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ABSTRACT  12 

Background and objective: Previous studies in motor control have yielded clear evidence that 13 

gaze behavior (where someone looks) quantifies the attention paid to perform actions. 14 

However, eliciting clinically meaningful results from the gaze data has been done manually, 15 

rendering it incredibly tedious, time-consuming, and highly subjective. This paper aims to study 16 

the feasibility of automating the coding process of the gaze data taking functional upper-limb 17 

tasks as a case study.  18 

Methods: This is achieved by developing a new algorithm capable of coding the collected gaze 19 

data through three main stages; data preparation, data processing, and output generation. The 20 

input data in the form of a crosshair and a gaze video are converted into a 25Hz frame rate 21 

sequence. Keyframes and non-key frames are then obtained and processed using a 22 

combination of image processing techniques and a fuzzy logic controller. In each trial, the 23 

location and duration of gaze fixation at the areas of interest (AOIs) are obtained. Once the 24 

gaze data is coded, it can be presented in different forms and formats, including the stacked 25 

color bar.   26 

Results: The obtained results showed that the developed coding algorithm highly agrees with 27 

the manual coding method but significantly faster and less prone to unsystematic errors. 28 

Statistical analysis showed that Cohen's Kappa ranges from 0.705 to 1.0. Moreover, based on 29 

the intra-class correlation coefficient (ICC), the agreement index between computerized and 30 

manual coding methods is found to be (i) 0.908 with 95% confidence intervals (0.867, 0.937) 31 

for the anatomical hand and (ii) 0.923 with 95% confidence intervals (0.888, 0.948) for the 32 

prosthetic hand. A Bland-Altman plot also showed that all data points are closely scattered 33 

around the mean. These findings confirm the validity and effectiveness of the developed coding 34 

algorithm. 35 

Conclusion: The developed algorithm demonstrated that it is feasible to automate the coding 36 

of the gaze data, reduce the coding time, and improve the coding process's reliability.  37 
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1. Introduction 43 

Studying gaze behavior is a growing area of research in motor control that has led to a better 44 

understanding of how humans learn to efficiently use the surrounding environment’s 45 

information during task performance [1, 2]. For instance, during manual tasks that involve 46 

completing some sub-actions, humans tend to plan the sub-actions [3]. This is supported by the 47 

fact that we "look ahead" in time onto the object related to the forthcoming sub-action even, 48 

sometimes, before we finish the prior sub-action [3, 4]. Moreover, during manual task 49 

performance, the gaze is used in a way in which it is intimately linked to specific requirements 50 

of the task [5-8]. The gaze is predominantly fixated on objects/locations relevant to the manual 51 

task.  52 

In contrast, irrelevant objects/locations are rarely fixated, reflecting the selective nature of 53 

humans' visual perception during manual task performance [9]. The ability of using the gaze 54 

only when and where it is needed during manual performance suggests that gaze behavior 55 

provides a proxy for the amount and location of attention required to perform a motor task 56 

(i.e., reach to grasp an object). The amount of attention itself seems to be a function of the 57 

level of experience/practice. Therefore, gaze, presumably, can indicate the degree of motor 58 

learning [10-14]. The total number of fixations, gaze duration, scan paths, and the number of 59 

transitions between areas of interest (AOI) are classic examples of gaze-related parameters. 60 

These parameters have been repeatedly used in previous studies [10-15] to indicate learning. 61 

Upper limb prostheses are medical devices designed to restore the shape and function of the 62 

missing limb segment(s) following upper limb amputation or for people born without an upper 63 

limb. There has been a tremendous investment in research focusing on upper limb prosthetic 64 

technology, which led to the introduction of sophisticated multi-articulated "smart" hands. 65 

These hands offer the amputee the ability to actively grasp objects using various grasping 66 

patterns selected based on control signals from the residuum muscles. This development may 67 

improve the functionality (i.e., ability to perform tasks) and/or support more natural 68 

approaches to grasping. However, there are limited reports on the extent to which these 69 

assumptions are correct [16], and there are very few publications on real-world use (or non-70 

use) of such devices [17].  Perhaps, one of the factors that may relate to this observation is the 71 

visual attention required to control prosthetic devices. Various approaches, including EEG 72 

analysis and gaze analysis, have been used to characterize attentional demands during the 73 

performance of tasks using myoelectric controlled prosthetic hands [18]. Findings from studies 74 

such as these consistently show distinct differences between behaviors seen during upper limb 75 

task performance with the anatomical hand compared to the prosthetic hand, reflecting 76 

increased cognitive load [15]. This is likely due to the open-loop nature of commercial 77 

prosthetic hand controllers and uncertainty in response to commands introduced at the socket-78 

limb interface [19].   79 

In the case of gaze behavior analysis methods, recent studies have focused on the 80 

determination of AOI. Muthumanickam et al. [20] introduced a method to automatically 81 

