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ABSTRACT:  Two-dimensional laminar hemodynamics through a diseased artery featuring an overlapped 

stenosis was simulated theoretically and computationally. This study presented a mathematical model for the unsteady 

blood flow with hybrid biocompatible nanoparticles (Silver and Gold) inspired by drug delivery applications. A 

modified Tiwari-Das volume fraction model was adopted for nanoscale effects. Motivated by the magneto-

hemodynamics effects, a uniform magnetic field was applied in the radial direction to the blood flow. For realistic 

blood behavior, Reynolds’ viscosity model was applied in the formulation to represent the temperature dependency 

of blood. Fourier’s heat conduction law was assumed, and heat generation effects were included. Therefore, the 

governing equations were an extension of the Navier-Stokes equations with magneto-hydrodynamic body force 

included. The two-dimensional governing equations were transformed and normalized with appropriate variables, 

and the mild stenotic approximation was implemented. The strongly nonlinear nature of the resulting dimensionless 

boundary value problem required a robust numerical method, and therefore the FTCS algorithm was deployed. 

Validation of solutions for the particular case of constant viscosity and non-magnetic blood flow was included. Using 

clinically realistic hemodynamic data, comprehensive solutions were presented for silver, and silver-gold hybrid 

mediated blood flow. A comparison between silver and hybrid nanofluid was also included, emphasizing the use of 

hybrid nanoparticles for minimizing the hemodynamics. Enhancement in magnetic parameter decelerated the axial 

blood flow in stenotic region. Colored streamline plots for blood, silver nano-doped blood, and hybrid nano-doped 

blood were also presented. The simulations were relevant to the diffusion of nano-drugs in magnetic targeted treatment 

of stenosed arterial diseases. 

KEYWORDS: Arterial stenosis; Unsteady viscous hemodynamics; Hybrid nanoparticles (Ag-Au/blood); Nano-

drug delivery; Finite Difference Method (FDM); Reynolds’s viscosity model; Heat transfer; Thermal buoyancy; Wall 

Shear Stress (WSS). 
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1. Introduction 

Considering the present-day statistics of the World Health Organization, 2017 [1], cardiovascular 

diseases are responsible, for the majority of cases, of morbidity and mortality across the world. 

Almost 31% of total deaths, i.e. 17.9 million, are documented due to be caused by these diseases. 

Cardiovascular diseases (CVDs) encompass cerebrovascular, rheumatic heart, coronary heart, 

peripheral and congenital heart disease, among other ailments. The fundamental reason for these 

diseases is the deposition of cholesterol and low-density lipoproteins inside the lumen, resulting 

in the hardening of arteries, which is called atherosclerosis. This plaque further grows and narrows 

the arterial area, manifesting in a hemodynamic constriction, termed a stenosis [2], which reduces 

the blood supply to different organs of the body. Human blood is a heterogeneous multiphase 

suspension of blood cells (erythrocytes, leukocytes, platelets,) in plasma. It is universally agreed 

that plasma is a Newtonian fluid [3]; however, whole blood exhibits non-Newtonian fluid 

characteristics owing to the suspensions present which significantly alter rheological properties 

[4]. For blood flow transporting through large arteries, Newtonian behaviour can be assumed. 

However, in small arteries or capillaries, blood exhibits a strongly non-Newtonian nature. Another 

critical feature of arterial blood flow is its pulsatile behavior, which was highlighted by Ling and 

Atebek [5].  

A large number of studies have been performed to elaborate the hemodynamics in arteries 

considering blood as either a Newtonian or non-Newtonian fluid. Chakravarty and Mandal [6] 

computed the time-dependent non-Newtonian blood flow in an artery with overlapped stenosis 

with a finite difference technique using an elastic (moving wall) cylindrical tube model and 

viscoelastic constitutive equation fluid representing blood. Chakravarty and Mandal [7] presented 

a mathematical model for Newtonian blood flow in a tapered blood vessel using a clinically 

realistic time-variant shape of the overlapping stenosis present in the arterial lumen and including 

vascular wall elastic deformability.  Mekheimer and El kot [8] considered heat, mass and 

momentum transfer in Sisko shear-thinning blood flow in stenotic arteries with cross diffusion 

effects. Riahi et al. [9] computed the variable viscosity blood flow in an overlapping stenotic 

region. They showed that impedance is elevated with stenosis parameter and shear stress at the 

throats and at the critical height increase with the severity of the stenosis. Haghighi and Chalak 

[10] simulated blood flow in constricted arteries using a finite difference method and a Sisko non-

Newtonian model and under body acceleration effects. Srivastav [11] analyzed hemodynamics in 
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a catheterized stenosed artery with a Newtonian model with permeability effects. Zaman et al. [12] 

computed the transient magnetized blood flow in a porous saturated overlapping artery. Ali et al. 

[13] used a finite difference technique to simulate time-dependent shear-thinning blood flow in a 

tapered artery with a single stenosis. All these studies confirmed the importance of either inclusion 

of time and/or rheological effects in evaluating more precisely the hemodynamics in constricted 

blood vessels and the contribution to proliferation of hematological disorders.  

The statistics emphasizes the urgent requirements for new and more effective therapies and 

technologies which can prevent these diseases. In recent years, nanofluids have emerged as a 

significant development in biomedical engineering. Choi [14] proposed the term "nanofluid," 

which is defined as a suspension of dissimilar nanoparticles in a base fluid aimed at enhancing 

thermal (and other) characteristics. The nanoparticles are usually oxides, carbides or metals having 

high thermal conductivities and the base fluids include water, oil, ethylene glycol and ethanol.  

Significantly diverse utilization of nanofluid can be seen in modern biomedical technologies and 

therapies. For example, nano-drugs involve the targeted delivery of nanoparticles in cancer 

treatments. The anti-bacterial properties of for example silver nanoparticles have witnessed 

considerable popularity in sterilization techniques. Tripathi and Bég [15] performed one of the 

first investigations of nanoparticle doping in drug diffusion via peristaltic transport in the 

intestines. Tripathi et al. [16] very recently presented a detailed review on the recent advancements 

in nano-drug delivery systems in hemodynamics. Vasu et al. [17] conducted a comprehensive 

finite element analysis of magnetic body force and nanoparticle effects in electroconductive non-

Newtonian blood flow in a stenosed coronary artery using FREEFEM++ software. Ali et al. [18] 

analyzed the unsteady heat and mass transfer in nanoparticle-doped blood flow through a tapered 

stenotic artery. Nadeem and Ijaz [19] employed a computational model to study metallic 

nanoparticle effects in stenosed blood artery including permeability effects of the vessel wall. 

Ahmed and Nadeem [20] explored the relative performance of various nanoparticles (Cu, Al2O3 

and TiO2) in blood flow through a stenosed artery. Dubey et al. [21] very recently performed 

numerical computations for transient non-Newtonian blood flow conveying nanoparticles through 

an artery with a combination of stenosis and aneurysm, providing extensive flow visualization in 

the vicinity of the constriction and expansion in the blood vessel.  

The above investigations were restricted to a single nanoparticle type (“unitary nanofluids”). 

However, Makishima et al. [22] suggested nanofluid suspensions comprising of two or more 
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metallic nanoparticle types suspended in base fluid to provide a homogenous phase which they 

termed hybrid nanofluids. In comparison to unitary nanofluid, hybrid nanofluids successfully 

combined the unique individual physical and chemical properties of multiple nanoparticles, which 

have been proven to be achieve markedly improved results. Ijaz and Nadeem [23] theoretically 

investigated the hybrid nanoparticle-mediated steady blood flow through an overlapped stenosed 

artery with tapering effects. Ijaz and Nadeem [24] simulated the stenotic arterial hemodynamics 

doped with hybrid (silver, copper and gold) nanoparticles, observing that higher volume fractions 

of gold nanoparticles achieve improved flow efficiency. Zaman et al. [25] analyzed the blood flow 

characteristics in a curved stenosed artery with an aneurysm, considering hybrid nanoparticles 

(copper, silver) and the FTCS finite difference method. Ahmed and Nadeem [26] explored the 

magnetohydrodynamics effects on steady non-Newtonian (micropolar) blood mediated hybrid 

nanoparticles (Cu and Al2O3) through six different types of stenosis.  

