fluid and the nanoparticles are in thermal equilibrium and no 

slip occurs between them. Extending the model in [59] with mass diffusion, heat 

generation/absorption and first order homogenous chemical reaction effects, the new system of 

governing equations for the Sakiadis stretching regime can be shown to take the form: 

 

 
Figure 1: Geometrical model for reactive thermo-solutal micropolar nanofluid Sakiadis flow  
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In Eqs. (1)-(5) u and v designate the component of the linear (translation) velocities, is 

microrotational (angular spin) component normal to the xy − plane, signifies the Eringen 

vortex viscosity, j  is the micro inertia density, ,T T
 are fluid and ambient (freestream) 

temperature and ,C C
 are fluid and ambient (free stream) concentration. The microelements are 

assumed no deformable and the stress tensor is symmetric in the Eringen theory for this case. 

The appropriate boundary conditions imposed are: 
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Further, nf  is the spin gradient viscosity which is dependent on the nanofluid Newtonian 

dynamic viscosity  (following Brinkman [60]),  nf  is thermal diffusivity of nanofluid, nf

is the effective density of the nanofluid, ( )p nf
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known as the Tiwari-Das formulation and is defined following Khanafer et al. [61]) and these 
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Furthermore, following [62], the thermophysical properties of the base fluid (water) and 

different metallic nanoparticles (gold, silver, copper) materials are given in Table 1. 
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Table 1. Thermo-physical properties of water and different nanoparticles 

Material Symbol 𝜌 (𝑘𝑔 𝑚−3) 𝐶𝑝 (𝐽 𝑘𝑔−1𝐾−1) 𝜅 (𝑊𝑚−1𝐾−1) 
Pure water H20 997.1 4179 0.6130 

Silver Ag 10500 235 429 

Gold  Au 19300 129 318 

Copper Cu 8933 385 401 

             

The net radiative heat flux, which is unidirectional, following [55]-[59] is expressed as: 

 
4

3

* *

4 16

3 3
rad

T T
q T

k y k y y

      
= − = −  

   
                                                                                                                               (8) 

Where    is Stefan-Boltzmann constant and 𝑘∗ is Rosseland spectral absorption coefficient. 

Further, the non-uniform heat source/sink q is adopted following Pal and Chatterjee [63] as: 

( )
( ) ( ) ( )nf w

w

f

U xk
q A T T f B T T

x




 

 
  = − + − 

                                                                 (9) 

Where Aand B  are parameters of the space-dependent and temperature-dependent internal 

heat generation/absorption respectively. , 0A B   represents heat generation and , 0A B    
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Using (7) - (12) into equations (2)-(6), we have the self-similar boundary layer equations: 
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The non-dimensional parameters featured in Eqs. (13)- (17) are the Eringen micropolar  

material parameter K , modified thermal Grashof number Gr , modified solutal (nanoparticle) 

Grashof number Gm , Prandtl number Pr , radiation-conduction parameter R , Schmidt number 

Sc , first-order chemical reaction parameter Kc  and  wall suction parameter S which are 

defined as follows: 
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Also, the following volume fraction algebraic expressions arising in Eqs. (13)-(15) are defined 

as:  
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Key physical quantities of relevance to sheet nanomaterials processing are the wall gradients 

of the primitive transport variables (velocity, micro-rotation, temperature and nanoparticle 

concentration). These are respectively the skin friction coefficient, couple stress coefficient, 

Nusselt number and Sherwood number which may be estimated by the following expressions  
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



 
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                                                                      (23) 

Here w  (surface shear stress), 
wq (surface heat flux) and 

mq (surface mass flux). Now the 

dimensionless forms of skin friction coefficient, couple stress coefficient, Nusselt number and 

Sherwood number emerge as:   

1

2

(1 )
(0),

Re
f

x

L n K
C f

L

+ −
=                                                                                                       (24) 

Re (0),w xC g=                                                                                                                          (25) 

3(1 ) Re (0),x w xNu R  = − +                                                                                                       (26) 

Re (0)x xSh = −                                                                                                                                 (27) 

Here Re ( ) /x w fU x x v=  is the local Reynolds number based on the sheet stretching velocity. 

 

3. MAPLE NUMERICAL SHOOTING METHOD  

The transformed coupled, nonlinear ordinary differential equations (13)-(16) subject to the 

boundary conditions are solved numerically by using Maple dsolve routine. The system of 

equations is of the parabolic type and it can be solved by several numeric techniques (common 

finite difference method with central differencing) such as Runge-Kutta-Fehlberg method or 

Shooting method. In the system of equations, the boundary conditions are specified at the two 
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ends of the interval. This type of problem is known as a two-point boundary value problem. 

