
1 

 

Thermal Science and Engineering Progress 

https://www.sciencedirect.com/journal/thermal-science-and-engineering-progress  

 

Accepted April 6th 2021  

 

PARAMETRIC ANALYSIS AND MINIMIZATION OF ENTROPY GENERATION IN BIOINSPIRED MAGNETIZED NON-

NEWTONIAN NANOFLUID PUMPING USING ARTIFICIAL NEURAL NETWORKS AND PARTICLE SWARM OPTIMIZATION  

 

M. A. Abbas1, O. Anwar Bég2, A. Zeeshan3, Aatef Hobiny4, M. M. Bhatti5,* 
1Department of Mathematics University of Baltistan Skardu, Gilgit Baltistan 16100, Pakistan. 

2Professor and Director - Multi-Physical Engineering Sciences Group (MPESG), Aeronautical and Mechanical 

Engineering, School of Science, Engineering and Environment (SEE), The Crescent, Salford, M54WT, UK. 
3Department of Mathematics, International Islamic University Islamabad, Pakistan. 

4Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics,  

Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. 
5College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 

Shandong, 266590, China. (mmbhatti@sdust.edu.cn)  

 

ABSTRACT: Magnetohydrodynamic rheological bio-inspired pumping systems are finding new 

applications in modern energy systems. These systems combined the electrically conducting properties of 

flowing liquids with rheological behaviour, biological geometries and propulsion mechanisms. Further 

enhancements in transport characteristics can be achieved with the deployment of nanofluids. Second law 

thermodynamic analysis also provides a useful technique for optimizing thermal performance by 

minimizing entropy generation. In the present study, all these aspects are combined to analyze the heat 

transfer in magnetic viscoelastic nanofluid flow in a two-dimensional deformable channel containing a rigid 

porous matrix under peristaltic waves subject to a transverse magnetic field. The Williamson model is 

deployed for the nanofluid rheology and the Buongiorno model for nanoscale effects. Under lubrication 

approximations, the conservation equations for mass, momentum, energy and nanoparticle species are 

simplified. These partial differential equations are further non-dimensionalized using relevant 

transformation variables. The mathematical model is solved analytically by means of the Homotopy 

Analysis Method (HAM). Next, entropy generation is minimized by applying Particle Swarm Optimization 

(PSO) and Artificial Neural Networks (ANN). In the first phase, the equation for Entropy generation is 

derived as a function of temperature distribution, velocity profile utilizing geometrical and thermophysical 

parameters. The first step is to discover entropy generation to estimate some extraordinary influencing 

parameters. In the next step, some specific multi-layer perceptron ANNs are trained, which depend on the 

information from the first stage. In the last step, PSO in the considered peristaltic flow is used to minimize 

entropy generation. The optimized value (minimum) of entropy generation is 3.65 kJ/kg acquired at 

magnetic parameter (M)= 3, Brownian motion parameter (𝑁𝑏) = 0.3, thermophoresis parameter (𝑁𝑡) = 0.5 

and Brinkman number (𝐵𝑟) = 2 . Entropy generation is also very sensitive to both iteration number and 

magnetic field exhibiting a nonlinear topology.  
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1. INTRODUCTION: 

In recent decades, numerous studies have considered the use of the second law of 

thermodynamics in optimizing thermal engineering systems. Entropy generation minimization has 

become a critical component of heat transfer simulations and mobilized considered computational 

and analytical activity in many branches of engineering sciences including rotating power 

generation, coating systems, heat ducts, renewable energy and microscale/nanoscale 

thermophysics. These studies have amalgamated many branches of fluid dynamics and 

thermosciences including slip hydrodynamics, rheology, magnetohydrodynamics, thermal 

convection, conduction and radiative heat transfer. Arikoglu et al. [1] investigated the impact of 

Joule and slip on entropy generation in the hydromagnetic flow over a solitary spinning plate using 

the semi-numerical differential transform method. Rashidi et al. [2] conducted first and the second 

law thermodynamic analysis of electrically conducting flow from a spinning disk under a uniform 

vertical magnetic field. They also employed Artificial Neural Network (ANN) and Particle Swarm 