Magnetohydrodynamics (MHD) is the science studying the motion of electrically conducting 

fluids under the presence of applied (uniform or variable) magnetic fields. Discovered by Faraday 

in the 19th century, MHD phenomena are independent of fluid rheological characteristics. In the 

case of blood flows, the existing ions and irons in hemoglobin give rise to electrical fluid 

properties. Hence applying fixed or alternating magnetic fields produces the 

magnetohydrodynamic effect in streaming blood. This property of blood can be exploited in for 

example bio-magnetic therapy to cure arterial diseases including atherosclerosis. Haik et al. [27] 

identified that on applying a magnetic field of 10 Tesla intensity, a reduction of 30% in the 

volumetric flow rate of blood is produced.  Reduction in blood flow has also been confirmed by 

Yadav et al. [28] via applying a magnetic field of much less magnitude (0.002 Tesla) in a stenotic 

region. Selvi and Ponalagusamy [29] studied the impact of uniform magnetic field in blood flow 

through a stenosed artery with the Newtonian model, observing that an increment in magnetic field 

significantly elevates the blood flow resistance. Nadeem et al. [30] also analyzed the 

magnetohydrodynamic blood flow in a stenotic arterial region, noting again that imposition of 

stronger magnetic field reduces the velocity in that area.  

Generally, blood viscosity is considered to be constant in most hemodynamic computations 

reported in the literature; however, this assumption is not practical for every situation. Viscosity 

is however found to be a function of temperature and pressure in the case of real fluids, including 

blood. Popular models utilized in this regard include the Reynolds model, Vogel model and 
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Einstein’s model. Zaman et al. [31] used Reynolds model to represent the viscosity of blood doped 

with hybrid nanoparticles in a stenosed artery. Ellahi et al. [32] used two different viscosity models 

(Vogel’s and Reynolds’ model) to determine the homotopy series solutions of nanofluid flows.  

Inspection of the biomedical engineering literature has revealed that, relatively few works have 

been performed for hemodynamic transport considering the hybrid nanoparticles featuring in 

overlapped stenosis region under applied magnetic field. Furthermore, relatively sparse has 

considered variable viscosity blood flow combined with the heat generation effects under unsteady 

flow conditions. Also, the alteration in blood pressure distribution in hybrid nano-

pharmacodynamics has not been extensively examined computationally. Consequently, the 

novelty of the article is the, numerical simulation of unsteady magnetohydrodynamic hybrid 

nanoparticle (Ag, Au)-doped variable viscosity blood flow in an overlapped stenosis region of a 

diseased artery with heat generation effects, which to the author’s knowledge has not yet been 

considered in biomedical computational fluid dynamics. In this article, an axisymmetric geometry 

is considered under a constant radial external magnetic field. Hybrid nanoparticles (gold and 

silver) have been taken to represent the nano-doped blood flow in a stenosed artery. In addition to 

this, pulsatile pressure gradient and Reynolds viscosity model are also deployed in the model. With 

appropriate boundary conditions, the normalized non-linear conservation equations are solved by 

a stable, versatile and efficient finite difference method (FTCS i.e. forward time central space). 

Further simulations and visualizations (post-processing) are produced in a MATLAB symbolic 

software environment. The provided simulations are relevant to hybrid nano-pharmacodynamic 

which gives a deeper insight of the transport phenomena inherent to nanoparticle drug delivery in 

the treatment of cardiovascular diseases.” 

 The current study is divided into the following subsequent sections: Section 2 illustrates the 

arterial geometry of the problem with associated geometric formulations. Section 3 describes the 

mathematical formulation of the hybrid nanofluid model for stenotic transport including 

conservation equations and boundary conditions. Section 4 elucidates the non-dimensionalization, 

which permits the introduction of key scaling parameters e.g. Hartmann (MHD) parameter. Section 

5 presents a comprehensive validation of the model. Section 6 provides relevant details of the 

FTCS numerical technique. Section 7 presents extensive results for the effects of selected 

parameters on velocity, temperature, wall shear stress and flow rate in addition to streamline 
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distributions (contour plots). Finally, in Section 8 the principal findings of the study are 

summarized and future possible pathways in nano-pharmacodynamics are identified.  

 

2. Arterial geometry for stenotic nano-pharmacodynamics flow  

Blood flow in this study, is considered to be, axisymmetric, laminar, incompressible and unsteady 

in nature. The mathematical equations representing the stenotic geometry are formulated in 

cylindrical co-ordinate system ( , , )r z , in which the r variable denotes the radial coordinate,   is 

a circumferential (azimuthal) coordinate and z  is axial (longitudinal) co-ordinate, respectively. 

Since the flow is considered as axisymmetric, hence the circumferential direction is neglected and 

quasi-3-dimensional flow may be considered in two spatial variables ( r , z ). Further, the 

mathematical equation describing the overlapped stenosis [33] geometry in an artery is taken as:    

3 2 2 3 464 11 47 1 3
1 ( ) ( ) ( ) ( ) ,

( ) 10 32 48 3 2

,

o o o oa l z d l z d l z d z d d z d l
R z

a otherwise


   

− − − − + − − −   +   =    
 
 

..(1) 

Here ( )R z  defines the radius of the overlapped stenotic region, a  is the radius of the artery in the 

non-stenotic region, d is the location of stenosis from origin and ol  is the length of stenotic region. 

A schematic diagram of the diseased arterial segment is given in Fig.1. 

The geometric parameter    is defined as [33]: 

* *

4

4
,

o

where
al a

 
 = =                                                             ….(2) 

Here 
* shows the critical height of stenosis [33], which is given at two specific locations, i.e. 

8 61

25 50
o oz d l and z d l= + = +                       …(3) 
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     Figure 1: Geometry of the stenosed artery in which R(z) is radius of the artery, a is the radius in non-stenotic 

region, l0 and δ shows the length and depth of the stenosis respectively and d is the distance of stenosis from origin. 

 

3. Mathematical transport model for hybrid nanoparticle-doped blood: 

In the case of unsteady and axisymmetric hybrid nanoparticle-doped blood flow, the velocity and 

temperature fields for the current problem are defined as: 

[ ( , , ),0, ( , , )]V v r z t w r z t=  

( , , )T T r z t=            ….(4) 

where v and w are the radial and axial velocity components respectively. In view of Eqn. (4) and 

considering the hybrid nanoparticles model, the transport equations i.e. continuity, momentum, and 

energy conservation with thermal buoyancy, heat generation (source), MHD and exponential 

viscosity variation, can be written as [31]: 

0
v v w

r r z

 
+ + =

 
              ….(5) 

 

2

1
( ) ( ) 2 ( )hnf hnf hnf hnf

v v v p v v w v
v w T T T

t r z r r r r z z r r
   

               
+ + = − + + + −                   

   ….(6) 

 

( )2

1

1
( ) 2 ( )

( ) ( )

hnf hnf hnf

hnf hnf o

w w w p v w w
v w r T T

t r z z r r z r z z

g T T B w

  

 

               
+ + = − + + +                   

+ − −

            …..(7) 

 

Hybrid nanoparticles 

e.g. Gold Au, Silver Ag 
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2 2

2 2

1

( ) ( )

hnf o

p hnf p hnf

kT T T T T T
v w

t r z C r r r z C



 

       
+ + = + + +          

    …..(8) 

 

The penultimate terms in Eqn. (7) denote thermal buoyancy and magnetic body force, respectively. 

