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Abstract- Immiscible flows arise in many diverse applications in mechanical, chemical, and environmental engineering. 

Such flows involve interfacial conditions and often feature mass (species) diffusion. Motivated by applications in non-
Newtonian duct processing, in the present article a comprehensive mathematical model and computational simulation 
with the modified cubic B-spine-Differential Quadrature method (MCB-DQM) is described for the unsteady flow of two 
immiscible fluids - dusty (fluid-particle suspension) and Eringen micropolar fluids - through horizontal channels. Mass 
transfer is invoked due to particle concentration effects in the dusty fluid. The stable liquid-liquid interface is considered 
between two immiscible fluids. Fluids are considered to flow under three different pressure gradients- constant, decaying, 
and periodic pressure gradient and the flow characteristics are scrutinized for each case. The coupled partial differential 
equations are solved with the MCB-DQM under physically realistic boundary conditions. Linear velocity, micro-rotation 
(Eringen angular velocity) is visualized graphically for the effects of the key hydrodynamic and solutal parameters i. e. 
Reynolds number, particle concentration parameter, Eringen micropolar material parameter, volume fraction parameter, 
pressure gradient, time, viscosity ratio, and density ratio. The simulations extend the current understanding of two-fluid 
interfacial duct hydrodynamics and mass transfer and are relevant to chemical engineering separation processing 
systems. 

Keywords: Dusty fluids, micropolar fluid, immiscible flow, unsteady, interface tracking, volume-of-fluid method, modified 
cubic B-spline, differential quadrature method, non-Newtonian duct systems. 

Nomenclature 

∅ The particle volume fraction 𝝆 
𝟏
, 𝝆 

𝟐
 The density of lower and upper region 

fluids  
𝒖  The velocity of the fluid.  𝝁

𝟏
, 𝝁

𝟐
 viscosity co-efficient lower and upper 

region fluids 

𝒖𝒑 Particle phase velocity  𝒖𝟏 the velocity of lower region micropolar 
fluid 

𝑴∗ 
Microrotations of lower region 
micropolar fluid 

𝒖𝟐 the velocity of upper region dusty fluid 

𝝆 The density of the fluid 𝑹 Particle concentration parameter 

𝝆 
𝒑

 Particle density  𝒓𝟏 Ratio of viscosities  

𝝁 Viscosity of fluid 𝒓𝟐 Ratio of densities 

𝒇 The body force 𝒓𝟑 Particle and fluid density ratio 

𝝃 T h e  body couple per unit mass 𝑹𝒆 Reynolds number 
𝝎𝟏, 𝝎𝟐 𝒂𝒏𝒅 𝝎𝟑  gyro-viscosity coefficients  𝒏𝟏 The micropolar parameter 

𝝉 Gyration parameter 𝑲∗ The stokes drag coefficient 
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𝜸𝟏, 𝛊 Vortex viscosity coefficients 𝒓 The radius of the dust particle 
𝑬 The volume transfer coefficient  𝒎𝒑 The average mass of particles 𝒌𝒈 

1. Introduction 

In many industrial problems, including separation of complex petrochemical liquids, petroleum filtration, polymer 

technology, slurry dynamics, it is challenging to isolate pure liquids. Often industrial fluent media contain impurities such 

as dust particles and other suspended contaminants and such fluids are known as “dusty” or “fluid-particle suspensions” 

and require multi-phase models for their accurate simulation. Thus, in functional applications such as petroleum 

production, crude oil purification, biochemical separation techniques, etc, the study of two-phase flows is significant 

where solid spherical objects are distributed in a sterile fluid. Many excellent investigations of the transport phenomena 

associated with the passage of dusty fluids through conduits (ducts, pipes, channels, etc) have been reported, largely 

motivated by a desire to explain the fundamental aspects of dust particle and fluid phase interaction in petroleum, 

biochemical, nuclear, geothermal and also aerospace (fuel) systems. In his pioneering work, Saffman [1] proposed a dusty 

fluid dynamics framework taking into consideration the impact of suspended particles on laminar flow stability, assuming 

a homogenous distribution of identical particles in a dusty gas. Michael and Miller[2] derived analytical solutions for a 

moving dusty gas, which is dispersed uniformly over a rigid plane, considering phase change and oscillatory wave decay 

as functions of the mass concentration of the dust and that the dusty density greatly exceeds the gas density. Later 

Peddieson [3] examined boundary-layer characteristics of a quintet of unsteady parallel flows of particulate (dusty) 

suspensions using the Marble dusty gas model. Mitra and Bhattacharyya [3]–[5]discussed the unstable gas flow between 

two parallel plates, for a variety of boundary conditions (oscillatory and stationary walls) and in magnetic fields. Chamkha 

[6] used a finite difference algorithm to compute solutions for dusty heat transfer in a porous walled channel with heat 

transfer. Attia et al. [7]–[9] explored the dusty fluid flow, hydromagnetic dusty Couette flow with heat transfer, and dusty 

flows in porous media under transpiration wall effects using analytical methods. Attia [10] further investigated the 

movement of dust particles in non-Newtonian Darcy flow under a magnetic field. Singh et al. [11] examined the unstable 

flow between two oscillating walls in a hydromagnetic channel for viscous, dusty fluid.  

Although several studies described earlier have considered non-Newtonian fluid characteristics (viscoelastic, viscoplastic, 

etc), they have neglected microstructural effects. In real industrial and geophysical systems, suspended particles may 

spin independently of the suspension fluid medium. This rotation at the microscopic level cannot be simulated with 

conventional rheological models. Particles in atmospheric flows also exhibit such behavior. The diversion from the direct 

relationship between pressure and tension of a liquid also contributes to non-Newtonian liquid characteristics. To 

simulate more precisely the influence of microstructural characteristics on global hydrodynamic behavior, a more 

complex framework is required. The micropolar theory offers such a framework by extending the conventional linear 

momentum conservation to include angular momentum conservation of the microelements (“micro-rotation”) in 

complex fluent media. Physically micropolar fluids represent fluids consisting of rigid, randomly oriented (or spherical) 

particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The micropolar theory, 

therefore, features gyratory motions of microelements via the inclusion of an appropriate micro-rotation vector field 

which permits analysis of different rotational degrees of freedom. Animal, blood, polyurethane solution, liquids with 

admixtures, rheological slurries, synovial fluid, crude oil, and multiphase geothermal liquids are just some examples of 

complex media which can be simulated via micropolar fluid dynamics. Eringen [12] introduced micropolar fluid dynamics 
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in his monumental paper as a special case of his more general micromorphic (“simple microfluid”) theory in the mid-

1960s.  A remarkable aspect of the Eringen formulation is the elegance by which simpler models e. g. Newtonian can be 

extracted as special cases. The microstructure is simulated with the microrotation vector, extraneous to the vorticity 

vector that creates unsymmetric stress. The theory is also more comprehensive than the Stokes polar (couple stress) 

model since it includes separate balance equations for micro-rotation providing a more comprehensive picture of 

microstructural behavior. Micropolar fluid mechanics has been embraced extensively in the engineering and scientific 

community and has been deployed successfully to investigate an astonishing range of applications spanning 

hemodynamics, grease tribology, bearing design, orthopedics, drug delivery (pharmacodynamics), sediment transport in 

river hydraulics, nuclear reactor flows, seeded magnetohydrodynamic energy generator fluid dynamics, ocular 

biomechanics, vestibular flows, geothermic, biomagnetic peristatic flows, etc.  The application of micropolar fluid 

dynamics for simulation and predicting the flows behavior in microchannels, primarily on the flow field's topology was 

provided by Kucaba-Piȩtal [13]. 