The default method used for solving initial value problems (IVP) in Maple is a Runge-Kutta-

Fehlberg method. However, dsolve replaces the boundary value problem (BVP) with an initial 

value problem (IVP). One way to guarantee accuracy in the solution of an IVP is to solve the 

problem twice using step sizes h  and / 2h , compare answers at the mesh points corresponding 

to the larger step size. However, this requires a significant amount of computation for the 

smaller step size and must be repeated if it is determined that the agreement is not good enough. 

The Runge-Kutta-Fehlberg method (denoted RKF45) is one way to try to resolve this problem. 

It features a robust procedure to determine if the proper step size h  is being used. At each step, 

two different approximations for the solution are made and compared. If the two answers are 

in close agreement, the approximation is accepted. If the two answers do not agree to a specified 

accuracy, the step size is reduced. If the answers agree to more significant digits than required, 

the step size is increased. Each step requires the use of the following six values: 

( )1 , ,k kk h f t y=                                                                                                                              (28) 

1
2 , ,

4 4
k k

kh
k h f t y

 
= + + 

 
                                                                                                   (29) 

3 1 2

3 3 9
, ,

8 32 32
k kk h f t h y k k

 
= + + + 

 
                                                                                 (30) 

4 1 2 3

12 1932 7200 7296
, ,

13 2197 2197 32
k kk h f t h y k k k

 
= + + − + 

 
                                                      (31) 

5 1 2 3 4

439 3680 845
, 8 ,

216 513 4104
k kk h f t h y k k k k

 
= + + − + − 

 
                                                   (32) 

6 1 2 3 4 5

1 8 3544 1859 11
, 2

2 27 2565 4104 40
k kk h f t h y k k k k k

 
= + − + − + − 

 
                                      (33) 

Then an approximation to the solution of the IVP is made using a Runge-Kutta method of order 

4: 

1 1 3 4 5

25 1408 2197 1

216 2565 4104 5
k ky y k k k k+

 
= + + + − 

 
                (34) 

A better value for the solution is determined using a Runge-Kutta method of order 5: 

1 1 3 4 5 6

16 6656 28561 9 2

135 12825 56430 50 55
k ky y k k k k k+

 
= + + + − + 

 
                  (35) 

Further details are provided in Bég et al. [64]. 

4.VALIDATION WITH PUBLISHED STUDIES  

 

To benchmark the validity of the present MAPLE solutions, a comparison is made with the 

Adomian decomposition solutions for the earlier model of Mahopatra et al. [59]. When mass 

diffusion is neglected in the present model (i.e. Eqn. (16) vanishes), and with , 0Gm Gc =  

(thermal and species buoyancy vanish- in [59] this corresponds to the default solution of 1 0 =

i.e., thermal buoyancy parameter vanishing), , 0A B  = absence of heat generation or 

absorption) and neglecting nanoparticle concentration boundary conditions, the present model 

contracts to exactly the radiative micropolar nanofluid Sakiadis model of Mahopatra et al. [59]: 



10 
 

21

2 2

( )
( ) 0

L K K
f f f f g

L L

+
   + − + =                                                                                   (38)

( )( )
( )

1

2 2

/ 2
2 0

L K K
g f g f g g f

L L

+
   + − − + =                                                                 (37) 

 
3

3

1
1 ( 1) 0

Pr

nf

w

f

k
R L f

k
   
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                                                                           (38) 

(0) , (0) , (0) (0), (0) 1,

( ) 0, ( ) 0, ( ) 0

f S f g nf

f g

 



 = = = − =

  =  =  =
                                                                  (38) 

The comparison solutions are shown in Table 1. Excellent agreement is obtained. These 

solutions also concur very closely with earlier computations by Fauzi et al. [65]. Table 1 shows 

that increasing nanoparticle volume fraction,, increases skin friction magnitudes for both 

micropolar nanofluids ( 0K  ) and Newtonian nanofluids  ( 0K = ); however the impact is 

more prominent in the latter. This implies that greater deceleration is induced for Newtonian 

fluids compared with micropolar nanofluids and this confirms the drag reducing properties of 

micropolar fluids [66]. Micro-rotation gradient i.e. wall couple stress magnitudes are also 

enhanced with increasing nanoparticle volume fraction and in particular with greater Eringen 

micropolar parameter, K . Finally Nusselt number function (wall heat transfer rate) magnitudes 

are strongly decreased with greater volume fraction and also micropolar parameter. The former 

confirms the heat enhancment in the boundary layer (heat is convected away from the wall to 

the micropolar nanofluid so that heat transfer to the wall is reduced). The latter indicates that 

micropolarity in the fluid cools the boundary and heats the main body of the flow.  