The final term in Eqn. (8) signifies heat generation. The physical properties featured in the above 

set of equations are defined as follows: hnf is the density, hnf is the viscosity, hnf is the thermal 

expansion coefficient, hnf is electrical conductivity of hybrid nanofluid (blood), hnfk is thermal 

conductivity, ( )p hnfC is the specific heat at constant pressure for the hybrid nanofluid model, 
oB

designates uniform radial magnetic field and 
o is the heat generation parameter. For the velocity 

profile and temperature field, the associated boundary and initial conditions are prescribed as 

follows which include a hydrodynamic slip velocity at the vessel wall (ws): 

Boundary Conditions:      
0

0, sr R
r

w
w w

r =
=


= =


,  

0

0, 1
r R

r

T
T

r =
=


= =


 …..(9) 

Initial Conditions:       
0 0

0, 0
t t

w T
= =
= =       …..(10) 

 

4. Non-dimensionalization of hybrid nano-fluid transport model 

To facilitate a numerical solution and simultaneously permit the hydrodynamic scaling of the flow 

regime, the mathematical model defined by Eqns. (5-8) can be made dimensionless with the help 

of following set of parameters [31]: 

, ,
o

r w
r w

a U
= =   , ,

o

z R
z R

l a
= =   

*
, ,o o

o

l v U
v t t

U a
= =  

2

1

1

,
o o o w

T Ta p
p

U l T T




−
= =

−
, 

2

1

,
( )

o

w f

a

T T k


 =

−
 

Pr
p f

f

C

k


= , 

2

1( )f f w

f o

g a T T
Gr

U

 



−
= ,  Re

f o

f

U a


= , s

s

o

w
w

U
= ,  0

f

o

M B a



=    …..(11) 

Here r  represents the dimensionless radial coordinate,  w  is the dimensionless axial velocity, R

is dimensionless radius, z  is dimensionless axial coordinate, v  is dimensionless radial velocity 

component, t  is dimensionless time, p is dimensionless pressure,   is dimensionless blood 

temperature,   is dimensionless heat generation parameter and sw is dimensionless slip velocity. 

In addition to this, Pr is Prandtl number, Re is Reynolds number, Gr is local thermal Grashof 
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number and M  is magnetic interaction parameter (Hartmann number). oU  is reference blood flow 

velocity and wT is the vessel wall temperature. In the above-defined variables, the non-dimensional 

geometric parameters are stenosis height parameter ( * a = ) and vessel aspect ratio ( )oa l = . 

Introducing the transformation variables and after dropping the bars, the conservation equations 

become:  

0
v v w

r r z


  
+ + =   

          …..(12) 

2

2

2 2

2

1
Re ( ) ( )

1
( ) 2 ( )

hnf

hnf

f o o

hnf hnf

o o o

v v v p a v
v w

t r z r l r r r

a v w v

z l z a r r

 
    

 

  
   

 

           
+ + = − + +                  

        
+ −      

         

 …..(13) 

( )

2

2 2

( )1
Re ( )

( ) ( )
2

( )

hnf hnf

f o

hnf hnf hnf

o f f

w w w p v w
v w r

t r z z r r z r

w
Gr M w

z z

  
  

 

   
 

  

             
+ + = − + + +                     

    
+ −            

     …(14) 

 

2 2
2

2 2

( ) 1
Pr Re ( )

( )

p hnf f f

p f hnf hnf

C k k
v w

C k t r z r r r z k

      
   



         
+ + = + + +               

  …..(15) 

 

To simulate variable viscosity of the hybrid nanofluid, Reynolds’ exponential viscosity model [32] 

is considered here, and the viscosity is given as: 

𝜇𝑓(𝜃) = 𝜇𝑜𝑒−𝜂𝑜𝜃 = 𝜇𝑜[1 − 𝜂𝑜𝜃]   𝑤ℎ𝑒𝑟𝑒   𝜂𝑜 ≪ 1                   ….(16) 

Where the parameter o  is a viscosity constant. The equations for the thermophysical parameters 

of unitary nanofluid are defined following Devi and Devi [34]: 

 

( ) (1 )( ) ( ) , ( ) (1 )( ) ( )p nf p f p s nf f sC C C         = − + = − +  

2 2 ( )

2 ( )

nf s f f s

f s f f s

     

     

+ − −
=

+ + −
,                 

2 2 ( )

2 ( )

nf s f f s

f s f f s

k k k k k

k k k k k





+ − −
=

+ + −
            ….(17a) 

5/ 2

( )
( ) , (1 )

(1 )

f

nf nf f s

 
     


= = − +

−
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Additionally, the equations for thermo-physical properties of hybrid nanofluid (dual nanoparticle- 

doped blood) are [34]: 

1 22 1 1 25/ 2 5/ 2

1 2

( )
, (1 )[(1 ) ]

(1 ) (1 )

f

hnf hnf f S S

 
        

 
= = − − + +

− −
 

1 22 1 1 2( ) (1 )[(1 )( ) ( ) ] ( )p hnf p f p S p SC C C C       = − − + +  

1 22 1 1 2( ) (1 )[(1 )( ) ( ) ] ( )hnf f S S       = − − + +  

2 2 1 1

2 2 1 1

2 1

2 1

2 2 ( ) 2 2 ( )
,

2 ( ) 2 ( )

S bf bf S S f f Shnf bf

bf S bf bf S f S f f S

where
          

           

+ − − + − −
= =

+ + − + + −
 

2 2 1 1

2 2 1 1

2 1

2 1

2 2 ( ) 2 2 ( )
,

2 ( ) 2 ( )

S bf bf S S f f Shnf bf

bf S bf bf S f S f f S

k k k k k k k kk k
where

k k k k k k k k k k

 

 

+ − − + − −
= =

+ + − + + −
         ….(17b) 

In the above-mentioned equations, f is the viscosity of the base fluid, f  is base fluid density, 

( )p fC is base fluid heat capacitance, f is thermal expansion coefficient, f as electrical  

conductivity and fk is the thermal conductivity of the base fluid. For different nanoparticles, 

1 2( , )   denote the individual volume fractions, 
1 2

( , )S S   are the densities of nanoparticles, 

1 2
[( ) ,( ) ]p S p SC C   are the heat capacitances, 

1 2
[ , ]S S  are thermal expansion coefficients, 

1 2
[ , ]S S   signify electrical conductivities, and 

1 2
[ , ]S Sk k  denote thermal conductivities of solid 

nanoparticles, respectively. Hydrodynamic, thermal and magnetic properties for 5 different 

nanoparticles and blood are given below in Table 1.  

Thermophysical 

properties 

Blood 

( f ) 

     Solid metallic/ metallic oxide nanoparticles ( s ) 

(Ag)          (Au)            (Cu)           (TiO2)         (Al2O3) 

Density [𝝆(𝒌𝒈/𝒎𝟑)] 1063 10500 19320 8933 4250 3970 

Thermal Conductivity  

[(𝑾/𝒎𝑲)] 

0.492 429 314 400 8.9538 40 

Thermal expansion 

coefficient [ x 10-5 

1( )K −
] 

0.18 1.89 1.4 1.67 0.9 0.85 

Heat Capacitance                    

[𝑪𝒑(𝑱/𝒌𝒈𝑲)] 

3594 235 129 385 686.2 765 
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Electrical Conductivity 

[σ ( S / m)] 

6.67x10-1 6.3x107 4.52x107 5.96x107 2.38x106 3.5x107 

Table 1: Thermophysical properties of blood and various nanoparticles 

 

In reference to further analysis, two different hypotheses have been taken into account; 𝛿 ≪ 1  and 

(1)O =  i.e. stenosis height parameter is much less than one, and the vessel aspect ratio is of 

comparable magnitude to unity. After imposing these suppositions, Eqns. (12)-(15) therefore 

contract to: 

  0
w

z


=


           ….(18) 

  0
p

r


=


           ….(19) 

   ( )2
( ) ( )1

Re
( )

hnf hnf hnf hnf

f o f f

w p w
r Gr M w

t z r r r

    


   

           
= − + + −                      

    ….(20)  

 

  