Optimization (PSO) methods to compute limits for entropy generation. Ramana Murthy et al. [3] 

employed Bejan’s entropy minimization method to study the radiative, conductive and convective 

heat transfer optimization in couple stress non-Newtonian duct flows. Tarlet et al. [4] performed 

a first and second law thermodynamic optimization for a cylinder heat exchanger outfitted with 

multi-scale distributer. The entropy generation in nanofluid flow from a porous extending surface 

was explored by Sheikholeslami et al. [5], who showed that an increment in nanoparticle volume 

fraction diminishes entropy generation ratio. Specialists employ the second law of 

thermodynamics to acquire ideal heat organization structure by minimizing irreversibility, which 

can improve the effectiveness of mechanical frameworks. This approach was pioneered by 

American engineer, Bejan [6]. The work of entropy generation is a proportion of the available 

irreversibility dimension in a process. Production of entropy generation involves irreversibility in 

thermodynamics, for instance, convective heat exchange characteristics, heat exchange across 

restricted temperature corners, dense scattering effects and magnetic field effects that can in 

industrial process e.g. magnetic rheological materials processing [7]. Compared with the 

conventional first law of thermodynamics (energy conservation), the second law of 

thermodynamics is more dependable, since it permits the optimization of efficiency in thermal 

engineering systems to be robustly achieved [8]. Entropy generation analysis has also been applied 

by Afridi and Qasim [9] in radiative-convective boundary layer flow from a thin needle. Nonlinear 

radiative magneto-convective slip nanofluid flow with entropy production in a vertical permeable 

microchannel has been investigated by Lopez et al. [10] for water-aluminum oxide, who showed 

that entropy generation is depleted with wall suction and nanoparticle fraction. Baag et al. [11] 

examined analytically the irreversibility in the hydromagnetic convection flow of viscoelastic fluid 

from a stretching sheet embedded in a permeable material with Darcy’s law using Kummer 

mathematical functions. Liu et al. [12] investigated analytically the entropy generation in 

electromagnetic flow in a curved microchannel. They observed that local entropy generation 

decays from the boundary to the core region whereas entropy generation rate is elevated with 
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Brinkman (viscous heating) number and Hartmann magnetic number. Similarly numerical 

simulation has been carried out to examine the thermal characteristics and second law analysis of 

turbulent model of nanofluid by Nakhchi, M. E., & Rahmati, M. T[13]. The same author discussed 

Numerical investigation of heat transfer enhancement inside heat exchanger tubes fitted with 

perforated hollow cylinders and perforated louvered strip inserts [14-15]. 

        In many modern thermal power processes, magnetic fields are being exploited to enhance 

efficiency, control and also by-pass heat recycling. Magnetic field can be utilized to modify 

entropy generation and manipulate the rate of heat exchange [16]. For thermal optimization, 

engineers utilize the second law of thermodynamics to decrease the irreversibility and the entropy 

generation, and this can greatly enhance effectiveness of modern technologies [17]. In recent years, 

significant progress has also been made in thermodynamics and heat transfer using artificial neural 

networks (ANNs) and genetic algorithms (GAs). Kalogirou [18] has connected Artificial 

Intelligence (AI) methods to demonstrate control and execution of combustion processes. 

DehKiani et al. [19] deployed ANN for optimized exhaust emissions (carbon monoxide, nitrogen 

oxide etc) in a spark ignition engine. Mohandes and Gandhidasan [20] employed an ANN-based 

model for simulating the connection between the outlet parameters of a lithium chloride randomly 

packed dehumidifier with dessicant channel. They deployed 8 parameters as inputs to the ANN, 

namely: air and desiccant flow rates, air and desiccant inlet temperatures, air inlet humidity, 

desiccant inlet concentration, dimensionless temperature ratio, and inlet temperature of the cooling 

water.  Smrekar et al. [21] utilized ANN models with real plant information to forecast the new 

steam properties from a brown coal-fired boiler of a Slovenian electricity plant. Atashkari et al. 

[22] implemented a Multi Objective Genetic Algorithm (MOGA) for enhancement of 

thermodynamic performance of turbojet motors. Mohagheghi and Shayegan [23] determined an 

ideal thermodynamic exhibition condition for heat recovery steam generators utilizing a Genetic 

Algorithm (GA). ANN based models had been increasingly used in recent years. Rashidi et al. 

