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ABSTRACT 

 

A mathematical model is developed for viscous slip flow and heat transfer in water/Ethylene 

glycol-based nanofluids containing metallic oxide nanoparticles, through a 

converging/diverging channel geometry. Our approach is based on the single-phase Tiwari–

Das nanofluid model considering nanoparticles and base fluid masses as a substitute volume 

concentration of nanoparticles. The governing (dimensional partial differential) equations are 

transformed to a set of dimensionless ordinary differential equations with the help of similarity 

transformation, before being solved numerically using Maple17.  Extensive validation of the 

velocity gradient and temperature solutions is achieved with the second order implicit finite 

difference Keller Box method (KBM). Further validation is included for the special case of no-

slip nanofluid flow in the absence of viscous heating. The effects of the emerging parameters 

namely velocity slip, thermal jump, channel apex angle, Eckert number, Prandtl number, 

Reynolds number and nano-particle volume fraction on velocity, temperature, skin friction and 

heat transfer rate are investigated in detail. Two different nanofluids are studied, namely 

water-Titanium oxide- and Ethylene glycol-Titanium oxide. Both convergent and divergent 

channels are addressed, and significantly different thermofluid characteristics are computed 

due to slip and viscous heating effects. The novelty of the current work is that it extends 

previous studies to include multiple slip effects and viscous heating (Eckert number effects) 

which are shown to exert a significant influence on heat and momentum transfer 

characteristics. The study is relevant to certain pharmaco-dynamics devices (drug delivery), 

next generation 3-D nanotechnological printers and also nano-cooling systems in energy 

engineering where laminar flows in diverging/converging channels arise. 

 

Keywords: Convergent/divergent channel; nanofluids; viscous heating; momentum/thermal slip, 

nano-engineering devices. 
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1. INTRODUCTION 

Heat transfer and viscous flows in non-uniform channels (diverging/converging) arise in many 

branches of applied physics, chemical and biomedical engineering including nozzle designs 

and protein exchange membrane fuel cells [1-4]. The classical theory of these so-called Jeffery-

Hamel flows is lucidly documented in Schlichting [5] for Newtonian viscous fluids. Many 

extensions to the Newtonian case have been reported for a diverse array of complex fluids and 

with modified boundary conditions and body forces. Balmer and Kauzlaich [6] developed 

similarity solutions for steady non-Newtonian power law fluid flow in a converging or 

diverging  two-dimensional channel with permeable walls, identifying a singularity caused by 

the fluid elasticity for the diverging geometry case at Deborah number of unity. Hooper et al. 

[7] studied analytically Jeffery–Hamel flow of a two-fluid system with variable viscosity 

observing that the velocity distribution becomes discontinuous with an increase in volume flux-

based Reynolds number. Hariharan et al. [8] used a Fourier series method to investigate 

peristaltic non-Newtonian flows of power law and Bingham fluids in a diverging tube with 

various wall wave forms (sinusoidal, multi-sinusoidal, triangular, trapezoidal and square), 

observing that divergence angle exerts a strong influence on occurrence of reflux near the tube 

wall even for zero fluxes and the thickness and evolution of the reflux region is markedly 

affected by the type of wave form. Wu et al. [9] conducted a theoretical and experimental study 

of effective planar micromixer flow featuring a meandering microchannel with converging–

diverging cross section, noting that fluid mixing in the microchannel is aided via Dean vortices 

and in particular the separation vortices generated by the converging–diverging cross section 

at large flow rate. Lamont et al. [10] measured heat transfer coefficient distributions in narrow 

diverging channels in gas turbine cooling systems. Stalio and Piller [11] used direct numerical 

simulation to computationally model unsteady forced convection in sinusoidal, symmetric 

wavy converging/diverging channels.  

The above studies did not however consider nanofluids. Choi [12] first demonstrated that 

nanofluids possess enhanced thermophysical properties as compared to conventional heat 

transfer fluids (lower thermophysical properties). Nanofluids designate a solid-liquid mixture 

consisting of a fluid suspension having ultra-fine nanoparticles. The size of these suspended 

particles is typically of the order of few nano meters. The commonly used nanoparticles are 

Al2O3, CuO, TiO2, ZnO and SiO2. The significant features of nanofluids include higher thermal 

conductivity and viscosity as compared to the base fluid and stable nature of the suspension. 

