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Abstract: A theoretical study is presented of the transport characteristics in double diffusive tangent 

hyperbolic (non-Newtonian) nanofluid boundary layer flow from a stretching flat surface. The Cattaneo–

Christov (non-Fourier and non-Fickian) double diffusion model is deployed in the formulations for energy 

and species conservation, to determine more precisely temperature and concentration distributions with 

thermal and solutual relaxation times. Non–linear mixed convection and heat generation/absorption are 

included. The nanofluid approach combines Brownian motion and thermophoresis. Suitable 

transformations are deployed to render the nonlinear partial differential system into a system of 

dimensionless coupled ordinary nonlinear differential equations. The non-dimensional boundary value 

problem is then solved with the homotopic analysis method (HAM). The distributions of velocity, 

temperature and concentration of nanoparticles are depicted and investigated for the effects of multiple 

emerging parameters. Velocity is reduced (and momentum boundary layer thickness elevated) with 

increasing power–law index and Weissenberg number whereas velocity is elevated (and momentum 

boundary layer thickness reduced) with increment in mixed convection variable. Temperature is suppressed 

(and thermal boundary layer thickness depleted) with increasing thermal relaxation variable, heat sink 

parameter, Prandtl number whereas temperature is enhanced (and thermal boundary layer thickness 

boosted) with greater heat source parameter, Brownian motion parameter and thermophoresis parameter. 

Nanoparticle concentration is depleted (and concentration boundary layer thickness reduced) with greater 

Schmidt number and Brownian motion parameter whereas the opposite effect is induced with greater 

thermophoresis parameter and solutal relaxation time. Skin friction is strongly reduced with increasing 

values of nonlinear thermal and concentration convection variables. The simulations are relevant to nano-

polymer coating operations.  
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1. Introduction 

In recent decades, non–Newtonian fluids have attracted significant interest owing to 

growing applications in industrial, chemical, bio-technological and mechanical engineering. 

Examples of both internal and external flows include food processing [1,2], thermal duct 

processing [3, 4], bioinspired spacecraft pumps [5], geological energy systems [6], gastric 

transport [7], electroconductive gel pumping in robotics [8], hemo-rheology of the human 

circulation [9] and biomedical blood pumps [10]. Another key area of technology in which non-

Newtonian flows feature is coating operations which may feature stagnation flows [11] and spin 

deposition [12]. Non–Newton fluids feature many diverse characteristics including weakly elastic 

dominated by shear thinning, shear thickening, viscoplasticity (yield stress behaviour), 

viscoelasticity strongly elastic and dominated by elastic stresses etc. Many models have therefore 

been developed to simulate non-Newtonian behaviour which deviates significantly from classical 

viscous flow behaviour (Navier-Stokes equations). These models include the Giesekus viscoelastic 

model (popular for polymers) [13] and the Ostwald-DeWaele power-law model (for rheological 

coatings) [14, 15]. Although numerous other models are available such as the PPT model, the 

Johnson-Segalman model and the Maxwell upper convected model (UCM), an alternative model 

which provides accurate results for decreasing shear effects (i.e., viscosity reduction with 

increasing shear force) is the tangent hyperbolic non-Newtonian model. This model is also very 

appropriate for certain categories of polymeric coatings and has therefore received considerable 

attention in recent years in the context of mathematical modelling. Many investigations have been 

reported with a variety of multi-physical effects using different numerical and analytical methods 

to accommodate the strong nonlinearity of tangent-hyperbolic flows. Hayat et al. [16] discussed 

the impact of cross diffusion effects (Soret and Dufour) on hydromagnetic stagnation flow of a 

tangent hyperbolic fluid from a on a permeable convectively heated extending sheet. They noted 

that with increasing power-law index and Weissenberg number, there is an elevation in the skin 

friction whereas Nusselt number is suppressed with Dufour parameter and enhanced with Soret 

number. They further observed that Sherwood number is enhanced with Dufour number whereas 

it is reduced with Soret number. Hussain et al. [17] investigated viscous heating effects on 

hydromagnetic tangent hyperbolic fluid boundary layer convection flow. Ibrahim [18] considered 

wall slip effects on tangent hyperbolic fluid flow in a magnetic field. Recently, Khan et al. [19] 

presented homotopy analytical solutions for entropy generation in chemically reacting mixed 



3 
 

3 
 

convective tangent hyperbolic nanofluid flow with thermal radiation flux. Further studies 

deploying the tangent hyperbolic non-Newtonian model include Atif et al. [20] (on Falkner-Skan 

wedge external thermo-solutal boundary layer nanofluid flow), Kebede et al. [21] (on viscous 

heating in time-dependent nanofluid wedge flow), Awais et al. [22] (on entropy generation), 

Ramzan et al. [23] (on non-Fourier and non-Fickian bioconvective nanofluid reactive 

magnetohydrodynamic) and Shafiq et al. [24] (on Sakiadis bioconvective nanofluid transport). All 

these studies confirmed the significant modification in momentum, heat and mass transfer 

characteristics produced with the tangent-hyperbolic rheology.  