[24] applied a combined GA and ANN approach for trans-critical thermodynamic cycles, using 

heat effectiveness and energy productivity as target capacities for parametric enhancement. Rao 

and Patel [25] used a Particle swarm optimization (PSO) i.e. population based stochastic 

optimization technique for thermodynamic analysis of a cross stream plate-balance heat converter. 

Other investigations include Rashidi et al. [26] on parametric appraisal and progress of 

regenerative Claudius and basic Rankine cycles with two feed-water radiators using an artificial 

bees’ colony (ABC) and artificial neural network (ANN) using energy productivity and heat 

capability as target functions. Zhang et al. [27] investigated wastewater plant pump performance 

employing a neural network algorithm for pump energy consumption and fluid flow rate in 

addition to a scheduling model and particle swarm optimization algorithm. All these studies have 

demonstrated the excellent capability of neural networks and genetic algorithms in modern thermal 

engineering. 

A further important development in modern thermal and industrial engineering designs has been 

the use of bio-inspired concepts. This approach embraces fluid dynamics, geometric 

configurations, transport mechanisms and many other biomimetic phenomena. Recent examples 
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include biological hydrogels for human-interfacable electronics [28], fish-inspired piezoelectric 

energy harvesters [29], bio-shape memory materials [30] and bio-slip designs for energy 

generation [31]. A very efficient propulsion mechanism deployed both internally in animal and 

plant physiology and externally in locomotion (e.g. snakes) is peristalsis [32]. This utilizes the 

rhythmic expansion and contraction of surface waves to achieve very effective and also tunable 

transport and features in for example, intestinal dynamics, blood flows, phloem translocation in 

trees, bat wing control, earthworm movement etc. Peristaltic pumps do not require the high 

maintenance costs of conventional industrial designs and furthermore feature a minimum number 

of working parts. They also mitigate reflux and backflow or leakage problems for hazardous or 

corrosive liquids. Peristalsis-inspired nanofluid pumps with electrical field control have been 

recently studied by Narla et al. [33]. Further studies include Bhatti et al. [34] (on electrical and 

magnetic field effects in radiative dusty flows), Bhatti et al. [35] (coagulation in two-phase 

peristaltic endoscopic annular flows), Ali et al. [36] (electrokinetic pumping in microfluidics), 

Tripathi et al. [37] (finite length capillary electro-osmotic blood flows), Abdelsalam et al. [38] 

(combined cilia-generated and peristaltic magnetic double diffusive pumping) and Prakash et al. 

[39] (hybrid electro-nanofluid transport under peristaltic waves). 

Many modern energy systems are also featuring porous media. These fibrous materials can be 

customized to enhance thermal storage and efficiencies. At low Reynolds numbers the Darcy law 

is deployed for modelling such systems (viscous dominated regime). Although porous media are 

very complex due to random distribution of solid fibers and voids, often engineers can approximate 

their transport characteristics by assuming isotropic behaviour i.e. a single permeability is assumed 

in all directions. Recent works featuring porous media include Weng et al. [40] (metal foam-based 

fuel cells), Alkam and Al-Nimr [41] (hybrid porous media solar collector pipes), El Tawil and 

Kamel [42] (magnetohydrodynamic random flows in fuel cells), Kamel [43] (nuclear heat transfer 

control with porous media damping) and Zueco et al. [44] (two-phase hydromagnetic flows in 

permeable materials for materials processing) and Bég et al. [45] (geothermal energy plumes). 

These studies have featured both Newtonian and non-Newtonian (rheological) fluid models. Non-

Newtonian flows arise for example in doping working fluids with high-polymer additives to 

enhance flow and minimize drag. Mathematical models of rheological fluids are therefore 

extremely useful in simulating modern energy and bio/chemical engineering systems [46] and 

include pseudoplastic power-law models [47]. An alternate model is the viscoelastic Williamson 

model [48] which quite accurately models numerous energetic fluent media, certain polymers, 

microgel-free xanthan polysaccharide dissolved in salt water [49] etc. This model has been used 

successfully in recent years by Hayat [50] and Bég et al. [51] in peristaltic pumping fluid 

mechanics.  