The volume fraction of nanoparticles is normally engineered to be 3% to 5% so that the 
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nanofluid exhibit mechanical behavior similar to the base fluid. In recent years nanofluids have 

filtered into an incredibly diverse number of industries including petroleum [13], medical [14], 

chemical polymer coating [15], wound treatment [16], nano-materials processing [17, 18], 

microbial fuel cell enhancement [19], drug delivery (pharmaco-dynamics) [20] and even 

protein detection technologies [21]. Comprehensive reviews of heat transfer characteristics of 

nanofluids have been presented in [22-25]. Extensive efforts have been made to develop robust 

mathematical models for the thermal conductivity enhancement features of nanofluids. 

Suggested mechanisms for this include dispersion of nanoparticles, turbulence and micro-

convection, and also rotation of the nanoparticles. A popular model which is relatively simple 

to implement is that of Tiwari and Das [26] in which nanoparticle contribution is simulated via 

volume fraction rather than in a separate species conservation equation. His model has been 

employed to analyse a variety of metal-oxide nanofluids including zinc oxide, copper oxide, 

titanium oxide, aluminium oxide and others. Recent studies employing the Tiwari-Das 

formulation include Tripathi and Bég [27] who considered peristaltic propulsion of nanofluids 

in pharmacological systems. In the context of diverging channel flows, Akbar and Nadeem 

[28] used the Tiwari-Das approach to simulate peristaltic transport of viscoelastic nanofluids. 

Recently, various applications of the Tiwari-Das nanofluid model [26] have been analysed by 

a number of researchers [29-32]. 

In the present study we use MAPLE17 numerical quadrature [33] to study the dissipative 

nanofluid flow and heat transfer in a converging/diverging channel with the Tiwari-Das model. 

Solutions are obtained for the velocity, temperature, wall shear stress and heat transfer rate 

(Nusselt number) distributions for a variety of the emerging parameters. Verification of the 

solutions for the general slip model is attained with the implicit finite difference Keller Box 

Method (KBM). Further validation for the no-slip case is conducted with the no-slip case 

reported by Moradi et al. [35] in the absence of viscous heating. The transformed ordinary 

differential boundary value problem, which is nonlinear, also provides a good benchmark for 

further more elaborate numerical simulations with for example computational fluid dynamics 

(CFD) codes [34] and significantly extends earlier investigations which have been confined to 

Jeffery-Hamel non-slip flows without viscous heating effects [35]. The present work extends 

the current research by including slip (momentum and thermal) and viscous heating effects for 

the first time in nanofluid Jeffrey-Hamel flows. It is relevant to cooling enhancement in energy 

systems and also biomedical devices (nozzle delivery) employing nanofluids where 
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diverging/converging channels feature in novel nozzle configurations, diffusers, inlet and 

outlet geometries.  

2. MATHEMATICAL NANOFLUID MODEL 

The flow model and coordinate system is displayed in Fig. 1, in a polar (r,) coordinate system. 

Nanofluid flow from a source/sink is studied at the apex of a converging/diverging channel 

(i.e. non-parallel solid walls intersecting) with intersection angle 2.  

 

 

Fig 1: Nanofluid Jeffery-Hammel flow geometry (diverging case) 

 

Forced convection heat transfer takes place. Thermal dispersion and heat generation effects are 

neglected. With viscous dissipation present, which is important in incompressible flows,  by 

means of Tiwari–Das nanofluid’s model (Tiwari and Das [26]), the appropriate balance 

equations for two-dimensional Jeffery-Hamel nanofluid flow are the mass, momentum and heat 

conservation which are given below (Dinarvand and Rostami  [29]). 