Mixed convection is an important process featuring in many applications in industry 

including materials processing, coating deposition, glass manufacturing etc. It involves both forced 

and free convection acting simultaneously i. e. where both pressure forces and buoyancy forces 

interact. Fluid density reduces as the fluid temperature increases, which triggers buoyancy effects 

that arise in natural convection and also mixed convection regimes. Some interesting studies in 

non-Newtonian mixed convection have been reported and include Metri et al. [25] (on viscoelastic 

stretching sheet mixed convection flow), Çolak et al. [26] (on enclosure mixed convection 

magnetohydrodynamic flow) and Bhukta et al. [27] (on dissipative thermoconvective 

hydromagnetic stretching sheet flow in a porous medium). 

The studies described above have generally considered Fourier heat conduction and 

Fickian mass diffusion. However, in a number of engineering systems, these models are inadequate 

since thermal relaxation and solutal relaxation effects arise. These necessitate the inclusion of non-

Fourier and non-Fickian models which can more precisely characterize heat and mass transfer 

phenomena. The Foruier model predicts infinite thermal wave speeds which are corrected in the  

Cattaneo [28] formulation. Christov [29] further refined the Cattaneo model, to confirm finite–

speed heat conduction. Subsequently a number of researchers have deployed the Cattaneo-

Christov model in a variety of both Newtonian and non-Newtonian problems. The Cattaneo–

Christov model was implemented for thermal convection of Newtonian fluids by Straughan [30]. 

Hayat et al. [31] investigated the Cattaneo–Christov double–diffusion in Walters' B viscoelastic 

nanofluid with chemical reaction. Zhang et al. [32] computed the transient reactive dissipative 

flow of Oldroyd-B fluids with Cattaneo-Christov double diffusion. Ahmad et al. [33] examined 

the nanofluid boundary layer flow from a bi-axial stretching sheet with Cattaneo-Christov double 

diffusion, observing that both temperature and concentration are decreased with non-Fourier 
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thermal relaxation and non-Fickian solutal relaxation parameters, for the case of prescribed heat 

flux at the boundary. Ijaz and Ayub [34] used a homotopy method to analyze the reactive dual 

stratified viscoelastic nanofluid flow from a porous stretching surface with Cattaneo-Christov 

double diffusion. They noted that temperature is suppressed with increasing thermal relaxation 

time parameter and thermophoresis parameter whereas nanoparticle concentration is increased.  

Ali et al. [35, 36] deployed finite element techniques to study respectively cross diffusion and 

rotating body force effects in viscoelastic nanofluid transport with Cattaneo-Christov double 

diffusion. Khan et al. [37] addressed Williamson non-Newtonian nanofluid slip flow in permeable 

media with the Cattaneo–Christov double diffusion model. Muhammad [38] analyzed the 

Cattaneo–Christov double diffusive transport from a curved stretching sheet in non-Darcy porous 

medium. Further investigations under non-Fourier and non-Fickian formulations are reported in 

Refs. [39-41]. All these studies have confirmed the considerable deviation in transport 

characteristics computed with the non-Fourier and non-Fickian formulations. 

In modern nanofluid mechanics, non–Newtonian characteristics are an important 

consideration and more accurately simulate the behaviour of these colloidal suspensions than 

conventional Newtonian models. This is particularly significant in materials processing where 

concentrations of nanoparticles can significantly modify the heat and mass behaviour, as noted by 

Pattniak et al. [42]. A diverse range of non-Newtonian nanofluid transport studies have been 

communicated in recent years where many different rheological formulations have been 

successfully utilized including micropolar nanofluids [43, 44], Jeffreys viscoelastic nanofluids 

[45], Casson viscoplastic nanofluids [46], Riner-Rivlin third grade viscoelastic nanofluids [47, 48], 

Eyring-Powell model [49], nonlinear radiative Oldroyd-B nanofluids [50], EMHD based second-

grade nanofluids [51], micropolar nanofluids magnetized flow [52], Casson nanofluids [53], 

chemically reactive Burgers fluid [54], bioconvective viscous and couple-stress nanofluids [55, 

56]. 