 Many of these areas have been reviewed by Bég [14]. One of the earliest studies of micropolar boundary layer flows was 

communicated by  Peddieson [15] who considered plane or axisymmetric stagnation-point flow of a micropolar fluid over 

a flat plate and also turbulent shear flows, thereby providing a solid base for future modifications to multi-physics. 

Apparao et al. [16] studied orthopedic lubrication performance with micropolar theory, confirming the superior load-

carrying characteristics achieved relative to conventional Newtonian viscous liquids. The microstructural influence on 

blood rheology characteristics was reported by Kang and Eringen [17].  Devakar and Iyerger [18] investigated the 

dynamics of micropolar liquids in channels. Jangili et al. [19]used a homotopy method to compute the entropy generate 

rate in hydromagnetic micropolar buoyancy-driven flow in solar ducts. Wang et al.[20], [21] examined the motion of 

micropolar fluids into a micro-parallel system. Gajella et al. [22] investigated the thermodynamic optimization of 

hydromagnetic micropolar Taylor-Couette flow with heat source effects. Further studies of micropolar duct fluid 

dynamics include Bég et al. [23](on non-isothermal Hall hydromagnetic channel flow), Shamshuddin et al. [24] (on 

reactive oscillating micropolar thermo-solutal channel flow) and Bég et al. [25](on ion-slip micropolar gas dynamics in a 

rectangular duct).  

There are many applications in engineering sciences and geophysics in which multiple fluids arise which do not mix. These 

immiscible fluids feature in oil slicks, river contamination, crystal growth, sedimentary reservoir systems, desalination 

processes, liquid metal fabrication, multi-phase oil pipeline transport, ice accretion on aircraft wings, biopolymeric 

interfaces, etc. The analysis of immiscible fluid flows has therefore stimulated significant interest in applied mathematics 

and engineering computation, in parallel with experimental studies. Sherief et al.[26] considered the minor deformed 

interface between two immiscible liquids where one of the fluids is micropolar in the channel and then the Stokes flow 

generated by a spherical shape particle migrating orthogonal to a planar interface separating two semi-infinite immiscible 

fluid regimes. They adopted an analytical and numerical technique based on collocation approximation. An excellent 

appraisal of the viscous Newtonian flow of two immiscible fluids in channel flow has been documented in the classical 

treatise by Bird et al[27]. Some extensive studies of immiscible fluid duct (channel) flows are found in [28]–[31] Umavathi 

et al. [32] provided an analytical solution for the free convective flow of two immiscible fluids (Stokes’ polar and viscous 

Newtonian) in a composite porous medium vertical channel for fully developed laminar conditions. Kumar et al. [33] later 

extended the analysis to micropolar and Newtonian liquids.  Srinivas and Ramana Murthy [34] studied the dynamics of 
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two homogeneous, permeable beds saturated with different density immiscible couple stress (polar) fluids with carefully 

constructed interfacial boundary conditions. Srinivas et al. [35] extended the hydrodynamic model to consider heat 

transfer effects with entropy generation minimization for a horizontal channel. Srinivas and Ramana Murthy [36] further 

generalized the studies in a wider range of thermal boundary conditions. Borrelli et al. [37]  considered two immiscible 

Newtonian fluids in a vertical channel under a transverse magnetic field, examining buoyancy effects in detail and 

computing reversed flow phenomena. Ramana Murthy et al. [38]extended the studies above for couple stress flows in 

ducts to consider non-linear thermal radiative effects with an algebraic flux model and homotopy method. Chandrawat 

et.al.[39] explored the flow of two immiscible dusty and non-dusty fluids in the horizontal channel with different 

geometries. 

Most of the studies mentioned above neglected time effects i. e. were confined to steady-state analysis. However 

numerous interfacial duct flows feature transient effects. Time inclusion in mathematical models can provide a deeper 

insight into the transport phenomena and modifications in flow characteristics can be addressed more accurately. Despite 

significant relevance to modern industry, relatively little work has however been conducted regarding the time-

dependent unstable flow of two immiscible liquids. The unsteady multiphase flow problem has been rigorously explored 

via the front tracking method by Tryggvason et al.[40]. Riaz et al. [41] studied the instability of immiscible two-phase flow 

in porous media. The unstable hydromagnetic flow of immiscible liquids was numerically studied by Vajravelu et al.[42]  

with different permeability of two permeable beds. The unstable oscillatory flow problem with heat transfer of two 

viscous immiscible fluids through a horizontal channel is studied by Umavathi et al.[43]. A study of the coupling effect of 

heat and mass convection in time-dependent incompressible immiscible viscous fluid flow was presented by Umavathi 

et al.[44]. 

The extensive spectrum of industrial linear and nonlinear fluid flow problems can be numerically resolved using finite 

difference, finite element, and finite volume techniques. Devakar and Raje [45] numerically explored the time-dependent 

unsteady flow of two immiscible fluids with an explicit Crank-Nicolson finite difference method. The low-order 

approaches do use several grid points to achieve an acceptable degree of accuracy to obtain specific outcomes at such 

defined points. The differential quadrature method (DQM) was originally proposed by the celebrated Princeton applied 

mathematician, Richard Bellman [46] in search of an efficient discretization strategy to achieve concise numerical 

solutions with significantly reduced grid steps. DQM was further improved by Quan and Chang [47], [48]. This technique 

is also convenient to use and computationally efficient with reduced data complexity, leading to error mitigation and 

easy implementation. Using the DQM, Katta and Joshi [49] analyzed the behavior of incomprehensible viscoelastic 

magnetohydrodynamic flow in a porous medium channel. Katta et al. [50]again numerically explored the unsteady fluid 

flow of two immiscible fluids by DQM. DQM has been implemented also for numerical solutions of the two immiscible 

fluids by Chandrawat et al.[51] [52] 

A close inspection of the scientific literature has shown that, to the best knowledge of the authors, no attempt has been 

made thus far to study the unsteady flow of two immiscible (dusty and micro-polar fluids) with a stable interface. This is 

the focus of the present article. Separate scheme of stable interface is considered in a horizontal channel. The velocity 

profiles for both fluids, micro-rotation (angular velocity) profile, and interface tracking under consideration of both 

schemes flow and various fluid parameters have been obtained numerically by solving the transformed coupled partial 

differential equations using the modified cubic B-spline differential quadrature method. The present study has significant 
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applications in a range of technologies including transient two-phase transport in energy generator ducts [53], 

hemodynamic flow separation[54], [55], and biological pump designs [56].  