        0= v                                                    (1) 

    ( ) 2 ,p
t

v
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 
+  = − +  
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Isothermal, impermeable wall 

Diverging channel  

Isothermal, impermeable wall 
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Here v is velocity vector, T is temperature. 
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equations in polar coordinates in the absence of body forces and under aforementioned 
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Heat (energy) conservation: 
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The appropriate boundary conditions are specified as follows: 

Symmetry (channel centre line): Uu
Tu

==



=




,0;0


   (8a) 

Wall (-slip): 1 nf w 1

u T
u N T T N

 
= −  = −

 
;     (8b) 

Here U is an arbitrary velocity, u is radial velocity, T is temperature, p is pressure. The effective 

density n f , the effective dynamic viscosity n f , the effective heat capacity ( )p n f
C , effective 

thermal conductivity n fk  and thermal diffusivity nf of the nanofluid are defined following 

Tiwari and Das [26] as follows: 
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 Here   is the solid volume fraction of the nanoparticles, f  is the base fluid density, s is the 

nanoparticle (solid) density and f is the base fluid dynamic viscosity. The nonlinear primitive 

boundary value problem defined by Eqns. (4)-(7) under boundary conditions (5a, b) generally 

required a numerical solution via explicit finite differences or a finite element method. It can 

however be significantly simplified by observing from the continuity equation that the radial 

velocity, u, must be of the form: 

 urf =       (10) 

We further introduce the following similarity variables: 
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where F is a dimensionless radial velocity function,  is dimensionless angular coordinate and 

 is non-dimensional temperature. Elimination of the pressure, p, between Eqns. (5) and (6) 

leads to:  
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The transformed boundary conditions take the form: 
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In Eqns. (12) and (13), the Reynolds number (Re), Eckert number (Ec) and Prandtl number 

(Pr) and velocity slip (a), thermal slip (b) are defined as: 

2
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For a diverging channel, in the Reynolds number >0, Umax>0; for the converging channel 

case,  <0, Umax<0. In engineering simulations we are interested not only in the velocity and   

temperature functions, but also certain gradient functions of these variables. The non-

dimensional skin friction coefficient, Cf, may be defined in terms of transformed variables, 

thus: 
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Here the shear stress at the walls, w, is: 
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The dimensionless Nusselt number (wall heat transfer rate) is given by:  
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In terms of the transformed variables we have: 
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d
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The fifth order nonlinear boundary value problem described in Eqns. (12)-(13) under boundary 

conditions (14), (15) is unlikely to yield analytical solutions. We therefore develop numerical 

solutions using MAPLE17. The methodology is described in detail in [36-38].  Several 

important special cases of the present flow model may be retrieved. The flow model describes 

Newtonian Jeffery-Hamel flow as  → 0 (nanoscale effects vanish). When Ec =0 viscous 



8 
 

 
 

heating is negated. When both nanoscale and viscous heating effects are omitted the model 

reduces to that studied in [35]. In the general model, a homogenous distribution of 

nanoparticles is assumed in the nanofluid i.e. a dilute suspension. The nanofluid consists of 

two-component mixtures (nano-solid-particles and the base fluid are in thermal equilibrium) 

and no slip occurs between them. Slip arises only at the channel walls.  

 

3. MAPLE SOLUTIONS  

The boundary value problem (BVP) is solved using MAPLE 17 numerical integration 

quadrature based on Runge-Kutta Fehlberg shooting algorithms. This is a highly efficient 

methodology for BVPs with infinity boundary conditions. A Runge–Kutta–Fehlberg fourth-

fifth order numerical algorithm (RKF45) is employed, which is readily available in the 

symbolic computer software MAPLE17. This method has been employed extensively in fluid 

mechanics simulations, including nanofluid dynamics e.g. radiative slip flow of magnetic 

nanofluids [37], magnetic nanofluid flow from a stretching surface [38], power-law nanofluid 

flow in porous media [39]. Other applications include Marangoni (surface-tension) driven 

nanofluid transport in biopolymers [40] and non-Newtonian petrochemical mass transfer in 

porous media [41]. The RK45 algorithm is based on a collocation method in which a finite-

dimensional space of candidate solutions is selected (usually, polynomials up to a certain 

degree) and a number of points in the domain (called collocation points), and a solution selected 

which satisfies the given equation at the collocation points. The details of RFK45 methods can 

be found in the ref. [37, 38]. MAPLE is an excellent symbolic software with many libraries of 

built in ready-to-use numerical solvers for ordinary and partial differential problems. In 