2

2

( ) 1
Pr Re

( )

p hnf f f

p f hnf hnf

C k k

C k t r r r k

   




      
= + +            

     ….(21) 

 

Inserting the values of 
hnf

f





 
 
 
 

, 
( )hnf

o

 



 
 
 

,
( )

( )

hnf

f





 
 
 
 

 and 
( )

( )

p hnf

p f

C

C





 
 
 
 

in the above equations, the 

revised equations for hybrid nanofluid (blood) emerge as:    

 

( )

1 2

1 2

2

2 1 1 2 5/ 2 5/ 2 2

1 2

2

2 1 1 2

(1 ) 1
(1 ) (1 ) Re

(1 ) (1 )

( ) ( )
(1 ) (1 )

( ) ( )

S S o

f f

S S hnf

f f f

w p w w

t z r r r

Gr M w

   
   

   

  
    

  

      −   
− − + + = − + + +       − −         

    
− − + + −      

      

 

             .....(22) 

 1 2

2

2 1 1 2 2

( ) ( ) 1
(1 ) (1 ) Pr Re

( ) ( )

p S p S f f

p f p f hnf hnf

C C k k

C C k t r r r k

    
    

 

         
− − + + = + +                   

    ….(23) 
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Where 1 1 2 2

1 1 2 2

1 2

1 2

2 ( ) 2 ( )

2 2 ( ) 2 2 ( )

S f f S S bf bf Sf

hnf S f f S S bf bf S

k k k k k k k kk

k k k k k k k k k

 

 

  + + − + + −
=   
  + − − + − −  

  

and 2 2 1 1

2 2 1 1

2 1

2 1

2 2 ( ) 2 2 ( )

2 ( ) 2 ( )

S bf bf S S f f Shnf

f S bf bf S S f f S

         

          

  + − − + − −
=   
  + + − + + −  

. 

 

With the help of Burton [35], pulsatile hemodynamic effect is simulated via the inclusion of an 

oscillatory axial pressure gradient as follows: 

1 cos(2 )o p

p
A A w t

z



− = +


,  0t                              ….(24) 

Here 
0A is the mean pressure gradient and 1A  denotes the amplitude of the pulsatile component, 

which is subject to diastolic and systolic pressures. By using non-dimensional parameters defined 

earlier in Eqn. (11), the normalized form of Eqn. (24) becomes: 

1 1[1 cos( )]
p

B e c t
z


− = +


         ….(25) 

Where 

2

1
1 1

2
, ,

po

o o o o

awA A a
e B c

A U U




= = =       ….(26) 

Invoking Eqn. (25), the reduced axial momentum equation, Eqn. (22) becomes: 

( )

1 2

1 2

2

2 1 1 2 1 1 5/ 2 5/ 2 2

1 2

2

2 1 1 2

(1 ) 1
(1 ) (1 ) Re (1 cos( ))

(1 ) (1 )

( ) ( )
(1 ) (1 )

( ) ( )

S S o

f f

S S hnf

f f f

w w w
B e c t

t r r r

Gr M w

   
   

   

  
    

  

     −   
− − + + = + + + +      − −         

    
− − + + −      

      

       

            ….(27) 

Further, Eqns. (23) and (27) are subject to the following boundary and initial conditions: 

0

( , )
( , ) , 0, ( ,0) 0Sr R

r

w r t
w r t w w r

r=
=


= = =


                                                            ….(28) 

0

( , )
( , ) 1, 0, ( ,0) 0

r R
r

r t
r t r

r


 

=
=


= = =


                                                            ….(29) 

Key hemodynamic quantities such as volumetric flow rate and wall shear stress (WSS) may be 

formulated as: 
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1

0

2

R

Q wrdr=  ,          ….(30) 

s

r R

w

r


=

 
= − 

 
          ….(31) 

With respect to the above non-dimensional parameters, the geometrical relation for the stenotic 

arterial region can be written in non-dimensional form as: 

* 2 3 4

1 1 1 1 1 1

64 11 47 1 3
( ) 1 ( ) ( ) ( ) ( ) ,

10 32 48 3 2
R z z z z z z      

   
= − − − − + − − −   +   

   
   ..(32) 

With
* 4 = , 

*

a


 = ,  1

0

d

l
 = . 

For restraining the geometric effects, the radial coordinate transformation 
( )

r
x

R z
=  is employed 

in the above governing equations. Hence Eqns. (23), (27), (28) and (29) are reduced to the 

following form: 

1 2

1 2

2

2 1 1 2 1 1 5/ 2 5/ 2 2 2

1 2

2 1 1 2

(1 ) 1 1
(1 ) (1 ) Re [1 cos( )]

(1 ) (1 )

( ) ( )
(1 ) (1 )

( ) ( )

S S o

f f

S S hnf

f f f

w w w
B e c t

t R x x x

Gr

   
   

   

  
    

  

     −     
− − + + = + + + +       − −           

    
− − + + −     

      

( )2M w


            ….(33) 

 

1 2

2

2 1 1 2 2 2

( ) ( ) 1 1
(1 ) (1 ) Pr Re

( ) ( )

p S p S f f

p f p f hnf hnf

C C k k

C C k t R x x x k

    
    

 

           
− − + + = + +                      

      

                                                                                                                                                   ….(34) 

Furthermore, the associated dimensionless boundary conditions are written as: 

1 0
0

0, , 0sx t
x

w
w w w

x = =
=


= = =


       ….(35) 

1 0
0

0, 1, 0
x t

xx


 

= =
=


= = =


       ….(36)  

Similarly, the dimensionless volumetric flow rate and wall shear stress respectively take the 

following form: 
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1

2

1

0

2Q R wxdx
 

=  
 
 ,          …..(37) 

1

1
s

x

w

R x


=

 
= −  

 
          ….(38) 

 

5. Numerical Solution with FTCS Scheme 

To obtain the exact solution of the transformed nonlinear partial differential equations (PDEs) is 

difficult, if not intractable. Hence it is necessary to use numerical methods to obtain approximate 

solutions for the nonlinear, coupled Eqns. (33)- (34). For the solution of these equations, an 

appropriate computational procedure based on the discretization of PDEs is an explicit finite-

difference technique, the FTCS algorithm (forward in time (FT) and central in space (CS)) which 

is described in some detail by Hoffmann [36]. FTCS is quite versatile and easy to program and has 

therefore been applied in a number of hemodynamic and magnetohydrodynamic studies – see [25] 

and [31]. In this scheme, firstly the spatial domain is discretized and next the value of velocity 

component is calculated at each node ix and over the time instant kt , which is written as k

iw . 

According to Hoffmann [36], the central differencing formulation for second-order partial 

derivatives and the forward differencing formulation for first-order partial derivatives are defined 

by the following discretization formulae: 

 

1 1

2

k k

i i
x

w w w
w

x x

+ − −
 =

 
,          ….(39) 

2

1 1

2 2

2

( )

k k k

i i i
xx

w w w w
w

x x

+ − − +
 =

 
,        ….(40) 

1

( )

k k

i iw w w

t t

+ −


 
          ….(41) 

Incorporating the relevant discretized partial derivatives, Eqns. (33)-(34) will readily be reduced 

to the forms given below: 

1 21 2

2

1 1 5/ 2 5/ 2 2 2

1 2
1

2 1 1 22 1 1 2

(1 ) 1 1
[1 cos( )]

(1 ) (1 )

( ) ( )
(1 ) (1 )Re (1 ) (1 )

( ) ( )

k
k o i

k k

i i

S S hnfkS S

i

f f ff f

w w
B e c t

R x x xt
w w

Gr

 

 

   
       

   

+

 −   
+ + + +  

− −    
= +

     
− − + + − − − + +    

          

( )2 k

iM w

 
 
 
 


  

  
  
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            ….(42) 

1 2

2
1

2 2

2 1 1 2

1 1

( ) ( )
Pr Re (1 ) (1 )

( ) ( )

hnf fk k

i i

f hnfp S p S

p f p f

k kt

k R x x x kC C

C C

 
  

