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ABSTRACT Diabetic foot ulcers (DFU) represent a severe complication, often resulting from poor glycemic 

control, neuropathy, peripheral vascular disease, or inadequate foot care. DFUs can lead to significant 

morbidity, including amputation and, in severe cases, can be fatal. Recently, advancements in computer 

vision technologies based on artificial intelligence (AI) have shown promise in DFU management. 

Particularly deep learning (DL) models such as U-Net and other models and techniques, were utilized to 

enhance wound segmentation accuracy. This research focuses on evaluating the generalization capabilities of 

DL models across different DFU datasets. Specifically, we investigated whether models trained on one 

dataset can be effective when utilized on another dataset, addressing the challenge of cross-dataset 

generalization. We employed 7 popular DL models, U-Net-VGG16, U-Net-EfficientNetV2S, ABANet, Ma-

Net, LinkNet, DeepLabV3+, and Segment Anything Model (SAM), with 2 DFU datasets: FUSeg challenge 

and DFUC challenge. A total of 54 experiments were conducted plus 27 for SAM, involving training on one 

dataset, and testing on another, as well as training and testing on combined datasets. The results indicate 

substantial variability in segmentation performance when models trained on one dataset are tested on another, 

highlighting the influence of dataset characteristics on model generalization. The study underscores the 

importance of using diverse and comprehensive datasets to develop robust DL models for DFU segmentation 

and its generalization. This research contributes to the understanding of DL model performance in medical 

image segmentation and emphasizes the need for standardized datasets in improving DFU management 

through computer vision. 

INDEX TERMS Wound segmentation, deep learning, Diabetic foot ulcers

I. INTRODUCTION 

Diabetic foot ulcers (DFU) are ones of the most common 

and serious complications of diabetes mellitus, commonly 

caused by poor glycemic control, underlying neuropathy, 

peripheral vascular disease, or poor foot care [1]. They are 

characterized by open sores or wounds, typically located on 

the feet, and without the proper care (applying an 

interprofessional approach), can lead to significant 

morbidity, in severe cases, amputation, and in the worst 

scenario, and can be fatal for 50% of patients in a period of 

5 years [2]. 

Recently, computer vision technologies based on 

artificial intelligence (AI), have been used for wound 

analysis [3], [4], [5], and also in the context of DFU. Deep 

learning (DL), which are neural networks with multiple 

layers (also known as deep neural networks or DNNs), such 

as U-Net have been used as a basis for many studies in 

wound segmentation [6], [7], which is essential for effective 

diagnosis and treatment planning. In Niri [8], the authors 
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change the encoder and use transfer learning to use U-Net-

VGG16; in Mahbod [9], they used U-Net-EfficientNet and 

LinkNet for wound segmentation; and other models such as 

Mask R-CNN [10], post-processing techniques [11], or in 

some cases custom architectures [12], [13]. Likewise, the 

work by Bouallal [14] for early wound detection or the 

research by Gupta [15],  for quantifying the extent and 

depth of the ulcer, which aids to monitor the progression of 

the wound over the time through wound segmentation. To 

aid in the detection of the different types of wound tissues 

(necrotic, sloughy, granulating and epithelializing) by 

Wang[16],  the work by Niri [17], in the 3D analysis of DFU 

based on color and thermal photos [8], or for wound 

characteristics, such as wound bed, peri wound and normal 

skin, by Gutierrez [18]. 

One initiative to develop and improve segmentation 

methods for DFU is the “Diabetic Foot Ulcer Challenges” 

(DFUC). These challenges were launched in 2020 by the 

Medical Image Computing and Computer Assisted 

Interventions Society (MICCAI), as an annual international 

conference where different teams from around the world try 

to achieve the highest quality segmentation masks. The 

metric use to compare the results and declare the winner 

team of the challenge is the F1-score, also known as Dice 

(see Appendix A).  

Training a robust segmentation model requires a well-

curated images dataset that includes diverse types of DFU. 