 

Table 1: Comparision of skin friction, couple stress and Nusselt number function for  

nanoparticle volume fraction and Eringen micropolar parameters and Cu-Water nanofluid 
  K  (0)f   (0)g  (0)  (0)f   (0)g  (0)  

  Present (MAPLE)  Mahopatra et al. [59] 

0 0 -0.998 -0.0249 -1.34361 -0.101 -0.0255 -1.34382 

0 1 -0.08144 -0.01599 -1.35957 -0.08203 -0.01608 -1.35948 

0.1 0 -0.11995 -0.0358 -0.97234 -0.12034 -0.0362 -0.97229 

0.1 1 -0.10104 -0.02492 -0.98881 -0.10096 -0.02498 -0.98874 

0.2 0 -0.12514 -0.03941 -0.69012 -0.12527 -0.03923 -0.69003 

0.2 1 -0.10897 -0.02944 -0.7041 -0.10916 -0.02938 -0.7037 

 

5. RESULTS AND DISCUSSION 

Extensive MAPLE numerical solutions are illustrated in Figs. 2-29. All default parameter 

values are given in the legends.  

Figs. 2-5 visualize the linear velocity, temperature, angular velocity (micro-rotation) and 

nanoparticle concentration distributions with various thermal Grashof number ( )Gr and wall 

suction ( )S parameter values, The default parameter values correspond to highly aqueous nano-

polymers [67] (where thermal diffusion and momentum diffusion are approximately equal i.e. 
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Pr 1) , 0.2K = (weak micropolar behavior), 2Gm = (nanoparticle species buoyancy force is 

double the viscous hydrodynamic force), 0.5R = (thermal conduction dominates thermal 

radiation), 
1 1 0.1A B= = (space-dependent and temperature-dependent internal heat generation 

due to a “hot spot” [68]), 0.6Sc = (nanoparticle mass diffusion exceeds momentum diffusion), 

0.5Kc =  (weak homogenous destructive reaction), 0S  (wall suction) and 0.5n = (weak 

concentrations of microelements at the wall, see Peddieson and McNitt [69]).  

 

 

         
Figure 2: Velocity profiles for Gr and S variation  

 

 

 
Figure 3: Microrotation profiles for Gr and S variation 

 

 

g()
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Figure 4: Temperature profiles for Gr and S variation 

 

 
Figure 5: Nanoparticle concentration profiles for Gr and S variation 
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Figure 6: Velocity profiles for Gm and S variation 

 

 
Figure 7: Microrotation profiles for Gm and S variation 
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Figure 8: Temperature profiles for Gm and S variation 

 

 

 
Figure 9: Nanoparticle concentration profiles for Gm and S variation 
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Figure 10: Velocity profiles for n variation 

 

 
Figure 11: Microrotation profiles for n variation 
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Figure 12: Temperature profiles for n variation 

 

 
 

Figure 13: Velocity profiles for S variation and silver versus gold nanoparticles  
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Figure 14: Microrotation profiles for S variation and silver versus gold nanoparticles 

 

 

 
Figure 15: Temperature profiles for S variation and silver versus gold nanoparticles 
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Figure 16: Nanoparticle concentration profiles for Sc variation and silver versus gold 

nanoparticles 

 

 
Figure 17:  Nanoparticle concentration profiles for Kc variation  
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Figure 18: Velocity profiles for various K and  (Au-Water) 

 

 
Figure 19: Microrotation profiles for various K and  (Au-Water) 
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Figure 20: Temperature profiles for various K and  (Au-Water) 

 

 

 
Figure 21:  Nanoparticle concentration profiles for various K and  (Au-Water) 
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Figure 22:  Velocity profiles for various K and  (Ag-Water) 

 

 
Figure 23:  Temperature profiles for various K and  (Ag-Water) 
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Figure 24:  Microrotation profiles for various K and  (Ag-Water) 

 

 
Figure 25:  Nanoparticle concentration profiles for various K and  (Ag-Water) 

g() 
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Figure 26: Effect of K on skin friction for silver and gold water nanofluids 

 

 
Figure 27: Effect of K on wall couple stress coefficient for silver and gold water nanofluids 
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Figure 28: Effect of K on Nusselt number for silver and gold water nanofluids 

 

 

 
Figure 29: Effect of K and Schmidt number on Sherwood number for silver water nanofluid 
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Table 2: Comparision of skin friction, couple stress and Nusselt number function for 

nanoparticle volume fraction and Eringen micropolar parameters and Ag-water nanofluid 
  K  (0)f   (0)g  (0)  

  Ag-Water 

0 0 -2.965126 -1.916728 -1.000112 

0 1 -2.313070 -1.565457 -1.000126 

0.1 0 -3.919752 -2.341695 -1.00089 

0.1 1 -3.024650 -1.968143 -1.000105 

0.2 0 -4.235559 -2.565103 -1.000073 

0.2 1 -3.400666 -2.227891 -1.000089 

 

Table 3: Comparision of skin friction, couple stress and Nusselt number function for 

nanoparticle volume fraction and Eringen micropolar parameters and Au-water nanofluid 
  K  (0)f   (0)g  (0)  