 
   

 

+
        

= + + +                 
− − + +  

    

 

            ….(43) 

Further, the associated boundary and initial conditions are designated:  

1 1 0i iw = = ,    at 0t =  

1

k k

i iw w+ = ,  
1

k k

i i + = ,   at  0x =  

1

k

N sw w+ = ,  1 1k

N + = ,  at  1x =        ….(44) 

 

In FTCS computations, the spatial variable is discretized into N+1 grid-points where the step size 

is taken as 1
1

x
N

 =
+

. The time instant is defined by 
kt , where the value of 

kt is given as 

( 1)kt k t= −  , in which t  denotes a small increment in time. The velocity component is further 

calculated at each node and for every time instant. As stability of this numerical scheme is 

dependent on step size and time increment, after mesh testing and trial simulations, 0.025x =  

and 0.0001t =  are selected to fulfill the stability condition. These values confirm the stability 

and convergence of this scheme as verified in Hoffmann [36]. The FTCS code has been extensively 

validated and implemented in numerous previous simulations including solar energy radiative heat 

transfer flows [37], oscillatory hydromagnetic flows in geophysics (MHD-assisted oil spill clean-

up) [38], viscoelastic blood flow with body acceleration [39], peristaltic gastro-intestinal pumping 

[40], thermosolutal Cross fluid rheo-hemodynamics in tapered arteries [41] and non-Newtonian 

coating hydromechanics [42]. FTCS is therefore very adaptable and offers excellent accuracy in 

magneto-nano-hemodynamics simulation, as confirmed in the next section.  

 

6. Validation of FTCS numerical scheme 

To validate the FTCS numerical code which has been chosen to solve the current problem, the 

numerical results obtained by Zaman et al. [31] for the axial blood velocity were compared with 

the present computations. The comparison is documented in Table 2 for both no slip (ws=0) and 

slip conditions at the arterial wall (ws=0.1) at the throat of stenotic artery z=0.71 and t=1.15. In 
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both cases there was strong flow deceleration computed with increasing radial coordinate (r). 

Evidently very close correlation is achieved and confidence in the present FTCS scheme is 

therefore justifiably high.   

r Zaman et al. 

[31] 

0.0Sw =  

Present Results 

0.0Sw =  

Zaman et al. [31] 

0.1Sw =  

Present Results 

0.1Sw =  

0 0.5859 0.5855 0.6857 0.6807 

0.10 0.5829 0.5819 0.6827 0.6772 

0.20 0.5725 0.5698 0.6723 0.6653 

0.30 0.5540 0.5490 0.6539 0.6448 

0.40 0.5261 0.5187 0.6259 0.6149 

0.50 0.4864 0.4773 0.5863 0.5741 

0.60 0.4323 0.4228 0.5322 0.5202 

0.70 0.3605 0.3521 0.4604 0.4502 

0.80 0.2671 0.2613 0.3671 0.3600 

0.90 0.1483 0.1457 0.2483 0.2451 

1.00 0 0 0.1000 0.1000 

Table 2: Comparison of results with Zaman et al. [31] for axial velocity results at throat of stenotic artery z=0.71 

and t=1.15  

 

7. Computational results and discussion 

In this section, the modification in hemodynamic characteristics in the overlapped stenotic artery 

in the presence of hybrid nanoparticles is presented. With reference to emerging parameters, the 

results for axial velocity, temperature profile, wall shear stress, flow rate and pressure gradient 

are visualized graphically in Figs. 2-32, which also additionally show the influence of hybrid 

nanofluid (Ag-Au/Blood) in comparison to unitary nanofluid (Ag/Blood) and an impact of 

magnetic field on blood flow via several contour plots. Table 3 presents the default values for the 

key parameters implemented in the FTCS computations.  
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Parameter 
1  2  1B  

1c  0  Gr  Pr  Re  M    
Sw  

Value 0.03 0.03 1.41 1 0.2 0.1 14 2 1 0.1 0.1 

Table 3: Default values of key parameters used in simulations 

   

Figure 2: Effect of nanoparticle concentration on axial velocity with (a) Ag nanofluid only (b) Ag-Au hybrid 

nanofluid for with and without magnetic field and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79, 𝑡 = 1.2. 

 

    

Figure 3: Effect of nanoparticle concentration on temperature profile with (a) Ag nanofluid only (b) Ag-Au hybrid 

nanofluid for 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79, 𝑡 = 1.2 
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Figure 4: Effect of different nanoparticle concentration combinations on (a) velocity and (b) temperature profile for 

with and without magnetic field and with𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79, 𝑡 = 1.2. 
 

 

     

Figure 5: Effect on axial velocity for various (a) Magnetic number and (b) slip velocity parameter with 𝐵1 =
1.41, 𝛿 = 0.1, 𝑧 = 0.79, 𝑡 = 1.2. 
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Figure 6: Effect of (a)  0  and (b) Grashof number on axial velocity for with and without magnetic field and 

with𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79, 𝑡 = 1.2. 

    

Figure 7: Effect of Prandtl number (Pr) on (a) velocity and (b) temperature profile for𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 =
0.79, 𝑡 = 1.2. 
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Figure 8: Effect of Reynolds number (Re) on (a) velocity and (b) temperature profile for 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 =
0.79, 𝑡 = 1.2. 

   

Figure 9: Effect on velocity profile for different (a) B1 parameter (b) c1 parameter for following data 

0.1, 0.79, 1.2z t = = =  
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Figure 10: Effect of heat generation parameter (  ) on (a) velocity and (b) temperature profile for 𝐵1 = 1.41, 𝛿 =

0.1, 𝑧 = 0.79, 𝑡 = 1.2. 

 

Figure 11: Wall shear stress for various nanoparticle concentrations of Ag nanofluid for 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 =
0.79. 
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Figure 12: Wall shear stress (WSS) for various hybrid nanoparticle concentrations of (Ag+Au) nanofluid for 𝐵1 =
1.41, 𝛿 = 0.1, 𝑧 = 0.79. 

 

 

Figure 13: Flow rate for various nanoparticle concentrations of Ag nanofluid for 
1 1.41, 0.1, 0.79B z= = = . 
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Figure 14: Flow rate for various hybrid nanoparticle concentrations of (Ag+Au) nanofluid for following data 𝐵1 =
1.41, 𝛿 = 0.1, 𝑧 = 0.79. 

 

Figure 15: Wall shear stress of different concentration combinations of hybrid nanoparticles for 

1 1.41, 0.1, 0.79B z= = = . 
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Figure 16: Flow rate of different concentration combinations of hybrid nanoparticles for 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 =
0.79. 

 

Figure 17: Wall shear stress for various Grashof numbers with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 
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Figure 18: Flow rate for various Grashof numbers with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 

 

Figure 19: Wall shear stress (WSS) for various hybrid nanofluid viscosity parameter values with 𝐵1 = 1.41, 𝛿 =
0.1, 𝑧 = 0.79. 
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Figure 20: Flow rate for various hybrid nanofluid viscosity parameters with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 

 

Figure 21: Wall shear stress for various magnetic parameters with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 
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 Figure 22: Flow rate for various magnetic parameters with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 

 

Figure 23: Wall shear stress for various Prandtl numbers with 
1 1.41, 0.1, 0.79B z= = =  
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Figure 24: Flow rate for various Prandtl numbers with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 
. 

 

Figure 25: Wall shear stress for various Reynolds numbers with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 
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Figure 26: Flow rate for various Reynolds numbers with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 

 

Figure 27: Wall shear stress for various slip velocity parameter with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 
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Figure 28: Flow rate for various slip velocity parameter with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79. 

 

Figure 29: Pressure gradient for various B1  parameters and 𝑐1 = 1, 𝛿 = 0.1, 𝑧 = 0.79. 
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Figure 30: Pressure gradient for various c1 parameters with 
1 1.41, 0.1, 0.79B z= = = .  

