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Abstract 

In this paper, the unsteady flow of two immiscible fluids with heat transfer is studied numerically 

with a modified cubic B-spine Differential Quadrature Method. Generalized Couette flow of two 

immiscible dusty (fluid-particle suspension) and pure (Newtonian) fluids are considered through 

rigid horizontal channels for three separate scenarios: first for non-porous plates with heat 

transfer, second for porous plates with uniform suction and injection and heat transfer, and third 

for non-porous plates with interface evolution. The stable liquid-liquid interface is considered for 

the two immiscible fluids in the first two cases. In the third case, it is assumed that the interface 

travels from one position to another and may undergo serious deformation; hence the single 

momentum equation based on the (volume of fluid) VOF method is combined with the continuum 

surface approach model, and an interface tracking is proposed. The flow cases are considered to 

be subjected to three different pressure gradients, of relevance to energy systems- namely, applied 

constant, decaying, and periodic pressure gradients. For each case, the coupled partial differential 

equations are formulated and solved numerically using MCB-DQM to compute the fluids 

velocities, fluid temperatures, interface evolution. The effects of emerging thermo-fluid 

parameters, i. e. Eckert (dissipation), Reynolds, Prandtl, and Froude numbers, particle 

concentration parameter, volume fraction parameter, pressure gradient, time, and the ratio of 
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viscosities, densities, thermal conductivities, and specific heats on velocity and temperature 

characteristics are illustrated through graphs.  

Keywords: Immiscible fluids; interface tracking; modified cubic B-spline; differential quadrature 

method; viscous heating; energy duct transport phenomena. 

Nomenclature  

 
∅ Volume fraction function  𝒈  The gravitational acceleration 𝒎/𝒔𝟐 

𝑼 The velocity of the fluid 𝒎/𝒔 𝒍𝟏 The height of the interface at any point m 

𝑼𝒑 Particle phase velocity m/s 𝒚𝒎 The average depth of the interface m 

𝝆 The density co-efficient of fluid 𝑲𝒈/𝒎𝟑 𝑨𝟎 The amplitude m 

𝒑 Fluid pressure P 𝑲∗ Stokes drag coefficient 

𝝁 The viscosity coefficient of fluid 𝒌𝒈 · 𝒎−𝟏 ·

𝒔−𝟏 

𝑵 the number density of the dust particles 𝒎−𝟑 

𝝆 𝒑 Particle density 𝑲𝒈/𝒎𝟑 r The average radius of particles 𝒌𝒈 

𝑴 The volume transfer coefficient 𝑪𝒇 The Skin friction coefficient  

𝒄 The specific heat capacity of fluid 𝑱𝒌𝒈−𝟏𝑲−𝟏 𝝎 The mean free surface curvature 

𝜿 The thermal conductivity of the fluid 𝝈 The interfacial tension between two liquid 

phases 𝒎𝑵/𝒎 𝒄𝒑 specific heat capacity of the particles 

𝑱𝒌𝒈−𝟏𝑲−𝟏 

𝑹 Particle concentration parameter 

𝑻 The temperature of fluid K 𝑺𝟏, 𝑺𝟐 The suction parameters 

𝑻𝒑 Particle phase temperature K 𝒘 oscillating parameter 

𝜸𝑻 temperature relaxation parameter  𝝀 Decaying parameter 

𝝆 𝟏, 𝝆 𝟐 The density co-efficient of dusty and pure 

fluids 𝑲𝒈/𝒎𝟑 

𝑪𝒔 The local value of fluids concentration 

parameter 𝒎𝒑 The average mass of particles 𝒌𝒈 𝑹𝒆 Reynolds number  

𝝁𝟏, 𝝁𝟐 viscosity co-efficient of dusty and pure fluids 

𝒌𝒈𝒎−𝟏𝒔−𝟏 

𝑬𝒄 Eckert number 

𝜿𝟏, 𝜿𝟐 thermal conductivities of co-efficient 𝑾/𝒎𝑲 𝒑𝒓 Prandtl number 

𝒄𝟏, 𝒄𝟐 specific heat capacities of co-efficient 

𝑱𝒌𝒈−𝟏𝑲−𝟏 

𝑵𝒖 The Nusselt number 

𝑼𝟏, 𝑼𝟐 velocities of dusty and pure fluids 𝒎/𝒔 𝑪𝒂 Capillary number 

𝑻𝟏, 𝑻𝟐 Temperatures of dusty and pure fluids 𝑲 𝑭𝒓 Froude number 

𝒕𝟐, 𝒕𝟏 temperatures of lower and upper plates 𝑲 𝒓𝟏 Ratio of viscosities  

𝑪𝒊 Interface track 𝒓𝟐 Ratio of densities 

𝑼𝟎 the velocity of the upper plate 𝒎/𝒔 𝒓𝟑 Particle and fluid density ratio 

𝑳∞ The length of the upper and lower plates 𝑪𝒓 The ratio of specific heat capacities 

𝑼∗ The mean flow velocity field in the channel 

𝒎/𝒔 

𝒌𝒓 The ratio of thermal conductivities 

𝝆∗ The average density of the flow in the channel 

𝑲𝒈/𝒎𝟑 

𝑪𝒓𝒓 Particle and fluid specific heat capacities ratio 

𝝁∗ average viscosity of flow in the channel 𝒌𝒈 ·

𝒎−𝟏 · 𝒔−𝟏 

𝑮𝒆(𝒕) Time-dependent pressure gradient 

F The body force per unit mass   

 

1. Introduction 

In many industrial problems, like splitting of the matter mostly from a fluid, oil and gas industry, 

petroleum filtration, polymer technology, transportation procedures, sometimes it 
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is hardly accessible the pure form of fluid. Similarly, some fluids include impurities such as dust 

particles and external entities and these types of fluids are known as dusty. Dusty flows or fluid-

particle suspension dynamics have been of interest to engineers for many decades. These flows 

generally feature a homogenous liquid (velocity phase) carrying small dust particles (solid phase) 

and are also an example of a two-phase system.  They arise in aerodynamics [1], chemical 

engineering fluidized beds [2], spinning bioreactors [3], liquid metal processing [4], nozzle 

systems in propulsion [5], cosmical hydrodynamics [6], and solid oxide fuel cells (SOFCs) [7]. 

Early work on modeling dusty fluids for the Newtonian case was reported by Saffman [8] who 

proposed a dusty fluid framework taking into consideration the impact of suspended particles on 

laminar flow stability. Marble [9] later generalized Saffman’s analysis and provided a broader 

perspective of dusty flows deriving boundary value problems in which the dusty particles (of small 

volume fraction) do not interact with the momentum, heat, and/or mass transfer in such media. 

Marble’s approach [9] also popularized the use of momentum inverse Stokes number, particle 

loading parameter, and temperature inverse Stokes number, which have become the basis for many 

subsequent dimensionless mathematical flow models. Dusty flows have also been explored in 

atmospheric fluid mechanics, notably foggy suspensions [10] and debris-laden tornados (swirling 

cone models) [11].  A number of boundary layers and fully developed flow configurations have 

also studied dusty (fluid-particle) suspension flows. Allaham and Peddieson [12] used a finite 

difference technique to compute the fluid (Newtonian) and particle-phase velocity components in 

swirling Von Karman flow, noting that both the particle phase viscosity and solid surface boundary 

conditions impact considerably on the dynamics. Manuilovich [13] investigated the transient flow 

of a dilute gas-particle dusty mixture in a plane channel under the action of a constant longitudinal 

pressure gradient and transverse gravity force, with asymptotic and numerical methods for the 

cases of both monodisperse and polydisperse particles. Bilal et al. [14] studied the viscoelastic 

dusty fluid-free convective hydromagnetic Couette flow in a rotating frame using a Poincare-Light 

Hill Technique. They computed the particle and fluid phase velocities and also derived expressions 

for skin friction and Nusselt number (the rate of heat transfer) are also calculated. It was observed 

that stronger rotation decelerates both dust particle phase and fluid phase velocities. Osiptsov [15] 

used Van Dyke’s matched asymptotic expansion method to compute the dusty laminar boundary 

layer flow from both plane and curved surfaces, scrutinizing the impact of particle accumulation 

in the boundary layers and the effects of particles on the friction and heat fluxes. Oscillatory 
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hydromagnetic channel flow of dusty fluids was considered by Debnath and Ghosh [16].  Dey [17] 

analyzed the non-Newtonian dusty channel convective flow problem with viscous heating effects. 

Pulsatile time-dependent dusty pumping in a channel was examined by Datta et al. [18] using 

Laplace transform techniques. Vajravelu et al. [18] studied temperature-dependent fluid property 

effects in magnetized convective boundary layer flow in a dusty fluid over a stretching sheet with 

the second-order implicit finite difference scheme known as the Keller–Box method and 

perturbation methods. They observed that transverse fluid phase velocity is damped with elevation 

in the fluid-particle interaction parameter both with and without magnetic field. Kumar and Sarma 

[20] used the least-squares finite element method to simulate the steady flow of a fluid-particle 

suspension generated by stretching a wall, noting that both fluid and particle-phase velocities are 

suppressed with increment in particle loading and fluid-particle interaction parameters. They also 

observed that dusty particle density attains a peak at the plate (sheet) surface. Dalal et al. [21] 

presented central and second upwind finite difference computational solutions for natural 

convection of a dusty fluid in an infinite rectangular channel with differentially heated vertical 

walls and adiabatic horizontal walls. They noted that the heat transfer rate at the channel walls 

(Nusselt number) is reduced with an increase of mass concentration of dust particles, whereas it is 

boosted with a higher thermal buoyancy effect (Rayleigh number). Gretler and Regenfelder [22] 

developed similarity solutions for adiabatic strong blast shock waves of variable energy 

propagating in a dusty gas using an equilibrium-flow condition and simulating the variable energy 

input via a driving piston (decelerated, constant velocity, or accelerated) with a time-dependent 

power law. They tabulated extensive results for the effects of mass concentration of the solid 

particles and the ratio of the density of solid particles to the constant initial density of the gas. 

Saqib et al. [23] used a two-phase Brinkman model with Laplace and Hankel transforms to develop 

exact analytical solutions for magnetic blood flow in a cylindrical tube with Newtonian fluid and 

uniformly distributed magnetite dusty particles. Park and Rosner [24] computed laminar flow 

mass, momentum, and energy-transfer rate coefficients over a wide range of particle mass 

loadings, dimensionless particle relaxation times (Stokes numbers), dimensionless thermophoretic 

diffusivities, and gas Reynolds numbers in steady axisymmetric “dusty-gas” flow between two 

infinite disks. They identified a new “critical” Strokes number (for incipient particle impaction) 

on the particle mass loading and the wall/gas temperature ratio for dust-laden gas motion towards 

“overheated” solid surfaces. Takhar et al. [25] deployed a complex variable method to study the 
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transient magnetic flow of a dusty viscous liquid in a spinning channel with Hall current effects, 

elucidating in detail the impact of Strouhal and Stokes numbers on particle and fluid phase 

velocities at both weak and strong magnetic fields.  Chakma [26] derived closed-form solutions 

for dual-phase velocities, displacement thicknesses, and skin friction for dusty Newtonian flow in 

a channel with perforated walls considering both suction and injection (blowing) effects. Bég et 

al. [27] used a variational finite element method to compute the steady, laminar nonlinear natural 

convection dusty flow with heat generation in a vertical channel containing a non-Darcian porous 

medium. They computed both fluid/particle-phase velocity and temperatures, noting that fluid 

velocity is strongly damped with porous drag forces and magnetic field whereas particle-phase 

velocity is weakly reduced. They further noted that higher inverse momentum Stokes number 

suppresses fluid phase velocity but elevates particle-phase velocity.  Further recent studies of dusty 

transport in channels have been reported by S. Mukhopadhyay et al. [28] (using a finite volume 

method for a wavy-walled duct), Bég et al. [29] (using differential transform methods with Padé 

approximants for dusty blood flow under thermal buoyancy effects) and Palani et al. [29] (with a 

Crank–Nicholson finite difference method for external cylinder coating dusty boundary layer).   

Many flow configurations arising in industrial materials processing, nuclear engineering, and 

petrochemical systems feature two-fluid flows. These relate to the presence of two viscous liquids 

which do not mix i. e. are immiscible. Comprehensive discussions on such flows have been given 

by Corey [31] and Briscoe et al. [32] for geological and chemical engineering colloidal 

applications, respectively. As noted, immiscible or stratified flows are also critical in nuclear 

engineering, specifically in the late in-vessel stage of core melt severe accidents of a nuclear 

reactor [33]. These flows are also relevant to liquid polymer layers on a solid substrate [34]. Many 

theoretical and numerical studies of two-fluid flow transport phenomena have therefore been 

communicated. Nikodijević et al. [35] studied theoretically the thermal convection of electrically 

conducting immiscible Newtonian fluids in channel flow under an oblique magnetic field. Mori et 

al. [36] used a moving finite element method to compute the transient two‐phase free sharp 

interface problem arising in the flow of two immiscible fluids (slag and molten metal) in a blast 

furnace with an implicit time‐stepping scheme. Tang and Wrobell [37] employed a volume-of-

fluid (VOF) method interface tracking method for modeling the flow of immiscible metallic liquids 

in mixing processes, noting that the mixing of immiscible metallic liquids is greatly impacted by 

the viscosity of the system, shear forces, and turbulence. Wan et al. [38] deployed an implicit 
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hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids, using a 

segregated pressure correction or projection method on staggered unstructured hybrid meshes. 