In the present study, motivated by simulating nano-polymer coating flows [57, 58], the 

non–Newtonian tangent hyperbolic nanofluid model is deployed in conjunction with the 

Buongiorno [59] nanoscale two-component model to analyze the non-Newtonian nanofluid 

boundary layer flow from a stretching flat surface. Thermal and species diffusion are characterized 

using the Cattaneo–Christov double diffusion theory. The effects of Brownian motion and 

thermophoresis are also included as are thermal absorption/generation. The inclusion of these 
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effects constitutes the novelty of the present study which generalizes previous works in 

Buongiorno nanofluid dynamics to address non-Fourier and non-Fickian physics and heat 

source/sink effects. The nonlinear dimensionless transformed ordinary differential boundary value 

problem has been solved with the exceptionally accurate, rapidly convergent Homotopy analysis 

method (HAM) [60]. Extensive graphical visualization is included of the effects of multiple 

emerging parameters on velocity, temperature and concentration profiles. Tabulated results for 

skin friction, Nusselt number and Sherwood number are also presented. The present work 

constitutes a novel contribution to the scientific literature. 

    

2. Mathematical Model for non-Newtonian nanofluid transport  

The regime under investigation comprises the steady mixed convective boundary layer flow of an 

incompressible tangent hyperbolic nanofluid from a stretching surface. The surface is extended 

with non–linear velocity. A Cartesian coordinate system (x-y) is adopted in which the x-axis is 

aligned with the plane, while the y-axis is perpendicular to it, as depicted in Fig. 1. The Cattaneo–

Christov double diffusion model is deployed. The effects of viscous dissipation are not considered 

due to the assumption of low velocity flow. Viscous dissipation greatly depends on the deformation 

in the fluid flow. Thus, viscous dissipation can be neglected in the case of small deformation in 

the fluid or low velocity flow. The conservation equations for mass, momentum and energy in the 

non-Newtonian, non-Fourier, non-Fickian boundary layer flow may be stated as follows by 

amalgamating the earlier models of given in [17]-[19] are:  

 0,
u v

x y

 
+ =

 
         (1)  
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Fig. 1. Physical model  
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The prescribed boundary conditions at the wall and in the free stream are: 

 ( ) , 0, , at 0,w w wu u x cx v T T C C y= = = = = =  (5) 

 0, , when .u T T C C y → → → →  (6) 

Here 
f






 
=  
 

 signifies the kinematic viscosity, f  is liquid density,   is material power-law 

index, g  is gravitational acceleration, ( )1 3,   are linear (thermal, concentration) expansion 

coefficients, ( )2 4,   are nonlinear (thermal, concentration) expansion coefficients, 
( )

f

k

c



=  

is thermal diffusivity,   is dynamic viscosity,  
( )

( )
p

f

c

c





=  is heat capacity ratio with ( )

f
c  

denoting liquid heat capacity,   is tangent-hyperbolic rheological material constant,  ( )
p

c  is 

nanoparticle heat capacity, 0Q  is coefficient of heat absorption/generation, ( ),T BD D  designate 

(thermophoresis, Brownian) diffusion coefficients, ( ),T C  are nanofluid  (temperature, 

concentration), ( )wu x  is stretching velocity, k  is thermal conductivity, c   is  stretching rate, ( ),t c 

are the relaxation times (non-Fourier thermal, non-Fickian solutal) ( ),T C   represent ambient 

nanofluid (temperature, concentration) respectively and ( ),u v  are velocity components in the 

( ),x y  directions respectively. 

Introducing the following transformations: 
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 ( ) ( ) ( ) ( ), , , , .
w w

T T C Cc
y u cxf v c f

T T C C
       


 

 

− −
= = = − = =

− −
 (7) 

Implementing Eqn. (7) in Eqns. (1)-(6), the mass conservation Eqn. ( )1  is automatically satisfied 

and Eqns. ( ) ( )2 6−  assume the dimensionless form: 

 ( ) ( ) ( )21 1 1 0,t cf f f f We f f N            − − + + + + + + =    (8) 
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 (9) 

 ( )2

2 2 0,t t

b b

N N
Scf Sc ff f f

N N
             + + + − − − =  (10) 

 0, 1, 1, 1 at 0,f f   = = = = →  (11) 

 0, 0, 0 as .f   → → → →  (12) 

Here ( )'  signifies differentiation with respect to  , We  is Weissenberg number,   is mixed 

convection parameter, xGr  is thermal Grashof number, N  is the ratio of concentration to thermal 

buoyancy, xG r 
is the concentration Grashof number, ( ),t c   are nonlinear (thermal, 

concentration) convection variables, tN  is thermophoresis variable, Pr  is Prandtl number, bN  is 

Brownian dynamics parameter, 0S   corresponds to heat generation, 0S   implies heat 

absorption, Sc  is Schmidt number, Rex is local Reynolds number and ( )1 2,   are (thermal, 

solutal) relaxation times. These variables are defined as follows:  

 𝑊𝑒 =
√2
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                                                       𝑆𝑐 =
𝜐
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  (13) 
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 The skin–friction coefficient is defined as: 

 ( )
2

2

0

2
, 1 ,

2

w
fx w

w
y

u u
C

u y y


   


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    
 = = − +      

 (14) 

The non–dimensional form of skin friction is: 

 ( ) ( ) ( )( )
1

2
2Re 1 0 0 .