In the current work, motivated by optimizing bio-inspired thermal energy systems, we study 

theoretically and computationally the entropy generation in magnetohydrodynamic radiative 

double diffusive peristaltic pumping of nanofluids in an energy duct containing a porous medium 

saturated with Williamson non-Newtonian fluid. Chemical reaction and heat source effects are 

also considered. Due to the complexity of the equations and the multiplicity of the parameters, the 
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optimization process is executed using ANN and PSO. For this purpose, entropy generation is 

selected as the objective function. The mathematical flow model is transformed with appropriate 

dimensionless variables and solved as a boundary value problem with the powerful homotopy 

analysis method (HAM) [52]. Several researchers used these powerful techniques to solve the 

highly nonlinear equations [53-57]. For minimizing rate of the entropy generation, the effective 

parameters, namely, Hartmann (magnetic) number, thermophoresis, Brownian motion parameter 

and Brinkman (dissipation) number are investigated and optimized. The results obtained provide 

an improved perspective for diminishing the irreversibility causes. The mathematical formulation 

is developed in section 2 and the homotopy solutions elaborated in section 3. Section four describes 

the optimization procedure for the minimization of entropy generation. Section 5 provides the 

result visualization and discussion. Finally concluding remarks and future pathways for extension 

of the current study are given. 

 

2. MATHEMATICAL MODEL  

    Peristaltic motion of an electroconductive incompressible reactive nanofluid through a two-

dimensional channel (energy duct) containing a non-deformable, sparsely packed, high 

permeability porous medium, with sinusoidal wave propagation at the walls, is considered. 

Radiative heat flux, heat generation, thermal and species buoyancy are also present. As visualized 

in Fig. 1, a Cartesian coordinate system is adopted in which the   axis is orientated along the 

center line (in the direction of wave generation) and the   axis is transverse to it. 𝐵0 is a uniform, 

static external magnetic field is imposed transverse to the deformable channel length. The porous 

medium achieves better thermal conduction in the propulsion and also allows flow control of 

peristaltic propulsion waves. The wall geometry is simulated via the following equations [38-39]: 

 

Fig. 1: Physical model for bioinspired magnetohydrodynamic nanofluid channel 

 

Radiative flux, R 
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Here ( )  denotes the width of the channel, 𝑙 is the amplitude of the wave, cw the wave speed, t

the time, 0 the half width from the inlet, and n is a constant. The governing equations are: 
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Transverse Momentum conservation:  
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Energy conservation:  
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Nanoparticle species conservation: 
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Here d  denotes the density, p the pressure,  the electrical conductivity,  the viscosity, k the 

permeability of the porous medium, p the nanoparticle density, tk the thermal conductivity, T

the temperature, C the concentration, ( )
p

c the effective heat capacity of nanoparticle, BD the 

mass diffusivity coefficient, TD the coefficient of thermophoretic diffusion, kC the chemical 

reaction, 0H the heat source, ( )
d

c the heat capacity of fluid, the volumetric expansion 

coefficient of the fluid, g the gravity, and R the radiation parameter. The extra stress tensor for 
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Williamson fluid [47, 48] is defined as: 
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Implicit in the present study are low Reynolds number and long wavelength approximations for 

which the current problem assumes creeping flow. By using dimensionless quantities in Eqn. (9), 

we get the subsequent equations (ignoring the tilde):  
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Here Weissenberg number is denoted by We  while k is the permeability, M the Hartmann 

number, FGr  and TGr the basic-density (nanoparticle species) Grashof number and the thermal 

Grashof number, respectively. Further, the Prandtl number and radiation parameter are denoted by 

𝑃𝑟 and nR  respectively,   is the peristaltic wave amplitude ratio, bN and tN  the Brownian motion 

and the thermophoresis parameter,   is a first order chemical reaction parameter and   is the heat 

source parameter. These parameters are defined as follows:  
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The dimensionless associated boundary conditions emerge as: 
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With magnetic field, the entropy generation can be determined from an entropy balance for the 

heat and mass exchange as follows:  
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 The dimensionless form of entropy generation reads as: 
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Here the dimensionless temperature difference, diffusive coefficient, concentration difference, 

constant parameter, and Brinkman number, are represented as:  
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3. HOMOTOPY SOLUTIONS OF BOUNDARY VALUE PROBLEM 