They captured the fluid interface by solving an advection equation for the volume fraction of one 

of the fluids which achieve an improved interface sharpening strategy by reducing the smearing of 

the interface over time. Than et al. [39] investigated the hydrodynamic stability of plane Poiseuille 

flow of two immiscible liquids of different viscosities and equal densities, noting the sensitivity of 

results to the viscosity and volume ratio. They identified that high viscosity fluid centrally located 

achieves good stability whereas centrally located layers of less viscous fluid (fingering zones) are 

consistently unstable. Yagodnitsyna et al. [40] simulated the flow patterns of immiscible liquid-

liquid flow in a rectangular microchannel with T-junction for three liquid-liquid flow systems 

(kerosene – water, paraffin oil-water, and castor oil – paraffin oil), and included a variety of 

analyses for parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow at 

different velocity ratios for different Weber and Ohnesorge numbers. Bég et al. [41] analyzed the 

unsteady hydromagnetic flow of two immiscible Newtonian fluids in a rigid horizontal channel 

containing two non-Darcian porous media with oscillating lateral wall mass flux under a sinusoidal 

pressure gradient. They deployed forward time/central space (FT/CS) finite‐difference and 

Galerkin finite‐element methods, observing a strong modification in velocity components with 

inertial and magnetic field effects. Zhou et al. [40] implemented a meshless Local Petrov–Galerkin 

method with Rankine source solution (MLPG_R method) to compute two-fluid Newtonian flows 

with both low density and very high density-ratios. Further investigations include McLean et al. 

[41] and Bittlseton et al. [42] (on primary cement displacement immiscible flows in oil well 

systems) and Tang et al. [43] (on 2- and 3-dimensional piecewise linear (PLIC) volume-of-fluid 

(VOF) Eulerian grid computation of immiscible twin-screw extruder interfacial flows). Borrelli et 

al. [46]  considered two immiscible Newtonian fluids in a vertical channel and studied the 

magneto-convection parameter effects on flow behavior. In many of these studies, a significant 

challenge has been the correct analysis of the complex interface between the immiscible liquids. 

The interface travels from one position to another and can also be considerably deformed or in 

extreme cases may collapse. Hence the interface between two immiscible fluids plays a vital role 

in computational flow simulation, and it should be determined as one major component of the 

solution. The nonlinear behavior of a sheared immiscible fluid interface is studied by Tauber et al. 

[47]. Umavathi and Bég [48] deployed a finite difference code and special interfacial stress 
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conditions to compute the influence of thermal conductivity ratio and viscosity ratio on interfacial 

heat and momentum transfer for two Newtonian immiscible fluids in a vertical duct with non-

isothermal wall conditions. They showed that with different duct aspect ratios in the upper and 

lower duct regions a marked movement of the interface is generated. Yih [49] observed that owing 

to the viscosity drop from one fluid to another, the tangential velocity gradient also shifts and this 

contributes to instability in the interface. Dong [50] used a Lattice Boltzmann code to simulate 

immiscible fluids displacement. There are several techniques of interface monitoring, such as the 

front tracking, moving grid, the level set, and volume of fluid (VOF) technique. This approach 

offers a clear and straightforward way of addressing geometrical changes in the interface. DeBar 

[51] pioneered the VOF method, developing the first comprehensive numerical code for Eulerian 

hydrodynamics in the compressible non-viscous flow of several fluids in two-dimensional (axially 

symmetric) regions. Youngs [52] did some significant modifications to this code by incorporating 

viscous and large interface deformation features. Li and  Renardy [53] studied the interface 

between two immiscible fluids by the VOF method. The tracking of the interface between two 

immiscible fluids was explored via various methods, including VOF by Gopala and Wachem [54].  

The investigation of a dielectric viscous fluid flowing via channels under the presence of an 

external magnetic field is not only intriguing conceptually, but it also has implications in the 

mathematical modeling of a variety of industrial and biological systems. The homotopy 

perturbation technique is applied to find the solutions to the system of modeled differential 

equations for Williamson nanofluid flow with external magnetic effect Bhatti et.al [55]. The MHD 

effect on micropolar nanofluid is studied by Hsiao [56]. The blood flow with floating magnetic 

Zinc-oxide nanoparticles in the arteries is analyzed by Zhang et.al [57]. The effects of applied 

magnetic field on hybrid bio-nanofluid flow in a peristaltic duct are investigated by  Bhatti et.al  

[58] Hsiao [59] investigated an electrical MHD ohmic dissipation energy release on Carreau-

Nanofluid. Bibi et.al [60] [61]did the numerical analysis of magnetohydrodynamics effect on 

Williamson and tangent hyperbolic fluid. Some more studies on MHD flow can be seen in [62]–

[64] 

Another key aspect of interfacial two-fluid dynamics is the effect of time. Despite its essential 

importance, relatively little work has been conducted regarding the time-dependent unstable flow 

of two immiscible liquids. The unsteady multiphase flow problem has been explored however via 
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the front tracking method by Tryggvason et al. [65]. Riaz et al. [66] studied the instability of 

immiscible two-phase flow in porous media. In addition to VOF methods, other numerical 

algorithms have also been deployed in interfacial flows. These include spectral, alternating 

direction implicit (ADI) finite difference, finite element, and meshless smoothed particle 

hydrodynamics (SPH). Devakar and Raje [67] numerically explored the time-dependent unsteady 

flow of two immiscible fluids by the Crank-Nicolson finite difference method. The low-order 

approaches do use several grid points to achieve an acceptable degree of accuracy to obtain specific 

outcomes at such defined points. The differential quadrature method (DQM) approach was 

proposed by Bellman[68] developed an improved discretization strategy to produce concise 

numerical solutions with significantly reduced grid sizes. DQM was further improved by Quan 

and Chang [69], [70] motivated by chemical engineering applications. Various test functions, 

namely, Lagrange interpolation polynomials, sink and spline, cubic and modified cubic B-spline 

functions, have also been explored in many articles - see [71]- [77] - for the calculation of 

weighting coefficients in DQM. This technique is also convenient to use and financially efficient 

with data complexity, leading to error mitigation and easy implementation. Using the DQM, Katta 

and Joshi [78] analyzed the behavior of elastico-viscous magneto-hydrodynamic fluid in a parallel 

plate channel. Katta et al. [79] numerically explored the unsteady fluid flow of two immiscible 

fluids with the DQM approach. 

To the best knowledge of the authors, no attempt has been made to study the unsteady flow of two 

immiscible dusty and non-dusty fluids with heat transfer and interface evolution. This flow regime 

has important applications in nuclear reactor designs and also thermal duct systems in 

petrochemical engineering. The computational approach adopted in this paper is a modified cubic 

B-spine Differential Quadrature Method. Generalized Couette flow of two immiscible dusty (fluid-

particle suspension) and pure (Newtonian) fluids are considered through rigid horizontal channels 

for three separate schemes: first for non-porous plates with heat transfer, second for porous plates 

with uniform suction and injection and heat transfer, and third for non-porous plates with interface 

evolution. A detailed appraisal of the physics is included. Validation is also conducted through 

skin friction coefficient and Nusselt number. The advection and reconstruction/tracking of the 

interface for the third scheme is also explored. MCB-DQM is shown to achieve exceptional 

stability and accuracy and offers significant promise in simulating interfacial duct flows in nuclear 

and geothermal energy, petrochemical transport, and materials processing systems. Three different 
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pressure gradients are studied, viz applied constant, decaying, and periodic pressure gradients. 

The fluid and particle velocities, temperatures, and also interface tracking are computed by solving 

coupled partial differential equations. Detailed graphical visualizations are included and a 

comprehensive elaboration of the physical implications provided.  

2. Transport model formulation for dusty-Newtonian immiscible flows  

Motivated by nuclear engineering applications, in this study, incompressible, immiscible two-fluid 

dusty-Newtonian channel convective heat transfer flows are considered for a variety of boundary 

conditions. It is important to note that as the particles are non-interacting, all dusty particles in a 

local volume have the same velocity vector and temperature (ballistic collisions and Brownian 

dynamics are ignored, following Marble [10]). The formulation adopted for the field equations 

governing the fluid and particulate phases following Ramesh et al. [80], Abdulsalam et al. [81], 

and Attia et al. [82] and takes the form:  

𝜕∅

𝜕𝑡
+ 𝛻. ((1 − ∅)𝑈) = 0                                                                                                                               (1) 

𝜕∅

𝜕𝑡
+ 𝛻. (∅𝑈𝑝) = 0                                                                                                                                         (2) 

𝜌(1 − ∅). (
𝜕𝑈

𝜕𝑡
+ 𝑈. 𝛻 𝑈) = (1 − ∅)(−𝛻𝑝 + 𝜇𝛻2𝑈) −𝑀𝜌𝑃∅(𝑈 − 𝑈𝑝)                                          (3) 

𝜌𝑝∅ (
𝜕𝑈𝑝

𝜕𝑡
+ 𝑈𝑝. 𝛻𝑈𝑝) =  𝑀𝜌𝑝∅(𝑈 − 𝑈𝑝)                                                                                               (4)

𝜌𝑐(1 − ∅). (
𝜕𝑇

𝜕𝑡
+ 𝑈. 𝛻𝑇) = (1 − ∅)𝜅𝛻2𝑇 − (1 − ∅)𝜇(𝛻𝑈)2 − 𝜌𝑝𝑐𝑝

∅(𝑇−𝑇𝑝)

𝛾𝑇
+𝑀𝜌𝑝∅(𝑈 − 𝑈𝑝)

2
           (5) 

𝜌𝑝𝑐𝑝∅ (
𝜕𝑇𝑝

𝜕𝑡
+ 𝑈𝑝. 𝛻𝑇𝑝) =  −𝜌𝑝𝑐𝑝

∅(𝑇𝑝−𝑇)

𝛾𝑇
                                                                                                (6) 

Here ∅  is the particle volume fraction, 𝑈 is the velocity of the fluid. 𝑈𝑝 is the velocity of a dust 

particle, 𝜌 is the density co-efficient of fluid, 𝑝 is the fluid pressure at any point, 𝜌𝑝 is the density 

of dust particles, the material constants 𝜇 is viscosity coefficients, and 𝑀 is the volume transfer 

coefficient. At constant volume, 𝑐 is the specific heat capacity of fluid, 𝜅 is the thermal 

conductivity of fluid, 𝑐𝑝 is the specific heat capacity of the dust particle.  Heat transfer takes place 

via thermal conduction through the fluid from the top hot plate to the bottom cold plate. Dust 

particles receive temperature from the conduction through their rounded texture. 𝑇 is the 
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temperature of fluid and 𝑇𝑝 is the temperature of dust particles and 𝛾𝑇 is the temperature relaxation 

time. Some assumptions have been made to develop the governing equations regarding the analysis 

of dusty fluids (fluid-particle suspension). The fluid is incompressible, and the density is believed 

to be stable for both phases. The dust particles are in an electro-free form and circular in shape. 

All the dust particles have the same size, mass, and un-deformable constitution and are evenly 

distributed throughout the fluid. If the dusty fluid flows across the porous plates, then particles do 

not penetrate the boundaries. It is also implicit that the particle phase is sufficiently dilute so that 

the interactions between any two particles are ignored, and the dust particle size is also relatively 

tiny in scale. Hence the net dust effect on the fluid particles is equivalent to the additional 

force, 𝑀𝜌𝑝∅(𝑈 − 𝑈𝑝) per unit volume. One can see that, in the absence of dust particles in the 

fluid ( 𝑈 = 𝑈𝑝, 𝑇𝑝 = 𝑇) the velocity and temperature distribution  

equations (3) and (5) reduces to: 

𝜌(1 − ∅). (
𝜕𝑈

𝜕𝑡
+ 𝑈. 𝛻 𝑈) = (1 − ∅)(−𝛻𝑝 + 𝜇𝛻2𝑈)                                                                             (7)  

𝜌𝑐(1 − ∅). (
𝜕𝑇

𝜕𝑡
+ 𝑈. 𝛻𝑇) = (1 − ∅)𝜅𝛻2𝑇 − (1 − ∅)𝜇(𝛻𝑈)2                                                             (8) 

2.1. The volume of the fluid (VOF) model 

In the system of two immiscible liquids, the characteristics described by the momentum model are 

defined by the existence of each control volume. The average density and viscosity quantities are 

normalized by the following equations Li and  Renardy [83]: 

𝜌∗ = 𝜌1 + 𝐶𝑠(𝜌2 − 𝜌1)                                                                                                                                 (9)

𝜇∗ = 𝜇1 + 𝐶𝑠(𝜇2 − 𝜇1)                                                                                                                               (10) 

Where 𝜌1, 𝜇1 be the density and viscosity of the non-dusty (pure)fluid and 𝜌2, 𝜇2 be the density 

and viscosity of the dusty fluid? The concentration parameter 𝐶𝑖 is used to track the interface and 

transported by the mean velocity field 𝑈∗. 