MAPLE the RK45 quadrature is used to yield temperature and stream function. The appropriate 

velocity is then computed in a sub-iteration loop. The robustness and stability of this numerical 

method is therefore well established- it is highly adaptive since it adjusts the quantity and 

location of grid points during iteration and thereby constrains the local error within acceptable 

specified bounds. Many different wall boundary conditions are easily accommodated. The 

stepping formulae although designed for nonlinear problems, are even more efficient for any 

order of linear differential equation and are summarized below [37]: 

 

( )0 , ,i ik f x y=               (21) 

http://en.wikipedia.org/wiki/Polynomial
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Here 𝑦 denotes fourth order Runge-Kutta phase and 𝑧 is the fifth order Runge-Kutta phase. An 

estimate of the error is achieved by subtracting the two values obtained. If the error exceeds a 

specified threshold, the results can be re-calculated using a smaller step size. The approach to 

estimating the new step size is shown below: 

1
4

1 1

.
2

old
new old

i i

h
h h

z y



+ +

 
=   − 
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The MAPLE17 code has been extensively validated for many nonlinear problems [37-41] and 

confidence in the current computations is very high. In order to analyse the sensitivity of the 

physical model to different thermophysical parameters, extensive computations have been 

conducted and are documented in Figs. 2-11.  In each case the following nanofluid properties 

must be determined in eqns. (9), (10) i.e. 
f

s




 (density ratio in eqn (9)) and 

fp

sp

C

C

)(

)(




(i.e. specific 

heat capacity ratio) and 
f

nf

k

k
 (i.e. thermal conductivity ratio) in eqn. (10). We examine a number 

of nanofluids e. g. water-Titanium oxide- and Ethylene glycol - Titanium oxide, as documented 

in [26]. Further graphs can be generated for Aluminium oxide and copper oxide, using 
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properties [27]. Velocity gradient, temperature, skin friction and Nusselt number are all 

computed.  

 

4. VALIDATION OF GENERAL MODEL WITH KELLER BOX METHOD (KBM) 

In order to justify our results, the Keller-Box implicit difference method (KBM) is also used 

to solve the same equations. This second order accurate method is ideal for parabolic problems 

e.g. boundary layer flows, although it can be used for fully developed channel flows also. 

Recently the KBM algorithm has successfully resolved a number of nonlinear 

magnetohydrodynamics and nanofluid dynamics problems including micropolar nanofluid 

enrobing flows [42], Hall MHD generator transport [43], viscoelastic flows in porous media 

[44] and biological micro-organism propulsion [45]. The detail of the KBM is elaborated by 

Keller [46]. The numerical algorithm is performed in MATLAB on an Octane SGI workstation 

and computes in seconds. The method demonstrates excellent stability, convergence and 

consistency, as elaborated by Keller [47]. In KBM, there are 4 key steps: 

(I)Reduction of Eqns. (12) - (13) into a system of first order ordinary differential equations. 

Thus, the coupled differential equations of third order in F () and second order in  () are 

reduced to a system of five simultaneous equations of first order for five unknowns. Boundary 

conditions (14 and (15) are also transformed.  

(II)In the second step derivatives are approximated in the new system of first order equations 

with central difference approximations by considering a net rectangle in the planex −  and 

the net points are defined as ,00 = jjj h+= −1  ===  jandJjJn ...3,2,1;...3,2,1 . 

Here jh is the − spacing and jn, are just the sequences of numbers that indicate the 

coordinate location. The centering midpoint (𝜂
𝑗−

1

2

) of the segment is obtained by using the 

following finite difference approximations. 
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(III) In the third step the emerging nonlinear algebraic equations are linearized with Newton’s 

method by using iterates of the form 
i

j

i

j

i

j )()()( 1 +=+
and then cast into matrix vector form. 

(IV) Finally, in the fourth step, the linearized algebraic equations are solved using a block tri-

diagonal elimination scheme implemented in MATLAB software with the suitable initial 

solution. This method is unconditionally stable has a second order accuracy and is relatively 

easy to program, thus making it highly attractive for engineering analysis. For this iterative 

scheme to solve the system of equations, a convergence criterion is required. This is specified 
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as follows: when the difference between two successive approximations is sufficiently small (
510− ) the solutions are taken to have converged to the requisite accuracy.  