2
fx xC f We f




−

 = − +  (15) 

In present study, the Nusselt and Sherwood numbers are not computed because fluxes (heat and 

mass) for the case non-Fourier-Fick situation are not available in explicit form. However, the non-

dimensional Nusselt and Sherwood numbers for Fourier-Fick situation are: 

( )

( )

1

2

1

2

Re ' 0 ,

Re ' 0 .

x x

x x

Nu

Sh





−

−

=−

=−

          (16) 

3. Homotopy analysis method (HAM) Solutions 

HAM [60] allows higher order power series approximations for differential equations and is 

implemented to solve the nonlinear ordinary differential boundary value problem defined by Eqns. 

(8)-(12). The initial guesses ( )( ) , ( ), ( )o o of      and auxiliary linear operators ( ), ,fL L L 
 are 

defined as: 

 ( ) ( ) ( ) ( )0 0 01 , , ,f e e e      − − −= − = =  (17) 

 

,

,
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fL f f
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

 

 

 = −

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 = −

 (18) 

with 
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6 7

0,

0,

0,

fL C C e C e

L C e C e

L C e C e

 

 
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 



−

−

−

 + + =



+ =


+ =

 (19) 
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where ( )1 7iC i = −  indicate the arbitrary constants. 

4. Convergence analysis of HAM  

HAM convergence has been examined carefully. This involves the use of an auxiliary 

parameter h  , which facilitates in adjusting the convergence area of velocity ( )0f  , temperature 

( )0  and concentration ( )0 . The auxiliary parameter h  therefore plays a vital role. In Figs 2-4 

the h–curves for convergence have been presented. It is observed that approved values of ,fh h  

and h  in Figs. 2, 3 and 4 are 1.9 0.1, 1.5 0.2fh h−   − −   −  and 1.5 0.1h−   − . As can be 

seen, convergence of velocity ( )0f  , temperature ( )0   and concentration ( )0  is completed at 

20th order of approximation, which is then adopted for all subsequent computations (see Table 1). 

The skin friction (
1

2Refx xC
−

) results are compared with the work of Akbar et al. [61] with the 

intention to authenticate the precision of the obtained analytical outcomes, as exhibited in Table 

2, which illustrates a decent agreement. 

 

 

 

Fig. 2. H– curve stimulus for ( )0f  . 
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Fig. 3. H– curve stimulus for ( )0  . 

 

Fig. 4. H–curve stimulus for ( )0 . 

Table 1.  Convergence of HAM solutions when 0.1,btWe N N S N = = = = = = =

Pr 1.1,Sc= = 1 2 0.2.ct   = = = =   

Oder of 

approximations 
( )0f −  ( )0−  ( )0−  

1 -0.9910 -0.5513 -0.1500 

10 -0.9755 -0.4997 -0.3267 

20 -0.9754 -0.4989 -0.3294 

30 -0.9754 -0.4989 -0.3294 

40 -0.9754 -0.4989 -0.3294 

50 -0.9754 -0.4989 -0.3294 
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Table 2.  Comparative outcomes of surface skin-friction (
1

2Refx xC
−

) when 0.0.ctN  = = = =  

  We  Akbar et al. [61] Present study 

0.0 0.0 1.00000 1.00000 

0.1  0.94868 0.94868 

0.2  0.89442 0.89443 

0.0 0.3 1.00000 1.00000 

0.1  0.94248 0.94248 

0.2  0.88023 0.88023 

0.0 0.5 1.00000 1.00000 

0.1  0.93826 0.93826 

0.2  0.87026 0.87026 

 

 

5. HAM Results and Discussion 

Figs. 5-21 depict the evolution in velocity, temperature, nanoparticle concentration and 

skin friction with selected parameters.  

 

Fig. 5. ( )f   against 𝜆 ( 1 20.1,Pr 1.1, 0.2t b t cWe N N S N Sc    = = = = = = = = = = = = ). 
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  Fig. 6.  ( )f   against 𝑊𝑒 ( 𝛿 = 𝜆 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 =

𝛽𝑐 = 0.2) 

 

Fig. 7. ( )f  against 𝛿 ( 𝑊𝑒 = 𝜆 = 𝑁𝑡 = 𝑁𝑏 = S =𝑁 = 0.1, Pr 1.1,Sc= = 𝛿1 = 𝛿2 = 𝛽𝑡 =

𝛽𝑐 = 0.2)  
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Fig. 8. ( )  against 𝑆 ( 0.1,tWe N = = = = 𝑁𝑏 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 =

𝛽𝑐 = 0.2 )  

 

Fig. 9. ( )   against 𝛿1 (𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿2 = 0.2, 𝛽𝑡 =