  Au-Water 

0 0 -2.965136 -1.916735 -1.000152 

0 1 -2.313077 -1.565464 -1.000170 

0.1 0 -5.286651 -3.008696 -1.000078 

0.1 1 -3.848190 -2.486851 -1.000117 

0.2 0 -6.474936 -3.381279 -1.000040 

0.2 1 -4.778112 -2.911877 -1.000085 

 

Table 4: Comparision of skin friction, couple stress and Nusselt number function for 

nanoparticle volume fraction and Eringen micropolar parameters and Cu-water nanofluid 
  K  (0)f   (0)g  (0)  

  Cu-Water 

0 0 -2.965128 -1.916729 -1.000120 

0 1 -2.313071 -1.565458 -1.000135 

0.1 0 -3.687992 -2.2999500 -1.000101 

0.1 1 -2.877727 -1.935179 -1.000118 

0.2 0 -3.886682 -2.398400 -1.000093 

0.2 1 -3.160552 -2.091480 -1.000109 

 

With increasing Gr values the flow is significantly accelerated and a strong overshoot is 

generated near the sheet surface for all cases of blowing ( 0)S  but only for strong buoyancy 

with suction ( 2, 0).Gr S=  This is displaced further from the wall with stronger thermal 
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buoyancy effect. Minimum velocoity corresponds to the forced convection flow case ( 0).Gr =  

Generally significant acceleration is induced with increasing wall blowing (injection) i.e. 0S 

whereas  retardation is generated with wall suction ( 0)S  . Mass flux out of the boundary 

layer regime causes stronger adherence to the wall and opposes momentum development 

leading to deceleration. The contrary response is caused with blowing (mass injection into the 

boundary layer). i.e. momentum (hydrodynamic) boundary layer thickness is enhanced. 

Asymptotically smooth profiles are consistently attained in the free stream confirming that an 

adequately large infinity boundary condition has been deployed in the simulations. Fig. 3 

shows that micro-rotation (angular velocity) is strongly accentuated with increasing thermal 

Grashof number. Substantially greater magnitudes are computed with blowing compared with 

suction. Generally smooth decays are computed from the wall (sheet surface) into the free 

stream except for the case of forced convection ( 0)Gr = with suction ( 0.5)S = for which a 

montonic growth is observed and closer to the wall reverse spin is induced (negative 

microrotation).  Microelement spin is overall assisted with thermal buoyancy and injection 

indicating that natural convection and mass influx into the boundary layer encourage gyratory 

motions of the microelements. Depsite the absence of the thermal buoyancy effect in the 

microrotation conservation eqn. (14) nevertheless there is a very strong coupling between the 

angular velocity ( )g  and linear velocity ( )f fields via the terms, ( )2, , / 2fg f g K L g f  − − +  

in eqn (14) and the other coupling term, ( )2/K L g in the linear momentum eqn. (13). The 

influence of thermal buoyancy term in eqn. (13) i.e. +𝐺𝑟 𝜃 is therefore considerable. Fig. 4 

indicates that there is a marked depletion in temperatures with increasing Gr values. 

Significantly larger temperature magnitudes are observed for injection ( 0)S  compared with 

suction ( 0)S  . The convection currents which are exacerbated with greater thermal buoyancy 

(larger Gr ), accelerate the flow but simultaneously redistribute heat in the regime. Hotter fluid 

is replaced by cooler fluid which results in a thinner thermal boundary layer thickness. 

Noticeably greater temperatures are computed with injection compared with suction, indicating 

that the former increases thermal boundary layer thickness whereas the latter reduces it. Fig. 5 

reveals that indicates nanoparticle concentration values ( )  are also suppressed with increasing 

Grashof numbers. Higher magnitudes are observed for injection compared with suction. The 

species buoyancy force, Gm+  in the momentum eqn. (13) (where Gm is the solutal Grashof 

number) couples the velocity field with the nanoparticle diffusion field i.e., eqn. (16). The latter 

is also coupled to the linear momentum eqn. (13) via the term, Sc f + . Nanoparticle 

concentration boundary layer thickness is reduced with stronger thermal buoyancy force. The 

prescription of a Schmidt number of 0.6 also indicates that momentum diffusion rate is 

exceeded by species diffusion rate which results in a thinner concentration boundary layer 

thickness compared with momentum boundary layer thickness.  

Figs. 6-9 illustrate the response in linear velocity, temperature, angular velocity (micro-

rotation) and nanoparticle concentration profiles with various solutal Grashof number ( )Gr  

and wall suction ( )S parameter values. Similar responses are induced to those observed with a 

change in thermal Grashof number, described earlier. A pronounced velocity overshoot (Fig. 

6) accompanies a rise in Gm values with wall injection present ( .05)S = − . This velocity shoot 

migrates further from the wall with increasing Gm values. It is however only present for the 

strongest case of species buoyancy ( 2)Gm = when suction is imposed at the wall (S = 0.5). 