Comparison computations (which relate to the appropriate MAPLE 17 green dotted lines only) 

are denoted by the blue triangles in Figs 2a, 3a, 4a, 5a and 6a. In each graph in other words 

we have verified one MAPLE17 solution and excellent agreement is achieved. Confidence in 

MAPLE17 shooting solutions is therefore justifiably high. 

 

5. VALIDATION WITH NO-SLIP CASE AND ABSENCE OF VISCOUS HEATING 

Due to unavailability of experimental data, it is not possible to compare with the experimental 

data. However, we have included a comparison table with the published data of a simpler 

previous study [35]. Tables 1 and 2 are comparisons of the MAPLE 17 code for the special 

reduced no-slip (N1 =0) case and for zero volume fraction (ϕ = 0) with [35]. At all Reynolds 

numbers and vertex angles of the diverging/converging channel, excellent correlation is 

achieved for the stream function  ( )f   and skin friction f//(0) with MAPLE RK45 and the 

solutions of Moradi et al. [35]. Confidence in the MAPLE RK45 code is therefore justifiably 

very high. 

 

Table 1: Numerical values of the function ( )f   for Newtonian fluid (ϕ = 0) 

 

 

  

Moradi et al. [35] numerical results Present numerical results 

Re 110

3o

=

=
 

Re 80

5o

=

= −
 

Re 50
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=
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Re 110
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=

=
 

Re 80

5o

=

= −
 

Re 50

5o

=

=
 

0 1 1 1 1 1 1 

0.1 0.979236 0.995961 0.982431 0.97923571 0.99596063 0.98243124 

0.2 0.919266 0.983276 0.931226 0.91926589 0.98327554 0.93122597 

0.3 0.826534 0.96018 0.850611 0.82653362 0.96017991 0.85061063 

0.4 0.710221 0.923522 0.746792 0.71022119 0.92352159 0.74679081 

0.5 0.580499 0.868459 0.626849 0.58049946 0.86845888 0.62694818 

0.6 0.446935 0.788091 0.498234 0.44693507 0.78809092 0.49823446 

0.7 0.317408 0.673144 0.366966 0.31740843 0.67314363 0.36696635 

0.8 0.197641 0.511991 0.238124 0.19764109 0.51199109 0.23812375 

0.9 0.09123 0.291559 0.115152 0.09123042 0.29155874 0.11515193 

1 0 0 0 0 0 0 
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Table 2: Numerical values of skin friction for Newtonian fluid (ϕ = 0) 

0.1 =  Moradi et al. [35] Present results 

 TiO2 Cu TiO2 Cu 

Re 10=  −0.236316 −0.228015 −0.23631589 −0.22801492 

Re 30=  −0.0630751 −0.0547215 −0.063075067 −0.05472165 

Re 50=  −0.0284339 −0.023245 −0.028433869 −0.02324493 

0.2 =      

Re 10=  −0.319488 −0.302882 −0.31948789 −0.30288148 

Re 30=  −0.0869483 −0.070249 −0.086948288 −0.07024876 

Re 50=  −0.0404258 −0.0241233 −0.040425766 −0.024123292 

 

6. MAPLE17 COMPUTATIONAL RESULTS AND DISCUSSION 

Figs 2a,b illustrate the evolution of non-dimensional velocity gradient for water-TiO2 and 

ethylene glycol- TiO2 nanofluids, with nanoparticle volume fraction () and momentum slip 

parameter (a). The evolution of velocity has already been elaborated in other studies e.g. 

Moradi et al. [35] and is well-known. We therefore elect here to examine velocity gradient 

response instead. In all figures the viscous heating is strong (Ec = 5), the channel is diverging 

( = 3°), flow is laminar (Re =50) and the thermal slip is weak (b = 0.5). The range 0    1 

corresponds to the channel semi-space i.e. from the longitudinal axis to the upper wall. Since 

reflective symmetry is achieved via the boundary conditions and geometry it is not necessary 

to plot the lower semi-space.  