𝛽𝑐 = 0.2)  

S > 0 

S < 0 
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Fig. 10. ( )   against 𝑁𝑏 (𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 0.1, 𝑆 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 =

𝛽𝑡 = 𝛽𝑐 = 0.2 )  

 

Fig. 11. ( )   against 𝑁𝑡 (with 𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1, Pr 1.1,Sc= = 𝛿1 = 𝛿2 =

𝛽𝑡 = 𝛽𝑐 = 0.2) 
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Fig. 12. ( )   against 𝑃𝑟 (𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1, 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 =

𝛽𝑐 = 0.2)  

 

Fig. 13. ( )   against 𝑆𝑐 (𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1, 𝑃𝑟 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 =

𝛽𝑐 = 0.2 )  
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Fig. 14. ( )   against 𝑁𝑡 (𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1, Pr 1.1,Sc= = 𝛿1 = 𝛿2 = 𝛽𝑡 =

𝛽𝑐 = 0.2)  

 

Fig. 15. ( )   against 𝑁𝑏( 𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑆 = 𝑁 = 0.1, Pr 1.1,Sc= = 𝛿1 = 𝛿2 = 𝛽𝑡 =

𝛽𝑐 = 0.2). 
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Fig. 16. ( )   against 𝛿2 (𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛽𝑡 =

𝛽𝑐 = 0.2) 

 

Fig. 17. 
1

2Rex xCf
−

 against .We  
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Fig. 18. 
1

2Rex xCf
−

 against .  

 

Fig. 19. 
1

2Rex xCf
−

 against .t  
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Fig. 20. 
1

2Rex xCf
−

 against .N  

 

Fig. 21. 
1

2Rex xCf
−

 against .c  
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In Figs. 5–7 Velocity distributions ( )f   are shown. The infinity boundary condition (edge 

of the boundary layer) is specified as  = 8 which achieves asymptotically smooth solutions in the 

free stream i.e. the range is evidently sufficient.  The impact of non-Newtonian power–law index 

( )  on ( )f   is plotted in Fig. 5, with the other parameters constrained as  

1 20.1,Pr 1.1, 0.2t b t cWe N N S N Sc    = = = = = = = = = = = = . This data is accurate for 

certain nano-polymers and is extracted from [19]-[21]. With enhancement in ( )0.1, 0.4, 0.7, 1.0 =   

there is a strong depletion in velocity ( )f   i. e. the boundary layer flow is decelerated and there is 

an associated increase in momentum boundary layer thickness. The power-law index, , features 

in the modified shear terms in the momentum boundary layer Eqn. (8), viz, (1 − 𝜆)𝑓‴ and   

+𝜆𝑊𝑒𝑓″𝑓‴. As the value of this parameter increases, the behaviour becomes less pseudoplastic 

(shear-thinning) and viscosity increases. This decelerates the flow. The influence of Weissenberg 

number  ( )We  on velocity ( )f   is displayed in Fig. 6. The Weissenberg number 𝑊𝑒 =
√2

√𝜐
𝛤𝑐

3

2𝑥 

and is the ratio of the fluid relaxation time to a particular process time and also characterizes the 

relative contribution of elastic force to viscous force. It arises solely in the mixed derivative term, 

+𝜆𝑊𝑒𝑓″𝑓‴ in the momentum boundary layer Eqn. (8). The other parameters are preset as 𝛿 = 𝜆 =

𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 = 𝛽𝑐 = 0.2. The velocity ( )f   is also 

significantly reduced with increasing values of  ( 1.0,4.0,7.0,10.0)We= . Momentum boundary 

layer thickness is therefore increased. It is also noteworthy that the Weissenberg number quantifies 

the degree of anisotropy or orientation generated by the deformation in the nanofluid, and is 

applicable for a constant stretch history, as studied in shearing flow (boundary layers). The 

influence of mixed convection variable ( )  on velocity ( )f   is depicted in Fig. 7.  There is a 

substantial enhancement in velocity ( )f   with increment in ( ) , with 𝑊𝑒 = 𝜆 = 𝑁𝑡 = 𝑁𝑏 = S =

𝑁 = 0.1, Pr 1.1,Sc= = 𝛿1 = 𝛿2 = 𝛽𝑡 = 𝛽𝑐 = 0.2 fixed. The mixed convection parameter 𝛿 =

𝐺𝑟𝑥

𝑅𝑒𝑥
2  and larger values correspond to stronger thermal buoyancy force relative to viscous 

hydrodynamic force.  This accelerates the flow and results in a depletion in momentum boundary 

layer thickness. The strongest modification is computed at intermediate distances from the wall.  
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Figs. 8–12 visualize the impact of  heat generation / absorption ( )S ,  non-Fourier thermal 

relaxation parameter ( )1 ,  thermophoresis ( )tN ,  Brownian motion ( )bN  and  Prandtl number 