With species buoyancy absent ( 0)Gm = , or weak ( 1)Gm =  i.e., species buoyancy and viscous 

forces equal), the velocity overshoot vanishes, and this is a classical result which has been 

confirmed experimentally by Gebhart et al. [70]. Effectively increasing species buoyancy 

accelerates the flow both with either injection or suction present at the wall. Flow reversal is 
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never induced anywhere in the boundary layer indicating that no separation effects are present 

and laminar flow control is maintained. Increasing species Grashof number also induces a 

strong enhancement in microrotation (Fig. 7), and spin of microelements is consistently 

minimized for the non-buoyancy case ( 0)Gm = for both suction or injection at the wall. As in 

the case of thermal Grashof number, monotonic decays from the wall to the free stream are 

observed for all cases except for 0Gm = with suction at the wall. This deviates from the general 

behavior and exhibits a monotonic growth from the wall. Nevertheless, the overwhelming 

impact of species buoyancy force is to accelerate the spin of microelements, in particular, in 

close proximity to the wall, and to increase angular momentum boundary layer thickness.  A 

similar observation has been reported by several other investigators including Pal and Mandal 

[54] and Kumar et al. [56], although they neglected chemical reaction effects in their analyses 

and considered much higher Prandtl numbers. Figs. 8 and 9 indicate that both temperature and 

nanoparticle concentrations are decreased with increasing species Grashof number, Gm, 

although the magnitudes are somewhat higher for temperatures than concentrations.  Again, 

there is a suppression in both with increasing suction whereas the reverse effect is sustained 

with wall injection. Thermal boundary layer and nanoparticle concentration boundary layer 

thicknesses are substantially reduced with increasing species buoyancy force effect.  

Figs. 10-12 illustrate the response in linear velocity, angular velocity (micro-rotation) and 

temperature with micropolar wall parameter, n . The case of very weak suction, 0.1S =  is set 

as the default. The parameter, n , features solely in the wall angular velocity boundary condition 

(17) i.e., (0) (0)g n f = − .Soundalgekar and Takhar [71] has shown that n  represents 

microelement concentration difference. When 0n = heavy microelement concentration arises 

at the boundary implying that the micro-elements are crowded and unable to spin near the wall, 

(1/ 2)n = denotes weak microelement concentration (the usual scenario for laminar boundary 

layers) and n  broadly applies to more intense flows and in the extreme to turbulent boundary 

layer flows. There is a significant elevation in linear velocity (Fig. 10) with increasing n values. 

This applies to both the case of injection (dashed lines) and suction (solid lines), although 

significantly greater velocity magnitudes correspond to the former case. The profiles are 

inverted parabolas in all cases. The strong microelement concentration scenario at the wall 

( 0)n = stifles momentum development in the boundary layer and increases momentum 

boundary layer thickness. Increasing the microrotation boundary condition parameter, n, 

clearly exerts a positive influence on boundary layer flow and generally reduces momentum 

boundary layer thickness, encouraging faster shearing at the wall. There is also an enhancement 

in microrotation values (Fig. 11) with increasing n values, although the topology of profiles is 

now of the form of monotonic decays from the wall to the freestream. Evidently with 

progressively less dense concentrations of microelements at the wall, the microelements are 

able to spin more freely (more space in the boundary layer regime is available), and gyratory 

motions are accentuated. For the strong microelement wall case ( 0)n =  angular velocity is 

practically eliminated. Angular momentum boundary layer thickness is therefore generally 

reduced with greater values of the parameter, n.  Again, injection (dashed lines) induces greater 

microelement spin (microrotation) compared with suction (solid lines). Fig. 12 shows that there 

is a linear decay in temperature from the sheet surface (wall) to the free stream for all values 

of n. Increasing n leads to a weak reduction in temperatures and this is characteristic of the 

cooling properties of purely micropolar fluids, as noted in [72], although the rigid elements do 

not interact with the nanoparticles in suspension nor do they inhibit the thermal enhancement 

behavior of nanoparticles. Thermal boundary layer thickness is diminished with the increasing 

microrotation boundary condition parameter, n, and the reduction is stronger with injection at 

the wall as compared with suction.  
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Figs. 13-15 illustrate the response in linear velocity, angular velocity (micro-rotation), 

temperature for Au-water and Ag-water nanofluids with suction (since this is associated with 

stabilizing materials processing regimes). The case 0S = corresponds to a solid wall i.e., 

absence of lateral mass flux. With increasing suction, as noted earlier, there is a strong 

deceleration in the flow (Fig. 13). Au-water (gold) micropolar nanofluid achieves marginally 

greater velocity magnitudes than the Ag-water (silver) case near the wall, whereas this trend 

is reversed further into the boundary layer regime. For zero or low suction ( 0,0.5)S = a 

velocity overshoot is observed near the wall, which vanishes for higher values of suction 

( 1,2)S = owing to the greater adherence of the boundary layer to the wall (sheet boundary) 

which destroys momentum. Asymptotically smooth decays are computed in all cases towards 

the free stream. Maximum velocity is associated with the Au-water for a solid wall ( 0)S =  and 

the minimum velocity computed is also for Au-water but at maximum wall suction ( 2)S = . 