 
 

Fig. 2:  Effects of volume fraction of nanoparticles and slip parameter on dimensionless 

velocity gradient for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. [Blue triangles represent 

the appropriate KBM solution validating the green dotted line MAPLE17 case]. 
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Fig. 3:  Effects of converging channel angle and Reynolds number on dimensionless velocity 

gradient for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. [Blue triangles represent the 

appropriate KBM solution validating the green dotted line MAPLE17 case]. 

 
 

Fig. 4:  Effects of diverging channel angle and Reynolds number on dimensionless velocity 

gradient for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. [Blue triangles represent the 

appropriate KBM solution validating the green dotted line MAPLE17 case]. 
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Fig. 5: Effects of volume fraction of nanoparticles and thermal slip parameter on dimensionless 

temperature for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. [Blue triangles represent the 

appropriate KBM solution validating the green dotted line MAPLE17 case]. 

 
 

Fig. 6: Effects of converging channel angle and Reynolds number on dimensionless 

temperature for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. [Blue triangles represent the 

appropriate KBM solution validating the green dotted line MAPLE17 case]. 
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Fig. 7:  Effects of diverging channel angle and Reynolds number on dimensionless temperature 

for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. 

 
 

Fig. 8:  Skin friction as a function of velocity slip, volume fraction of nanoparticles and 

Reynolds number for (a) Water-TiO2 and (b) EG-TiO2 nanofluids (converging case). 
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Fig. 9:  Skin friction as a function of velocity slip and converging-diverging channel angles 

for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. 

 

 
 

Fig. 10:  Nusselt numbers as function of velocity slip, volume fraction of nanoparticles and 

Reynolds number for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. 
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Fig. 11:  Nusselt numbers as a function of Eckert number and converging-diverging channel 

angles for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. 
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angle, acceleration is also caused in this large extent of the channel semi-space. However closer 

to the wall (boundary), the reverse effect is computed. The nanofluid flow is markedly 

decelerated, although not to the same degree as the acceleration in the zone far from the wall. 

The inertial body force associated with larger Reynolds numbers is therefore counter-

productive in the near-wall zone whereas it is beneficial in the near centre-line zone. The 

implication is that enhanced momentum transfer is achieved closer to the symmetry axis of the 

channel rather than near the boundary, with greater inertial effects. With wider vertex angles 

of the channel, the velocity is also boosted near the channel centre and around this zone as 

compared with the boundary (wall) zone where greater drag is induced. Very little tangible 

difference is observed between the water-TiO2 (Fig. 3a) and ethylene glycol-TiO2 nanofluids 

(Fig. 3b), despite the difference in viscosity of the base fluids.  

Figs. 4a, b present the evolution of velocity gradient with semi-vertex angle (divergent,  < 0) 

and Reynolds number (Re) with fixed momentum and thermal slip and weak viscous heating 

at nanoparticle volume fraction of 0.2. An increase in divergent semi-angle generally retards 

the flow from the centre line for the majority of the space until the near-wall zone where it 

induces a weak acceleration. The response is therefore opposite to that of increasing 

convergent angle (Figs. 3a,b).  With greater divergence of the vertex, momentum distribution 

is adversely affected. The flow acceleration achieved with narrower angles is lost and the 

nanofluid flow behaves more like a diffuser system. This configuration is therefore better for 

more controlled deployment of fluids in medical devices e.g. nasal sprays [47], where more 

homogenous distribution of nanoparticles may be achieved in the core flow region. However 

convergent angles (Figs. 3a,b) are more suited to targeted, fast execution of drugs e.g. surface 

skin treatment (semi-powder-jet systems), divergent sections of de Laval nozzles in diabetic 

pumps [48] etc. Both geometric scenarios may therefore be exploited in different clinical 

applications. Figs. 4a and b, further demonstrate the principally decelerating influence of 

increasing Reynolds numbers. With greater inertial force (relative to viscous force), significant 

reduction in the flow is achieved for divergent channels, again testifying to the destruction of 

momentum in this type of geometry. These effects are computed for both water-TiO2 (Fig. 4a) 

and ethylene glycol-TiO2 nanofluids (fig. 4b), although slightly greater magnitudes of radial 

velocity gradient are attained in the former, in particular near and at the channel wall. 