( )Pr on temperature ( )  . Fig. 8 illustrates the impact of ( )S  versus ( )   with 

0.1,tWe N = = = = 𝑁𝑏 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 = 𝛽𝑐 = 0.2. The parameter, 

S, appears in two terms in the thermal boundary layer Eqn. (9), viz, +𝑆𝜃, 𝑆𝛿1𝑓𝜃′ which are the 

classical Fourier and non-Fourier terms respectively, the latter featuring the thermal relaxation 

time, 𝛿1. With increment in positive S (heat generation) there is a strong accentuation in 

temperature ( )  whereas the converse trend is computed for increment in negative S (i. e. heat 

absorption). This behaviour is similar to that computed with the classical Fourier model, although 

it is further amplified by the presence of thermal relaxation which significantly influences 

temperature distribution. Thermal boundary layer thickness is increased with heat generation (S 

>0) whereas it is reduced with heat absorption (S<) since the latter induces cooling in the boundary 

layer due to the removal of heat. Fig. 9 depicts the evolution in ( )   with non-Fourier thermal 

relaxation parameter, 1( ) . This parameter in addition to being coupled to the heat 

generation/absorption term, , 𝑆𝛿1𝑓𝜃′, also significantly modifies the other terms in the energy 

Eqn. (9) i.e. 𝑃𝑟 𝛿1 (−𝑓𝑓 ′𝜃 ′ − 𝑓2𝜃″ − 2𝑁𝑡𝑓𝜃 ′𝜃″ − 𝑁𝑏𝑓𝜃 ′𝜙″ − 𝑁𝑏𝑓𝜃″𝜙′). As noted earlier, the non-

Fourier parameter modifies the classical Fourier law of heat conduction achieving physically 

realistic finite-speed heat conduction and is a hyperbolic model rather than a parabolic model. As 

the thermal relaxation parameter is increased 1( 1.0,2.0,3.0,4.0) = , with all other parameters 

fixed at 𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿2 = 0.2, 𝛽𝑡 = 𝛽𝑐 = 0.2, there 

is a marked decay in temperatures, which is most pronounced at some distance from the wall. This 

decrement in temperatures is due to the delay in thermal diffusion associated with thermal 

relaxation and produces a reduced heating effect compared with the classical Fourier model. The 

nanofluid elements therefore takes longer to transport heat to neighboring fluid elements implying 

a slowing in thermal diffusion. Thermal boundary layer thickness is also reduced with increasing 

thermal relaxation. These observations are consistent with a number of other boundary layer 

nanofluid investigations including Hayat et al. [16] and Ibrahim [18]. The adoption of a non-
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Fourier model therefore leads to significant modification in temperature distribution in the 

nanofluid.  

Figs. 10 and 11 illustrate respectively the influence of nanoscale parameters i. e. Brownian motion 

( )bN  and thermophoresis ( )tN  on temperature distribution ( )   versus transverse coordinate (). 

In Fig 10, 𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 0.1, 𝑆 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 = 𝛽𝑐 = 0.2 are 

fixed. The Brownian motion parameter simulates the random motion of nanoparticles in the 

nanofluid and arises in multiple terms in the thermal boundary layer i. e. energy conservation Eqn. 

(9), viz  Pr(𝑁𝑏𝜙′𝜃′) and 𝑃𝑟 𝛿1 (−𝑁𝑏𝑓𝜃 ′𝜙″ − 𝑁𝑏𝑓𝜃″𝜙′). Furthermore, it arises in the nanoparticle 

concentration Eqn. (10), in the term, −𝛿2
𝑁𝑡

𝑁𝑏
𝑓𝜃″ . Brownian motion therefore exerts a prominent 

influence on the temperature and concentration distributions. Larger values of Nb imply smaller 

nanoparticle diameter in the Buongiorno model [59]. Therefore, as Nb increases, the number of 

ballistic collisions between nanoparticles in Brownian chaotic motion is amplified and this 

generates a heating effect which results in a temperature enhancement. Thermal boundary layer 

thickness is therefore strongly increased with Nb values. The temperature boost is sustained for 

some distance into the regime transverse to the wall. In Fig. 11, the temperature is also observed 

to be enhanced significantly with an increment in thermophoresis parameter, Nt, with 𝜆 = 𝛿 =

𝑊𝑒 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1, Pr 1.1,Sc= = 𝛿1 = 𝛿2 = 𝛽𝑡 = 𝛽𝑐 = 0.2 prescribed. Thermophoretic 

parameter features also in multiple terms in the energy Eqn. (9), viz, Pr (𝑁𝑡𝜃′2) and 

𝑃𝑟 𝛿1 (−2𝑁𝑡𝑓𝜃′𝜃″) in addition to the coupling terms in the concentration Eqn. (10) i.e. terms, 