2. Mathematical model for micropolar-dusty two-fluid immiscible duct flow 

The field equations governing the dusty fluid flow are following [7]: 

Continuity equation: 

∅𝑡 − 𝛻. ((1 − ∅)𝑢) = 0                                                                                                                         (1) 

∅𝑡 − 𝛻. (∅𝑢𝑝) = 0                                                                                                                                   (2) 

Fluid and Particulate phase momenta equations: 

𝜌 (1 − ∅). (
𝜕𝑢

𝜕𝑡
+ 𝑢. 𝛻 𝑢) = (1 − ∅)(−𝛻𝑝 + 𝜇𝛻2𝑢) − 𝐸𝜌 𝑃∅(𝑢 − 𝑢𝑃)                                     (3) 

𝜌 𝑝∅ (
𝜕𝑢𝑃

𝜕𝑡
+ 𝑢𝑃. 𝛻𝑢𝑃) =  𝐸𝜌 𝑝∅(𝑢 − 𝑢𝑝)                                                                                        (4) 

Micropolar fluid flow field equations are given following Eringen [13]: 

𝜌 𝑡 + 𝛻. (𝜌 𝑢) = 0                                                                                                         (5) 

𝛻𝑝 − 𝜄𝛻 × 𝑀 + 𝜌 .
𝜕𝑢

𝜕𝑡
= 𝜌 𝑓 + (𝜇 + 𝜄)𝛻 × 𝛻 × 𝑢 + (𝛾1 + 2𝜇 + 𝜄)𝛻(𝛻. 𝑢)                                  (6) 

 𝜌 . 𝜏
𝜕𝑀

𝜕𝑡
+ 𝜄𝛻 × 𝜐 = 𝜌 𝜉 − 2𝜄𝑀 + 𝜔1 𝛻 × 𝛻 × 𝑀 − (𝜔1 + 𝜔2 + 𝜔3)𝛻(𝛻.𝑀)           

    (7) 

Here ∅  is the particle volume fraction, 𝑢 is the velocity of the respective dusty and micropolar fluid, 𝑢𝑝 is the velocity of 

a dust particle, 𝑀  is the micro-rotation vector of micropolar fluid, 𝜌  is the density of the fluid, 𝑝 is the fluid pressure at 

any point, 𝜌 𝑝 is the density of dust particles, the material constants 𝛾1, ι  and 𝜇 are viscosity coefficients for respective 

fluids, 𝑓 is the body force, 𝜉 is the body couple per unit mass, 𝜔1, 𝜔2 𝑎𝑛𝑑 𝜔3 are gyro-viscosity coefficients, 𝜏 Gyration 

parameter and 𝐸 is the volume transfer coefficient for dust particles. Some assumptions have been made to develop the 

governing equations regarding the analysis of dusty fluids (fluid-particle suspensions). The fluid is incompressible, and its 

density is believed to be stable for both phases. The dust particles are in an electro-free form and circular in shape. All 

the dust particles have the same size, mass, are non-deformable, and are homogeneously distributed throughout the 

fluid. If the dusty fluid flows across the channel (duct) boundaries, then particles cannot exit via the walls. It is also 

assumed that the particle phase is sufficiently dilute such that the interactions between any two particles are ignored, 

and the dust particle size is also relatively tiny in scale. Hence the net dust effect on the fluid particles is equivalent to the 

additional force𝐸𝜌 𝑝∅(𝑢 − 𝑢𝑝) per unit volume. 

2.1. Formulation of dusty and Micro-polar fluid flow  

Consider the unsteady, fully developed, laminar, unidirectional, immiscible, incompressible viscous flow of Eringen 

micropolar and Saffman dusty fluids. Some assumptions are invoked under Scheme-I. Both fluids move between two 

horizontal parallel non-porous plates. Both plates are electrically non-conductive. The plates are located in the X-Z plane 

as depicted in Figure 1. Eringen micropolar fluid occupies the lower channel half-space (zone) i. e. zone I (−𝑘 ≤ 𝑦 ≤ 0) 

and possesses the fluid velocity 𝑢1, density 𝜌 1, viscosity 𝜇1. Saffman dusty fluid occupies the upper half-space zone, zone 

II (0 ≤ 𝑦 ≤ 𝑘) and possesses fluid velocity 𝑢2, density 𝜌 2, viscosity 𝜇2.In the dusty fluid, the dust particles have particle 

velocity 𝑢𝑝, and density 𝜌 𝑝. The transportation attributes are unchanged in both the zones and the common pressure 
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gradients are applied from the horizontal (X) axial direction. The flow of dusty fluid in Zone –II is governed by the 

equations  (1),(2),(3), and (4) and the flow of micropolar fluid in Zone –I is governed by the equation (5),(6), and (7).  The 

fluid velocity vectors in both zones (i=I, II) are 𝑢𝑖(𝑦, 𝑡) ), particle velocity is 𝑢𝑝(𝑦, 𝑡) in  zone II (upper), and the  micro-

rotation vector 𝑀∗(𝑦, 𝑡) in zone I (lower) are assumed to be (𝑢𝑖=(𝑢𝑖(𝑦, 𝑡),0,0) , (𝑢𝑝=(𝑢𝑝(𝑦, 𝑡),0,0)  and (𝑀 =

(0,0,𝑀∗(𝑦, 𝑡)) respectively. The movement of fluids is incompressible unsteady and driven by an applied pressure 

gradient in the X-axial direction; therefore, the velocity profile is unidirectional.  The fluid layers are mechanically coupled 

through the mode of momentum exchange. Transferring momentum arises through consistency in velocity and shear 

stress over the interface. However, we assume that the flow rate and shear pressure are also stable at the interface 

between two liquids. Fluid flow and micro-rotation distribution under the aforesaid assumed constraints take the form: 

 

 

 

Figure 1: Geometrical configuration of Couette flow of dusty and micropolar fluids under the scheme-I. 

Zone-I (Micropolar fluid: −k ≤ y ≤ 0). 

      𝛻. (𝜌 𝑢1) = 0                                                                                                              (8) 

      𝜌 1.
𝜕𝑢1

𝑑𝑡
= −𝛻𝑝 + 𝜄 

𝜕𝑀∗

𝜕𝑦
+ (𝜇1 + 𝜄)

𝜕2𝑢1

𝜕𝑦2
                                                                                     (9)

      𝜌 1. 𝜏
𝜕𝑀∗

𝜕𝑡
= −2𝜄𝑀∗ − 𝜄 

𝜕𝑢1

𝜕𝑦
+ 𝜔1  

𝜕2𝑀∗

𝜕𝑦2
                                                                        (10)            

Zone-II (Dusty fluid: 0 ≤ y ≤ k) 

𝜌 2.
𝜕𝑢2

𝜕𝑡
= −𝛻𝑝 + 𝜇2

𝜕2𝑢2

𝜕𝑦2
− 𝐸𝜌 𝑝∅

(𝑢2−𝑢𝑝)

(1−∅)
                                                                                                                             (11)                                                                                                                                                          

 
𝜕𝑢𝑝

𝜕𝑡
=  𝐸(𝑢2 − 𝑢𝑝)                                                                                                                                                                        (12) 

Classical hyper-stick and no-slip boundary conditions are considered and can be numerical as 

Initial conditions: At  t ≤  0, 

𝑢1(𝑦, 𝑡) = 0 𝑓𝑜𝑟 − 𝑘 ≤ 𝑦 ≤ 0                                                                                                  (13) 

𝑀∗(𝑦, 𝑡) = 0 𝑓𝑜𝑟 − 𝑘 ≤ 𝑦 ≤ 0                                                                                                (14) 

𝑢2(𝑦, 𝑡) = 0 𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝑘                                                                                                     (15) 

Region -I 

Region -II 
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𝑢𝑝(𝑦, 𝑡) = 0 𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝑘                                                                                             (16) 

Boundary and interface conditions: At t > 0, 

𝑢1(−𝑘, 𝑡) = 0                                                                                                                        (17) 

         𝑢2(𝑘, 𝑡) =  0                                                                                                                            (18)  

𝑢𝑝(𝑘, 𝑡) =  0                                                                                                                           (19) 

𝑀∗(−𝑘, 𝑡) = 0                                                                                                                           (20) 

 The fluid velocities and shear stress are both continuous at the liquid-liquid interface [45], [57], [58] These constraints 

can be expressed mathematically as follows. 