Fig. 14 shows that for suction parameter values, S, up to 1, the microrotation profiles descend 

from a maximum at the wall to the free stream, for both Ag-water and Au-water cases. 

However, for strong suction ( 2)S = , the profiles ascend from a minimum at the wall to vanish 

in the free stream. In this scenario reverse microelement spin is computed indicating that strong 

suction induces a significant impact on the gyratory motion direction. In this case Au-water 

microrotation values are lower than for Ag-water micropolar nanofluid, whereas for all other 

suction cases, Au-water achieves higher micro-rotation values than Ag-water. Fig. 15 indicates 

that increasing suction depresses temperatures throughout the boundary layer. There is a 

marginally greater temperature computed for Ag-water compared with Au-water for the solid 

wall case (S = 0). As elaborated earlier, thermal boundary layer thickness is significantly 

decreased with stronger suction.  

Fig. 16 visualizes the variation in nanoparticle concentration profiles ( ( ))  for various 

Schmidt numbers ( )Sc variation and for gold, silver and copper-water micropolar nanofluids. 

No tangible modification in concentration values is computed for the different metallic 

nanoparticles. With increasing Schmidt number however, there is a substantial depletion in 

nanoparticle concentration and concentration boundary layer thickness is also reduced. This 

key parameter in convective mass transfer parameter symbolizes the ratio of the momentum to 

the mass diffusivity. It measures the relative effectiveness of momentum and mass transport by 

diffusion in the hydrodynamic (velocity) and concentration (nanoparticle species) boundary 

layers. 1.0Sc =  corresponds to both momentum and species boundary layer thicknesses being 

the same. In the present investigation we consider 1Sc  , for species diffusivity exceeds 

momentum diffusivity and this range is appropriate for aqueous polymers. For 1Sc   

momentum diffusion rate exceeds the species molecular diffusion rate.  Mass diffusivity or 

diffusion coefficient is a proportionality constant between the molar flux due to molecular 

diffusion and the gradient in the concentration of the species (or the driving force for 

diffusion). Schmidt number therefore allows engineers an insight into the selection of different 

molecular diffusivities corresponding to different nanoparticles in nanofluid suspensions. 

Larger Schmidt numbers leads to a thinning in the concentration boundary layer. With thinner 

concentration boundary layers, the concentration gradients will be enhanced causing a decrease 

in concentration of species in the boundary layer.  The implication for engineering designers is 

that in such a regime, a diffusing nanoparticle species with a lower Schmidt number is more 

amenable to achieving enhanced nanoparticle concentration distributions.  

Figure 17 depicts the nanoparticle concentration distribution with first order chemical reaction 

parameter, Kc . The formulation in Eqn. (16) corresponds to a homogenous destructive reaction 

when 0Kc  and a homogenous constructive reaction when 0Kc  . In the former more 

nanoparticles are converted to a new species (destructive) whereas in the latter less 

nanoparticles are transformed (constructive). In consistency with this chemo-physics, we 
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observe that nanoparticle concentration is boosted for 0.1Kc = −  and -0.5 whereas it is reduced 

with 0.1,0.5Kc = . The case Kc =0 corresponds to non-reactive flow of micropolar nanofluid. 

Destructive reactions therefore lead to an enhancement in nanoparticle species boundary layer 

thickness whereas the opposite effect is induced for constrictive chemical reactions.  Smooth 

monotonic decays are again computed for all cases from the wall to the edge of the boundary 

layer (free stream), confirming that a sufficiently large infinity boundary condition has been 

used.  

Figs. 18-21 present the evolution in linear velocity, angular velocity (micro-rotation), 

temperature and nanoparticle concentration profiles with various Eringen micropolar material 

parameter values ( )K and nanoparticle volume fractions ( ) for Au-water micropolar 

nanofluids. The Eringen parameter features extensively in both the linear momentum (13) (i.e., 

in the terms,  1 2 2(( ) / ) , ( / )L K L f K L g + + and angular momentum (14) (i.e., the terms 

 1 2 2(( ( / 2)) / ) , / (2 )L K L g K L g f + − + conservation equations and is often known as the 

“micropolar coupling parameter”. Initially a reduction in velocity is induced with increasing 