Annotated images with ground truth, also called masked 

images or labeled images, are crucial for training and 

evaluating the performance of the segmentation algorithm. 

Unlike other datasets such as ImageNet, which has 1 281 

167 generic images, diabetic foot ulcer-only datasets have 

much fewer images, with the three largest ones available 

upon request shown in Table I. While there are other 

datasets used in many research studies, they are either too 

small (less than 250 images) [19], [20] or made from 

chronic wounds (not only diabetic foot ulcers) [21]. 

Despite this, all previous studies have used the different 

DFU datasets for training (and the same for testing), but 

there is no study that use cross-datasets for training and 

testing. This means, while a DL model can get really good 

results and metrics for one dataset, such results may not be 

repeated when it is used in another DFU dataset. The 

question raised was whether it is possible to generalize a 

DL model trained on one dataset to predict semantic 

segmentation on images of a different dataset.     

 
TABLE I 

SUMMARY OF THE THREE LARGEST DFU PUBLIC DATASETS 

Dataset Resolution 
Total 

images 

AZH Wound Care Center Dataset [22] 224 x 224 1109 

FUSeg 2021 Dataset (FUSeg The Foot 

Ulcer Segmentation Challenge) [23] 

512 x 512 1210 

DFUC 2020 Dataset (Diabetic Foot 

Ulcer Challenge 2020) [24] 

640 x 480 4000 

The purpose of this research is to use 7 DL models used 

in the literature for segmentation, train them on one dataset 

and test them on the other dataset and vice versa. Then, 

training and testing will be performed by combining both 

datasets and analyzing the results. The goal was not to 

develop a new DL model or architecture for DFU, but to 

make a qualitative comparison of the influence of the 

datasets on training, testing, and generalization of DL 

models for DFU segmentation.  

The rest of this research is organized as follows. Section 

2 presents the related work on DFU segmentation; Section 

3 shows the deep learning models used, information about 

the datasets and the experiments performed; Section 4, 

describes the results and discussion over the information 

gated, and finally, Section 5 the conclusions. 

 
II. RELATED WORK 

Over the years, numerous research have explored several deep 

learning architectures to improve DFU segmentation 

performance, with the goal of achieving the highest metrics 

along with the most accurate definition of the wound. 

In the Diabetic Foot Ulcers Grand Challenge (DFUGC) 

[25], several research teams propose novel architectures to 

get better DFU segmentation. The dataset used was 

composed of 4000 images (for training and testing) with 

their corresponding ground truth (GT), having an image 

resolution of 640x480px. In the most recent report from the 

DFUGC 2022 [26], the authors detailed the 5 top architecture 

with the highest Dice achieved during the challenge: 1) 

HarDNet-DFUS [27] (72.87%); 2) OCRNet with Edge Loss 

[28] (72.80%); 3) An optimal combination of BCE and Dice 

Losses with OoD [29] (72.63%); 4) A join model of 

transformers and CNN [30] (72.54%); 5) An ensemble of 

Feature Pyramid Network with an SE-ResNeXt101-32x4d 

backbone [31] (72.20%). The different algorithms used 

vary between CCN, FPN, Vision Transformers (ViT) and 

even in one case, enriched with synthetic generated data to 

increase the train set [31].  

Outside the DFUGC, in the study conducted by Toofanee 

[32], the authors propose DFU-SIAM, an ensemble of CCN 

and ViT within a Siamese Architecture, train on 5955 images 

of 4 categories to classify infection, ischemia, both and none 

of them. The dataset used was the Diabetic Foot Ulcer 

Challenge 2021 [33]. In toledo [34], the authors propose 

MsBNet, a neural network not only to segment the diabetic 

foot ulcer, but to classify different kind of tissues (healthy, 

granulation, slough and necrotic) inside the wound. For that 

research, a private dataset was used. In the same way, the work 

by Nagaraju [35], which introduces a novel architecture for 

DFU detection and classification, named SSODL-DFUDC, 

that was trained on a public dataset of 844 samples of Normal 

and abnormal wounds (diabetic foot ulcer wounds). 