𝑢1(0, 𝑡) = 𝑢2(0, 𝑡)                                                                                                                    (21) 

 

As the microrotation is proportional to the couple stress at the boundary (At the interface), hence the general form of 
the interfacial condition for angular velocity  𝑀∗𝑒specially for the droplet case can be considered as adopted in Niefer 
and Kaloni [59], Faltas and  Saad [60]. However, in the current study, we chose the interfacial condition for 
microrotation(spin–vorticity) [45][57][58] over other existing conditions at y=0, because it is realistic and consistent to 
apply at the interface between two immiscible fluids. 

𝑀∗(0, 𝑡) = −
1

2
𝑢1𝑦                                                                                                                                    (22) 

 

𝜇2𝑢2𝑦 = (𝜇1 + 𝜄)𝑢1𝑦 + 𝜄𝑀∗   𝑎𝑡 𝑦 = 0                                                                                (23) 

Introducing the non-dimensional parameters �̅� =
𝑥

𝑘
, �̅� =

𝑦

𝑘
, 𝑢1̅̅ ̅ =

𝑢1

𝑈0
, 𝑢2̅̅ ̅ =

𝑢2

𝑈0
, 𝑢𝑝̅̅ ̅ =

𝑢𝑝

𝑈0
, �̅� =

𝑝

  𝜌 1𝑈0
2 , 𝑡̅ =

𝑡𝑈0

𝑘
 ,  𝜆1 =

(𝜇1 + 𝜄/2)𝜏  with 𝜏 = 𝑘2 and 𝑛1 =
𝜄

𝜇1
 and 𝐸 =

6𝜋𝑟𝜇2

𝑚𝑝
  is the volume transfer coefficient with an average mass of dust 

particle 𝑚𝑝 and radius 𝑟. Hence the last term of equation (11)  𝐸𝜌 𝑝∅
(𝑢2−𝑢𝑝)

(1−∅)
 can be written as 

𝑅∗𝑟1

𝑅𝑒∗𝑟2
(𝑢2 − 𝑢𝑝) where 

𝑅 =
𝐾∗𝑁𝑘2∅

𝜇2(1−∅)
  is particle concentration parameter and 𝐾∗ = 6𝜋𝑟𝜇2𝑈0 is the Stokes drag coefficient, 𝑁 is the number 

density of particle per unit volume, and 𝑅𝑒 =
  𝜌 1𝑈0

𝜇1
 is the Reynolds number. 𝑟1 =

𝜇2

𝜇1
, 𝑟2 =

𝜌 2

𝜌 1
  are the ratio of viscosity 

and density of the two liquids, respectively. Hence the last term of equation (12) is updated accordingly where  𝑟3 =
𝜌 2

𝜌 𝑝
  

denotes the ratio of density of fluid to the density of dust particles in Zone II. −∇p = −∂p/ ∂x =  𝐺𝑒(𝑡) is the applied 

time dependent pressure gradient in the x-axial direction with 𝑡 > 0 .Three  distinct cases for 𝐺𝑒(𝑡)  are considered in 

the numerical analysis: 

Case-I: 𝐺𝑒(𝑡)  = 𝐺𝑒 (If the fluid flow is triggered by an applied constant pressure gradient) 

Case-II:   𝐺𝑒(𝑡)  = 𝐺𝑒 ∗ 𝑆𝑖𝑛(𝑤𝑡) (If the fluid flow is triggered by an applied periodic pressure gradient with oscillating 

parameter 𝑤)  

Case-III:  𝐺𝑒(𝑡)  = 𝐺𝑒 ∗ 𝑒−𝜆𝑡 (If the fluid flow is triggered by a decaying pressure gradient with decaying 

parameter𝜆).  

After dropping the bars and introducing the above non-dimensional parameters and appropriate initial, interfacial, and 

boundary conditions, according to the scheme-I, the equations emerge as: 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar liquid zone): 

𝑢1𝑡 =  
𝐺𝑒(𝑡)

𝑅𝑒
+

𝑛1𝑀∗𝑦

𝑅𝑒
+

(𝑛1+1
 
)𝑢1𝑦𝑦

𝑅𝑒
                                                                                                   (24) 
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𝑀∗𝑡 =  
(2+𝑛1

 
)𝑀∗𝑦𝑦

2𝑅𝑒
−

𝑛1(2𝑀∗+   𝑢1𝑦)

𝑅𝑒
                                                                                                   (25) 

Zone-II (0 ≤ y ≤ k) (Saffman dusty fluid zone): 

𝑢2𝑡 =  
𝐺𝑒(𝑡)

𝑟2
+

𝑟1

𝑟2

𝑢2𝑦𝑦

𝑅𝑒
−

𝑅∗𝑟1

𝑟2

(𝑢2−𝑢𝑝)

𝑅𝑒
                                                                                                        (26) 

  𝑢𝑝𝑡 =
𝑅∗𝑟3∗𝑟1

𝑟2

(𝑢2−𝑢𝑝)

𝑅𝑒
                                                                                                                               (27) 

Eqns. (13)-(23) are considered as initial, interfacial, and boundary conditions with 𝑘 = 1   

 

3. Numerical solution by differential quadrature method  

To analyze micro-rotational and velocity behavior followed by the scheme, we split the domain [-1, 1] for micro-polar 

liquid (zone-I) in [-1, 0] and dusty fluid in [0, 1] (Zone-II) then both domains are likewise discretized with step length h in 

y-axial directional and 𝑘′in the time scales. The nodes are presumed to disperse uniformly. 

            𝑈 = 𝑦1 < 𝑦2 < ⋯ < 𝑦 < 𝑦𝑛 = 𝑏, such that  𝑦𝑖+1 − 𝑦𝑖 = ℎ  on the real axis.           (28) 

After that I, and II order derivatives of 𝑢1(𝑦, 𝑡), 𝑢2(𝑦, 𝑡),𝑀∗(𝑦, 𝑡), 𝑢
∗(𝑦, 𝑡), 𝑎𝑛𝑑 𝐶𝑖(𝑦, 𝑡)  are obtained at any time on the 

nodes 𝑥𝑖 ,  

      For = 1,2,3,… , 𝑛 . 

𝑢1𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑈∗𝑖𝑗𝑢1(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 , for 𝑗 = 1,2, … , 𝑁                                                                  (29)                                                       

𝑢1𝑦𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑉∗𝑖𝑗𝑢1(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 , for 𝑗 = 1,2, … , 𝑁                                                               (30)                                                      

𝑢2𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑈∗𝑖𝑗𝑢2(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 , for 𝑗 = 1,2, … , 𝑁                                                                   (31)                                                        

𝑢2𝑦𝑦(𝑦𝑖 , 𝑡) = ∑ 𝑉∗𝑖𝑗𝑢2(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 , for 𝑗 = 1,2, … ,𝑁                                                                (32) 

𝑀∗𝑦
(𝑦𝑖 , 𝑡) = ∑ 𝑈∗𝑖𝑗𝑀∗(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 , for 𝑗 = 1,2, … , 𝑁                                                                  (33)                                                      

𝑀∗𝑦𝑦
(𝑦𝑖 , 𝑡) = ∑ 𝑉∗𝑖𝑗𝑀∗(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 , for 𝑗 = 1,2, … , 𝑁                                                               (34)                                                     

Here 𝑈∗𝑖𝑗  𝑉
∗
𝑖𝑗are the respective weighting coefficients of first and second-order derivative coefficients concerning y 

measured by MCB-Spline functions. The functions of the knots are mentioned below. 