Figs. 5a, b illustrate the temperature distributions for various nano-particle volume fraction () 

and thermal slip parameters (b) with fixed momentum slip and strong viscous heating at 



19 
 

 
 

Reynolds number of 40 and for a convergent channel. A substantial increase in temperature 

accompanies greater thermal slip values, for both water-TiO2 (Fig. 5a) and ethylene glycol-

TiO2 nanofluids (fig. 5b). Thermal diffusion is therefore assisted with greater thermal jump at 

the channel wall. The nanofluid is significantly heated, although temperature is observed to 

drop from the centreline to the wall for any scenario. With greater nanoparticle volume fraction 

there is however a slight decrease in temperatures for water-TiO2 (Fig. 5a) whereas there is 

more prominent reduction in temperature for ethylene glycol-TiO2 nanofluid (fig. 5b). The 

general thermal enhancement properties of nanofluids, as predicted by many researchers, e.g. 

[24-26, 32], is therefore not computed for convergent channels.  

Figs. 6a, b illustrate the temperature distributions for various semi-vertex angle (convergent, 

  > 0) and Reynolds number (Re) with fixed momentum and thermal slip (a = b = 0.5), viscous 

heating (Ec = 5) and volume fraction ( = 0.2). Significantly higher temperatures are achieved 

with ethylene glycol-TiO2 nanofluid (fig. 6b), than with water-TiO2 (Fig. 6a) nanofluid. With 

greater semi-vertex angle, temperatures are strongly enhanced for both nanofluids. A wider 

channel convergent vertex therefore heats the nanofluid considerably compared with a 

narrower one. With greater Reynolds number, again a marked elevation in temperatures as 

achieved. A similar trend was reported also by Moradi et al. [35] 

Figs. 7a,b present the influence of various semi-vertex angle (divergent,  < 0) and Reynolds 

number (Re) again with fixed momentum and thermal slip (a = b = 0.5), viscous heating (Ec = 

5) and volume fraction ( = 0.2). Converse to convergent channels, a substantial decrease in 

temperatures is caused with greater Reynolds numbers. However an increase in temperature 

does correspond to increasing divergent semi-vertex angle. Therefore both nanofluids are 

heated throughout the channel space irrespective of whether the vertex is converging or 

diverging. As with converging channels, however, greater temperatures are attained with 

ethylene glycol-TiO2 nanofluid (fig. 7b) than with water-TiO2 (Fig. 7a) nanofluid.  

Figs 8a,b depict the skin friction plots for various thermophysical parameters. With greater 

nano-particle volume fraction () a marked boost is achieved in skin friction, for both 

nanofluids, indicating considerable flow acceleration. Conversely with a small increase in 

Reynolds number, the flow is decelerated. This concurs with the trend in Fig. 3a where velocity 

gradients were noted to be lowered at the channel wall with greater Reynolds numbers. 

Approximately the same response is observed for both nanofluids i.e. the base fluid exerts very 
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little effect on the flow performance – the primary influence is from the nanoparticles, which 

as they are both Titanium oxide in figs 8a,b, do not alter profiles significantly. However the 

concentration of nano-particles simulated via the volume fraction clearly does modify the flow 

at the wall. Increasing momentum slip is also found to reduce skin friction.  

Figs. 9a, b present the effects of velocity slip (a) and converging or diverging channel angles 

() for (a) Water-TiO2 and (b) EG-TiO2 nanofluids, on skin friction (Cf). With increasing 

momentum (velocity) slip skin friction is markedly depressed for both nanofluids. With 

increasing converging angle, skin friction is also decreased for both nanofluids, whereas with 

increasing diverging angle it is strongly increased. 

 

Figs 10a, b illustrate Nusselt number (wall heat transfer rate) for various nano-particle volume 

fraction (), velocity slip (a) and Reynolds numbers (Re), again for a converging channel. 