The work by Lan [13], proposes an architecture capable of 

not only detecting wounds, but distinguishing between chronic 

wounds and diabetic foot ulcers, offering valuable support for 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3502467

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 2 

less experienced doctors. Within the same area of research, the 

work conducted by Kuo [36] proposed a data augmentation 

technique for DFU, TransMix, which combines Augmented 

Global Pre-training and Localized CutMix Fine-tuning, to 

increase the training set, which is a key point to achieve better 

results. 

Finally, in 2023, the Fundamental AI Research team 

(FAIR) from Facebook released the Segment Anything Model 

(SAM) [37], which is a new foundational model based on ViT, 

with zero-shot learning for general-purpose object 

segmentation. SAM also allows input prompts, as bounding 

boxes, points, or event text, for segmentation in specific areas 

of an image. The work proposed by Chen[38], where the 

HarDNet-MSEG model is used to segment the diabetic foot 

ulcer and SAM for segment all the image. Then they perform 

a pixel-wise ensemble between the DL predicted mask and the 

SAM mask, achieving better results. As so, the work by Taipe 

[39] follows the same general idea, by using YoloV5 to locate 

the DFU and then use bounding boxes of the previously 

detected wound as SAM prompt input to improve the 

segmentation accuracy. 

 
III. METHODOLOGY 

In this section, we describe the deep learning models used as 

reference, as well as the datasets used for the training and 

testing phases. We also detail the metrics used for evaluating 

the deep learning models and afterward, the experiments 

performed with cross train-test dataset used by both deep 

learning models. 

A. DEEP LEARNING MODELS 

A widely used DL model by different research projects in 

segmentation for DFU is U-Net [40], which is a convolutional 

neural network (CNN) architecture used for image 

segmentation tasks in Computer Vision and medical image 

processing, introduced in 2015. 

The U-Net architecture, as shown in Fig. 1, is characterized 

by a U-shaped structure, which consists of a downward path 

“encoder”, an upward path “decoder” and a connection layer 

“bridge”. The encoder part of the U is used to capture the 

features of the image and reduce its spatial resolution. It 

consists of repeated two 3x3 convolutions, each followed by a 

rectified linear unit (ReLU) and a 2x2 max pooling operation. 

After the encoder, there is a "bridge" connecting the encoder 

to the decoder. This connection helps retain important spatial 

information that may be lost during the down sampling 

process.  

The upward part of the U is called the decoder and is used 

to increase spatial resolution. It consists of an upsampling of 

the feature map followed by a 2x2 up-convolution channels, a 

concatenation with the correspondingly cropped feature map 

from the down sampling, and two 3x3 convolutions, each 

followed by a ReLU. At the last layer a 1x1 convolution is 

used to map each 64- component feature vector. 

 

 

FIGURE 1. U-Net architecture (from [40]). 

 

To avoid training a U-Net architecture from the scratch, 

transfer learning was used in this study. Transfer learning is a 

machine learning technique where a model trained on one task 

is adapted to work on a second one. As the Diabetic foot ulcers 

dataset are small compared to large datasets like ImageNet, 

transfer learning allows the model to benefit from the 

knowledge gained from the pretrained model. Also, by using 

transfer learning, it is possible to reduce the training time on 

the final model. 

For these research, 7 DL architectures were tested, using 

transfer learning, as along with different encoders as follows: 

 

1) U-NET - VGG16 

VGG16 [41] is a convolutional neural network architecture 

characterized by its deep architecture with 16 weight layers 

(13 convolutional layers and 3 fully connected layers). 

VGG16 is often used for image classification tasks and is 

known as a feature extractor in various computer vision 

applications. Due to its ability to extract features, VGG16 has 

been placed as a U-NET encoder. The VGG16 model was 

pretrained using ImageNet. 