𝜕𝐶𝑖

𝜕𝑡
+ 𝑈∗. 𝛻𝐶𝑖  = 0                                                                                                                                        (11) 

The incompressible flow velocity is driven by a single momentum equation, with the resultant 

velocity field shared between the transitions Li and  Renardy [83]: 

𝜌∗(
𝜕𝑈∗

𝜕𝑡
+ 𝑈∗. 𝛻𝑈∗) = −𝛻𝑝 + 𝜇∗𝛻2𝑈∗ + 𝐹                                                                                            (12) 
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Here the body forces F is included with gravitational force and interfacial tension and−𝛻𝑝 is the 

applied pressure term.  

2.2. Formulation of dusty and pure fluid flow under the scheme – I 

Consider the unsteady, fully developed, laminar, and unidirectional Generalized Couette flow of 

two immiscible dusty (fluid-particle suspension) and pure(non-dusty Newtonian) fluids shown in 

Figure 1(a). Some assumptions are being made under the scheme-I. Both fluids are immiscible, 

viscous, and incompressible, and move between two horizontal parallel non-porous plates (two-

dimensional channel). Both plates are electrically non-conductive with zero polarization voltage. 

The plates are in opposition to each other and occupy the x-z plane as depicted in Figure 1 (a). The 

lower plate is stationary and has a steady temperature of 𝑡1, while the upper plate travels at a fixed 

velocity of 𝑈0 in the x-(axial) direction at a constant temperature of 𝑡2. Here 𝑡2 > 𝑡1. Pure 

Newtonian fluid  occupies the bottom region -I(−𝑘 ≤ 𝑦 ≤ 0) and has a fluid velocity 𝑈1, 

density 𝜌1, viscosity 𝜇1, specific heat capacity 𝑐1of fluid at constant volume, temperature 𝑇1and 

thermal conductivity 𝜅1.Dusty fluid occupies the upper region -II (0 ≤ 𝑦 ≤ 𝑘) and has fluid 

velocity 𝑈2, density 𝜌2, viscosity 𝜇2, specific heat capacity 𝑐2 of fluid at constant volume, 

temperature 𝑇1, thermal conductivity 𝜅2. In the dusty fluid, the dust particles possess a particle 

velocity 𝑈𝑝, density 𝜌𝑝, specific heat capacity 𝑐𝑝of a particle at constant volume, temperature 𝑇𝑝 

and thermal conductivity 𝜅𝑝. The transportation attributes are unchanged in both the regions and 

common pressure gradients are applied from the vertical y-direction. The flow of dusty fluid in the 

region –II is governed by the equations (1), (2), (3), and (4).  In the absence of dust particles in the 

region I, the pure fluid flow (Newtonian i.e., non-dusty) is governed by equations (1), (7), and (8). 
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Figure 1 Geometrical configuration for Generalized Couette flow of immiscible (a) dusty and pure 

(Newtonian) fluids under the scheme-I, (b) scheme-II, and (c) under the scheme-III. 

The fluid velocity  vector (𝑈𝑖(𝑦, 𝑡) ) and temperature (𝑇𝑖(𝑦, 𝑡) ) are assumed to be in both regions 

(i=I, II) (𝑈𝑖=(𝑈𝑖(𝑦, 𝑡),0,0) and (𝑇𝑖=(𝑇𝑖(𝑦, 𝑡),0,0) and particle velocity and temperature vectors in 

region II are presumed as (𝑈𝑝=(𝑈𝑝(𝑦, 𝑡),0,0)  and (𝑇𝑝=(𝑇𝑝(𝑦, 𝑡),0,0), respectively. The 

hydrodynamic motion is driven by an applied pressure gradient in the x-axial direction; therefore, 

the velocity profile is unidirectional. Thus, 𝛻𝑈𝑖 = 𝑈𝑖𝑦 , 𝛻
2𝑈𝑖 = 𝑈𝑖𝑦𝑦,  𝛻𝑇𝑖 = 𝑇𝑖𝑦, 𝛻

2𝑇𝑖 = 𝑇𝑖𝑦𝑦. The 

fluid layers are mechanically coupled through the model of momentum exchange. Transferring 

momentum arises through consistency in velocity and shear stress over the interface. However, we 

assume that the flow rate and shear-induced pressure are also stable at the interface between two 

(a) 

(b) 

(c) 
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liquids. Fluid flow and temperature distribution, in view of the above constraints, are governed by 

the following equations: 

Region-I (Pure fluid: −k ≤ y ≤ 0). 

𝜌1.
𝜕𝑈1

𝜕𝑡
= −𝛻𝑃 + 𝜇1𝛻

2𝑈1                                                                                                                          (13)                     

𝜌1𝑐1.
𝜕𝑇1

𝜕𝑡
= 𝜅1𝛻

2𝑇1 − 𝜇1(𝛻𝑈1)
2                                                                                                               (14) 

Region-II (Dusty fluid: 0 ≤ y ≤ k)  

𝜌2.
𝜕𝑈2

𝜕𝑡
= −𝛻𝑃 + 𝜇2𝛻

2𝑈2 −𝑀𝜌𝑝∅
(𝑈2−𝑈𝑝)

(1−∅)
                                                                                (15)                                                                                                                                                          

 
𝜕𝑈𝑝

𝜕𝑡
=  𝑀(𝑈2 − 𝑈𝑝)                                                                                                                                    (16) 

𝜌2𝑐2.
𝜕𝑇2

𝜕𝑡
= 𝜅2𝛻

2𝑇2 − 𝜇2(𝛻𝑈2)
2 −

𝜌𝑝𝑐𝑝∅(𝑇2−𝑇𝑝)

𝛾𝑇(1−∅)
+  𝑀𝜌𝑝∅

(𝑈2−𝑈𝑝)
2

(1−∅)
                                                  (17) 

 
𝜕𝑇𝑝

𝜕𝑡
= −

(𝑇𝑝−𝑇2)

𝛾𝑇
                                                                                                                                            (18) 

Classical hyper-stick and no-slip boundary conditions are considered and can be numerically 

prescribed:  

Initial conditions: At  𝑡 ≤  0,  𝑈1(𝑦, 𝑡) =  𝑇1(𝑦, 𝑡) = 0, 𝑓𝑜𝑟 − 𝑘 ≤ 𝑦 ≤ 0, 

 𝑈2(𝑦, 𝑡) = 𝑈𝑝(𝑦, 𝑡) = 0 𝑎𝑛𝑑 𝑇2(𝑦, 𝑡) = 𝑇𝑝(𝑦, 𝑡) = 0  𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝑘                                         (19) 

Boundary and interface conditions: At t > 0, 

𝑈1(−𝑘, 𝑡) = 0, 𝑈2(𝑘, 𝑡) = 𝑈𝑝(𝑘, 𝑡) =  𝑈0, 𝑇1(−𝑘, 𝑡) = 𝑡1,  𝑇2(𝑘, 𝑡) = 𝑇𝑝(𝑘, 𝑡) = 𝑡2 ,                        

 𝑈1(0, 𝑡) = 𝑈2(0, 𝑡), 𝑇1(0, 𝑡) = 𝑇2(0, 𝑡), 𝑎𝑛𝑑  𝑎𝑡 𝑦 = 0, 𝜇1𝑈1𝑦 = 𝜇2𝑈2𝑦 , 𝜅1𝑇1𝑦 = 𝜅2𝑇2𝑦.     (20) 

Introducing the non-dimensional parameters: �̅� =
𝑥

𝑘
, �̅� =

𝑦

𝑘
, , 𝑈1̅̅ ̅ =

𝑈1

𝑈0
, 𝑈2̅̅ ̅ =

𝑈2

𝑈0
, 𝑈𝑝̅̅̅̅ =

𝑈𝑝

𝑈0
,                                     

�̅� =
𝑝

  𝜌1𝑈0
2 , 𝑡̅ =

𝑡𝑈0

𝑘
 , 𝑇1̅ =

𝑇1−𝑡1

𝑡2−𝑡1
  , 𝑇2̅ =

𝑇2−𝑡2

𝑡2−𝑡1
, 𝑇𝑝̅̅̅ =

𝑇𝑝−𝑡2

𝑡2−𝑡1
                                                          (21) 

Where 𝑀 =
6𝜋𝑟𝜇2

𝑚𝑝
  is the volume transfer coefficient with an average mass of dust particle 𝑚𝑝 and 

radius 𝑟. Hence the last term of equation (16)  𝑀𝜌𝑝∅
(𝑈2−𝑈𝑝)

(1−∅)
 can be written as 

𝑅∗𝑟1

𝑅𝑒∗𝑟2
(𝑈2 − 𝑈𝑝). 

Here 𝑅 =
𝐾∗𝑁𝑘2∅

𝜇2(1−∅)
  is particle concentration parameter and 𝐾∗ = 6𝜋𝑟𝜇2𝑈0 is the Stokes drag 

coefficient, 𝑁 is the number density of particle per unit volume, and 𝑅𝑒 =
  𝜌1𝑈0

𝜇1
 is the Reynolds 
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number. 𝑟2 =
𝜇2

𝜇1
, 𝑟1 =

𝜌2

𝜌1
  are the viscosity and density ratios for the two immiscible fluids in zones 

I and II, respectively. Hence the last term of equation (17) is updated accordingly where  𝑟3 =
𝜌2

𝜌𝑝
 

is the ratio of the density of fluid and dust particles in region II. In equation (17) and (18) 𝛾𝑇 =

3

2

𝜌𝑝.𝑐𝑝.𝜇2

𝐾∗.𝑁.𝜅2
 is the temperature relaxation time where the Prandtl number (ratio of momentum and 

thermal diffusivity) is 𝑝𝑟 =
𝑐1∗𝜇1 

𝜅1
. 𝐸𝑐 =

𝑈0

𝑐1(𝑡2−𝑡1)
 is the Eckert number which is the ratio of the 

kinetic energy of the flow to the enthalpy difference (viscous dissipation). 𝑘𝑟 =
𝜅2

𝜅1
  is the ratio of 

thermal conductivity. 𝐶𝑟 =
𝑐2

𝑐1
  is the ratio of specific heat. 𝐶𝑟𝑟 =

𝑐2

𝑐𝑝
 is the ratio of specific heat of 

fluid and dust particle in region II. −𝛻𝑝 = −𝜕𝑝/𝜕𝑥 =  𝐺𝑒(𝑡) is the applied time-dependent 

pressure gradient in the x-axial direction with 𝑡 > 0. Three distinct cases for 𝐺𝑒(𝑡)  are considered 

to analyze the numerical results: 

Case-I: 𝐺𝑒(𝑡)  = 𝐺𝑒 (when the flow is induced by applied constant pressure gradient) 

Case-II:   𝐺𝑒(𝑡)  = 𝐺𝑒 ∗ 𝑆𝑖𝑛(𝑤𝑡) (when the flow is induced by applied periodic pressure gradient 

with oscillating parameter 𝑤)  

Case-III:  𝐺𝑒(𝑡)  = 𝐺𝑒 ∗ 𝑒−𝜆𝑡 (when the flow is induced by a decaying pressure gradient with the 

decaying parameter, 𝜆).  

 After dropping the bars and introducing the above non-dimensional parameters, appropriate 

initial, interfacial, and boundary conditions according to the scheme-I, the equation (13) can be 

modified as follows: 

Region-I ( −𝑘 ≤ 𝑦 ≤ 0) (Pure Newtonian fluid region): 

𝑈1𝑡 =  𝐺𝑒(𝑡) +
𝑈1𝑦𝑦

𝑅𝑒
                                                                                                                                    (22) 

𝑇1𝑡 =  
𝑇1𝑦𝑦

𝑅𝑒∗𝑝𝑟
+

𝐸𝑐

𝑅𝑒
(𝑈1𝑦)

2

                                                                                                                            (23) 

Region-II (0 ≤ y ≤ k) (Dusty fluid): 

𝑈2𝑡 =  
𝐺𝑒(𝑡)

𝑟1
+
𝑟2

𝑟1

𝑈2𝑦𝑦

𝑅𝑒
−
𝑅∗𝑟2

𝑟1

(𝑈2−𝑈𝑝)

𝑅𝑒
                                                                                                         (24) 

  𝑈𝑝𝑡 =
𝑅∗𝑟3∗𝑟2

𝑟1

(𝑈2−𝑈𝑝)

𝑅𝑒
                                                                                                                                 (25) 
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 𝑇2𝑡 =  
𝒌𝒓∗𝑇2𝑦𝑦

𝑪𝒓∗𝑟1∗𝑅𝑒∗𝑝𝑟
+

𝑟2

𝑪𝒓∗𝑟1

𝐸𝑐

𝑅𝑒
(𝑈2𝑦)

2

+
2

3

𝑅∗𝒌𝒓

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇𝑝−𝑇2)

𝑅𝑒
+
𝑅∗𝑟3∗𝑟2

𝑟1

(𝑈2−𝑈𝑝)
2

𝑅𝑒
                                     (26) 

 𝑇𝑝𝑡 =
2

3

𝑅∗𝒌𝒓∗𝑪𝒓𝑟∗𝑟3

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇2−𝑇𝑝)

𝑅𝑒
                                                                                                                          (27) 

Initial, boundary and interfacial conditions are considered as equation (19-20) with k=1, 𝑈0 = 1, 

𝑡1 = 0, 𝑡2 = 1. 