 

       

          

(a)  For Blood 
1 20.00, 0.00 = =                                         (b) For silver nano-fluid 

1 20.03, 0.00 = =  
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(c)  For hybrid nano-fluid 
1 20.03, 0.03 = =  

 
 

 

 

   

 (d) On increasing  , 0.2 =            (e) Without magnetic field, M=0 
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 (f)  On increasing Gr, Gr=0.5         (g) For slip velocity 0.0Sw =  

 

 

  

 (h) On increasing Pr, Pr=21    (i) On increasing Re, Re=5 

Figure 31: Blood flow pattern along the axial and radial direction with 𝐵1 = 1.41, 𝛿 = 0.1, 𝑧 = 0.79 
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M   Variation    Variation Silver nanofluid Hybrid nanofluid 

0.0 0.00 1.143032547 1.143032547 

 0.01 1.120093697 1.08779288 

 0.03 1.076754098 0.990900483 

 0.05 1.035556804 0.916722806 

   1.0 0.00 1.013799016 1.013799016 

 0.01 0.995791633 0.972596841 

 0.03 0.960731104 0.89601051 

 0.05 0.927723281 0.834487738 

Table 4: Wall shear stress (WSS) for various emerging parameters at time t=0.76 

 

M   Variation    Variation Silver nanofluid Hybrid nanofluid 

0.0 0.00 1.083293989 1.083293989 

 0.01 1.058809353 1.022325364 

 0.03 1.012325469 0.916791661 

 0.05 0.969890666 0.837291548 

   1.0 0.00 0.977947071 0.977947071 

 0.01 0.958222542 0.930446509 

 0.03 0.920301065 0.844455101 

 0.05 0.885173741 0.77719006 

 Table 5: Volumetric flow rate for various emerging parameters at time t=0.76 
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Figure 32: Effect of different types of hybrid nanoparticles on (a) velocity and (b) temperature profile for 𝐵1 =

1.41, 𝛿 = 0.1, 𝑧 = 0.79, 𝑡 = 1.2. 

 

Figures 2 (a) - (b) displays the impact of various nanoparticle concentrations (volume fractions) 

on axial blood velocity component both with and without magnetic field. In figure 2(a), only silver 

nanoparticle is considered whereas fig 2 (b) corresponds to hybrid nanofluid. From both the 

figures, it is evident that an elevation in nanoparticle concentration produces marked flow 

deceleration. It is also evident that on applying stronger magnetic field in the radial direction the 

maximum velocity is also decreased. The presence of Lorentz magnetic drag force resists blood 

flow and generates retardation in the stenotic artery. In all plots, the velocity is maximum at the 

centerline of the artery and decreases to the vessel wall at which it attains the value of the slip 

velocity. On comparing both figures, it is apparent that addition of a second nanoparticle type 

exacerbates the decrement in velocity value and this result is extremely favorable for arterial 

diseases blood flow control.  

Similarly, Figures 3 (a) - (b) is drawn for temperature profile considering different volume 

concentration of silver nanoparticles ( )1  and hybrid (silver and gold) nanoparticles ( )1 2,   

respectively. As volume fraction is increased, there is an apparent enhancement in temperature 

profile for both the cases at the throat of the stenotic artery. However, the higher increase can be 

observed for hybrid nanofluid in comparison with unitary nanofluid over an increment of 

nanoparticle concentration from 0.00 to 0.1. It is also found that applied magnetic field shows no 

significant influence on temperature profile. Figure 4 illustrates the velocity and temperature 
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profile for different combinations of hybrid nanoparticles ( )1 2,   both with (M>0) and without 

(M=0) magnetic field. It is evident that on changing the nanoparticle concentrations both 
1   and 

2   from 0.01 to 0.05, a significant amount of reduction in velocity is induced. Among the various 

combination of nanoparticle concentrations, the highest decrement in axial velocity is computed 

for 
1 = 0.03 and

2 0.05 = . Similarly, figure 4 (b), indicates that temperature magnitudes are 

boosted with increment in volume fraction of both nanoparticles. As with the velocity distributions, 

the nanoparticle concentrations 
1 = 0.03 and 

2 0.1 = are associated with the greatest change in 

temperature value i.e. the highest thermal enhancement is achieved for this case which is 

attributable to the strong accentuation in thermal conductivity of the nanoparticle-doped blood. 

 

Figures 5 (a) - (b) depict the evolution in velocity profiles with a variation in magnetic parameter 

and wall slip velocity, respectively. It is observed that increase in the value of magnetic parameter 

(M) decreases the blood flow velocity around the centerline of the artery. Therefore, stronger 

magnetic field elevates the Lorentzian hydromagnetic drag which induces flow deceleration in the 

stenotic region. Effective flow control in biomedicine can therefore be achieved via externally 

imposed magnetic fields. In figure 5 (b), with increasing slip parameter, acceleration in axial 

velocity is noticed. The slip parameter is a boundary condition which is imposed at the inner 

surface of the arterial wall. The presence of the slip velocity induces a momentum boost which 

assists the blood in the near-wall regime and accelerates blood flow, although the effect clearly 

decays with further radial distance towards the arterial centre-line.  

The velocity profiles for different nano-fluid viscosity parameter 0   and Grashof number Gr  are 

plotted in figure 6 (a)-(b). These figures show that a similar response is induced with increment 

in both parameters ( )0 ,Gr , i.e. the magnitude of the axial velocity is enhanced and strong flow 

acceleration is attained in the regime. In figure 6 (a), the range of nano-fluid viscosity is taken as 

0.0-1.0 while for figure 6(b), Grashof number is taken in range of 0.0-0.5. The acceleration in 

velocity shows that the blood viscosity or resistance among the particles has reduced for the more 

magnitude of parameter ( 0 ). The case 0 = 0 implies constant viscosity i.e. no variation and 0 = 

1 is associated with exponential viscosity decrease.  Velocity diminishes with lower values of 

viscosity parameter. This is attributable to the increase in viscous force relative to inertial forces 
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with greater viscosity which decelerates the flow. Further, Grashof number (Gr) is the ratio of 

buoyancy force to viscous force in the hemodynamic regime. Higher thermal buoyancy assists 

momentum diffusion and accelerates the blood flow. Lower resistance is therefore offered inside 

the blood and strong enhancement in velocity is computed. Evidently flow deceleration arises with 

vanishing thermal buoyancy force (Gr = 0) which corresponds to forced convection, as seen in 

Fig. 6b. 

Figure 7 (a)-(b) shows the profile of velocity and temperature for various Prandtl numbers (Pr) 

and for two different magnetic field parameter values. Both figures demonstrate that flow 

deceleration and cooling is induced with increasing Pr. Prandtl number is the ratio of momentum 

diffusivity to thermal diffusivity, which implies that Pr is inversely related to heat transfer from 

the artery wall to the fluid. When Pr is significantly small (<1), the diffusion of heat is greater than 

momentum. The curve trend in Figure 7 (a)-(b) confirms that with higher Prandtl number, velocity 

plummets as does temperature magnitude (this will correspond to thicker momentum boundary 

layer at the arterial wall and a thinner thermal boundary layer). It is noteworthy that Pr = 21 

approximately falls within the correct range for laminar streaming blood at room temperature, i.e. 

19.6–30.8 as noted by Mitvalský [43]. Blood therefore has a much higher momentum diffusivity 

compared with thermal diffusivity, which is necessary for homeostasis (thermoregulation) and 

other biothermal functions as elaborated by Diller [44] and Hensley et al. [45].  It is also seen that 

on increasing the magnetic parameter, velocity decreases significantly whereas there is no tangible 

impact on temperature profile.  