The emerging boundary value problem i.e. Eqns. (10)-(12) under conditions (14, 15) is nonlinear 

and strongly coupled. Many numerical methods are available for solving such a system. However 

here we implement the popular homotopy analysis method (HAM) developed by Liao [58]. This 

method has been extensively deployed in non-Newtonian magnetohydrodynamics [59] and 

nanofluid mechanics [60]. Considering Eqn. (10) to Eqn. (12) and solving using HAM the nth order 

deformation equation takes the form: 
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To achieve an analytical solution, the following initial approximations ( ) ( ) ( )0 0 0, ,u      are 

used: 
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Here the supplementary linear operators 1L for velocity and 2L  for temperature and nanoparticle 

concentration profiles are: 
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Finally, the nonlinear operators N1, N2 and N3 for velocity, temperature and nanoparticle 

concentration are written according to Eqns. (21) - (19) as: 
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Defining the following expansions:  
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Utilizing the above expansions, ( ) ( ) ( )0 0 0, ,u     as referenced in Eqn. (25) in Eqns. (19) 

generates an arrangement of direct differential equations with their significant limit conditions. 

The solution deforms from initial guesses to approximate values when q changes continuously 

from 0 to 1. Here ℏ is a convergence control parameter with values which are optimized to get the 

minimum “Residual Error” using an appropriate genetic algorithm. Fig. 2 shows a flow chart 

visualizing the procedure followed in the optimization process. 
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Figure 2: Schematic graph of regular Multi-Layer Feed Forward (MLFF) neural-organize design. 

 

4. PARAMETRIC OPTIMIZATION TECHNIQUE 

 

i. Artificial Neural Network (ANN). 

The ANN relies upon an equivalent plan to an organismic mind. They are a sort of biological multi-

processor system utilizing essential scalar messages and direct handling segments, and 

characterized by a high level of association and assenting connections between components Multi-

Layer Feed Forward (MLFF) is the most conspicuous sort of ANN (see Fig. 2). The framework 

generally connects a data layer (input), some concealed layers, a yield layer and also various 

affiliation loads within which data is secured. The route toward altering the association is weighted 

(biased) with a sensible learning methodology termed “training”. In the present investigation, an 

ANN is prepared dependent on a Back-Error Propagation (BEP) neural system for the estimation 

of entropy generation. The contribution of the referenced ANNs are different estimations of 

Brownian movement parameter, magnetic parameter, thermophoresis parameter and Brinkman 

number featured in the fluid dynamic model described in section 2. In the system, PURELIN and 

TANSIG refer to the transfer functions for neurons of hidden layer and the output layers 

respectively: 

2

2
( ) , ( ) ,

1 (1 )e 
    

−
= =
− + −

        (26) 

 

The most extensively employed erudition procedure of the MLFF neural system is the BEP, a 

method proposed by McClelland and Rumelhart [61] in a seminal study conducted at the 

Massachusetts Institute of Technology (MIT) which focused on cognitive computing. In current 

work, the organization of the Multi-Layer Perceptron (MLP) neural framework includes three 

different layers, for example the information (input), the hidden layer and the output layers. The 
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sizes of the parameters Α𝑎𝑏  are the weights allocated between the information and hidden layers, 

and those of Α𝑏𝑐 are weights ascribed between the hidden layer and output layer. Different stages 

are required for a Back-Error Propagation (BEP) neural system. We used three different types of 

algorithms to train our data. While training we have to check the performance of the network for 

which we use a Mean Square Error (MSE). This shows the performance of the training graphically. 

Also, we analyze the designed networks by using regression and histograms of network errors. 

This technique has a better speculation property which is frequently used to linearize the equations. 

[62-63]. The Bayesian regularization technique employs the Levenberg-Marquardt algorithm. The 

Jacobian 𝑗𝑋 is calculated by using back propagation and 𝑗𝑋 demonstrates the exhibition concerning 

the weight and inclination factor X. We can adjust the variables to manage the Levenberg-

Marquardt algorithm as follows: 

, ,X X X

jj I
J j j Je j dX

Je

+
=  =  = −        (27) 

The terms E and I are the error and the identity matrix respectively. The value of the parameter 𝜇 

is increased by 𝜇𝑖𝑛𝑐 and decreased by 𝜇𝑑𝑒𝑐. The procedure continues until the change appearing 

above produces a satisfactory value. To calculate the Jacobian Xj , the parameter 𝜇𝑟𝑒𝑑 is used which 

quantifies speed and memory utilization. The Levenberg-Marquardt algorithm runs the fastest 

compared with other algorithms; however, it can require a lot of memory only when (𝜇𝑟𝑒𝑑 = 1). 