2.2.1The Nusselt number and skin friction coefficients 

When the fluid flows over the plates, it exerts a frictional effect on the plates' surfaces, obstructing 

forward motion and causing skin friction drift on the surface. The skin-friction co-efficient is used 

to quantify this effect. 

The expression of Nusselt number and skin friction coefficients at both plates are calculated 

as(𝑵𝒖)𝒚=−𝟏 = (−𝑻𝟏𝒚)𝒚=−𝟏
, (𝑵𝒖)𝒚=𝟏 = (−𝑻𝟐𝒚)𝒚=𝟏

, (𝑪𝒇)𝒚=−𝟏
= (

𝟐𝑼𝟏𝒚

𝑹𝒆
)
𝒚=−𝟏

, (𝑵𝒖)𝒚=𝟏 = (
𝟐𝒓𝟐𝑼𝟐𝒚

𝒓𝟏𝑹𝒆
)
𝒚=𝟏

              (28) 

2.3. Formulation of dusty and pure fluid flow under the scheme-II 

Consider again the unsteady, fully developed, laminar, and unidirectional Generalized Couette 

flow of pure and dusty fluids in a horizontal channel shown in Figure 1(b). Let 𝑈 = 𝑈𝑖 (𝑦, 𝑡)𝑖 +

𝑈0
∗𝑗 +  𝑈𝑘 𝑘.  be the velocity vector of fluids. Both plates have long length, say  𝐿∞ and 𝑆∗𝑖(𝑖 =

𝐼, 𝐼𝐼) is the volume of fluid sucked per unit length of the lower and upper plate, respectively (the 

plates are porous and wall transpiration is possible). Hence 𝑆∗𝑖 ∗ 𝐿∞ is the total volume of fluid 

sucked by the respective plate, and the same amount of fluid is mechanically injected. A uniform 

suction from the upper and a uniform injection are applied on the dusty fluid in region II; similarly, 

a uniform suction from the lower and a uniform injection in the y-direction are applied on the pure 

Newtonian fluid in region I. The size, mass, and radius of dust particles, and other fluids credentials 

are similar to the scheme -I flow except the uniform suction and injection effect [72]  𝑆1 = 𝑆2 =

𝑈0
∗

𝑈0
.  

After dropping the bars and introducing the non-dimensional parameters, initial, interfacial, and 

boundary conditions according to the scheme-I flow the governing equations for fluids and 

particle-phase equations (3-6) in both the regions of scheme-II flow emerge as: 

Region-I ( −𝑘 ≤ 𝑦 ≤ 0) (Pure fluid region): 

𝑈1𝑡 =  𝐺𝑒(𝑡) +
𝑈1𝑦𝑦

𝑅𝑒
− 𝑆1𝑈1𝑦                                                                                                                   (29) 
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𝑇1𝑡 =  
𝑇1𝑦𝑦

𝑅𝑒∗𝑝𝑟
−𝑆1𝑇1𝑦 +

𝐸𝑐

𝑅𝑒
(𝑈1𝑦)

2

                                                                                                             (30) 

Region-II for Dusty fluid (0 ≤ y ≤ k): 

𝑈2𝑡 =  
𝐺𝑒(𝑡)

𝑟1
+
𝑟2

𝑟1

𝑈2𝑦𝑦

𝑅𝑒
−
𝑅∗𝑟2

𝑟1

(𝑈2−𝑈𝑝)

𝑅𝑒
− 𝑆2𝑈2𝑦                                                                                        (31) 

  𝑈𝑝𝑡 =
𝑅∗𝑟3∗𝑟2

𝑟1

(𝑈2−𝑈𝑝)

𝑅𝑒
                                                                                                                                 (32) 

 𝑇2𝑡 =  
𝒌𝒓∗𝑇2𝑦𝑦

𝑪𝒓∗𝑟1∗𝑅𝑒∗𝑝𝑟
−𝑆2𝑇2𝑦 +

𝑟2

𝑪𝒓∗𝑟1

𝐸𝑐

𝑅𝑒
(𝑈2𝑦)

2

+
2

3

𝑅∗𝑟2∗𝒌𝒓

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇𝑝−𝑇2)

𝑅𝑒
+
𝑅∗𝑟3∗𝑟2

𝑟1

(𝑈2−𝑈𝑝)
2

𝑅𝑒
                      (33) 

 𝑇𝑝𝑡 =
2

3

𝑅∗𝒌𝒓∗𝑪𝒓𝑟∗𝑟3

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇2−𝑇𝑝)

𝑅𝑒
                                                                                                                          (34) 

Initial, boundary and interfacial conditions are considered as equation (19-20) with k=1, 𝑈0 = 1, 

𝑡1 = 0, 𝑡2 = 1. 

2.4. Formulation of interface reconstruction and averaged flow of dusty and pure fluids under 

the scheme-III 

In this third scenario, again we study the Generalized Couette flow of two immiscible, pure, and 

dusty fluids undergoing shearing motions; however, we assumed that owing to a viscosity jump, 

interfacial instability occurs. All other assumptions are as in schemes I and II. Scheme III is 

visualized in Figure 1(c). The lower plate is stationary while the upper plate travels at a fixed 

velocity of 𝑈0 in the x-axial direction. Let 𝜌1, 𝜇1 be the density and viscosity of pure fluid which 

lies in the region (−𝑘 ≤ 𝑦 ≤ 𝑙1) with the interface height from the lower plate, 𝑙1. The dusty fluid 

has the density 𝜌2 and the viscosity𝜇2 occupies in (𝑙1 ≤ 𝑦 ≤ 𝑘). The evolution of the interface is 

analyzed by using horizontal attenuation in the initial interface phase. Let the initial interface be 

an Eigen-mode say 𝑙1𝑦𝑚 + 𝐴0𝑐𝑜𝑠(𝐵0𝑦) where 𝑦𝑚 is the average depth of interface and  𝐴0, 𝐵0 

are the amplitude and wavenumber. The dust particles have the same size and a circular shape, 

mass, and un-deformable electro-free form. They are evenly spread across the fluid in the region 

with density 𝜌𝑝. The particle phase is sufficiently distilled so that the interactions between any 

two dust particles are ignored, and the dust particle size is also relatively tiny in scale but affects 

the mean flow velocity 𝑈∗. The flow of these immiscible fluids acquires momentum due to the 

common pressure gradient which is applied in the direction of the x-axis with an average density 

𝜌∗ = 𝜌1 + 𝐶𝑠(𝜌2 − 𝜌1)and viscosity𝜇∗ = 𝜇1 + 𝐶𝑠(𝜇2 − 𝜇1).The flow velocity 𝑈∗, particle 

velocity 𝑈𝑝 and interface track 𝐶𝑖 vectors are presumed as 𝑈∗= (𝑈∗(𝑦, 𝑡) ,0,0),(𝑈𝑝=(𝑈𝑝(𝑦, 𝑡),0,0) 
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and (𝐶𝑖=(𝐶𝑖(𝑦, 𝑡),0,0), respectively. The movement of fluids is incompressible unsteady and is 

driven by an applied pressure gradient in the x-axial direction; therefore, the velocity profile is 

unidirectional. Thus,∇𝑈∗ =
𝜕𝑈∗

∂𝑦
, ∇2𝑈∗ =

∂2𝑈∗

∂y2
, ∇𝐶𝑖 =

𝜕𝐶𝑖

∂𝑦
 , ∇2𝐶𝑖 =

∂2𝐶𝑖

∂y2
. The fluid layers are 

mechanically coupled through the model of momentum exchange. The movement of the interface 

between two immiscible fluids of distinct density and viscosity is described by the local value of 

concentration parameter as volume fraction between two immiscible liquids  𝐶𝑠, and the interface 

is characterized by the following constraints. 

𝐶𝑠 = {

0 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑠𝑡ℎ 𝑓𝑙𝑢𝑖𝑑

> 0, < 1 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡ℎ 𝑓𝑙𝑢𝑖𝑑 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 

1 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑠𝑡ℎ 𝑓𝑙𝑢𝑖𝑑

                                                                         (35)                                                                

Depending on the local value of 𝐶𝑠 the necessary attributes and variables are allocated to each 

control volume inside the domain. Hence by using the equations (3),(4),(11), and (12), the averaged 

flow is governed as ( −k ≤ y ≤ k). 

𝜕𝐶𝑖

𝜕𝑡
+ 𝑈∗

𝜕𝐶𝑖

𝜕𝑦
 = 0                                                                                                                                          (36) 

𝜌∗
𝜕𝑈∗

𝜕𝑡
= −𝛻𝑃 + 𝜇∗

𝜕2𝑈∗

𝜕𝑦2
−𝑀𝜌𝑝(𝑈

∗ − 𝑈𝑝) + 𝐹                                                                                   (37) 

𝜕𝑈𝑝

𝜕𝑡
=  𝑀(𝑈∗ − 𝑈𝑝)                                                                                                                                    (38) 

Again, classical hyper-stick and no-slip boundary conditions are considered. The relevant initial 

and boundary conditions take the form: 

Initial conditions: At  𝑡 ≤  0, 𝑈∗(𝑦, 𝑡) = 𝑈𝑝(𝑦, 𝑡) = 0, 𝐶𝑖(𝑦, 𝑡) = 𝐴0𝑐𝑜𝑠(𝐵0𝑦)                        (39) 

Boundary conditions: At t > 0, 

𝑈∗(−𝑘, 𝑡) = 𝑈𝑝(−𝑘, 𝑡) = 0, 𝑈∗(𝑘, 𝑡) = 𝑈𝑝(𝑘, 𝑡) =  𝑈0                                                                   (40) 

Again, introducing the non-dimensional parameters: �̅� =
𝑥

𝑘
, �̅� =

𝑦

𝑘
, 𝑈∗̅̅̅̅ =

𝑈∗

𝑈0
, 𝑈𝑝̅̅̅̅ =

𝑈𝑝

𝑈0
, �̅� =

𝑝

𝜌∗𝑈0
2, 

𝑡̅ =
𝑡𝑈0

𝑘
  allows normalization of the model. Here 𝑀 =

6𝜋𝑟𝜇∗

𝑚𝑝
  is the volume transfer coefficient 

with an average mass of dust particle 𝑚𝑝 and radius 𝑟. Hence the term 𝑀𝜌𝑝
(𝑈∗−𝑈𝑝)

𝜌∗
 of equation 

(48) can be written as 
𝑅 (1+𝐶𝑠(𝑟1−1)) 

𝑅𝑒( 1+𝐶𝑠(𝑟2−1) )
(𝑈∗ − 𝑈𝑝). Furthermore  𝑅 =

𝐾∗𝑁𝑘2

𝜇2
  is particle concentration 

parameter and 𝐾∗ = 6𝜋𝑟𝜇2𝑈0 is the Stokes drag coefficient, 𝑁 is the number density of particles 
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per unit volume, and 𝑅𝑒 =
  𝜌1𝑈0

𝜇1
 is the Reynolds number. 𝑟2 =

𝜇2

𝜇1
 is the ratio of viscosity, 𝑟1 =

𝜌2

𝜌1
  is the ratio density and  𝑟4 =

𝜌1+𝜌2

𝜌𝑝
 is the ratio of the density of fluid and dust particles. The 

body force  𝐹 = (𝜌∗𝑔 + 𝐹𝑠) is modeled as gravitation force and interfacial tension by the 

continuum surface force model, and the surface tension is reconstructed as a volume force 𝐹𝑠 =

𝜎𝜔∇𝐶𝑖 where 𝜎 is the interfacial tension between two liquid phases and  𝜔 is the mean free surface 

curvature, given by 𝜔 = −
∇2𝐶𝑖

‖∇𝐶𝑖‖
  and 𝐶𝑎 =

𝜇∗𝑈0

𝜎
 is the capillary number. 𝐹𝑟 =

𝑈0
2

𝑔𝑘
  is the Froude 

number. The time-dependent pressure gradient is applied in the direction of the x-axis for 

momentum in the averaged flow. As before in schemes I and II, three separate cases for 𝐺𝑒(𝑡)  are 

considered in the computational simulations described later: 

Case-I: 𝐺𝑒(𝑡)  = 𝐺𝑒 (when the flow is induced by applied constant pressure gradient) 

Case-II:   𝐺𝑒(𝑡)  = 𝐺𝑒 ∗ 𝑆𝑖𝑛(𝑤𝑡) (when the flow is induced by applied periodic pressure gradient 

with oscillating parameter 𝑤)  

Case-III:  𝐺𝑒(𝑡)  = 𝐺𝑒 ∗ 𝑒−𝜆𝑡 (when the flow is induced by a decaying pressure gradient with the 

decaying parameter, 𝜆).  