𝜑𝑗(𝑦) =
1

ℎ3

{
  
 

  
 

 

(𝑦 − 𝑦𝑗−2)
3
,                                     𝑦𝜖 [𝑦𝑗−2, 𝑦𝑗−1)

(𝑦 − 𝑦𝑗−2)
3
− 4(𝑦 − 𝑦𝑗−1)

3
,     𝑦𝜖[𝑦𝑗−1, 𝑦𝑗)

(𝑦𝑗+2 − 𝑦)
3
− 4(𝑦𝑗+1 − 𝑦)

3
,         𝑦𝜖 [𝑦𝑗 , 𝑦𝑗+1)

(𝑦𝑗+2 − 𝑦)
3
,                                   𝑦𝜖[𝑦𝑗+1, 𝑦𝑗+2)

0,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

                                                                                                (35)                                        

where {𝜑0(𝑦), 𝜑1(𝑦), 𝜑2(𝑦)… , 𝜑𝑛+1(𝑦)} are the basis function over the region [a, b]. The basis function is updated as 

follows to get a system of equations that could be expressed by a diagonal-dominated matrix  [50].  
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  𝜓1(𝑦) = 𝜑1(𝑦) + 2𝜑0(𝑦)

  𝜓2(𝑦) = 𝜑2(𝑦) − 𝜑0(𝑦)

  𝜓𝑗(𝑦) = 𝜑𝑗  , 𝑓𝑜𝑟 𝑗 = 3,… . 𝑁 − 2 

    𝜓𝑁−1(𝑦) =  𝜑𝑁−1(𝑦) − 𝜑𝑁+1(𝑦) 

  𝜓𝑁(𝑦) = 𝜑𝑁(𝑦) + 2𝜑𝑁+1(𝑦) }
 
 

 
 

                                                                                                                                                (36) 

The derivative of the basic functions are as follows: 

𝜑𝑗
′(𝑦) =

1

ℎ3

{
  
 

  
 

 

3(𝑦 − 𝑦𝑗−2)
2
,                                     𝑦𝜖 [𝑦𝑗−2, 𝑦𝑗−1)

3(𝑦 − 𝑦𝑗−2)
2
− 12(𝑦 − 𝑦𝑗−1)

2
,     𝑦𝜖[𝑦𝑗−1, 𝑦𝑗)

−3(𝑦𝑗+2 − 𝑦)
2
+ 12(𝑦𝑗+1 − 𝑦)

2
, 𝑦𝜖 [𝑦𝑗 , 𝑦𝑗+1)

−3(𝑦𝑗+2 − 𝑦)
2
,                                   𝑦𝜖[𝑦𝑗+1, 𝑦𝑗+2)

0,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

                                                                                       (37) 

 𝜓′
1
(𝑦) = 𝜑′

1
(𝑦) + 2𝜑′

0
(𝑦)

  𝜓′
2
(𝑦) = 𝜑′

2
(𝑦) − 𝜑′

0
(𝑦)

  𝜓′
𝑗
(𝑦) = 𝜑′

𝑗
 , 𝑓𝑜𝑟 𝑗 = 3,… . 𝑁 − 2 

    𝜓′
𝑁−1

(𝑦) =  𝜑′
𝑁−1

(𝑦) − 𝜑′
𝑁+1

(𝑦) 

  𝜓′
𝑁
(𝑦) = 𝜑′

𝑁
(𝑦) + 2𝜑′

𝑁+1
(𝑦) }

 
 

 
 

                                                                                                                                           (38)  

The estimate of the first-order derivative is 

 𝜓𝑘
′ (𝑦𝑖) = ∑  𝑈∗𝑖𝑗𝜑𝑘(𝑦𝑗)

               𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁
        𝑘 = 1,2, … , 𝑁

𝑁
𝑗=1                                                                                                                   (39) 

Then using  𝑈∗𝑖𝑗  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 in equation (18) the following tri-diagonal system of equation is established as   

[
 
 
 
 
 
 
6 1 0
0 4 1
0 1 4

0
0
1

⋯ 0 0

⋮ 0 ⋱ 0 ⋮

0 0 ⋯
1
0
0

4 1 0
1 4 0
0 1 6]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 𝑈∗𝑖1
 𝑈∗𝑖2
 𝑈∗𝑖3
.
.
.
.
,

 𝑈∗𝑖𝑁−1
 𝑈∗𝑖𝑁 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
  𝜓′

1
(𝑦𝑖)

  𝜓′
2
(𝑦𝑖)

  𝜓′
3
(𝑦𝑖)
.
.
.
.
,

  𝜓′
𝑁−1

(𝑦𝑖)

  𝜓′
𝑁
(𝑦𝑖) ]

 
 
 
 
 
 
 
 
 
 

                                                                                                     (40) 

Solving the above system the weighting coefficients { 𝑈∗1,1 , 𝑈∗1,2… ,𝑈
∗
𝑖𝑁}, {𝑈

∗
2,1 , 𝑈

∗
2,2… ,𝑈

∗
2𝑁 }, … . , {𝑈

∗
𝑁,1 ,

𝑈∗𝑁,2… ,𝑈
∗
𝑁𝑁},  of 1st order derivatives of  linear and angular velocities, are obtained, and then the value of 𝑊𝑖,𝑗

(2) for 𝑖 =

1,2,3…𝑁, 𝑗 = 1,2,3 …𝑁   is calculated as follows 

𝑉∗𝑖𝑗 = 2𝑈
∗
𝑖𝑗 (𝑈

∗
𝑖𝑗 −

1

𝑦𝑖−𝑦𝑗
) for 𝑖 ≠ 𝑗

𝑉∗𝑖𝑖 = −∑ 𝑉∗𝑖𝑗
𝑁
𝑖=1,𝑖≠𝑗 𝑓𝑜𝑟 𝑖 = 𝑗

}                                                                                                                                      (41) 

 

3.1. Computation of velocity and microrotation profiles 

To obtain the velocity and micro-rotation profiles for Saffman dusty and Eringen micropolar fluids in the respective Zones 

under the scheme-I, one may replace the approximation of the spatial components of the I and II order obtained by using 
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MCB-DQM. Hence the system of coupled partial equations (24)-(27) followed by schemes numerically solved with the 

initial and boundary conditions (13)-(23) and the linear velocities and angular velocity component (microrotation) profiles 

of both fluids and particles are readily obtained. The equations (24)-(27) can be updated as follows: 

 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar liquid zone): 

𝑢1𝑡=𝐺𝑒(𝑡) +
𝑛1

𝑅𝑒
(∑ 𝑈∗𝑖𝑗𝑀∗(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 ) +

(𝑛1+1
 
)

𝑅𝑒
 (∑ 𝑉∗𝑖𝑗𝑢1(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  )                                       (42) 

  𝑀∗𝑡 =
(𝑛1+2

 
)

2𝑅𝑒
(∑ 𝑉∗𝑖𝑗𝑀∗(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 ) −

𝑛1

𝑅𝑒
 (2𝑀∗ + ∑ 𝑈∗𝑖𝑗𝑢1(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 )                                     (43) 

Zone-II (0 ≤ y ≤ k) (Saffman Dusty fluid) 