 

2) U-NET - EFFICIENTNETV2S 

EfficientNetV2S refers to a variant of the EfficientNetV2 

model [42], which is an advanced convolutional neural 

network architecture designed for image classification and is 

known for its efficiency in terms of both accuracy and 

computational resources. The "S" in EfficientNetV2S denotes 

a smaller set of parameters (23.9 million) compared to “M” or 

“L”, small GMACs (4.9 giga) and small activation functions 

(21.4 million), generating a computationally less expensive 

algorithm while still maintaining good performance. 

Combining EfficientNetV2S with U-Net involves using the 

EfficientNetV2S as the encoder and integrating it within the 

U-Net architecture, where it takes the features extracted by 

EfficientNetV2S and refines them for the segmentation task. 

The skip connections between the encoder and decoder help 

maintain spatial information crucial for accurate wound 
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segmentation. The EfficientNetV2S model has also been 

pretrained using ImageNet. 

 

3) ABANET 

Proposed by Rezvani [43], ABANet is a novel attention-based 

network designed for precise image segmentation, focusing on 

masked face recognition during the COVID-19 pandemic. 

Even though the model is not made for DFU segmentation, it 

utilizes attention gates (AG) in a U-Net-based encoder-

decoder architecture, which is a typical network used for DFU 

wounds. The model incorporates a hybrid loss combining 

focal, SSIM, and IoU losses to enhance boundary mask 

prediction.  

 

4) MA-NET  

A novel deep learning model designed for liver and tumor 

segmentation in CT images by Fan [44]. It enhances U-Net by 

incorporating a self-attention mechanism, focusing on both 

spatial and channel dependencies to improve segmentation 

accuracy. The model features two key components: the 

Position-wise Attention Block (PAB) for capturing spatial 

dependencies between pixels and the Multi-scale Fusion 

Attention Block (MFAB) for integrating multi-scale semantic 

information. It uses a combination of Dice and cross-entropy 

loss to improve performance. To improve the feature 

extraction, EfficientNet-b7 [45] was used as encoder 

pretrained on ImageNet. 

 

5) LINKNET  

LinkNet [46], is a DL architecture that uses an encoder-

decoder structure inspired by auto-encoders, where encoder 

outputs are directly linked to corresponding decoders, 

bypassing layers to preserve spatial information and reduce 

computational load. LinkNet uses a lightweight ResNet18 

backbone, offering significantly faster performance than 

alternatives like SegNet and ENet. For this model, 

EfficientNet-b7 was used as encoder pretrained on ImageNet. 

 

6) DEEPLABV3+  

DeepLabv3+ [47], an improve network over DeepLabv3, 

combines the strengths of spatial pyramid pooling and the 

encoder-decoder structure for semantic segmentation. 

DeepLabv3+ incorporates a decoder module to refine object 

boundaries, improving the segmentation accuracy. The 

authors utilize depth-wise separable convolution in both the 

Atrous Spatial Pyramid Pooling (ASPP) and decoder modules, 

resulting in faster and more efficient computation. For 

DeepLabv3+, after some initial tests, Resnet50 was used as 

encoder with ImageNet as transfer learning. 

 

7) SAM POST-PROCESSING 

Taking as reference the research papers presented in the 

"Related Work" section, an experiment with SAM was 

proposed as follows: First, the wound segmentation was 

performed with 3 DL networks (Ma-Net, LinkNet and 

DeepLabV3+) and then from the generated mask, a bounding 

box was obtained. This box was used as an input prompt for 

SAM, together with the original image, obtaining a 

segmentation in the same place but with the accuracy of SAM. 

This flow has its limitations, because if the original DL model 

fails to find a DFU wound, then SAM will not be able to find 

the wound either. A detailed flow of the use of SAM is shown 

in appendix B. 

 

In the context of DL, the training loss function (also known 

as the cost function) represents a crucial component. This 

function serves as a metric for evaluating the accuracy of a 

model's predictions in comparison to the ground truth during 

the training phase.  There are various types of loss functions, 

such Mean Squared Error, Huber Loss, Categorical Cross-

Entropy, among others. The selection of the appropriate loss 

function depends on the specific task (classification, 

segmentation, etc.) and the nature of the data. The choice of 

the loss function has a significant impact on the performance 

of the DDN. In this research, two loss functions were selected. 