+
𝑁𝑡

𝑁𝑏
𝜃″ and  −𝛿2

𝑁𝑡

𝑁𝑏
𝑓𝜃″. A substantial increase in temperature accompanies a rise in 

thermophoresis parameter ( 1.0,2.0,3.0,4.0)tN = . Thermophoresis is the mobilization of 

nanoparticles under a temperature gradient which drives the nanoparticles to a cold region of the 

regime. This thermophoretic body force encourages thermal diffusion and heats the boundary layer 

also enhancing the thermal boundary layer thickness.  The results computed concur with many 

other investigations including Hiremath et al. [47] and Ray et al. [49].  Overall, both nanoscale 

effects i. e. Brownian dynamics and thermophoresis favourably influence temperature distributions 

in the regime and confirm the excellent thermal enhancement properties of nanofluids. 

Fig. 12 displays the response in ( )   to a modification in Prandtl number, ( Pr ) . For this graph, 

the values of the following parameters are preset as 𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 =
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0.1, 𝑆𝑐 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 = 𝛽𝑐 = 0.2. An enhancement in (Pr 0.1,0.5,0.9,1.3)=  induces a 

suppression in temperature ( )   which is sustained at all values of transverse coordinate, . 

Thermal diffusivity has an inverse relation with ( Pr )  . Furthermore, Prandtl number is inversely 

proportional to the thermal conductivity of the nanofluid. Higher Prandtl number therefore implies 

a lower thermal conductivity which manifests in a cooling effect in the boundary layer and a 

concomitant depletion in the thermal boundary layer thickness.  

Figs. 13–16 display the evolution in nanoparticle concentration distribution ( )   for the effects 

of  Schmidt number ( )Sc ,  thermophoresis variable ( )tN , Brownian motion ( )bN  and non-Fickian  

solutal relaxation ( )2 . Fig. 13 addresses the response of ( )  to a variation in ( )Sc  and it is 

evident that there is a marked reduction in concentration magnitudes with greater Schmidt number  

( 0.5,1.0,1.5,2.0 )Sc = , with all  other parameters fixed as 𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1, 

𝑃𝑟 = 1.1, 𝛿1 = 𝛿2 = 𝛽𝑡 = 𝛽𝑐 = 0.2. Physically, Sc  and mass diffusivity have an inverse relation 

to each other. Higher Schmidt number indicates lower mass (molecular) diffusivity, and this results 

in a depletion in nanoparticle concentration values throughout the boundary layer transverse to the 

wall.  For Sc > 1 the molecular diffusivity exceeds the momentum diffusivity and vice versa for 

Sc < 1. The value of Schmidt number therefore has a dramatic effect on solutal (nanoparticle) 

diffusion in the regime. There will be an associated reduction also in nanoparticle concentration 

boundary layer thickness with greater Schmidt numbers. Fig. 14 shows that with increment in 

thermophoresis parameter ( 0.5,1.0,1.5,2.0)tN = , with 𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1, 

Pr 1.1,Sc= = 𝛿1 = 𝛿2 = 𝛽𝑡 = 𝛽𝑐 = 0.2, there is a substantial elevation in concentration ( )   

declining. As noted earlier, thermophoresis contributes via the terms, +
𝑁𝑡

𝑁𝑏
𝜃″ and −𝛿2

𝑁𝑡

𝑁𝑏
𝑓𝜃″ in the 

nanoparticle species diffusion Eqn. (10). The temperature gradient associated with thermophoretic 

body force also exacerbates nanoparticle diffusion and increases concentration boundary layer 

thickness. The influence of Brownian motion parameter ( )bN  on nanoparticle concentration ( )   

is displayed in Fig. 15. Increasing values of Brownian motion parameter  ( 1.0,4.0,7.0,10.0)bN =

has the opposite effect to thermophoresis parameter, and strongly reduces the nanoparticle 

concentration ( )  . There is also an associated reduction in concentration boundary thickness. 
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The amplification in ballistic collisions between nanoparticles with greater Nb value (smaller 

diameter nanoparticles) energizes the regime i. e. generates heat. However, it inhibits nanoparticle 

diffusion through the regime since greater collisions prevent the migration of nanoparticles in the 

boundary layer. This manifests in a plummet in concentration values. This behaviour has been 

confirmed by Buongiorno [59] and is localized at some distance from the wall. Fig. 16 

demonstrates that with elevation in non-Fickian solutal relaxation time parameter i.e.  