Further, for the case when (𝜇𝑟𝑒𝑑 > 1), the memory required increases by a factor of two, yet eases 

back in the Levenberg-Marquardt algorithm to some degree i.e. for large values of 𝜇𝑟𝑒𝑑, it keeps 

on diminishing the measure of memory required and increment in compilation times decays. 

 

ii. Particle Swarm Optimization: 

Particle Swarm Optimization (PSO) is an advanced system designed by Eberhart and Kennedy 

[64], inspired by biology such as the social behavior of fish schooling and bird herding. PSO [65] 

shares plentiful resemblances with developmental computation methods, for example, the Genetic 

Algorithm. The streamlining methodology of PSO commences with a population of arbitrary 

arrangements and scans for optimal arrangements by refreshing of generations. In contrast to GA, 

the PSO has no advance operator, such as crossover and mutation. In the PSO algorithm, a global 

topology is employed as the swarm communication structure and this topology allows all particles 

to communicate with all the other particles, thus the whole swarm share the same best 

position from a single particle. Every particle monitors its directions in the space of the issue 

related to the best arrangement (best fit) it has accomplished so far, named "𝑃𝑏𝑒𝑠𝑡". Another "best" 

esteem followed by the use of PSO is the best value that any object in the particle's neighborhood 

has acquired to date. The parameter is designated as "𝐿𝑏𝑒𝑠𝑡". At some point once an element 

accepts the whole population as its topological neighbor, a worldwide best, termed the "𝐺𝑏𝑒𝑠𝑡", is 

selected as the best value. The PSO idea at every time organizes comprises of changing every 

particle's speed in the direction of its "𝑃𝑏𝑒𝑠𝑡" and "𝐿𝑏𝑒𝑠𝑡" areas. Acceleration utilizing an irregular 
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span is biased by isolated arbitrary figures being produced for increasing velocity towards "𝐿𝑏𝑒𝑠𝑡" 

and "𝑃𝑏𝑒𝑠𝑡" location. A demonstration of PSO methodology is depicted in Fig. 3. 

 

 

Figure 3: Flowchart of the PSO. 

 

PSO is a progression framework which wards on populations shaped by the original Eberhart-

Kennedy algorithm [66], which was based on motivations by communal conduct of fish coaching 

or round up of birds. PSO shares various similarities with formative calculation techniques, for 

instance, Genetic Algorithms. The streamlining strategy of PSO is initiated with the populace of 

arbitrary plans and achieves an ideal scenario by stimulating formations. Rather than GA, the PSO 

has no advance administrator, similar to, crossover and change. Speeding up using a shifting term 

is weighted by outlying subjective numbers being created for expanding speed towards "𝐿𝑏𝑒𝑠𝑡" 

and 𝑃𝑏𝑒𝑠𝑡" area.  

 

iii. Optimization Procedure: 

In the present investigation, the entropy generation is selected as an impartial function for the 

optimization procedure. To diminish the system, another system reliant on coupling of a PSO and 
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ANN is proposed. This strategy comprises three phases; the primary stage is to acquire an 

estimation of entropy generation for numerous limitations of Brownian movement parameter, 

magnetic parameter, thermophersis parameter and Brinkman number. In the secondary stage a 

Multi-Layer Perceptron (MLP) neural framework is prepared utilizing Back-Error Propagation 

(BEP) calculation. In ANN the information sources are the parameters referenced previously. The 

target production for ANN is relating entropy generation esteem. In the tertiary stage PSO is 

deployed to minimize entropy generation values in the biomimetic peristaltic magnetic nanofluid 

pumping flow. Components and wellness capacity work in the current calculations portray the 

source of data and the outcomes of correlating of the developed neural system, independently. The 

essence of this technique is that, the assessment is done once in starting the advance, and hence 

there is no need to examine the cycle yet again, in light of the way that in the second stage ANN 

is prepared dependent on examination results of the first stage. Also, the PSO in each stage utilizes 

the prepared ANN for obtaining robustly the estimations of objective functions. 