• Categorical Cross-Entropy (CCE) loss: 

Employed in multiclass classification tasks, where the 

model predicts the probability distribution over 

multiple classes. 

• Dice Loss: 

Commonly utilized in tasks such as semantic 

segmentation, it measures the overlap between the 

predicted mask and the ground truth, particularly 

useful to accurately delineate object boundaries. 

B. IMAGE DATASET 

To perform the experiments, 2 datasets were used. 

 

1) FUSEG 2021 DATASET 

FUSeg The Foot Ulcer Segmentation Challenge [23], Diabetic 

foot ulcer dataset that contains 1210 foot ulcer images from 

889 patients. The ground truth for all the images were 

annotated by wound care experts and split into a training set 

(1010 images) and a testing set (200 images). The resolution 

of all the images is 512x512px (262,144 total). An example of 

a photo and its corresponding ground truth is shown in Fig. 2. 

 

(a) 

    

(b) 

    

FIGURE 2. Example of FUSeg 2021 Dataset. (a) Original image               
(b) Ground truth. 
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2) DFUC 2020 DATASET 

Diabetic Foot Ulcer Challenge 2020 [48], [49], [50]:  which 

contains 4000 images used for training and testing. The 

ground truth was produced by two healthcare professionals (a 

podiatrist and a consultant physician) who specialize in 

diabetic wounds and ulcers. The resolution of all the images is 

640x480px (307,200 total). An example of a photo and its 

corresponding ground truth is shown in Fig. 3. 

 

(a) 

    

(b) 

    

FIGURE 3. Example of DFUC 2020 Dataset. (a) Original image               
(b) Ground truth. 

 

A summary of both datasets used is shown in Table II. For 

the case of DFUC dataset, only 2000 images had ground truth, 

so the train-test split will be based on this restriction; as so for 

FUSeg dataset, where only 1010 images had ground truth. In 

both cases, 80% of the images were used for training (and 

validation) and 20% for testing. We also considered a join of 

both datasets to test the results. 

 
TABLE II 

SUMMARY OF DATASETS USED 

Dataset 
Total 

images 
Train 

images 
Test 

images 
Images resolution 

FUSeg 1010 808 202 
512 * 512 px 

262,144 px 

DFUC 2000 1600 400 
640 * 480 px 

307,200 px 

DFUC + 

FUSeg 
3010 2408 602 

Mixed of FUSeg 

and DFUC 

 

Using the ground truth for each photo, the ratio between the 

size of the wound and the size of the whole photo was 

calculated for both datasets, as shown in Fig. 4. The size of the 

wound compared to the whole photo is small for both datasets, 

0.01 - 2% for FUSeg and 0.01 – 5% for DFUC. 

 

 

FIGURE 4. Wound-photo ratio histogram in percentage. 

C. METRICS 

IoU (Intersection over Union) and Dice coefficient (also 

known as F1 score) are evaluation metrics commonly used in 

image segmentation tasks and commonly reported indices for 

the algorithm efficacy of diabetic foot ulcer segmentation [51]. 

These metrics help assess the accuracy of the segmentation 

results by comparing the predicted segmentation masks with 

the ground truth masks. The details of the metrics are shown 

in appendix A. 

D. PROPOSED EXPERIMENT 

The experiments consisted of 6 DL models, as detailed in table 

III, along with the selected backbone. 

 
TABLE III 

DEEP LEARNING MODELS USED 

Model Backbone 
Params 

(millions) 

U-Net VGG16 14M 

U-Net EfficientNetV2S 24M 

ABANet - 21M 

Ma-Net Efficientnet-B7 67M 

LinkNet Efficientnet-B7 67M 

DeepLabV3+ Resnet50 23M 

 

For each DL model, 9 combinations were proposed, as 

shown in table IV, giving a total of 54 trials performed (9 for 

each DL model). 