After dropping the bars and introducing the non-dimensional parameters, initial, interfacial, and 

boundary conditions according to the scheme-III flow the governing equations for fluids and 

particle-phase equations (36) in the region (−𝑘 ≤ 𝑦 ≤ 𝑘) emerge as: 

 

𝜕𝐶𝑖

𝜕𝑡
+ 𝑈∗

𝜕𝐶𝑖

𝜕𝑦
 = 0                                                                                                                                          (41) 

𝜕𝑈∗

𝜕𝑡
=

𝐺𝑒(𝑡)

1 + 𝐶𝑠(𝑟1 − 1) 
+

 (1 + 𝐶𝑠(𝑟2 − 1)) 

𝑅𝑒( 1 + 𝐶𝑠(𝑟1 − 1) )

𝜕2𝑈∗

𝜕𝑦2
−
𝑅 (1 + 𝐶𝑠(𝑟2 − 1)) 

𝑅𝑒( 1 + 𝐶𝑠(𝑟1 − 1) )
(𝑈∗ − 𝑈𝑝) 

                                                                                                  +
1

𝐹𝑟
−

 1+𝐶𝑠(𝑟2−1)

𝑅𝑒∗𝐶𝑎( 1+𝐶𝑠(𝑟1−1) )

𝜕2𝐶𝑖

𝜕𝑦2
          (42) 

𝜕𝑈𝑝

𝜕𝑡
= 

𝑅𝑟4 (1+𝐶𝑠(𝑟2−1)) 

𝑅𝑒(1+𝑟1)
(𝑈∗ −𝑈𝑝)                                                                                                             (43) 

Initial and boundary conditions are considered as equation (39-40)  with k=1, 𝐴0 = 0.05, 𝐵0 = 2𝜋 

 

 

3.  Numerical solution by modified cubic B-differential quadrature method (MCB-DQM) 

To analyze the fluid velocity and temperature distribution for schemes I and II, the domain [-1, 1] 
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is split into [-1, 0] for pure fluid (region –I) and [0, 1] for dusty fluid (region-II). Next both domains 

are likewise discretized with step length h in the y-(transverse) direction and 𝒌′in the time scales. 

Similarly, the domain [-1, 1] is uniformly discretized for flow analysis for scheme III. The nodes 

are presumed to disperse uniformly. 

            𝑎 = 𝑦1 < 𝑦2 < ⋯ < 𝑦 < 𝑥𝑛 = 𝑏, such that  𝑦𝑖+1 − 𝑦𝑖 = ℎ  on the real axis.               (44) 

Following this, let the  𝑅𝑖𝑦(𝑦𝑖, 𝑡) is the first and 𝑅𝑖𝑦𝑦(𝑦𝑖, 𝑡) are the second-order derivatives  of  

𝑈1(𝑦, 𝑡), 𝑈2(𝑦, 𝑡), 𝑈𝑃(𝑦, 𝑡), 𝑇1(𝑦, 𝑡), 𝑇2(𝑦, 𝑡), 𝑇𝑃(𝑦, 𝑡) 𝑈
∗(𝑦, 𝑡), 𝑎𝑛𝑑 𝐶𝑠(𝑦, 𝑡)  are obtained at any 

time on the nodes 𝑥𝑖,  

For = 1,2,3, … , 𝑛.  𝑅1𝑦(𝑦𝑖, 𝑡) = ∑ 𝑎∗𝑖𝑗𝑅𝑖(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 , for 𝑗 = 1,2, … ,𝑁                                           (45)                                                                                                                           

𝑅1𝑦𝑦(𝑦𝑖, 𝑡) = ∑ 𝑏∗𝑖𝑗𝑅𝑖(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 , for 𝑗 = 1,2, … ,𝑁                                                                   (46)                                                      

Here 𝑎∗𝑖𝑗 𝑏
∗
𝑖𝑗are the respective weighting coefficients of first and second-order derivative 

coefficients concerning y-coordinate, measured using modified cubic B-spline functions. The 

cubic B-spline functions of the knots are as specified below. 

𝜗𝑗 =
1

ℎ

{
  
 

  
 

 

(𝑦 − 𝑦𝑗−2)
3
,                                     𝑦𝜖 [𝑦𝑗−2, 𝑦𝑗−1)

(𝑦 − 𝑦𝑗−2)
3
− 4(𝑦 − 𝑦𝑗−1)

3
,     𝑦𝜖[𝑦𝑗−1, 𝑦𝑗)

(𝑦𝑗+2 − 𝑦)
3
− 4(𝑦𝑗+1 − 𝑦)

3
,         𝑦𝜖 [𝑦𝑗 , 𝑦𝑗+1)

(𝑦𝑗+2 − 𝑦)
3
,                                   𝑦𝜖[𝑦𝑗+1, 𝑦𝑗+2)

0,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

                                                         (47)                                        

𝜗𝑗  with  𝑗 = 0,1,2… ,𝑁 + 1 forms a basis over the region [a, b]. 

The updated cubic B-spline functions are described in the nodes as follows. 

  𝜓1(𝑦) = 𝜗1(𝑦) + 2𝜗0(𝑦)                                                                                                          (48)                                                                                     

  𝜓2(𝑦) = 𝜗2(𝑦) − 𝜗0(𝑦)                                                                                                                          (49) 

  𝜓𝑗(𝑦) = 𝜗𝑗 , 𝑓𝑜𝑟 𝑗 = 3,… .𝑁 − 2                                                                                                           (50)  

   𝜓𝑁−1(𝑦) = 𝜗𝑁−1(𝑦)  − 𝜗𝑁+1(𝑦)                                                                                                          (51) 

  𝜓𝑁(𝑦) = 𝜗𝑁(𝑦) + 2𝜗𝑁+1(𝑦)                                                                                                                  (52)               



20 
 

Here {𝜓1𝜓2, … , 𝜓𝑁} forms a basis over the region [𝑎, 𝑏]. Using the modified cubic B-spline 

function the weighting coefficients are calculated as follows. The first-order derivative 

approximation is given by: 

 𝜓𝑘
′ (𝑦𝑖) = ∑ 𝑎∗𝑖𝑗𝜗𝑘(𝑦𝑗)

               𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑁
        𝑘 = 1,2, … ,𝑁

𝑁
𝑗=1                                                                         (53) 

The estimate can be provided for the first-knot point y1. 

 𝜓𝑘
′ (𝑦1) = ∑ 𝑎∗1𝑗𝜗𝑘(𝑦𝑗)

               𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁
         𝑘 = 1,2, … ,𝑁

𝑁
𝑗=1                                                                      (54) 

Then the tri-diagonal system of equations is formed as  

[
 
 
 
 
 
 
6 1 0
0 4 1
0 1 4

0
0
1

⋯ 0 0

⋮ 0 ⋱ 0 ⋮

0 0 ⋯
1
0
0

4 1 0
1 4 0
0 1 6]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑎∗11
𝑎∗12
𝑎∗13
.
.
.

𝑎∗𝑁−3
𝑎∗𝑁−2
𝑎∗𝑁−1
𝑎∗𝑁 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
−6/ℎ
6/ℎ
0
.
.
.
0
0
0
0 ]

 
 
 
 
 
 
 
 
 

                                                                                                        (55)

Similarly for the point, 𝑦2we have  𝜓𝑘
′ (𝑦2) = ∑ 𝑎∗2𝑗𝜗𝑘(𝑦𝑗)

     𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁
 𝑘 = 1,2, … ,𝑁

𝑁
𝑗=1                  (56) 

Then again, the tri-diagonal system of equations is formed as 

[
 
 
 
 
 
 
6 1 0
0 4 1
0 1 4

0
0
1

⋯ 0 0

⋮ 0 ⋱ 0 ⋮

0 0 ⋯
1
0
0

4 1 0
1 4 0
0 1 6]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑎∗21
𝑎∗22
𝑎∗23
.
.
.

𝑎∗2𝑁−3
𝑎∗2𝑁−2
𝑎∗2𝑁−1
𝑎∗2𝑁 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
−3/ℎ
0
3/ℎ
0
.
.
0
0
0
0 ]

 
 
 
 
 
 
 
 
 

                                                                                                (57) 

We continue to find the tri-diagonal systems for the remaining 𝑦𝑖’s and the system for last   𝑦𝑁 is 

given by 
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[
 
 
 
 
 
 
6 1 0
0 4 1
0 1 4

0
0
1

⋯ 0 0

⋮ 0 ⋱ 0 ⋮

0 0 ⋯
1
0
0

4 1 0
1 4 0
0 1 6]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑎∗𝑁1
𝑎∗𝑁2
𝑎∗𝑁3
.
.
.

𝑎∗𝑁𝑁−3
𝑎∗𝑁𝑁−2
𝑎∗𝑁𝑁−1
𝑎∗𝑁𝑁 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
0
0
0
0
.
.
0
0

−6/ℎ
6/ℎ ]

 
 
 
 
 
 
 
 
 

                                                                                     (58)     

The solution of the above systems provides the coefficients, 𝑎∗11, 𝑎
∗
12… , 𝑎

∗
1𝑁, 

 𝑎∗21, 𝑎
∗
22… , 𝑎

∗
2𝑁… , 𝑎

∗
𝑁1, 𝑎

∗
𝑁2… , 𝑎

∗
𝑁𝑁. Then the values of 𝑏∗𝑖𝑗  for 𝑖 = 1,2,3…𝑁, 𝑗 =

1,2,3…𝑁   are calculated as follows 

𝑏∗𝑖𝑗 = {
2𝑎∗𝑖𝑗 (𝑎

∗
𝑖𝑗 −

1

𝑦𝑖−𝑦𝑗
) for 𝑖 ≠ 𝑗

−∑ 𝑏∗𝑖𝑗
𝑁
𝑖=1,𝑖≠𝑗 𝑖 = 𝑗

}                                                                                             (59) 

reduced system of ordinary differential equations in time, that is, represented as for i=1, 2, 3…, 

N.𝑉𝑡 = 𝑅(𝑈1, 𝑈2, 𝑇1, 𝑇2, 𝑈𝑝, 𝑇𝑝𝑈
∗𝐶𝑖)                                                                                                       (60) 

The system is solved by the following scheme.  

𝑉1 =  𝑈0 +
𝛥𝑡

2
∗  𝑅(𝑈1, 𝑈2, 𝑇1, 𝑇2, 𝑈𝑝, 𝑇𝑝𝑈

∗𝐶𝑖)                                                                                      (61) 

𝑉2 =  𝑈1 +
𝛥𝑡

2
∗  𝑅(𝑈1, 𝑈2, 𝑇1, 𝑇2, 𝑈𝑝, 𝑇𝑝𝑈

∗𝐶𝑖)                                                                                      (62) 

𝑉3 =  2𝑈0

3

+
𝑈1

3
+
𝛥𝑡

6
∗  𝑅(𝑈1, 𝑈2, 𝑇1, 𝑇2, 𝑈𝑝, 𝑇𝑝𝑈

∗𝐶𝑖)                                                                             (63) 

𝑉𝑀 =  𝑈3 +
𝛥𝑡

2
∗ 𝑅(𝑈1, 𝑈2, 𝑇1, 𝑇2, 𝑈𝑝, 𝑇𝑝𝑈

∗𝐶𝑖)                                                                                       (64) 

4. MCB-DQM Results and Analysis 

Under three separate flow schemes, the unidirectional unstable Generalized Couette flow of two 

immiscible dusty and pure fluids attributable to the time-dependent pressure gradient is examined. 

To pursue the solutions, traditional no-slip and hyper-stick conditions are assumed at the 

boundaries. First, the obtained numerical results are validated for the velocity profile of single non-

dusty Newtonian fluid flow (Here in the absence of dust particle the Stokes drag coefficient 𝐾∗ =

0  and  particle concentration parameter 𝑅 = 0 and 𝑟1=1, 𝑟2=1) by comparing them with the exact 

solutions of Poiseuille flow (Ge=10) through a horizontal channel. It is observed from Table 1-3 
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that a good agreement is seen as the maximum absolute error and root mean square error is very 

less between the calculated numerical solution and the exact solution. As the number of 

discretizing nodes (N = 31 −  201) and time (𝑡 = 0.1 − 2) is increasing the errors are also 

reducing so it can be noticed that the applied modified cubic B-spline differential quadrature 

method is suitable for the current system of fluid flow. 

The two-fluid flow coupled problem in the corresponding regions with stable interfaces through 

separate schemes I, II and have been numerically solved, and velocity, temperature profiles of 

fluids, and dust particles have been obtained. Single mean flow problems with inconsistent 

interfaces under scheme III have also been addressed and the interface reconstruction profiles have 

been acquired along with averaged flow and dust particles velocity profiles. The results are 

discussed in the following set of fixed values of all parameters, Ge=10, Re=2, R=0.5, 𝑟1=0.5, 

𝑟2=0.5, 𝑟4=200, 𝐶𝑠=0.5, 𝐶𝑎=0.5, 𝐹𝑟 = 2, 𝜆 = 1,𝑤 = 2. 