 

 

5. RESULTS AND DISCUSSION: 

Extensive numerical computations have been conducted. The robust MATLAB programming 

[65] has been used to actualize the PSO and ANN algorithms for the present magnetic peristaltic 

nanofluid duct regime. This section also visualizes selected results for velocity and temperature 

profiles with variation in Brownian movement parameter 𝑁𝑏, Hartmann number M, 

thermophoresis parameter 𝑁𝑡, Prandtl number 𝑃𝑟, and thermal Grashof parameter𝐺𝑟𝑇. These are 

shown in Figs. 4- 12. Selected ANN and PSO computational results are shown in Figs. 13-16. 

 

 
Fig. 4: Thermophoresis parameter 𝑁𝑡 impact on 𝜃 
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Fig. 5:  Brownian motion parameter 𝑁𝑏 impact on 𝜃. 

 

 

 
Fig. 6: Magnetic parameter 𝑀 impact on 𝜃. 
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Fig. 7: Impact of Brinkman parameter 𝐵𝑟 on 𝐵𝑒. 

 

 

 
Fig. 8: Magnetic parameter 𝑀 impact on 𝐵𝑒. 
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Fig. 9: Prandtl number 𝑃𝑟  impact on 𝐵𝑒. 

 

 

 
Fig. 10: Thermophoresis parameter 𝑁𝑡 impact on 𝑢. 
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Fig. 11: Magnetic parameter 𝑀 impact on 𝑢. 

 

 

 
Fig. 12: Thermal Grashof parameter 𝐺𝑟𝑇 impact on 𝑢. 
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Fig. 13: Training producer of considered MLP neural network. 

 

 

 

 

Fig. 14: Variation of the optimization variable during PSO algorithm optimization operation. 
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Fig. 15: Entropy generation value minimization method using PSO algorithms. 

 

 

Fig. 16: 3D Continuous entropy layer against magnetic parameter, M 
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Fig. 4 shows that increasing thermophoresis parameter, 𝑁𝑡 significantly elevates temperature 

profiles. Thermophoretic body force encourages heat (and nanoparticle mass diffusion) with 

thermal gradient. Monotonic distributions are computed along the channel length i.e. with axial 

() coordinate. Thermophoresis is the migration of nano-particles in the direction of a decreasing 

temperature gradient. Evidently this phenomenon has a potent effect on temperature evolution 

throughout the channel cross-section. Fig. 5 also demonstrates that increasing Brownian motion 

parameter (Nb) increases temperature values (higher Nb corresponds to smaller nanoparticles and 

encourages thermal and species diffusion to the boundary). Thermal conductivity increases with 

greater Brownian motion since ballistic collisions in the nanofluid are exacerbated. This heats the 

peristaltic channel flow regime. The Brownian motion in nanofluid behaves more like a fluid than 

the conventional solid–fluid mixtures in which relatively larger particles with micrometer or 

millimeter orders are suspended. The nanofluid is a two-phase fluid in nature and random 

movement of the suspended nanoparticles increases energy exchange rates in the fluid but 

depresses concentrations in the flow regime. Fig. 6 shows that there is an upsurge in the 

temperature magnitudes with large values of magnetic parameter 𝑀. The nanofluid has to expend 

greater work to drag itself against the action of the retarding magnetic field. This extra work is 

dissipated as thermal energy which heats the boundary layer. This phenomenon has been identified 

in many classical viscous magnetohydrodynamics studies including Sutton and Sherman [67]. In 

all cases M < 1 implying that magnetic Lorentz force is less than the viscous hydrodynamic force, 

as per the definition of Hartmann number, 𝑀 = √
𝜎

𝜇
𝛼0𝐵0.  

Figs. (7)-Fig. (9) illustrate the evolution in Bejan number with different values of  𝐵𝑟 , 𝑀, 𝑃𝑟. 

Bejan number is the ratio of heat transfer irreversibility to total irreversibility due to heat transfer 

and fluid friction (viscous effect). With increment in Brinkman number (viscous dissipation) (Fig. 