 
TABLE IV 

COMBINATIONS PERFORMED FOR EACH DL MODEL 

  TESTING DATASET 

  DFUC+FUSeg DFUC FUSEG 

Training 

dataset 

DFUC+
FUSeg 

x x x 

DFUC x x x 

FUSeg x x x 

 

Furthermore, we selected 3 models from Table III and used 

SAM after DL prediction (as shown in appendix B), to analyze 

whether the segmentation was improved or worsened. We 

annotated the models as follows: 

• Ma-Net – Efficientnet-b7 – SAM 

• LinkNet – Efficientnet-b7 – SAM 

• DeepLabV3+ - Resnet50 – SAM 

 

Following the combination defined in Table IV, a total of 

27 trials were performed with SAM as post-processing. 

 

All the experiments were developed in Kaggle with the 

following parameters: Python version 3.10, tensorflow version 

2 with keras, 0.001 learning rate, 8 batch size, 200 epochs and 

GPU P100. To have homogeneous data, the FUSeg images 

were resized during training from 512x512 to 640x480 to 

match the DFUC images. 
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IV. RESULTS AND DISCUSSION 

The results will be discussed in two parts: 

• The result for the 54 trials for the DL models, 

• The results concern the 27 trails with SAM as 

postprocessing for segmentation. 

 

In Fig 5, the results for the 54 trials for the DL models are 

shown, where the best Dice score achieved in a heatmap table. 

All the results are based on Dice score, because, as shown in 

Appendix C, all the IoU scores calculated for all the trials were 

linear to the Dice Score. 
 

From the results shown in Fig. 5, as general observations, 

ABANet consistently outperformed other models in all 

datasets, even when tested on FUSeg dataset, the difference 

between the best score and ABANet is between 1% to 2%. U-

Net-VGG16 generally performed worse than other models, 

even with different train datasets and test datasets. Ma-Net and 

LinkNet showed similar performance across datasets.  

 

The best result obtain in the trials was Ma-Net-EfficientNet-

B7 trained on FUSeg and tested on FUSeg with 83,03%; while 

the worst result was U-Net-VGG16 trained on FUSeg and 

tested on DFUC with 39.90%. For both, the same train set 

(FUSeg) was used, but when test on FUSeg (202 images), the 

Dice 83,03% decreased almost half of it, to 39.90%, when 

tested on DFUC (400 images. One hypothesis could be the 

influence of the model, causing the Dice to decrease, so to 

analyze this effect, in Fig. 6, a comparison of all the Models 

trained on FUSeg is shown. 

 

All the models trained on FUSeg performed very well on 

FUSeg dataset (over 79%), however, all of them decreased 

30% points in Dice approximately when tested on DFUC and 

25% when tested in DFUC + FUSeg. Based on this 

observation, the DL model posed a small influence in these 

results compared to the dataset used to train the models and 

test them.  

 

Clearly, for FUSeg training and FUSeg testing, all DL 

models achieved high Dice scores, considering the test set was 

comprised of only 200 images, which proved the models were 

overfitting. In fact, the highest results of all tests (for all the 

datasets) were for FUSeg datasets, but when tested on other 

datasets, the Dice decreased in all the trials, in some cases, 

almost half the Dice. 

 

 
FIGURE 5. Dice score for trials on deep learning models group by train set. 
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FIGURE 6. Results of DL models trained on FUSeg 

 

In the same way, when the train set was DFUC and the mix 

DFUC + FUSeg, almost all the models performed very 

similarly, as shown in Fig. 7 and Fig. 8.  

 

 
FIGURE 7. Results of DL models trained on DFUC 

 

 
FIGURE 8. Results of DL models trained on DFUC + FUSeg 

 

By comparing Fig. 7 and Fig. 8, when the train set is the 

merge of both datasets, the results increased in all cases for all 

DL models; however, these results were not as good as the 

ones trained on FUSeg and tested on FUSeg, meaning again, 

that the FUSeg dataset tends to overfits. 