 

4.1. Results and analysis of immiscible dusty and pure fluid flow under the scheme-I 

Figure 2(a-g) shows the velocity profiles in dusty and pure fluid areas and Figure 2(h-o) exhibits 

the dust particle velocity with Reynolds numbers, particulate concentration parameters, applied 

pressure gradients, density ratio, viscosity ratio, and time. It is found that the velocity profiles for 

dust particles and fluids in both regions are parabolic and because the lower fluid is more viscous 

and denser than the upper one (𝑟1=0.5, 𝑟2=0.5), the curvature of pure fluid velocity is lower than the 

dusty fluid profile. Figure 2(a) exhibits the change in fluid velocities and Figure 2(h) shows the 

particle velocities with varying times when a constant pressure gradient is applied. It is noted that, 

with rising time, the fluids and particle velocities are growing in respective regions, and at a higher 

time, it may become stable. The fluid velocities 𝐹𝑖𝑔𝑢𝑟𝑒 2 (𝑏 )and dust particle velocity 

𝐹𝑖𝑔𝑢𝑟𝑒 2 (𝑖 )are pulsating, wherein the flow is caused by the periodic pressure gradient and never 

attains the steady-state. Hence the velocities increase when 0 < 𝜔𝑡 ≤
𝜋

2
  , decrease when 

𝜋

2
< 𝜔𝑡 ≤

3𝜋 

2
 and further increase with 

3𝜋

2
< 𝜔𝑡 ≤

5𝜋 

2
 . 𝐹𝑖𝑔𝑢𝑟𝑒 2 (𝑐 𝑎𝑛𝑑 𝑗) reveals that the fluid velocities 

in both the regions and particle velocity in the upper region decrease with time and eventually 

attain a steady-state as time is enhanced, for the case where periodic pressure gradient induces the 

flow. It is also worth mentioning that, owing to the upper plate movement (the generalized Couette 

flow), the velocities do not approach zero with time. It may be observed from 𝐹𝑖𝑔𝑢𝑟𝑒 2 (𝑑 −
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𝑓𝑜𝑟 𝑓𝑙𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) and 𝐹𝑖𝑔𝑢𝑟𝑒 2 (𝑛 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) that the increase in Reynolds 

number enhances the fluids and particle velocities for all three cases of applied constant, periodic, 

and decaying pressure gradients, which is due to the elevation in inertial (momentum) force 

relative to viscous hydrodynamic force. However, the variations are larger in magnitude in the 

dusty fluid region than the pure fluid (Newtonian) region indicating a greater sensitivity in the 

velocity of the particles compared to the Newtonian fluid. It can be noted from 

𝐹𝑖𝑔𝑢𝑟𝑒 2( 𝑔 𝑎𝑛𝑑 𝑜) that the velocity magnitudes of fluid and particle are accentuated with an 

increment of the pressure gradient. An increase in the ratios of viscosities 𝑟2and densities 

𝑟1 corresponds to an increase in the viscosity and density of the dusty fluid region relative to the 

pure Newtonian fluid region. Because of this for all three applied pressure gradients, a significant 

decline in dust particle and fluid velocity is observed in Region-II whereas no tangible change in 

the pure fluid velocity in Region-I is witnessed with an increase in the ratio 𝑟2 and 𝑟1 see 

𝐹𝑖𝑔𝑢𝑟𝑒 2 (𝑒 𝑎𝑛𝑑 𝑓) for fluid velocities and 𝐹𝑖𝑔𝑢𝑟𝑒 2 (𝑘 𝑎𝑛𝑑 𝑙) for particle velocities. Figure 2 

(m) indicates that the dust particle velocity increases with an enhancement of particle concentration 

parameter, and no variation in fluid velocities are observed for all three pressure gradients hence 

the figures are not mentioned.  

Figure 3 (A-H) illustrates the evolution in the fluid and dust particle temperature distributions, in 

the respective dusty and pure fluid regions with numerous thermophysical parameters. Figure 3 

(A-C) demonstrate that the dust particles and fluid temperatures in respective regions increase with 

progression in time and elevation in Eckert number 𝐸𝑐 and the ratio of viscosities 𝑟2. Clearly, a 

greater proportion of kinetic energy is converted to thermal energy via internal friction with 

increment in Eckert number - this boosts the temperature magnitudes. A decrement in temperature 

magnitudes is observed with an increase in Reynolds number 𝑅𝑒 and Prandtl number 𝑝𝑟 – clearly 

greater inertial effect and smaller thermal diffusivity (and thermal conductivity) manifest in 

suppression in thermal diffusion in the regime and lower temperatures are computed see Figure 3 

(D-E). However, owing to the momentum transfer near the interface, the profiles show the opposite 

trend since temperature apparently is elevated weakly in both the regions. It can be deduced from 

Figure 3 (F-G) that the pure fluids do not display any notable displacement in the temperature 

profiles with an increase in the parameter 𝐾𝑟 and 𝐶𝑟 in region-I. Conversely, the temperatures are 

significantly increased in region II as a parameter 𝐾𝑟 increases whereas a significant decline are 

computed as parameter 𝐶𝑟 increases for both dust particles and fluid. Similarly, the variation in the 
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temperature profiles is only observed in region II (See Figure 2 (H) with an increase in the particle 

concentration parameter𝑅 .A slight decrease in the dusty fluid and a significant increase in the 

particle temperature profiles can be seen. This means the increasing presence of dust particles 

therefore also weakly inhibits thermal diffusion in the dual fluid regime. 

The skin friction coefficient is a dimensionless quantity that describes the amount of resistance 

provided to an object moving through a fluid and causing skin friction drift on the surface. Table 

4 shows that skin friction increases with time and Reynolds number at the lower plate of the 

channel, but remains constant with increasing values of particle concertation parameter, the ratio 

of viscosities and densities (𝑅, 𝑟2, 𝑟1, 𝑎𝑛𝑑 𝑟3). On the upper plate, the decrease in skin friction co-

efficient is induced by rising values of time, 𝑅𝑒, 𝑎𝑛𝑑 𝑟3. When 𝑟1, 𝑟2 is increased, the co-efficient 

improves and it does not change with R.  

The Nusselt number (Nu) is the ratio of convective heat transfer to conductive heat transfer at 

the boundary. Table 5 shows that the Nusselt number increases at the upper plate and decrease at 

the lower plate with time, Reynolds number, particle concertation parameter 𝑅, ratio of viscosities 

and densities (𝑟1, 𝑟2, 𝑎𝑛𝑑 𝑟3). 

4.2 Results and analysis of immiscible dusty and pure fluid flow under the scheme-II 

𝐹𝑖𝑔𝑢𝑟𝑒 4 (𝑎 − 𝑓) visualize the response in fluid and dust particle velocities under scheme-II with 

selected thermophysical parameters. In both regions generally, it is apparent that owing to the 

uniform suction effect, the velocity profiles of dust and fluids are not parabolic, and the curvature 

of pure fluid velocity is markedly different from the dusty fluid velocity topology. It is also 

observed that under scheme-II, the flow profiles are elongated as compared to the flow profiles 

under scheme-I. 𝐹𝑖𝑔𝑢𝑟𝑒 4(𝑎) exhibits the change in fluid and particle velocities with varying 

times when a constant pressure gradient is applied. It is noted that, with rising time, the fluid 

velocity is clearly increasing in both regions i. e. a substantial acceleration is induced. However, 

the magnitude of velocity profiles computed by periodic pressure is lower than decaying and 

constant pressure gradients see Figure 4(c). It can be noted from Figure 4(b) the velocity profiles 

increase with the increment of the pressure gradient again owing to the imparting of momentum 

to the channel flow regime. It is observed from Figure 4(d) that augmentation in Reynolds number 

enhances the fluids and particle velocities for all three cases of applied constant, periodic, and 

decaying pressure gradients. However, the variations are more extensive in magnitude in the dusty 
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fluid region compared to the pure fluid region. Figure 4(e) shows that owing to the suction effect 

(removal of material via the boundary) for all three applied pressure gradient cases, the dust 

particle and fluids velocities climb significantly in the region -II and decline slightly in the region-

I with an increase in the density ratio 𝑟1. A weak decline in the pure fluid region for fluid velocity 

profiles can be seen in Figure 4(f) and the profiles exhibit an increasing nature in the pure fluid 

region but only near the interface in the dusty fluid region.  The qualitative properties of fluids and 

particle temperature profiles under Scheme - I and II are equivalent and therefore these results are 

not presented for brevity.  

4.3 Interface tracking under scheme-III 

Figure 5 shows the evolution of the interface between the two liquid zones with varying time and 

amplitude under Scheme III when the constant pressure gradient is present, and a vertical shift can 

be seen in the interface. It is also observed that initially, the vertical elongation of the interface is 

large, and thereafter the shape of the interface evolves progressively over time; hence the 

undulating sequence occurs faster for a more considerable time. It is also judicious to note that the 

top fluid is less viscous than the bottom fluid. It is also noticed that the qualitative characteristics 

of this flow shall be maintained, and as expected, the interface starts to shift vertically if the 

amplitude is enhanced. The two liquids do not penetrate each other in the same way. Hence it can 

be concluded that initially at small times, a large sinusoidal interface is observed, and later, the 

peak of the wave progresses rapidly as time increases. It is also worth mentioning that the evolution 

of the interface profile for periodic and decaying pressure gradient cases is qualitatively similar to 

that computed for the constant pressure gradient case, although magnitudes are different (for 

brevity these simulations are not visualized). 
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Table 3: Error with time and discretizing points 

  For N=51, t=0.5 For N=101, t=1 For N=151, t=1.5 For N=201, t=2 

MAX ERROR 0.000749 0.000481 0.000341 0.000320 

RMSE 0.000557 0.000377 0.000280 0.000229 

Exact  Numerical  Error 

1.00000 1.00000 0.00000 

0.87307 0.87330 0.00023 

0.75169 0.75215 0.00047 

0.64116 0.64181 0.00065 

0.54631 0.54713 0.00082 

0.47129 0.47226 0.00096 

0.41938 0.42046 0.00107 

0.39285 0.39400 0.00115 

0.39285 0.39405 0.00120 

0.41938 0.42061 0.00123 

0.47129 0.47252 0.00122 

0.54631 0.54751 0.00120 

0.64116 0.64232 0.00116 

0.75169 0.75280 0.00112 

0.87307 0.87413 0.00106 

1.00000 1.00100 0.00100 

1.12693 1.12786 0.00093 

1.24831 1.24919 0.00087 

1.35884 1.35966 0.00082 

1.45369 1.45445 0.00076 

1.52871 1.52942 0.00072 

1.58062 1.58130 0.00068 

1.60715 1.60780 0.00064 

1.60715 1.60776 0.00061 

1.58062 1.58120 0.00058 

1.52871 1.52925 0.00055 

1.45369 1.45420 0.00051 

1.35884 1.35931 0.00047 

1.24831 1.24872 0.00041 

1.12693 1.12731 0.00038 

1.00000 1.00000 0.00000 

Maximum Error =0.0012 
RMSE=0.00083205 

Table 1: Numerical vs Exact solution for 

N=31, t=0.1 

 
 

Table 2: Numerical vs Exact solution for N=62, t=0.5 

 
Exact Numerical  Error Exact Numerical Error 

5.00000 5.00000 0.00000 5.00437 5.00510 0.00073 

4.99128 4.99156 0.00028 5.01305 5.01378 0.00073 

4.98265 4.98296 0.00031 5.02160 5.02231 0.00072 

4.97421 4.97455 0.00034 5.02992 5.03062 0.00071 

4.96604 4.96641 0.00037 5.03792 5.03861 0.00070 

4.95823 4.95863 0.00040 5.04551 5.04620 0.00068 

4.95086 4.95129 0.00043 5.05263 5.05330 0.00067 

4.94402 4.94447 0.00045 5.05919 5.05984 0.00065 

4.93776 4.93824 0.00048 5.06512 5.06576 0.00064 

4.93217 4.93268 0.00051 5.07036 5.07098 0.00062 

4.92730 4.92783 0.00053 5.07486 5.07545 0.00060 

4.92319 4.92375 0.00056 5.07856 5.07914 0.00058 

4.91990 4.92048 0.00058 5.08143 5.08198 0.00056 

4.91746 4.91806 0.00060 5.08343 5.08397 0.00054 

4.91590 4.91652 0.00062 5.08455 5.08507 0.00052 

4.91522 4.91587 0.00064 5.08478 5.08527 0.00049 

4.91545 4.91611 0.00066 5.08410 5.08457 0.00047 

4.91657 4.91725 0.00068 5.08254 5.08298 0.00044 

4.91857 4.91927 0.00069 5.08010 5.08052 0.00042 

4.92144 4.92215 0.00070 5.07681 5.07720 0.00039 

4.92514 4.92586 0.00072 5.07270 5.07307 0.00037 

4.92964 4.93036 0.00073 5.06783 5.06817 0.00034 

4.93488 4.93561 0.00073 5.06224 5.06255 0.00031 

4.94081 4.94155 0.00074 5.05598 5.05627 0.00029 

4.94737 4.94811 0.00075 5.04914 5.04940 0.00026 

4.95449 4.95523 0.00075 5.04177 5.04200 0.00023 

4.96208 4.96283 0.00075 5.03396 5.03416 0.00020 

4.97008 4.97083 0.00075 5.02579 5.02596 0.00017 

4.97840 4.97915 0.00075 5.01735 5.01749 0.00014 

4.98695 4.98769 0.00075 5.00872 5.00884 0.00012 

4.99563 4.99637 0.00074 5.00000 5.00000 0.00000 

Maximum Error = 0.00075002 
RMSE= 0.00055847 
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Figure 2: Velocity profiles with varying parameters under scheme-I 
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Figure3: Temperature profiles with varying parameters under scheme-I 

  

  

 
 

Figure 4: Velocity profiles with varying parameters under scheme-II. 
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Figure 5: Sequence of interface position with varying time under the scheme III Note - the horizontal axis is magnified from 0 to 1 to 

show the details. 