Figures 8 (a)-(b) visualize the impact of Reynolds number (Re) and magnetic parameter (M) on 

blood flow velocity and temperature profile. It is noteworthy that very low Reynolds numbers are 

considered (laminar flow) and the regime is therefore a viscous dominated one. The computations 

show that on increasing the value of Re from 1 to 10, a significant amount of reduction in velocity 

has been seen. In the same manner, as we increased the magnitude of Re, the magnitude of 

temperature is also decreased. Although inertial force is increased with Reynolds number (based 

on the vessel radius), the overwhelming effect is nevertheless flow deceleration owing to the 

stenotic obstruction and nanoparticles, which manifests in significant impedance to the streaming 

blood. Again, stronger magnetic field (M) also induces flow retardation. Temperatures are also 

suppressed with greater Reynolds number and the profiles become increasingly of a lesser 
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gradient, becoming attached the zero line with subsequent temperature growth from the wall taking 

increasingly longer radial distances.    

Figure 9 (a)-(b) portray the influence of pressure gradient (pulsatile flow) parameters 1B   and 
1c  

(featured in the non-dimensionalized form of the pressure gradient equation) on velocity and 

temperature distributions. For different sizes of artery, such as arterioles or the coronary artery, the 

value of 1B   is 1.41; however for the femoral artery of the human body, 1B  attains a much higher 

value of 6.6, at a particular location ‘throat’ of the stenotic artery (see Burton [41]). Figure 9 (a) 

implies that on increasing the value of 1B    parameter, the blood flow is significantly accelerated 

confirming that in large (femoral) arteries the velocity is higher relative to smaller (coronary) 

arteries. Effect of 
1c   parameter on the velocity profile is illustrated in Figure 9 (b). It is noticed 

that at time 1.2t = ,   velocity decreases significantly with elevation in the value of 
1c  from 0.5 to 

3. Therefore, marked flow retardation is induced with the c1 pulsatile parameter.  

The effect of heat generation parameter (β) on velocity and temperature profile is presented in 

figure 10 (a) - (b). This effect may correspond for example to spot thermal therapy in laser 

treatment [46, 47]. An increase in this parameter shows a comparatively minimal impact on 

velocity profile (although a weak acceleration is mobilized) whereas it produces a much more 

prominent enhancement in temperature, in particular, near the centerline of the arterial zone.  

Towards the vessel periphery (large radial coordinate) there is a progressive diminishing in the 

influence of heat generation and all profiles merge.  

Figure 11- 12 are plotted to display the time series of wall shear stress for variation in both 

nanoparticle concentrations. These figures capture the oscillatory nature of the blood flow in the 

stenotic region and allow a direct comparison between the performance of silver nanofluid (
1 ) 

and hybrid nanofluid (
1 2 + ) with progression in time. Both figures show that wall shear stress 

initially decreases and after a critical point in time, assumes an ascending trend which is sustained 

for all subsequent time, with increasing volume concentrations for any of the nanoparticles. Lower 

WSS magnitudes are computed for the first part of the cycle at nanoparticle concentration of 0.1. 

Nevertheless, comparing both the figures, it is evident that for the case of hybrid nanoparticles

1 20.1, 0.1 = = , wall shear stress is lower in comparison to the uni-nanoparticle case, 1 0.1 = . 

Figures (13)-(14) exhibit the impact of various nanoparticle concentrations on the volumetric flow 

rate. This quantity also significantly decreases initially and thereafter increases for both the unitary 
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silver nanoparticle (
1 ) and for hybrid nanoparticle (

1 2 + ) cases. Following the same trend as 

wall shear stress, a lower volumetric flow rate is computed for hybrid nanofluid compared with 

silver nanofluid. 

Figure (15)-(16) illustrate the distributions in the wall shear stress and volumetric flow rate 

profiles for different combinations of hybrid nanoparticles. The patterns reveal that on increasing 

the nanoparticle concentrations, both oscillatory profiles first decrease in magnitude until a 

particular time, and subsequently increase with time.   

Figures (17)-(18) depict the response in wall shear stress and volumetric flow rate for different 

values of Grashof number and two values of magnetic parameter (Hartmann number).  Both 

quantities are enhanced by increasing Gr, indicating that stronger thermal buoyancy (free 

convection effect) accelerates the flow in the arterial domain. However as noted earlier, flow 

deceleration is induced with stronger magnetic field effect (M = 2 corresponds to twice the 

Lorentzian body force relative to viscous hydrodynamic force, compared with M = 1). Flux is 

therefore depleted in the regime and the blood shears at lower velocity past the arterial boundary.  

Figure (19)- (20) portrays the effect of variable hybrid nanofluid viscosity on the transient 

evolution in wall shear stress and flow rate, respectively. Both quantities are increasing functions 

of nanofluid viscosity and the periodic nature of the pulsatile flow is clearly reproduced in both 

figures.  

Figures (21) – (22) depict the evolution over time in wall shear stress (WSS) and flow rate. It is 

observed that both these quantities exhibit an inversely proportionality to magnetic field parameter 

and the oscillatory characteristics of pulsatile flow. Wall shear stress is strongly suppressed with 

greater Hartmann number (M). The case of non-magnetic i.e. electrically non-conducting blood 

(M = 0). therefore produces the highest velocities. Similarly, volumetric flow rate is also strongly 

depleted with increasing radial magnetic field, indicating that blood flow is strongly impeded with 

increment magnetohydrodynamic body force. Peak values of both quantities also arise for early 

time i.e. t ~ 1. 

Figures (23)-(24) illustrate the time-varying profiles of wall shear stress and volumetric flow rate 

respectively for various values of Prandtl number (Pr) and Hartmann magnetic parameter (M) also. 

Both wall shear stress and flow rate are diminished with elevation in Prandtl number and magnetic 

field parameter. Again, the lowest magnitudes are computed for blood (Pr = 21) compared with 

water (Pr = 7) as the base fluid.  
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Figures (25)-(26) display transient distributions for wall shear stress and volumetric flow rate, 

with increment in Reynolds number (Re) and magnetic field parameter (M). Strongly periodic 

profiles are again computed over a wide range of times. Generally, a consistent suppression in wall 

shear stress is observed with both increasing Reynolds number and higher magnetic field, 

confirming the results computed earlier for axial velocity. Strong hemodynamic deceleration is 

therefore induced with greater Lorentzian body force and although inertial effects are greater at 

higher Reynolds number, the dominant effect is flow retardation and decreased flux.  

Figure (27) – (28) shows the influence of slip velocity parameter on wall shear stress and 

volumetric flow rate profile respectively. Nubar [48] was among the first researchers to identify 

the presence of slip flow near vessel walls conveying blood, which is a possible cause of the so-

called “anomalous” flow behavior of blood near boundaries. Inclusion of hydrodynamic slip is 

therefore an important feature in more realistic blood flow models. Inspection of Figure (27) 

reveals that with increasing slip velocity parameter, the wall shear stress decreases significantly, 

with weak backflow (flow reversal) i.e. negative velocities induced at very low radial coordinate 

values. In other words, the starting value of wall shear stress profiles is decreased by a fixed value 

on increasing the magnitude of wall slip. Figure (28) shows that a much more prominent 

enhancement in volumetric flow rate is generated with increasing wall slip parameter i.e. 

significant boost in flux is induced with greater wall slip. Flow rate is found to be maximum for 

the highest value of slip velocity parameter and achieves a minimal magnitude for the classical no-

slip case (ws = 0) associated with the traditional Navier-Stokes model. 

Figure 29 depicts the influence of the B1 pressure parameter on pressure gradient. The graph 

discloses that on increasing the value of B1, the peak magnitude computed over the pressure 

gradient cycle is also shows markedly elevated, and the effect is most pronounced at low and high 

times.  