K values, in particular near the wall. With further distance into the boundary layer, however 

this trend is reversed, and significant acceleration is observed which is sustained into the free 

stream. With 1K =  micropolar vortex viscosity and Newtonian dynamic viscosity are exactly 

equal. With 1K   the vortex viscosity exceeds the dynamic viscosity which alters the 

momentum transfer in the flow and generally produces acceleration, confirming the drag-

reducing properties of micropolar fluids. Increasing volume fraction initially enhances velocity 

magnitudes closer to the wall whereas with progression into the boundary layer it results in 

strong deceleration. Fig. 19 demonstrates that microrotation, ( )g   is reduced with increasing 

micropolar parameter, K , Angular momentum boundary layer thickness is reduced. However 

increasing nanoparticle volume fraction is observed to elevate microrotation i.e. greater doping 

with nanoparticles assists the spin of microelements. Fig. 20 shows that although initially 

temperature is increased with micropolar parameter, K, the dominant effect is for temperature 

reduction i.e. cooling of the regime. Increasing nanoparticle volume fraction however strongly 

enhances temperatures and increases the thermal boundary layer thickness, a characteristic of 

nanoparticle suspensions. Greater presence of high thermal conductivity metallic nanoparticles 

(gold) enhances the overall thermal conductivity of the micropolar nanofluid which elevates 

temperatures. Fig. 21 shows that significant elevation in nanoparticle concentration is achieved 

with increased volume fraction, ( ) . In all cases the profiles are linear growths. Higher values 

of Eringen micropolar parameter, K , however, suppress the nanoparticle concentration 

magnitudes. The acceleration in linear and angular flow encourages momentum diffusion 

rather than species diffusion, which results in a reduction in nanoparticle concentration 

boundary layer thickness with stronger micropolar vortex viscosity.  

Figs. 22-25 present the corresponding plots for Ag-water micropolar nanofluid. Generally 

similar trends are computed although there tends to be a larger dispersion in the profiles of 

temperature (Fig. 23) and micro-rotation (Fig. 24). In other words, increasing micropolar 

parameter basically accelerates the linear flow, suppresses the microrotation, reduces 

temperatures and also nanoparticle concentrations whereas increasing nanoparticle volume 

fraction elevates temperatures (higher values are obtained than in the Au-water case) and 

nanoparticle concentration magnitudes in the Ag-water case.  

Figs. 26-29 illustrate the impact of the Eringen micropolar parameter, K for both Ag-water 

micropolar nanofluid on the skin friction, couple stress, Nusselt number function and Sherwood 

number, for volume fraction of 10% ( 0.1) = with wall suction present ( 0.1)S = and weak 

radiative flux ( 0.1)R = . Skin friction is greatly increased with K values, confirming the 

acceleration achieved with stronger micropolarity and the drag-reducing properties of 
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micropolar nanofluids. Substantially greater skin friction is achieved with Ag-water compared 

with Au-water. Couple stress magnitudes are also elevated with increasing micropolar 

parameter, K  and much higher magnitudes correspond to Ag-water rather than Au-water. Fig. 

27 reveals that Ag-water achieves lower Nusselt numbers (at any value of micropolar 

parameter, K ) compared with Au-water. Silver nanoparticles possess the highest thermal 

conductivity of any element and the highest light reflectance. Since silver is the best thermal 

conductor, this enhances temperatures in the boundary layer and draws heat away from the wall 

(sheet). Heat transfer to the wall is therefore lowered and this manifests in lower Nusselt 

numbers. Conversely gold has a lower thermal conductivity than silver and achieves lower 

temperatures in the main body of the micropolar nanofluids, which is due to greater heat 

transfer to the wall i.e. larger Nusselt numbers. Although silver has superior thermal 

conductivity, it is noteworthy that gold, despite being more expensive, has a much higher 

corrosion resistance and is therefore of considerable interest in nanomaterials processing for 

achieving enhanced durability in coatings. Increasing micropolar parameter consistently 

elevates the Nusselt number for both Ag-water and Au-water, since stronger micropolarity 

cools the micropolar nanofluids (higher vortex viscosities) with enhanced convection away 

from the fluid to the wall (higher Nusselt number). Finally, Fig. 29 shows that with increasing 

micropolar parameter, K , there is a slight enhancement in Sherwood number i.e., greater 

nanoparticle mass transfer to the wall. However, a much more prominent elevation is achieved 

with increasing Schmidt number since this is inversely proportional to the mass diffusivity of 

the nanoparticles whereas micropolar parameter is related only to vortex and dynamic 

viscosities.  

Tables 2-4 present skin friction, couple stress and Nusselt number function for nanoparticle 

volume fraction and Eringen micropolar parameters and Ag-water nanofluid. Tables 2 and 3 

confirm the graphical results presented earlier. Table 4 also shows that with increasing 

micropolar parameter, K, skin friction, couple stress and Nusselt number are all reduced. With 

increasing nanoparticle volume fraction both skin friction and couple stress are substantially 

increased whereas Nusselt number is weakly decreased. Comparing all three Tables, the higher 

skin friction and couple stress magnitudes are associated with Au-water, then Ag-water  and 

the lowest with Cu-water. However in all three cases the Nusselt numbers are of the same order.  