Table 4:Skin friction Coefficient with varying parameter 

T Lower plate Upper plate   Re Lower plate Upper plate   R Lower plate Upper plate 

0.1 4.955721 -7.36259   2 4.955721 -7.36259   0.3 4.955721 -7.36354 

0.2 7.046197 -12.1264   3 6.057319 -8.99958   0.5 4.955721 -7.36259 

0.3 8.651487 -15.2324   4 6.980517 -10.3652   1 4.955721 -7.36219 

0.4 10.01278 -17.4958   5 7.789845 -11.5605   2 4.955721 -7.362 

r1 Lower plate Upper plate   r2 Lower plate Upper plate   r3 Lower plate Upper plate 

0.3 4.955721 -11.5605   0.5 4.955721 -7.36259   50 4.955721 -7.30038 

0.5 4.955721 -9.47826   0.6 4.955721 -6.25616    100 4.955721 -7.3294 

0.8 4.955721 -8.22539   0.7 4.955721 -5.35892    200 4.955721 -7.35322 

1 4.955721 -7.36259   0.8 4.955721 -4.60702    400 4.955721 -7.37042 

 

Table 5: Nusselt number with varying parameter 

Re Lower plt Upper plt   t Lower plt Upper plt   Kr Lower plt Upper plt   r2 Lower plt Upper plt 

2 -0.00231 2.913626   0.1 -0.00231 5.827251   0.1 -0.00231 11.85818   0.5 -0.00231 5.827251 

3 -1.19E-05 6.171196   0.2 -0.89595 11.55846   0.3 -0.00231 7.680487   0.6 -0.00243 9.352168 

4 -2.25E-06 7.261058   0.3 -8.06006 29.57051   0.5 -0.00231 2.913626   0.7 -0.00254 11.56419 

5 -2.22E-06 7.671225   0.4 -26.5908 62.88988   0.7 -0.00231 -1.80442   0.8 -0.00263 12.97823 

Pr Lower plt Upper plt   Ec Lower plt Upper plt   r1 Lower plt Upper plt 
 

   

2 -0.00231 5.827251   0.25 -0.00116 1.392961   0.25 -0.00069 0.951823 
 

   

3 -1.67E-05 20.68563   0.5 -0.00231 5.827251   0.5 -0.00231 5.827251 
 

   

4 -5.28E-06 35.045   0.75 -0.00347 10.26154   0.75 -0.00459 12.10357 
    

5 -6.60E-06 49.13418   1 -0.00462 14.69583   1 -0.00724 37.73138 
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6. Conclusions 

The unsteady Generalized Couette flow of two immiscible dusty and pure fluids through a 

horizontal channel under three distinct scenarios with a stable and unstable interface has been 

analyzed numerically using the modified Cubic B-Spine Differential Quadrature method (MCB-

DQM). The effects of the emerging thermophysical and hydrodynamic parameters on fluid and 

particle velocity, flow velocity, temperature, and interface evolution have been addressed. The 

core findings of the present analysis can be summarized in the following points: 

a) For the flow under schemes, I and II an increasingly oscillatory and decreasing behavior in 

the fluids velocities and particle velocity with time is computed in the respective regions I 

and II when the flow is induced by constant, periodic, and decaying pressure gradients 

respectively. 

b) As anticipated in the stable interface schemes flow, values of the fluids and particle-phase 

velocities are enhanced with increment in the pressure gradient. 

c) -Increasing Reynolds number in the stable interface schemes generates a marked 

enhancement in the fluid and particle-phase velocities for all three applied constant, 

periodic, and decaying pressure gradient cases. However, in the case of periodic gradient 

under scheme-II, the velocities are observed to be decreasing near the interface. 

d) Elevation in the particle concentration parameter increases the velocities of dust particles 

with all three applied pressure gradient scenarios, in the stable interface schemes.  

e) An increment in the ratio of densities, in the case of all three applied pressure gradients, is 

found to significantly damp the velocities in the dusty fluid regions for schemes I, II. 

Furthermore, elevation in density ratio depresses velocities slightly for scheme II but does 

not tangibly modify the velocities in Scheme I flow in the pure (Newtonian) fluid region.  

f) Under scheme-I, a significant decline in dust particle and fluid velocities in the dusty fluid 

region and a negligible decline in the pure fluid velocity is noted with an increase in the 

ratio of viscosities for all three applied pressure gradients. 

g) Under the Scheme –II flow, the behavior of fluids and particle velocities for the periodic 

pressure gradient differs from the constant and decaying pressure gradient case with an 

increment in the ratio of viscosities. The velocity profiles decline in both the regions when 

the periodic pressure gradient is applied while the pure fluid velocity increases weakly for 

both constant and decaying applied pressure gradients and additionally the dusty fluid and 
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particle velocity alter from decreasing to increasing trends near the interface. The dissimilar 

behavior observed may be owing to the suction effect and coupling nature of fluids. 

The qualitative features of fluids and particle temperature profiles under scheme-I and II are 

similar about all control parameters. Hence the key output for temperature can be summarized 

as follows: 

a) Dust particle and fluid temperatures in respective regions increase with an enhancement in 

time, Eckert number, and the ratio of viscosities (i.e. heating of the channeling regime) 

whereas they decrease with Reynolds number and Prandtl number (i.e. cooling of the 

channeling regime). Temperatures decline slightly in both regions with an increase in 

particle concentration parameters. 

b) A rise in the ratio of densities results in a substantial decline in dust particle and fluid 

temperature in region-II, and pure fluid temperature decreases slightly in region-I; 

however, owing to the momentum transfer near the interface, the profiles show the 

converse response and temperatures are slightly enhanced in both regions. 

c) Elevation in the ratio of thermal conductivities produces a notable enhancement in 

temperature magnitudes of both dust particles and fluid in region II: however, the pure 

fluids do not exhibit any shift in the temperature. 

d) A boost in the ratio of specific heat of both fluids induces a major reduction in the 

temperature magnitudes of both dust particles and fluid in region II: nevertheless, the pure 

fluids do not demonstrate any displacement in the temperature. 

e) Under the scheme-III, tracking the interface between the two immiscible liquids is also 

simulated with varying times. It is noticed that initially, the vertical elongation of the 

interface is large, and subsequently, the topology evolves with time. Therefore, the 

undulating sequence occurs faster for a more considerable time, and the qualitative features 

of this flow are retained with high time and amplitude. 

The MCB-DQM algorithm described offers excellent capabilities in interfacial fluid dynamics. 

The present study has of course neglected electrically conducting properties of either dusty or 

Newtonian fluids. These give rise to magnetohydrodynamic behavior and this may be assessed in 

future work. 
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APPENDIX 
 

1. A-1. Numerical solution of immiscible dusty and pure fluids flow under the scheme-I. 

To get the velocity and temperature profile of dusty and pure fluid flow under scheme-I, one replaces the 

approximation of the spatial components of the first and second-order obtained by using MCB-DQM. 

Hence the system of coupled partial equations (22-27) followed by scheme I, numerically solved with the 

initial and boundary conditions equation (19-20).  and the velocities temperature profiles of both fluids 

and particles are obtained. The equations (22-27)  can be updated as 

Region-I ( −𝑘 ≤ 𝑦 ≤ 0) (Pure fluid region): 
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𝜐1𝑡 =  𝐺𝑒(𝑡) +
∑ 𝑏∗𝑖𝑗𝜐1(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
                                                                                                                                 (1.1) 

𝑇1𝑡 =  
∑ 𝑏∗𝑖𝑗𝑇1(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒∗𝑃𝑟
+
𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐1(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
                                                                                                (1.2) 

Region-II (0 ≤ y ≤ k) (Dusty fluid): 

𝜐2𝑡 =  
𝐺𝑒(𝑡)

𝑟2
+
𝑟1

𝑟2

∑ 𝑏∗𝑖𝑗𝜐2(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−
𝑅∗𝑟1

𝑟2

(𝜐2(𝑦𝑗,𝑡)−𝜐𝑃(𝑦𝑗,𝑡))

𝑅𝑒
                                                                                    (1.3) 

  𝜐𝑝𝑡
=

𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐2(𝑦𝑗,𝑡)−𝜐𝑃(𝑦𝑗,𝑡))

𝑅𝑒
                                                                                                                               (1.4) 

 𝑇2𝑡 =  
𝒌𝒓∗∑ 𝑏∗𝑖𝑗𝑇2(𝑦𝑗,𝑡)

𝑁
𝑗=1

𝑪𝒓∗𝑟2∗𝑅𝑒∗𝑃𝑟
+

𝑟1

𝑪𝒓∗𝑟2

𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐2(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
+
2

3

𝑅∗𝒌𝒓

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇𝑝(𝑦𝑗,𝑡)−𝑇2(𝑦𝑗,𝑡))

𝑅𝑒
+                                 

                              
𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐2(𝑦𝑗,𝑡)−𝜐𝑃(𝑦𝑗,𝑡))
2

𝑅𝑒
            (1.5) 

 𝑇𝑝𝑡
=

2

3

𝑅∗𝒌𝒓∗𝑪𝒓𝑟∗𝑟3

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇2(𝑦𝑗,𝑡)−𝑇𝑝(𝑦𝑗,𝑡))

𝑅𝑒
                                                                                                                   (1.5a) 

Thus, equations (1.1-1.5)  are reduced into a system of ordinary differential equations in time, that is, for 

i=1, 2, 3…, N, and the system is solved by four-stage order three  SSP RK43 scheme. The velocities and 

temperature in both regions are obtained as follows: 

At the first stage for i=1,2,3…,n:  

Region-I ( −𝑘 ≤ 𝑦 ≤ 0) (Pure fluid region): 

𝜐11 =  𝜐10 +
𝛥𝑡

2
(𝐺𝑒(𝑡) +

∑ 𝑏∗𝑖𝑗𝜐10(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
)                                                                                        (1.6) 

𝑇11 =  𝑇10 +
𝛥𝑡

2
(
∑ 𝑏∗𝑖𝑗𝑇10(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒∗𝑃𝑟
+
𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐10(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
)                                                                       (1.7) 

Region-II (0 ≤ y ≤ k) (Dusty fluid): 

𝜐21 =𝜐20 +
𝛥𝑡

2
  (

𝐺𝑒(𝑡)

𝑟2
+
𝑟1

𝑟2

∑ 𝑏∗𝑖𝑗𝜐20(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−
𝑅∗𝑟1

𝑟2

(𝜐20(𝑦𝑗,𝑡)−𝜐𝑃0(𝑦𝑗,𝑡))

𝑅𝑒
)                                                          (1.8) 

  𝜐𝑝1 = 𝜐𝑃0 +
𝛥𝑡

2
(
𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐20(𝑦𝑗,𝑡)−𝜐𝑃0(𝑦𝑗,𝑡))

𝑅𝑒
)                                                                                                     (1.9) 

𝑇21  = 𝑇20 +
𝛥𝑡

2

(

 

𝒌𝒓∗∑ 𝑏∗𝑖𝑗𝑇20(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑪𝒓∗𝑟2∗𝑅𝑒∗𝑃𝑟
+

𝑟1

𝑪𝒓∗𝑟2

𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐20(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
+

2

3

𝑅∗𝒌𝒓

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇𝑃0(𝑦𝑗,𝑡)−𝑇20(𝑦𝑗,𝑡))

𝑅𝑒
+ 

𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐20(𝑦𝑗,𝑡)−𝜐𝑃0(𝑦𝑗,𝑡))
2

𝑅𝑒 )

                                        (1.20) 

 𝑇𝑃1  = 𝑇𝑃0 +
𝛥𝑡

2
(
2

3

𝑅∗𝒌𝒓∗𝑪𝒓𝑟∗𝑟3

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇20(𝑦𝑗,𝑡)−𝑇𝑃0(𝑦𝑗,𝑡))

𝑅𝑒
 )                                                                                       (1.21) 

At the first stage of the scheme, the initial and boundary conditions (19-20) are considered accordingly.  

At the second stage for i=1,2,3…,n: 
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Region-I ( −𝑘 ≤ 𝑦 ≤ 0) (Pure fluid region): 

𝜐12 =  𝜐11 +
𝛥𝑡

2
(𝐺𝑒(𝑡) +

∑ 𝑏∗𝑖𝑗𝜐11(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
)                                                                                            (1.22) 

𝑇12 =  𝑇11 +
𝛥𝑡

2
(
∑ 𝑏∗𝑖𝑗𝑇11(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒∗𝑃𝑟
+
𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐11(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
)                                                                     (1.23) 

 

Region-II (0 ≤ y ≤ k) (Dusty fluid): 

𝜐22 =𝜐21 +
𝛥𝑡

2
  (

𝐺𝑒(𝑡)

𝑟2
+
𝑟1

𝑟2

∑ 𝑏∗𝑖𝑗𝜐21(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−
𝑅∗𝑟1

𝑟2

(𝜐21(𝑦𝑗,𝑡)−𝜐𝑃1(𝑦𝑗,𝑡))

𝑅𝑒
)                                                       (1.24) 

  𝜐𝑝2 = 𝜐𝑃1 +
𝛥𝑡

2
(
𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐21(𝑦𝑗,𝑡)−𝜐𝑃1(𝑦𝑗,𝑡))

𝑅𝑒
)                                                                                                   (1.25) 

𝑇22  = 𝑇21 +
𝛥𝑡

2

(

 

𝒌𝒓∗∑ 𝑏∗𝑖𝑗𝑇21(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑪𝒓∗𝑟2∗𝑅𝑒∗𝑃𝑟
+

𝑟1

𝑪𝒓∗𝑟2

𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐21(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
+

2

3

𝑅∗𝒌𝒓

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇𝑃1(𝑦𝑗,𝑡)−𝑇21(𝑦𝑗,𝑡))

𝑅𝑒
+ 

𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐21(𝑦𝑗,𝑡)−𝜐𝑃1(𝑦𝑗,𝑡))
2

𝑅𝑒 )

                                        (1.26) 

 𝑇𝑃2  = 𝑇𝑃1 +
𝛥𝑡

2
(
2

3

𝑅∗𝒌𝒓∗𝑪𝒓𝑟∗𝑟3

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇21(𝑦𝑗,𝑡)−𝑇𝑃1(𝑦𝑗,𝑡))

𝑅𝑒
 )                                                                                        (1.27) 

At the second stage of the scheme, the initial and boundary conditions (19-20)are considered accordingly. 