𝑢2𝑡 =  
𝐺𝑒(𝑡)

𝑟2
+

𝑟1

𝑟2

∑ 𝑉∗𝑖𝑗𝑢2(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−

𝑅∗𝑟1

𝑟2

(𝑢2(𝑦𝑗,𝑡)−𝑢𝑝(𝑦𝑗,𝑡))

𝑅𝑒
                                                                         (44)  

  𝑢𝑝𝑡 =
𝑅∗𝑟3∗𝑟1

𝑟2

(𝑢2(𝑦𝑗,𝑡)−𝑢𝑝(𝑦𝑗,𝑡))

𝑅𝑒
                                                                                                           (45) 

Thus, equations are reduced into a system of ordinary differential equations in time, that is, for i=1, 2, 3…, N, and the 

system is solved by the robust four-step third-order SSP RK43 scheme. The velocities and microrotation in both Zones are 

obtained as follows: 

At first - the step for i=1,2,3…,n 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar fluid): 

𝑢11 =  𝑢10 +
Δ𝑡

2
(𝐺𝑒(𝑡) +

𝑛1

𝑅𝑒
(∑ 𝑈∗𝑖𝑗𝑀∗0

(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) +

(𝑛1+1
 
)

𝑅𝑒
 (∑ 𝑉∗𝑖𝑗𝑢10(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  ))                 (46) 

  𝑀∗1 =
𝑀∗0

+
𝛥𝑡

2
(
(𝑛1+2

 
)

2𝑅𝑒
(∑ 𝑉∗𝑖𝑗𝑀∗0

(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) −

𝑛1

𝑅𝑒
 (2𝑀∗0

+ ∑ 𝑈∗𝑖𝑗𝑢10(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) )              (47) 

Zone-II (0 ≤ y ≤ k) (Saffman dusty fluid): 

𝑢21 =𝑢20 +
𝛥𝑡

2
  (

𝐺𝑒(𝑡)

𝑟2
+

𝑟1

𝑟2

∑ 𝑉∗𝑖𝑗𝑢20(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−

𝑅∗𝑟1

𝑟2

(𝑢20(𝑦𝑗,𝑡)−𝑢𝑝0
(𝑦𝑗,𝑡))

𝑅𝑒
)                                        (48) 

  𝑢𝑝1 = 𝑢𝑝0 +
𝛥𝑡

2
(
𝑅∗𝑟3∗𝑟1

𝑟2

(𝑢20(𝑦𝑗,𝑡)−𝑢𝑝0
(𝑦𝑗,𝑡))

𝑅𝑒
)                                                                                  (49) 

At the first step of the method, the conditions  (13)-(23)are regarded favorably.  

At the second step for i=1,2,3…,n: 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar fluid): 

𝑢12 =  𝑢11 +
Δ𝑡

2
(𝐺𝑒(𝑡) +

𝑛1

𝑅𝑒
(∑ 𝑈∗𝑖𝑗𝑀∗1

(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) +

(𝑛1+1
 
)

𝑅𝑒
 (∑ 𝑉∗𝑖𝑗𝑢11(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  ))                (50) 

  𝑀∗2 =
𝑀∗1

+
𝛥𝑡

2
(
(𝑛1+2

 
)

2𝑅𝑒
(∑ 𝑉∗𝑖𝑗𝑀∗1

(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) −

𝑛1

𝑅𝑒
 (2𝑀∗1

+ ∑ 𝑈∗𝑖𝑗𝑢11(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) )             (51) 

Zone-II (0 ≤ y ≤ k) (Saffman dusty fluid): 

𝑢22 =𝑢21 +
𝛥𝑡

2
  (

𝐺𝑒(𝑡)

𝑟2
+

𝑟1

𝑟2

∑ 𝑉∗𝑖𝑗𝑢21(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−

𝑅∗𝑟1

𝑟2

(𝑢21(𝑦𝑗,𝑡)−𝑢𝑝1
(𝑦𝑗,𝑡))

𝑅𝑒
)                                            (52) 



11 
 

  𝑢𝑝2 = 𝑢𝑝1 +
𝛥𝑡

2
(
𝑅∗𝑟3∗𝑟1

𝑟2

(𝑢21(𝑦𝑗,𝑡)−𝑢𝑝1
(𝑦𝑗,𝑡))

𝑅𝑒
)                                                                                                    (53) 

At the second step of the method, the conditions (13)-(23) are regarded favorably. 

At the third step for i=1,2,3…, n 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar fluid): 

𝑢13 = 
2𝑢10

3
+

𝑢12

3
+

𝛥𝑡

6
(𝐺𝑒(𝑡) +

𝑛1

𝑅𝑒
(∑ 𝑈∗𝑖𝑗𝑀∗2

(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) +

(𝑛1+1
 
)

𝑅𝑒
 (∑ 𝑉∗𝑖𝑗𝑢12(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  ))                             (54) 

  𝑀∗3 =
2𝑀∗0

3
+

𝑀∗2

3
+

𝛥𝑡

6
(
(𝑛1+2

 
)

2𝑅𝑒
(∑ 𝑉∗𝑖𝑗𝑀∗2

(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) −

𝑛1

𝑅𝑒
 (2𝑀∗2

+ ∑ 𝑈∗𝑖𝑗𝑢12(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) )              (55) 

 

Zone-II (0 ≤ y ≤ k) (Saffman dusty fluid): 

𝑢23 =
2𝑢20

3
+

𝑢22

3
+

𝛥𝑡

6
  (

𝐺𝑒(𝑡)

𝑟2
+

𝑟1

𝑟2

∑ 𝑉∗𝑖𝑗𝑢22(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−

𝑅∗𝑟1

𝑟2

(𝑢22(𝑦𝑗,𝑡)−𝑢𝑝2
(𝑦𝑗,𝑡))

𝑅𝑒
)                                                      (56) 

  𝑢𝑝3 =
2𝑢𝑝0

3
+

𝑢𝑝2

3
+

𝛥𝑡

6
(
𝑅∗𝑟3∗𝑟1

𝑟2

(𝑢22(𝑦𝑗,𝑡)−𝑢𝑝2
(𝑦𝑗,𝑡))

𝑅𝑒
)                                                                                (57) 

At the third step of the method, the conditions (13)-(23) are once again regarded favourably. 

At the fourth step for i=1,2,3…,n: 

Zone-I ( −𝑘 ≤ 𝑦 ≤ 0) (micropolar fluid): 

𝑢1= 𝑢13 +
𝛥𝑡

2
(𝐺𝑒(𝑡) +

𝑛1

𝑅𝑒
(∑ 𝑈∗𝑖𝑗𝑀∗3

(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) +

(𝑛1+1
 
)

𝑅𝑒
 (∑ 𝑉∗𝑖𝑗𝑢13(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  ))                     (58) 

  𝑀∗ =
𝑀∗3

+
𝛥𝑡

2
(
(𝑛1+2

 
)

2𝑅𝑒
(∑ 𝑉∗𝑖𝑗𝑀∗3

(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) −

𝑛1

𝑅𝑒
 (2𝑀∗3

+ ∑ 𝑈∗𝑖𝑗𝑢13(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) )                 (59) 

 

Zone-II (0 ≤ y ≤ k) (Saffman dusty fluid): 

𝑢2 =𝑢23 +
𝛥𝑡

2
  (

𝐺𝑒(𝑡)

𝑟2
+

𝑟1

𝑟2

∑ 𝑉∗𝑖𝑗𝑢23(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−

𝑅∗𝑟1

𝑟2

(𝑢23(𝑦𝑗,𝑡)−𝑢𝑝3
(𝑦𝑗,𝑡))

𝑅𝑒
)                                         (60) 

  𝑢𝑝 = 𝑢𝑝3 +
𝛥𝑡

2
(
𝑅∗𝑟3∗𝑟1

𝑟2

(𝑢23(𝑦𝑗,𝑡)−𝑢𝑝2
(𝑦𝑗,𝑡))

𝑅𝑒
)                                                                                   (61) 

At the fourth step of the method, the conditions (13)-(23)  are also regarded favourably. Hence the fluid (linear) velocity 

and angular velocity (Eringen microrotation) profiles i. e.  𝑢1, 𝑀∗ of micropolar fluid in Zone-I and also the fluid velocity 

(linear) and particle velocity components i.e. 𝑢2,  𝑢𝑝 for Saffman dusty fluid in Zone-II  can be numerically obtained at the 

fourth step of MCB-DQM. 