2( 1.0,4.0,7.0,10.0) = with 𝜆 = 𝛿 = 𝑊𝑒 = 𝑁𝑡 = 𝑁𝑏 = 𝑆 = 𝑁 = 0.1,Pr = 𝑆𝑐 = 1.1, 𝛿1 = 𝛽𝑡 =

𝛽𝑐 = 0.2,  there is a significant boost in nanoparticle concentration ( )  . The parameter features 

in many terms in the nanoparticle concentration boundary layer Eqn. (10), viz, +𝑆𝑐𝛿2(−𝑓𝑓 ′𝜙′ −

𝑓2𝜙″) and −𝛿2
𝑁𝑡

𝑁𝑏
𝑓𝜃″.  The non-Fickian solutal relaxation therefore has the opposite effect on the 

nanoparticle species diffusion compared to the influence of non-Fourier thermal relaxation on the 

temperature distribution. The modification in concentration magnitudes is strongest near the wall.  

Figs.17–21 display the influence of the tangent hyperbolic power–law index ( ) , Weissenberg 

number ( )We , nonlinear (thermal, concentration) convection variables ( ),t c  and ratio of 

concentration to thermal buoyancy parameter ( N ) on skin friction coefficient 

1

2Rex xCf
− 

 
 

 versus 

mixed convection variable ( ) . It is noted that, an enhancement in power–law index ( ) and 

Weissenberg number ( )We  produces a strong increase in the magnitude of  

1

2Rex xCf
− 

 
 

 as 

observed in Figs. 17 and 18, respectively.  However, the profiles decay in a linear fashion in both 

graphs with an increment in the mixed convection variable ( ) . However, there is a substantial 

depletion computed in the strong friction, 

1

2Rex xCf
− 

 
 

 with increment in (𝛽𝑡, 𝛽𝑐 , 𝑁) parameters, 

although once again there is a consistent depletion in skin friction with greater mixed convection 

variable ( )  and profiles all decay in a linear pattern. The parameters (𝛽𝑡, 𝛽𝑐, 𝑁) all arise in the 

momentum boundary layer Eqn. (9) in the terms, +𝛿[(1 + 𝛽𝑡𝜃)𝜃 + 𝑁(1 + 𝛽𝑐𝜙)𝜙]. Greater 

concentration buoyancy force relative to thermal buoyancy force therefore decelerates the 
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boundary layer flow as does an increment in nonlinear convective thermal and concentration 

parameters. 

 

6. Conclusions 

Inspired by simulating nano-polymeric coating flows in materials processing systems, a 

mathematical model has been developed for non-Newtonian tangent hyperbolic nanofluid mixed 

convection boundary layer flow from a stretching flat surface with convective boundary conditions 

with heat absorption/generation and Cattaneo–Christov double diffusion (non-Fourier and non-

Fickian) effects. The Buongiorno nanoscale model has been deployed to analyze Brownian motion 

and thermophoretic body force effects. The nonlinear dimensionless transformed ordinary 

differential boundary value problem has been solved with the Homotopy analysis method (HAM). 

The convergence of HAM solutions has been studied in detail. The major findings of the 

simulations can be summarized as follows:  

(i) Velocity profile ( )f   is enhanced with mixed convection parameter ( ) but suppressed 

with increment in Weissenberg number ( ).We  

(ii) With increasing Prandtl number ( )Pr and non-Fourier thermal relaxation ( )1 parameter 

there is a significant reduction in temperature ( )  and thermal boundary layer thickness. 

(iii) Temperature ( )   is enhanced with heat generation ( )0S   whereas it is depleted with 

heat absorption ( )0 .S   

(iv) Temperature is elevated with an increase in Brownian motion parameter (Nb) and 

thermophoresis parameter (Nt). 

(v) Nanoparticle concentration  ( )  and concentration boundary layer thickness are enhanced 

substantially with an increase in non-Fickian solutal relaxation parameter ( )2  whereas 

they are reduced with increasing Schmidt number ( )Sc  .  

(vi) Nanoparticle concentration  ( )   is enhanced with thermophoresis parameter ( )tN  

whereas it is reduced with Brownian motion parameter ( )bN .  

(vii) Skin friction coefficient 

1

2Rex xCf
− 

 
 

 is markedly boosted with elevation in tangent 

hyperbolic power law index and Weissenberg number ( ), We  whereas it is decreased 

with nonlinear thermal and concentration convection parameters and buoyancy ratio 
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(𝛽𝑡, 𝛽𝑐, 𝑁) and also follows a linear decay with increasing values of mixed convection 

parameter (). 

(viii) HAM [60] has been shown to achieve excellent accuracy, stability and convergence in 

studying nonlinear multi-physical nano-polymeric coating flows. 

The current study has examined the tangent hyperbolic non-Newtonian model for nanofluids. 

Future investigations may consider a variety of alternative non-Newtonian models including the 

Casson viscoplastic model [62], Reiner-Rivlin second grade viscoelastic model [63-65] or the 

Williamson model [66], which are all appropriate for simulating different aspects of nanofluid 

rheological behaviour.  
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