7) there is a significant reduction induced in Bejan number implying that heat transfer 

irreversibility is suppressed in the system. Also, with greater magnetic field effect there is a 

substantial depletion (Fig. 8) in Bejan number. With a change in Prandtl number (Fig. 9) there is 

a slight elevation in Bejan number for lower values of axial coordinate although this largely 

vanishes subsequently. 

Fig. (10) to Fig. (12) display velocity evolution with selected thermophysical parameters. A 

significant acceleration in axial flow (u) (Fig. 10) is observed with increasing thermophoresis 

parameter, Nt, with magnitudes maximized at low axial coordinate and minimized at large axial 

coordinate. Also, a marked acceleration in axial flow (Fig. 11) is generated with increasing 

magnetic field parameter i.e. Hartmann number, M. This is contrary to conventional findings in 

magnetohydrodynamics where stronger magnetic fields create retardation in the flow. In the 

present regime the opposite effect is generated. Fig. 12 shows that greater thermal buoyancy force 

as simulated via the thermal Grashof number, GrT also accelerates the axial flow strongly i.e. 

increases axial velocity magnitudes. Weaker thermal buoyancy therefore results in considerable 

axial flow deceleration in the peristaltic regime.  

     The training arrangement for the considered ANN is conferred in Fig. 13. For training 70% 
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of information is used for alternation, 20% for testing while the remaining 10% for affirming. As 

clarified in the number the proficient ANN toward the finish of epoch 1000, foresee the estimations 

of the whole referenced data type, achieving a precision more exact than 10−8. The PSO 

calculation associated in this study has 100 iterations and the size of population is 10. Figs. 14 and 

15 exhibit the estimations of optimization factors and robustness for the improvement technique 

produced with several executions of PSO, independently. PSO indicates that the optimum value 

(minimum) of entropy generation is 3.65 kJ/kg acquired at M= 3, 𝑁𝑏= 0.3, 𝑁𝑡 = 0.5 and 𝐵𝑟 = 2 .  

The 3D plot of entropy generation alongside the Hartmann (magnetic body force) number) is 

shown in Fig 16. In this figure, it is evident that the entropy generation has a base incentive among 

upper and lower bounds of the magnetic parameter and is highly sensitive also to iteration count. 

 

 

6. CONCLUSIONS: 

In the present investigation, a mathematical model has been developed for entropy generation in 

magnetohydrodynamic radiative reactive double diffusive peristaltic pumping of nanofluids in an 

energy duct containing a porous medium saturated with Williamson non-Newtonian fluid. Due to 

the complexity of the equations and the multiplicity of the parameters, the optimization process is 

executed using ANN and PSO. For this purpose, entropy generation is selected as the objective 

function. The mathematical flow model is transformed with appropriate dimensionless variables 

and solved as a boundary value problem with the powerful homotopy analysis method (HAM). 

For minimizing rate of the entropy generation, the effective parameters, namely, Hartmann 

(magnetic) number, thermophoresis, Brownian motion parameter and Brinkman (dissipation) 

number are investigated and optimized. The results obtained provide an improved perspective for 

diminishing the irreversibility causes. The main findings of the present work may be summarized 

as follows:  

(i) The PSO algorithm determines the optimum value (minimum) of entropy generation 

as 3.65 kJ/kg acquired at M= 3, 𝑁𝑏= 0.3, 𝑁𝑡 = 0.5 and 𝐵𝑟 = 2 . This is very important 

to find out the sensitivity of each parameter in entropy generation.  

(ii) Magnetic Lorentz force is less than the viscous hydrodynamic force due to which it is 

concluded that entropy generation is strongly dependent on both magnetic parameter 

and iteration count. 

(iii) Bejan number is depressed with greater Brinkman number (viscous dissipation) i.e. 

heat transfer irreversibility is suppressed in the system.  

(iv) Bejan number is also depleted with greater Hartmann (magnetic) number. 

(v) Increasing thermophoresis parameter and thermal Grashof number, both accelerate the 

axial flow. 

(vi) Increasing Brownian motion parameter, thermophoresis parameter and Hartmann 

(magnetic) number all elevate temperatures in the peristaltic channel regime. 

 

The current study has demonstrated the excellent facility of PSO/ANN algorithms in 
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thermodynamic optimization of bioinspired electromagnetic nanofluid flows. Future studies may 

consider combined electrical and magnetic field effects and will be communicated imminently.  
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