4.Results and Interpretation  

Under two separate flow schemes, the unidirectional unstable flow of two immiscible (i. e. Saffman dusty and Eringen 

micropolar fluids) attributable to the time-dependent pressure gradient has been simulated with a novel MCB-DQM 

algorithm. To obtain robust solutions, traditional no-slip and hyper-stick conditions are assumed at the boundaries. The 

two-fluid flow coupled problem in the corresponding Zones with stable interfaces have been numerically solved, and 
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velocity, micro-rotation, and dust phase profiles of the respective fluids and dust particles have been obtained. The 

results are discussed as follows.  

4.1 Results and analysis of immiscible dusty and micropolar fluid flow:  

Figure 2-Figure 21 visualize the evolution in fluid and dust particle-phase velocities and also micro-rotation (angular 

velocity) distributions in the respective dusty and micropolar zones with variation in key control parameters featured in 

the mathematical model i. e. Reynolds number, particulate concentration parameter, applied pressure gradients, density 

ratio, viscosity ratio, and time. It is evident that the linear velocity profiles for the dust (zone I) and fluid phase in both 

Zones are parabolic, and the curvature of micropolar angular velocity (microrotation) is lower than dusty one. 

Furthermore, the curvature of velocity and micro-rotation profiles for the periodic pressure gradient case is smaller than 

the decaying pressure gradient and the curvature for constant pressure gradient is larger than that computed for the 

decaying pressure gradient case. Figure 2 and Figure 12 exhibits the change in fluid and particle velocities and micro-

rotation with varying times when a constant pressure gradient is applied. It is noted that, with rising time, the velocities 

are growing in both Zones and micro-rotation profile magnitude is accentuated in the micropolar liquid Zone. Figure 3 

and Figure 13 show that the dust particle, dusty fluid, and micropolar linear velocities, and also microrotation (angular 

velocity) are all pulsating since the flow is induced by the periodic pressure gradient and never achieves the steady state. 

Hence the velocities increase when 0 < 𝑡 ≤ 𝜋 /2, decrease when 𝜋/ 2 < 𝑡 ≤ 3𝜋/2 and further increase with 3𝜋/2 < 𝑡 ≤ 5𝜋/2. 

Figure 4  and Figure 14 reveal that the fluid and particle velocities and micro-rotation increase initially in the respective 

Zones then decrease with greater elapse in time and eventually approach zero as time is enhanced when the applied 

periodic pressure gradient generates the flow. It can be noted from Figure 11  and Figure 21 that the linear velocity 

(micropolar fluid, dusty fluid, and dust particle) and micro-rotation profiles increase with an increment in the pressure 

gradient. It may be observed from Figure 5 and   

Figure 15 that elevation in Reynolds number enhances both the fluids and particle velocities and micro-rotation 

magnitudes, owing to the increase in inertial force contribution (relative to viscous force) for all three pressure gradient 

cases- i.e. applied constant, periodic, and decaying pressure gradients. However, the variations in the velocities are larger 

in magnitude in the dusty fluid Zone than in the micropolar liquid Zone, indicating the greater sensitivity of Saffman dusty 

fluid to inertial effects. An increase in the micropolar parameter reduces the velocity profiles for fluid and dust particles 

(via coupling in the conservation equations) in both Zones and also suppresses microrotation profiles in the lower Zone 

for all three applied pressure gradients (see Figure 6 and Figure 16). Stronger micropolarity of the micropolar liquid, 

therefore, achieves a notable damping effect in both zones. It is worth mentioning that the micropolar parameter while 

unique to micropolar fluid in the lower Zone exerts a significant (no-trivial) influence on the upper zone (Saffman dusty 

fluid) via the appropriate coupling terms in the angular momentum (micro-rotation) conservation equation. This 

markedly modifies the velocity of dust particles and dusty fluid, although there is no fluid mechanical framework in 

Saffman’s model for simulating microstructural spin. The elegance of Eringen’s theory is therefore again emphasized 

since it not only generalizes Navier-Stokes (Newtonian) viscous hydrodynamics but also provides a coupling mechanism 

to other fluid models via the inclusion of mixed derivative coupling terms in the differential balance equations. Micropolar 

theory features an additional Eringen vortex viscosity and also allows the relative effect of rotation to linear motion to 
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be simulated through the gyratory motions in the micro-rotation vector. The micropolar effect is also removable by 

prescribing vanishing values to the micropolar parameter, another advantage of micropolar fluid mechanics.  

 

Figure 2: Velocity profiles of fluids under the scheme with varying time and constant pressure gradient Ge=10, when 
Re=2, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and  𝜼𝟏=0.5 

 

Figure 3:Velocity profiles of fluids under the scheme with varying time and periodic pressure gradient when Re=2, 
R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and η𝟏=0.5 
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Figure 4: Velocity profiles of fluids under the scheme with varying time and decaying pressure gradient when Re=2, 
R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and η𝟏=0.5

 

Figure 5:Velocity profiles of fluids under the scheme with varying Reynolds number and applied pressure gradient 
when t=0.5, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and η𝟏=0.5 
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Figure 6: Velocity profiles of fluids under the scheme with varying micropolar parameters ( 𝑛1 ) and applied pressure 
gradient (Ge) when, t=0.5, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and Re=2 

 

Figure 7: Velocity profiles of fluids under the scheme with varying particle concentration parameter and applied 
pressure gradient when t=0.5, Re=2, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and η𝟏=0.5 
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Figure 8: Velocity profiles of fluids under the scheme with varying ratio of viscosities and applied pressure gradient 
when t=0.5, Re=2, R=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and η𝟏=0.5 

 

 

Figure 9:Velocity profiles of fluids under the scheme with varying ratio of densities and applied pressure gradient 
when, t=0.5, Re=0.5, R=0.5, 𝒓𝟏=0.5, 𝒓𝟑 =300, and η𝟏 =0.5 

 



17 
 

 

Figure 10: Velocity profiles of fluids under the scheme with varying 𝒓𝟑 and applied pressure gradient when t=0.5, 
Re=2, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, and η𝟏=0.5 

 

 

Figure 11:Velocity profiles of fluids under the scheme with varying constant pressure gradient when, t=0.5, Re=2, 
R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and η𝟏 = 0.5. 
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Figure 12:  Micro-rotation profiles of micropolar fluid under the scheme with varying time and constant pressure 
gradient Ge=10, when Re=2, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and  𝜼𝟏=0.5 