Significant decay in Nusselt numbers accompanies increasing momentum slip values for both 

nanofluids. Generally Nusselt number is also enhanced with increasing Reynolds number and 

the effect is more pronounced as velocity slip increases. A strong elevation in Nusselt number 

is also observed with higher nanoparticle volume fraction. Higher concentrations of nano-

particles therefore increase the transfer of heat from the nanofluid to the channel wall causing 

a drop in nanofluid temperature in the channel i.e. a cooling effect is induced. Distinct from 

the skin friction plots (Figs 9a,b), massively greater  magnitudes of Nusselt number are 

achieved with EG-TiO2 nanofluids (Fig 10b) compared with Water-TiO2 nanofluids (Fig 10a) 

confirming that the base fluid has a prominent role in thermal enhancement of the nanofluid. 

Figs 11a,b illustrate the influence of Eckert number (Ec), velocity slip (a) and converging-

diverging channel angles  () for (a) Water-TiO2 and (b) EG-TiO2 nanofluids. Again we note 

the enormously higher magnitudes of Nusselt number computed for EG-TiO2 nanofluid in 

comparison with Water-TiO2 nanofluid. With greater Eckert number, Nusselt number clearly 

demonstrates a linear descent for diverging channels, whereas it follows a linear ascent for 

converging channels. Heat transfer rate to the wall from the fluid is therefore greater for 

converging channels with higher Eckert number. This parameter which arises only in the heat 

conservation equation (13) embodies the relative significance of kinetic energy in the flow to 

enthalpy difference, as elaborated by Schlichting [1]. Ec >0 implies conversion of mechanical 

energy which is dissipated as heat in the nanofluid. This will heat the fluid and lead to greater 
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heat transfer from the fluid to the channel wall, as observed in the red solid lines in both Figs 

11a,b. With increasing converging angle the rate of ascent of the Nusselt number profiles is 

increased, whereas with increasing diverging angle it is decreased. Heat transfer rate from the 

nanofluid to the wall therefore is boosted with wider convergent channels whereas it is 

depressed with wide divergent channels. The opposite effect will be induced in diverging 

channels, as testified to by the dotted green lines in both figs 11a, b.  

 

7. CONCLUSIONS  

A new transport model has been presented for thermal and momentum slip effects on dissipative 

nanofluid heat transfer and flow in a diverging/converging 2-D channel with solid walls. The 

Tiwari-Das nanofluid formulation has been implemented. The transformed boundary value 

problem is solved by MAPLE 17. Extensive validation has been achieved with the finite 

difference implicit Keller Box Method (KBM). The influence of nanoparticle volume fraction, 

Reynolds number, Prandtl number, channel semi-apex angle and Eckert (viscous dissipation) 

number are addressed. Properties of different nanofluids i.e. density ratio, thermal conductivity 

ratio and specific heat capacity ratio are evaluated using Tiwari-Das data for different 

nanoparticles (Titanium oxide, copper, alumina). Two nanofluids are considered- Water-TiO2 

and (b) Ethylene Glycol (EG)-TiO2 nanofluid. The present computations have shown that with 

increasing velocity slip, for both water-TiO2 and ethylene glycol-TiO2 nanofluids, the channel 

bulk flow is decelerated. Similarly with greater solid (nanoparticle) volume and in the presence 

of momentum slip, the flow is also retarded. With increasing semi-vertex angle, the channel 

flow is generally accelerated although at the wall, the contrary behaviour is computed. An 

increase in divergent semi-angle on the other hand is found to generally decelerate the flow 

from the centre line for the core flow region, whereas near and at the channel wall it results in 

a weak acceleration. Higher temperatures are achieved with greater thermal slip values, for 

both water-TiO2 and ethylene glycol-TiO2 nanofluids, whereas for greater nanoparticle volume 

fraction, temperatures are weakly decreased for water-TiO2 (Fig. 5a) whereas a more 

significant decreases is observed for ethylene glycol-TiO2 nanofluid. With greater diverging 

channel angle, a substantial decrease in temperatures is caused with greater Reynolds numbers, 

and the reverse effect is computed for converging channels. The present model has neglected 

non-Newtonian properties [49] of the nanofluid and also transient effects [50, 51]- these will 

constitute future studies. 
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