 

6. CONCLUSIONS 

A detailed mathematical and numerical study of thermo-solutal natural convection chemically 

reacting micropolar nanofluid flow from a permeable stretching surface with non-uniform heat 

source/sink has been presented. Radiative heat transfer has also been considered. The 

rheological and nanoscale characteristics have been modelled by combining the Tiwari-Das 

nanofluid formulation with the Eringen micro-morphic model. The study is motivated by 

simulating Sakiadis flow in high-temperature nanomaterials processing. The transformed ninth 

ordinary differential equation boundary value problem has been solved with Runge-Kutta 45 

Fehlberg method (Maple dsolve routine). Several nanoparticles i.e. gold, silver or copper with 

aqueous base fluid have been investigated. Validation of solutions with earlier non-reactive 

studied in the absence of nanoparticle mass transfer has also been conducted.   The present 

computations have shown that: 

• Increasing volume fraction decreases velocity whereas it elevates microrotation, 

temperature and nanoparticle concentration. 

• Gold (Au)-water micropolar nanofluids achieves highest skin friction and couple stress 

magnitudes, then Silver (Ag)-water and finally Copper (Cu)-water. 

• Increasing nanoparticle volume fraction enhances both skin friction and couple stress but 

marginally reduces the Nusselt number. 
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• Increasing micropolar parameter, K , significant acceleration is induced (greater linear 

velocities), whereas angular velocity (microrotation), temperature and nanoparticle 

concentration. 

• Nanoparticle concentration (and nanoparticle species boundary layer thickness) are elevated 

for stronger destructive chemical reaction effect (negative reaction parameter values) 

whereas they are suppressed with constructive chemical reaction. 

• Increasing Schmidt number generates a significant reduction in nanoparticle concentration 

and concentration boundary layer thickness. 

• Generally increasing wall injection accelerates the flow and accentuates angular velocity 

(microrotation). However, increasing suction decreases temperatures and a slightly higher 

temperature is obtained for Eqs. -water compared with Au-water for the solid wall case (zero 

wall transpiration). 

• With greater micropolar boundary condition parameter (“surface parameter”), the velocity 

is elevated, microrotation but reduces temperature and thermal boundary layer thickness. 

 

The present simulations have been confined to steady-state conditions and metallic 

nanoparticles. Future investigations will consider carbon nanotubes (CNTs) [73] and unsteady 

effects and will be reported imminently.  
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Nomenclature 

A   space parameter 

Ag  Silver nanoparticle  

Au  Gold nanoparticle  

B  internal heat generation or absorption parameter  

c   constant 

C   concentration of the solute [
3−mmol ] 

fC   skin friction coefficient 

wC   wall couple stress 

pC   specific heat at constant pressure [ 11 −− KKgJ ] 

Cu  Copper nanoparticle  

C   free stream concentration [
3−mmol ] 

mD   molecular diffusivity [ 12 −sm ] 

g   dimensionless microrotational velocity 

g   acceleration due to gravity [ 1−ms ] 

Gr   thermal Grashof number 
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mG   solutal Grashof number 

j    micro inertia per unit mass [ 2m ] 

K     Eringen micropolar constant 

Kc   chemical reaction parameter  

k     Rosseland spectral absorption coefficient [ 1m− ] 

n    microelement concentration difference  

Nu   Nusselt number 

Pr    Prandtl number 

radq   Radiative heat flux [ 2−Wm ] 

mq    local rate of mass transfer 

wq    local rate of heat transfer 

R   radiation parameter 

Rex  local Reynolds number 

S   wall suction parameter 

Sc   Schmidt number  

Sh   Sherwood number  

T    Temperature of the field in the boundary layer [ K ] 

wT   wall temperature of the fluid [ K ] 

T    Temperature of the fluid in free stream [ K ] 

u    velocity component in x-direction [ 1−ms ] 

wU    stretching velocity [ 1−ms ] 

v    velocity component in y-direction [ 1−ms ] 

y,x  distance along and perpendicular to the plate [ m ] 

                                               

Greek symbols 

  

nf  thermal diffusivity of nanofluid [ 2 1
m s

− ] 

T   volumetric coefficient of thermal expansion [ 1
K

− ] 

c   volumetric coefficient of concentration expansion [ 1
K

− ] 

nf  spin gradient viscosity of nanofluid [ 1−mskg ] 

  stretching constant 

  dimensionless temperature 

  fluid dynamic viscosity [
1kg m s− ] 

  kinematic viscosity [ 12 −sm ] 

  Eringen vortex viscosity [ 12 −sm ] 

nf  density of nanofluid [ 3−mkg ] 

( )p nf
c heat capacitance of nanofluid  

   Stefan-Boltzmann constant [ 42 −− KWm ] 

  dimensionless angular velocity component 

  dimensionless concentration 
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  volume fraction 

  stream function 

  similarity variable  

 

Subscripts 

w   surface conditions  

  conditions far away from the plate 

nf  nanofluid  

f  base fluid 