At the third stage for i=1,2,3…,n: 

Region-I ( −𝑘 ≤ 𝑦 ≤ 0) (Pure fluid region): 

𝜐13 = 
2𝜐10
3
+
𝜐12
3
+
𝛥𝑡

6
(𝐺𝑒(𝑡) +

∑ 𝑏∗𝑖𝑗𝜐12(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
)                                                                                  (1.28)  

𝑇13 =  
2𝑇10
3
+
𝑇12
3
+
𝛥𝑡

6
(
∑ 𝑏∗𝑖𝑗𝑇12(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒∗𝑃𝑟
+
𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐12(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
)                                                          (1.29) 

Region-II (0 ≤ y ≤ k) (Dusty fluid):  

𝜐23 =
2𝜐20
3
+
𝜐22
3
+
𝛥𝑡

6
  (

𝐺𝑒(𝑡)

𝑟2
+
𝑟1

𝑟2

∑ 𝑏∗𝑖𝑗𝜐22(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−
𝑅∗𝑟1

𝑟2

(𝜐22(𝑦𝑗,𝑡)−𝜐𝑃2(𝑦𝑗,𝑡))

𝑅𝑒
)                                            (1.30) 

  𝜐𝑝3 =
2𝜐𝑃0
3
+
𝜐𝑃2
3
+
𝛥𝑡

6
(
𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐22(𝑦𝑗,𝑡)−𝜐𝑃2(𝑦𝑗,𝑡))

𝑅𝑒
)                                                                                       (1.31) 

𝑇23  =
2𝑇20
3
+
𝑇22
3
+
𝛥𝑡

6

(

 

𝒌𝒓∗∑ 𝑏∗𝑖𝑗𝑇22(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑪𝒓∗𝑟2∗𝑅𝑒∗𝑃𝑟
+

𝑟1

𝑪𝒓∗𝑟2

𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐22(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
+

2

3

𝑅∗𝒌𝒓

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇𝑃2(𝑦𝑗,𝑡)−𝑇22(𝑦𝑗,𝑡))

𝑅𝑒
+ 

𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐22(𝑦𝑗,𝑡)−𝜐𝑃2(𝑦𝑗,𝑡))
2

𝑅𝑒 )

                             (1.32) 

 𝑇𝑃3  =
2𝑇𝑃0
3
+
𝑇𝑃2
3
+
𝛥𝑡

6
(
2

3

𝑅∗𝒌𝒓∗𝑪𝒓𝑟∗𝑟3

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇22(𝑦𝑗,𝑡)−𝑇𝑃2(𝑦𝑗,𝑡))

𝑅𝑒
 )                                                                           (1.33) 

At the third stage of the scheme, the initial and boundary conditions (19-20)are considered accordingly. 

At the fourth stage for i=1,2,3…,n: 
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Region-I ( −𝑘 ≤ 𝑦 ≤ 0) (Pure fluid region): 

𝜐1 =  𝜐13 +
𝛥𝑡

2
(𝐺𝑒(𝑡) +

∑ 𝑏∗𝑖𝑗𝜐13(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
)                                                                                              (1.34) 

 𝑇1 =  𝑇13 +
𝛥𝑡

2
(
∑ 𝑏∗𝑖𝑗𝑇13(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒∗𝑃𝑟
+
𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐13(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
)                                                                      (1.35) 

Region-II for Dusty fluid (0 ≤ y ≤ k): 

𝜐2 =𝜐23 +
𝛥𝑡

2
  (

𝐺𝑒(𝑡)

𝑟2
+
𝑟1

𝑟2

∑ 𝑏∗𝑖𝑗𝜐23(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−
𝑅∗𝑟1

𝑟2

(𝜐23(𝑦𝑗,𝑡)−𝜐𝑃3(𝑦𝑗,𝑡))

𝑅𝑒
)                                                         (1.36) 

  𝜐𝑝 = 𝜐𝑃3 +
𝛥𝑡

2
(
𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐23(𝑦𝑗,𝑡)−𝜐𝑃2(𝑦𝑗,𝑡))

𝑅𝑒
)                                                                                                     (1.37) 

𝑇2  = 𝑇23 +
𝛥𝑡

2

(

 

𝒌𝒓∗∑ 𝑏∗𝑖𝑗𝑇23(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑪𝒓∗𝑟2∗𝑅𝑒∗𝑃𝑟
+

𝑟1

𝑪𝒓∗𝑟2

𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐23(𝑦𝑗, 𝑡)

𝑁
𝑗=1 )

2
+

2

3

𝑅∗𝒌𝒓

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇𝑃3(𝑦𝑗,𝑡)−𝑇23(𝑦𝑗,𝑡))

𝑅𝑒
+ 

𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐23(𝑦𝑗,𝑡)−𝜐𝑃3(𝑦𝑗,𝑡))
2

𝑅𝑒 )

                                          (1.38) 

 𝑇𝑃  = 𝑇𝑃3 +
𝛥𝑡

2
(
2

3

𝑅∗𝒌𝒓∗𝑪𝒓𝑟∗𝑟3

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇23(𝑦𝑗,𝑡)−𝑇𝑃3(𝑦𝑗,𝑡))

𝑅𝑒
 )                                                                                          (1.39) 

At the fourth stage of the scheme, the initial and boundary conditions (19-20) are considered accordingly. 

Hence the fluid velocity, temperature profiles  𝜐1, 𝑇1 of pure fluid in the region-I and fluid, particle velocity, 

and temperature profiles  𝜐2,  𝜐𝑃 , 𝑇2, 𝑇𝑃 of dusty fluid in the region-II have been numerically obtained in the 

fourth stage of MCB-DQM. 

2. A-2. Numerical solution of immiscible dusty and pure fluids flow under the scheme-II. 

To get the velocity and temperature profile of dusty and pure fluid flow under scheme-II, replace 

the approximation of the spatial components of the first and second-order obtained by using MCB-

DQM. Hence the system of coupled partial equations (29-34) followed by scheme II is updated as 

equation (2.1-2.6) then solved numerically, and the velocity and temperature profiles of both fluids 

and particles are obtained.  

Region-I ( −𝑘 ≤ 𝑦 ≤ 0) (Pure fluid region): 

𝜐1𝑡 =  𝐺𝑒(𝑡) +
∑ 𝑏∗𝑖𝑗𝜐1(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
 − 𝑆1(∑ 𝑎∗𝑖𝑗𝜐1(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 )                                                                  (2.1) 

𝑇1𝑡 =  
∑ 𝑏∗𝑖𝑗𝑇1(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒∗𝑃𝑟
+

𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐1(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 )

2
− 𝑆1(∑ 𝑎∗𝑖𝑗𝑇1(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 )                                   (2.2) 

Region-II (0 ≤ y ≤ k) (Dusty fluid): 

𝜐2𝑡 =  
𝐺𝑒(𝑡)

𝑟2
+
𝑟1

𝑟2

∑ 𝑏∗𝑖𝑗𝜐2(𝑦𝑗,𝑡)
𝑁
𝑗=1

𝑅𝑒
−
𝑅∗𝑟1

𝑟2

(𝜐2(𝑦𝑗,𝑡)−𝜐𝑃(𝑦𝑗,𝑡))

𝑅𝑒
 − 𝑆2(∑ 𝑎∗𝑖𝑗𝜐2(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 )                      (2.3) 
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  𝜐𝑝𝑡 =
𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐2(𝑦𝑗,𝑡)−𝜐𝑃(𝑦𝑗,𝑡))

𝑅𝑒
                                                                                                                (2.4) 

 𝑇2𝑡 =  
𝒌𝒓∗∑ 𝑏∗𝑖𝑗𝑇2(𝑦𝑗,𝑡)

𝑁
𝑗=1

𝑪𝒓∗𝑟2∗𝑅𝑒∗𝑃𝑟
+

𝑟1

𝑪𝒓∗𝑟2

𝐸𝑐

𝑅𝑒
(∑ 𝑎∗𝑖𝑗𝜐2(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 )

2
+
2

3

𝑅∗𝒌𝒓

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇𝑝(𝑦𝑗,𝑡)−𝑇2(𝑦𝑗,𝑡))

𝑅𝑒
                        

                                                      + 
𝑅∗𝑟3∗𝑟1

𝑟2

(𝜐2(𝑦𝑗,𝑡)−𝜐𝑃(𝑦𝑗,𝑡))
2

𝑅𝑒
 −𝑆2(∑ 𝑎∗𝑖𝑗𝑇2(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 )          (2.5) 

 𝑇𝑝𝑡 =
2

3

𝑅∗𝒌𝒓∗𝑪𝒓𝑟∗𝑟3

𝑪𝒓∗𝑟1∗𝑝𝑟

(𝑇2(𝑦𝑗,𝑡)−𝑇𝑝(𝑦𝑗,𝑡))

𝑅𝑒
                                                                                                        (2.6) 

Thus, the reduced system of ordinary differential equations in time, that is, for i=1, 2, 3…, N, and 

the system is solved by the above-mentioned four-stage order three SSP RK43 scheme. At each 

stage of the scheme, the initial and boundary conditions (19-20) are considered accordingly. Hence 

the fluid velocity, temperature profiles  𝜐1, 𝑇1 of pure fluid in the region-I and fluid, particle 

velocity, and temperature profiles  𝜐2,  𝜐𝑃, 𝑇2, 𝑇𝑃of dusty fluid in the region-II have been 

numerically obtained in the fourth stage of MCB-DQM. 

3. A-3. Numerical solution of immiscible dusty and pure fluids flow under the scheme-III. 

To get the averaged flow velocity, reconstructed interface, and dust and particle velocity profiles 

under the scheme-III, replace the approximation of the spatial components of the first and second-

order obtained by using MCB-DQM. Hence the system of single momentum coupled partial 

differential equations (41-(43) followed by scheme III are updated as equations (3.1-3.3) then 

solved numerically, and the fluid and particle velocities profiles are obtained. 

As ( −1 ≤ y ≤ 1): 

𝜕𝐶𝑖

𝜕𝑡
 = −𝜐∗(𝑦𝑗, 𝑡)(∑ 𝑎∗𝑖𝑗𝐶𝑖(𝑦𝑗 , 𝑡)

𝑁
𝑗=1 )                                                                                                    (3.1) 

 

𝜕𝜐∗

𝜕𝑡
=

𝐺𝑒(𝑡)

1+𝐶𝑠(𝑟2−1) 
+

 (1+𝐶𝑠(𝑟1−1)) 

𝑅𝑒( 1+𝐶𝑠(𝑟2−1) )
(∑ 𝑏∗𝑖𝑗𝜐

∗(𝑦𝑗 , 𝑡)
𝑁
𝑗=1 ) −

𝑅 (1+𝐶𝑠(𝑟1−1)) 

𝑅𝑒( 1+𝐶𝑠(𝑟2−1) )
(𝜐∗(𝑦𝑗 , 𝑡) −

                                                  𝜐𝑃(𝑦𝑗, 𝑡)) +
1

𝐹𝑟
− 

 1+𝐶𝑠(𝑟1−1)

𝑅𝑒∗𝐶𝑎( 1+𝐶𝑠(𝑟2−1) )
(∑ 𝑏∗𝑖𝑗𝐶𝑖(𝑦𝑗 , 𝑡)

𝑁
𝑗=1  )             (3.2) 

 

𝜕𝜐𝑃

𝜕𝑡
= 

𝑅𝑟4 (1+𝐶𝑠(𝑟1−1)) 

𝑅𝑒(1+𝑟2)
(𝜐∗(𝑦𝑗 , 𝑡) − 𝜐𝑃(𝑦𝑗, 𝑡))                                                                                      (3.3) 

Thus, the reduced system of ordinary differential equations in time, that is, for i=1, 2, 3…, N, and 

the system is solved as above by a four-stage order-three SSP RK43 scheme. At each stage of the 
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scheme, the initial and boundary conditions (39-40) are considered accordingly. Hence the 

averaged flow, particle velocity profiles 𝜐∗,  𝜐𝑃  and interface profile 𝐶𝑖 have been obtained in the 

fourth stage of MCB-DQM. 

 

 

 

 

 

 