 

If we consider the model LinkNet trained on FUSeg, and 

then the one trained on DFUC, it stayed in 4th place; however, 

when trained on the combination of DFUC + FUSeg, it 

achieved 2nd place. Based on this observation, and taking in 

consideration that challenges rate the best algorithms based on 

the highest Dice achieved on certain dataset, if an algorithm 

perform average on some challenge, it could perform way 

better when trained on a wider dataset.   

 

From Fig. 6, 7 and 8, ABANet and Unet-EfficientNetV2S 

were among the most generalizable across test sets, as they 

maintained high scores with minimal variance across the 

training datasets. 

 

Another interesting result is the distribution of the Dice 

group by Model, as shown in Fig. 9. 

 

 
FIGURE 9. Dice Score distribution group by model 

 

U-Net-VGG16 has the highest variability, indicating it 

performs less consistently across training datasets. 

ABANet and U-Net-EfficientNetV2S maintain consistently 

higher scores across datasets, while DeepLabV3+, Ma-Net 

and LinkNet show lower and more variable performance. 

 

Some examples of the comparison between the ground truth 

and the predicted images using different kinds of DL models, 

training and test sets for FUSeg and DFUC test sets is shown 

in Fig. 10.  
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  Test set FUSeg Test set DFUC 

 
Original 

Image 

        

 
Ground 

Truth 

        

Train on 

FUSeg 

ABANet 

        

Ma-Net 

        

Train on 

DFUC 

ABANet 

        

Ma-Net 

        

Train on 

DFUC+ 

FUSeg 

ABANet 

        

LinkNet 

        

FIGURE 10. For each train set, the 2 best results that were tested on each dataset. 

 

Regarding SAM, the 27 trials result for the 3 selected 

models trained on FUSeg, DFUC and DFUC + FUSeg using 

SAM as post-processing segmentation method (see appendix 

B), is shown in table V and Fig. 11. 

 
TABLE V 

RESULTS OF DL MODELS USING SAM AS POST-PROCESSING METHOD FOR 

SEGMENTATION 

  Test set 

Model Train dataset 
DFUC+ 

FUSeg 
DFUC FUSeg 

Ma-Net – 
Efficientnet-

b7 - SAM 

DFUC 70.92% 70.40% 71.44% 

FUSeg 58.15% 45.23% 83.73% 

DFUC+FUSeg 73.59% 69.19% 82.51% 

LinkNet - 
Efficientnet-

b7 - SAM 

DFUC 68.12% 68.04% 67.58% 

FUSeg 55.34% 41.04% 83.41% 

DFUC+FUSeg 72.86% 67.70% 83.38% 

DeepLabV3+

- Resnet50 - 

SAM 

DFUC 67.00% 66.47% 67.92% 

FUSeg 56.50% 43.80% 81.90% 

DFUC+FUSeg 71.21% 67.35% 78.94% 

 

 

 
FIGURE 11. Results of DL models trained on DFUC + FUSeg 
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Based on table V, 70% (19 out of 27) of the results 

improved when using SAM as posprocessing method, with 

Dice score between 0.26% and 7.23%, while the other 8 

decreased their Dice score between 0.71% and 3.71%.  

 

A more comprenhensive analysis is shown in Table VI, 

where the biggest improvement for LinkNet was 5.91%, 

DeepLabV3+ with 6.51% and Ma-Net with 7.23%, when 

trained on DFUC and tested on FUSeg. 

 
TABLE VI 

EFFECT OF USING SAM AS POST-PROCESSING 

Model 
Quan

tity 
Train dataset Test dataset Dice 

Increase  

range (%) 

All 9 FUSeg All datasets  0.26 to 3.75 

All 3 

DFUC 

FUSeg  5.91 to 7.23 

All 3 DFUC  -1.01 to -2.82 

All 3 DFUC+FUSeg  0.28 to 1.67 

All 3 

DFUC+FUSeg 

FUSeg  1.29 to 5.43 

All 3 DFUC  -0.73 to -3.71 

LinkNet, 

Ma-Net 
2 DFUC+FUSeg  -0.71 to -2.19 

DeepLab 1  DFUC+FUSeg  0.60 

 

When the training set was small (FUSeg), SAM improved the 

segmentation in all test sets. However, when the training set 

was bigger (DFUC or mixed) SAM improved the 

segmentation only on unseen images (when tested on FUSeg); 

but on images similar to the ones the DL model was trained 

on, SAM decreased the Dice; which means that on smaller 

datasets, SAM can help to generalize segmentation on unseen 

images. 