Figure 30 depicts the effect of c1 parameter on pressure gradient profiles. On taking different 

values of parameter, it can be seen that on increasing the c1 value, the length of pressure gradient 

cycle is reduced, or it can be presented as, for higher c1, frequency of cycles is increased. For c1 = 

0.5 a monotonic decay is computed over time. However, for c1 = 1 the onset of oscillatory 

behaviour is observed, at larger time values. Fully periodic flow is computed however for c1 = 2, 

3, with several cycles observed.  
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To analyze the behaviour of blood particles along the axial direction, blood flow patterns are drawn 

in Figure 31: panels (a) - (i). Panel (a) shows the hemodynamic pattern for the case when 

nanoparticles are not included with the default values of other parameters. To calculate the impact 

of variation in nanoparticle concentrations on flow patterns, panels (b) – (c) may be compared with 

panel (a). Panel (b) displays the pattern for the unitary nanofluid case or for silver nanoparticle 

inclusion with the other default parameters value. Similarly, Panel (c) presents the changes 

generated with deployment of hybrid nanoparticles. Inspection of these three figures, clearly 

demonstrates that hybrid nanoparticles decrease the velocity in the stenotic regime compared with 

the other cases.  For the remaining panels (d)- (i), a comparison may be made with panel (c). 

Panels (d) and (e) correspond to blood flow patterns for a change in heat generation parameter (β) 

from 0.1 to 0.2 and modification in radial magnetic field from M=1 (Lorentzian and viscous forces 

equal) to M=0 (vanishing Lorentz force), respectively. Comparison with panel (c), reveals that 

blood velocity increases weakly with increasing heat generation parameter whereas it exhibits 

strong acceleration with absence of magnetic field (M=0) since Lorentzian drag force is eliminated 

in this scenario. Panels (f) and (g) are plotted respectively for Gr=0.5 and 0.0Sw = . On comparing, 

these panels it may be deduced that the flow pattern is intensified with greater Gr whereas it is 

stifled for the zero-slip velocity case i.e. flow acceleration is induced with stronger thermal 

buoyancy effect and flow deceleration throughout the regime with vanishing wall slip effect i.e.  

the case of no slip at the vessel walls). Panel (h) and (i) demonstrate that with increasing values of 

Prandtl number and Reynolds number, i.e. Pr=21 (corresponds to blood) and Re=5, blood flow 

velocity is depleted i.e. flow retardation is generated in the stenotic regime.  

Tables 4 and 5 document the values of wall shear stress and volumetric flow rate with a 

modification in both nanoparticle concentration and magnetic field parameter. These values are 

registered at time t=0.76 and the other emerging parameters are taken as default values. The results 

show that on increasing the magnitude of magnetic parameter from M=0 to M=1, wall shear stress 

and flow rate both exhibit a descending pattern and similarly on increasing the volume 

concentration, there is a depletion in both wall shear stress and volumetric flow rate. On comparing 

the results for silver and hybrid (gold-silver) nanofluid, it can be observed that hybrid nanofluid 

produces lower wall shear stress and volumetric flows rates at any volume fraction compared with 

unitary silver nanofluid.  
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Figure 32 (a)-(b) displays the variation of axial velocity and temperature profiles for a variety of 

metallic/metallic oxide nanoparticles suspended within blood. A wider variety of hybrid 

nanoparticles (Cu, TiO2, SiO2) are considered. From both graphs, it is very clear that the hybrid 

combination of (Ag and Au) achieves superior results i.e. stronger flow acceleration and greater 

temperature enhancement compared to other hybrid nanoparticle combinations. The Cu, TiO2, 

SiO2 hybrid nanoparticle combinations decrease the velocity significantly (induce flow 

deceleration) although they do achieve higher temperatures than purely base fluid; however, 

temperature magnitudes are inferior to the Ag-Au hybrid nanoparticle case.  

 

8. Conclusions  

Inspired by nano-drug delivery applications in magnetically-assisted pharmacological fluid 

dynamics, for treatment of arterial diseases, a comprehensive theoretical and computational study 

is presented for time-dependent hybrid nanoparticle-mediate magneto-hemodynamics and heat 

transfer (Ag-Au/blood) through an artery with an overlapped stenosis under an external radial 

magnetic field. Wall slip and heat generation effects are included.  Reynolds’ exponential model 

is applied in the formulation to simulate the temperature dependency of blood fluid viscosity. For 

realistic flow situations, the unsteady component of pulsatile pressure gradient is also included. 

The principal blood flow characteristics (velocity, temperature, wall shear stress, flow rate) at the 

stenotic region are evaluated by solving the transformed dimensionless conservation equations 

under suitable physiological initial and boundary conditions with the FTCS (forward time centered 

space) finite difference method. Validation of the numerical code is achieved by comparison with 

earlier non-magnetic, constant viscosity hemodynamic studies. The key findings of the present 

computations may be summarized as: 

• The inclusion of hybrid nanoparticles (Ag-Au/blood) within blood decreases the axial 

velocity more significantly as compared to unitary nanoparticles (Ag/blood). 

• By applying a stronger external magnetic field in the radial direction (i.e. higher Hartmann 

number) the axial hemodynamic flow is decelerated; however no tangible modification in 

temperature profile is computed with increasing magnetic field. 

• Enhancement in thermal buoyancy effect as simulated via Grashof number ( Gr ) and 

increasing viscosity parameter ( 0 ) both induce considerable axial flow acceleration in the 

stenotic regime.  



43 
 

• Increasing heat generation parameter produces a very weak enhancement in velocity profile 

whereas it generates a sizeable elevation in temperature magnitudes.  

• An increment in slip velocity parameter increases the axial velocity magnitudes strongly 

but exerts no significant impact on temperature. 

• Temperature magnitudes are depressed with rising values of Prandtl number (𝑃𝑟) i.e. lower 

thermal conductivity and with increasing Reynolds number (𝑅𝑒) i.e. greater inertial force 

in the stenotic regime. 

• On increasing the value of pressure gradient parameter (B1), velocity is increased whereas 

no tangible modification is computed in temperature. 

• The wall shear stress and flow rate values have substantially greater magnitudes for hybrid 

nanofluids compared with unitary nanofluids. 

• With time variation, the pressure gradient is found to be lower in coronary (small) arteries 

compared with large (e.g. femoral) arteries. 

• The comparison for distinct hybrid nanofluids indicates that (Ag-Au/-nanoparticle doped 

blood) produces more beneficial results for nano-drug delivery therapies since it achieves 

improved hemodynamic flow control and higher temperatures in streaming blood.  

 

The present FTCS code has proved to be a powerful numerical approach for simulating complex 

nano-pharmacodynamic flows in diseased arteries. In the current simulations, although 

temperature-dependent viscosity is addressed, however, more complex non-Newtonian 

characteristics of the blood were not explicitly considered. Hence future studies will consider 

alternative rheological models for magnetized blood flow e.g. the Sisko model [13], Cross model 

[41], Carreau model [49]. Moreover, shape factor effects of the nanoparticles have also been 

ignored in this study. Furthermore, since the present article is restricted to rigid wall arterial 

vessels, hence deformability of the physiological vessel wall i.e. fluid structure interaction, has not 

been considered. This may also be addressed with using a variety of approaches e.g. hybrid FSI 

[50]. Additionally, this study is limited to the case of an overlapping non-tapered artery and may 

be generalized in the future to examine both converging and diverging arteries.  Efforts in all these 

directions will be communicated imminently. 
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Nomenclature 

1B       Pressure gradient parameter 

0B      Uniform radial magnetic field 

Gr     Grashof number 

M       Magnetic body force parameter (Hartmann number)  

0l        Length of stenosis 

d        Distance of stenosis from origin 

𝑃𝑟      Prandtl number 

p       Pressure 

Q       Flow rate 

r        Radial co-ordinate 

𝑅       Radius of the artery (stenotic)  

a        Radius of the artery (non-stenotic) 

Re     Reynolds Number 

t         Time 

T        Temperature 

u        Radial velocity 

w       Axial velocity 

z        Axial co-ordinate 

 

Greek Letters 

        Dimensionless temperature 

       Heat generation parameter 
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0      Reference viscosity 

       Density 

        Nanoparticle concentration 

pC      Heat capacitance 

k        Thermal conductivity 

0       Viscosity constant 

        Depth of stenosis 

        Thermal expansion coefficient 

        Wall shear stress (WSS) 
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