 

 

Figure 13: Micro-rotation profiles for micropolar fluid under the scheme with varying time and periodic pressure 
gradient Ge=10, when Re=2, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and  𝜼𝟏=0.5 
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Figure 14:  Micro-rotation profiles of micropolar fluid under the scheme with varying time and periodic pressure 
gradient Ge=10, when Re=2, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and  𝜼𝟏=0.5 

 

 

Figure 15:  Micro-rotation profiles of Micro-polar fluid under the scheme with varying Reynolds number and applied 
pressure gradient when, t=0.5, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and η𝟏=0.5 
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Figure 16: Micro-rotation profiles of micropolar fluid under scheme with varying micropolar parameter (η𝟏) and 
applied pressure gradient when, t=0.5, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300 and Re=2 

 

 

Figure 17: Micro-rotation profiles of micropolar fluid for the scheme with varying particle concentration parameter 
(R) and applied pressure gradient when t=0.5, Re=2,𝒓𝟏=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300, and η𝟏=0.5 
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Figure 18: Micro-rotation profiles of micropolar fluid under scheme with varying ratio of viscosities and applied 
pressure gradient when t=0.5, Re=2, R=0.5, 𝒓𝟐=0.5, 𝒓𝟑=300 and η𝟏=0.5 

 

  

Figure 19: Micro-rotation profiles of micropolar fluid under scheme with varying ratio of densities (𝑟2 ) and applied 
pressure gradient when, t=0.5, Re=2, R = 0.5, 𝒓𝟏 =0.5, 𝒓𝟑 =300, and η𝟏 =0.5 
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Figure 20: Micro-rotation profiles of micropolar fluid under the scheme with varying ratio of the density of fluid and 
dust particles (𝒓𝟑) and applied pressure gradient when t=0.5, Re=2, R=0.5, 𝒓𝟏=0.5, 𝒓𝟐=0.5, and η𝟏=0.5 

 

 

Figure 21: Micro-rotation profiles of micropolar fluid under the scheme with varying constant pressure gradient 
when, t=0.5, Re=2, R=0.5, 𝒓𝟏 = 0.5, 𝒓𝟐 = 0.5, 𝒓𝟑 =300, and η𝟏=0.5. 
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It is noted from Figure 7  and Figure 17 that dust particle velocity increases significantly with the enhancement of particle 

concentration parameter, and a very slight increase in dusty fluid velocity and micro-rotation component (Eringen angular 

velocity of micro-elements) is observed for constant and decaying applied pressure gradients. Hence there is no 

substantial effect of particle concentration parameter on micropolar fluid velocity. It is also judicious to note that dusty 

fluid velocity and micro-rotation decrease marginally when a periodic pressure gradient is applied. An increase in the 

viscosity ratio 𝑟1 and density ratio 𝑟2 manifests in an increase in the viscosity and density of the dusty fluid Zone. In view 

of this, for all three applied pressure gradients, a significant decline in dust particle and fluid velocity (Zone-II) is computed 

whereas there is no tangible alteration in the micropolar fluid velocity (Zone-I) with an increase in 𝑟1 and 𝑟2 (see Figure 8 

and  Figure 9 ). It is also observed from Figure 18 and Figure 19 for all three applied pressure gradients that as the ratio 

𝑟1 enhances, the micro-rotation profile increases significantly; however, when 𝑟2 rises, the micro-rotation profile 

decreases significantly. Acceleration in gyratory motions of microelements is therefore elevated with a boost in viscosity 

ratio whereas deceleration is generated in the spin of microelements with increment in density ratio (owing to the 

inhibiting effect of a greater mass per unit volume on microstructural motions). It is noted from Figure 10  and Figure 20 

for all three applied pressure gradients, the dust particle velocity climbs significantly and fluid phase velocity also ascends 

slightly in Zone-II; however, the micro-polar fluid (linear) velocity is not displaced whereas the microrotation component 

(angular velocity) is weakly elevated in Zone-I with an increase in the ratio 𝑟3. 

 

5.Conclusions: 

The unsteady flow of two immiscible Saffman dusty and Eringen micropolar fluids through a horizontal channel with both 

a stable and unstable interface has been analysed numerically, using a novel modified cubic B-spine differential 

quadrature method (MCB-DQM) with distinct computational schemes for the different zones. Extensive details of the 

discretization procedures in the MCB-DQM algorithm have been provided. The effects of the emerging hydrodynamic 

control procedures, for both regions, have been elaborated and four steps are necessary for the interface tracking 

computation. The impact of key hydrodynamic parameters i. e. Reynolds number, Froude number, particle concentration 

parameter, Eringen micropolar material parameter, volume fraction parameter, pressure gradient, time, viscosity ratio, 

and density ratio on fluid and particle velocities, microrotation (angular velocity component), and interface evolution 

have been computed and visualized graphically. The stability and fast convergence of the MCB-DQM algorithm have been 

confirmed. The core findings of the present analysis can be summarized in the following points: 

 

-Under the horizontal channel scheme flow, accelerating, oscillating and decelerating behavior in the fluids and particle 

velocities, and micro-rotation profile with time are observed in respective Zones depending on whether the 

hydrodynamics is triggered by constant, periodic, or decaying pressure gradients, respectively. 

 

-As anticipated, magnitudes of the fluid and particles velocities and micro-rotation components are enhanced with an 

increment in the pressure gradient. 
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-Increasing Reynolds number produces a marked enhancement in fluids and particle velocities, and micro-rotation profile 

for all cases of the applied constant, periodic, and decaying pressure gradient. 

-Increasing the micropolar parameter affects the dust particle velocity and fluid velocity in the upper Zone even though 

the micropolar fluid is restricted to the Lower Zone. Hence increment in the parameter, flow leads to a diminution in both 

fluid and particle linear velocities, and also micro-rotation magnitudes (i.e., deceleration in the angular spin of the micro-

elements in the micropolar fluid) with applied constant, periodic, or decaying pressure gradient. 

-Elevation in dusty particle concentration parameter, increase the velocities of dust particle significantly for all three 

applied pressure gradient cases. This parameter is of course associated with Saffman dusty fluid which is present only in 

upper Zone fluid; however as noted in the discussion, the coupling of the dusty fluid momentum balance to the angular 

momentum balance of the micropolar liquid results in a delicate interplay between linear and angular velocity fields. This 

affects the microrotation profile for the lower zone fluid - hence the upper zone Saffman fluid velocity and lower zone 

micro-rotation profiles both slightly increase when the particle concentration parameter is enhanced for constant and 

periodic pressure gradient cases and slightly decreases for the decaying pressure case.  

-A significant decline in dust particle and fluid velocities in the dusty fluid Zone (upper) is observed whereas there is no 

significant change in micropolar fluid velocity (lower zone) noted with an increase in the ratio of viscosity and density for 

all three applied pressure gradients. Micro-rotation increases significantly with an increment in the ratio of viscosities 

but considerably decreases with elevation in the ratio of densities.  

The current study has demonstrated the excellent accuracy and stability characteristics of the modified cubic B-spine 

differential quadrature method (MCB-DQM) in numerical simulations of interfacial two-fluid (dusty-micropolar) duct 

flows. However, heat transfer and electromagnetic effects [54], [55]  have been neglected. These may be considered in 

future studies and are also of relevance in biomedical and materials processing systems. Efforts in these directions will 

be communicated soon.  
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