 
V. CONCLUSION 

This paper analyzes the influence of datasets on different deep 

learning models and their generalization. The study revealed a 

significant variation in the performance of deep learning 

models trained on one dataset (FUSeg) and tested on another 

one (DFUC). For instance, all the models trained on FUSeg 

achieved high Dice scores when tested on the FUSeg dataset, 

but they all showed a big decrease on Dice score when tested 

on the DFUC dataset. This indicates that models might be 

overfitting to the training dataset and failing to generalize 

across different datasets, taking in consideration that FUSeg 

dataset (200 images) compared to the DFUC dataset (400 

images) likely contributed to the overfitting observed. A more 

diverse and larger dataset on diabetic foot ulcers exclusively 

could potentially enhance the DL model's ability to generalize 

and perform consistently across different datasets. 

The DL model ABANet achieved the best segmentation in 

most of the train-test combination cases, while VGG16-UNet 

shows the lowest Dice when train on FUSeg and test on 

DFUC. However, in general all the models showed the same 

trend, to decrease when train on FUSeg and test on DFUC but 

improved when trained on DFUC (or the mixed) and test on 

DFUC. This consistency across different DL models suggests 

that the observed performance drop (or improve) is due to 

dataset differences rather than model architecture 

inefficiencies. 

The use of SAM as prompt-based segmentation model 

increased the results when the training set was small (FUSeg -

200 images), which confirms the boost SAM can provide on 

datasets which few training samples. 

While deep learning models show promise for the 

segmentation of diabetic foot ulcers, the study underscores the 

importance of dataset diversity, size, and the need for robust 

evaluation methods to ensure reliable and generalized 

performance across different clinical datasets. 

APPENDIX A 
METRICS DETAILS 

• Intersection over Union (IoU): 

IoU is a measure of the overlap between the predicted 

segmentation mask and the ground truth mask. It is 

calculated as the intersection of the predicted mask and 

ground truth, divided by the union of these regions. 

The formula for IoU is defined in (1). 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 (1) 

IoU values range from 0 (no overlap) to 1 (perfect 

overlap) with higher IoU values indicate better 

segmentation accuracy. To get a final score, the IoU of 

each predicted mask and ground truth is calculated and 

the mean of all IoU is computed. 

 

• Dice Coefficient (F1 Score): 

The Dice coefficient, also known as the F1 score, is 

another measure of the similarity between the 

predicted and ground truth segmentation masks. It is 

calculated as twice the intersection of the predicted 

mask and ground truth region divided by the sum of 

the areas of these regions. The formula for the Dice 

coefficient is defined in (2). 

𝐷𝑖𝑐𝑒 =
2 × 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑+𝐴𝑟𝑒𝑎 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
 (2) 

 

Dice coefficient values also range from 0 to 1, with 

higher values indicating better segmentation 

performance.   

APPENDIX B 
SAM AS POST-PROCESSING AFTER DEEP LEARNING 
MODEL 

We propose a simple architecture that will use the 

segmentation mask of a deep learning model, which has been 

trained on diabetic foot ulcer wounds, get the bounding box 

of the segmentation mask output and then use this as in input 

prompt for SAM. The flow is shown in Fig. 12. 
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FIGURE 12. SAM as post-processing for DL models. 

APPENDIX C 
RELATION BETWEEN DICE AND IOU 

For all the models tested, the relation between the Dice score 

and the IoU score was lineal. 

 

 

FIGURE 13. Relation between Dice and IoU Score for all the trials 
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