identify spatial AOIs changing over time through a combination of clustering and cluster 82 

merging in the temporal domain. Their work determines the AOI over long durations, though it 83 

can be applied to other domains such as monitoring complex systems. Chukoskie et al. [21] 84 

reported a neural network method to determine the AOI. Mohseni et al. [22] reported a 85 

classification method for five complex functional upper-limb movements using pre-movement 86 
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planning and preparation recording of EEG data. However, the feature extraction model 87 

learning and classification were carried out offline in this study. 88 

Other studies attempted to understand the differences between the anatomical and prosthetic 89 

gaze behaviors during manual task performance [15, 23]. In these studies, the gaze analysis 90 

involved defining at which objects the gaze fixation took place in the visual scene ahead of the 91 

user while performing the task and the gaze fixations' duration at each object. For this purpose, 92 

the objects (and sometimes multiple areas within objects) are defined virtually in the scene, 93 

and then a rater went through the recorded videos, frame by frame, to code the gaze. This 94 

process is too time consuming and highly subjective and is inevitably prone to unsystematic 95 

error [24]. Therefore, there is a need for technology-assisted methods to overcome these 96 

limitations. To identify more promising methods for evaluating prostheses that could be used 97 

in early-stage studies of novel designs, it is first necessary to better understand what factors 98 

are closely associated with the ease of control of a prosthesis [25, 26]. Secondly, there is a need 99 

to identify the extent to which studying prosthesis control with anatomically intact subjects is 100 

a valid approach. 101 

An interesting attempt to automatically define gaze data is reported by Lavoie et al. [27] and 102 

reused by Williams et al. [28, 29] and Hebert et al. [30]. The reported approach relies on 103 

measuring the distance between the objects (i.e., AOIs) defined by marker data and a gaze 104 

vector defined by the eye tracker.  In this method, a gaze fixation is considered when the 105 

distance between the gaze vector and AOI is under a particular minimum distance value. The 106 

velocity from gaze vector to AOI is also adequately low (0.5 m/s).  The minimum distance values 107 

seem to be specific to the experimental setup used in these studies. This neat approach also 108 

requires using an infrared-based motion capture system to define the AOIs. Such costly systems 109 

may not be available for use in many research centers and defiantly unavailable in most clinical 110 

sites, limiting this approach's usability.  A motion capture system also limits the ability to 111 

explore gaze behaviors in a more realistic environment (i.e., therapeutic apartments) as it 112 

requires specialized room settings.    113 

The work presented in this paper utilizes an existing gaze dataset reported in Sobuh et al. [15]. 114 

It aims to study the feasibility of automating gaze video analysis taking functional upper limb 115 

tasks as a case study. This is achieved by developing a new algorithm based on image processing 116 

techniques and a cascaded fuzzy-logic controller. The proposed algorithm can automate the 117 

coding process to elicit clinically meaningful results from the gaze data, thus saving time and 118 

minimizing potential human errors.  119 

2. Methods 120 

2.1 Study subjects  121 

Four unilateral trans-radial amputees, three males and one female with a mean age of 49.25 122 

years (range: 35 – 56 years), were given written consent and participated in the study. All the 123 

participants use a myoelectric upper-limb prosthesis. The study was approved by the University 124 

of Salford Ethics Committee (Ref# REP11/028) and Northwest 10 NHS Research Ethics 125 

Committee (Ref: 11/NW/0060). 126 

2.2 Experimental considerations 127 

The experimental setup is fully detailed in the study by Sobuh et al. [15]. In essence, the 128 

subject’s gaze behaviors were recorded while performing ten repeats (trials) of a functional 129 
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task, namely water pouring, first with the anatomically intact hand, then with the contra-lateral 130 

prosthetic arm. The task was performed from a sitting position, and both hands are rested on 131 

a predefined position on a table, as seen in Figure 1. The subjects were instructed to reach for 132 

a (9.5 x 7 x 23 cm) squeezable juice carton (filled with 200 ml of water) placed on a predefined 133 

location on the table, pick it up, then pour all of the water from the carton to a glass. Finally, 134 

the subject was required to place the carton back at its starting point, release the carton, and 135 

return the hand to its starting point.  136 

Before starting each attempt at the task, the subject was instructed to focus on a marked "gaze 137 

reference point" (GRP) in the center of the table (approximately 10 cm from the distal edge of 138 

the table) to prevent subjects from fixating the carton before task onset. During task 139 

performance, subjects were allowed to move their eyes freely. Furthermore, head movements 140 

during task performance were unconstrained. At the end of each trial, subjects were instructed 141 

to return their gaze to the GRP.  142 

The experimental work was carried out in the morning under the same testing settings in a gait 143 

laboratory with the same lighting conditions. Gaze behaviors were recorded using iView X™ 144 

HED 2 (SenseMotoric Instruments GmbH, Tellow, Germany) eye-tracking system. The recorded 145 

gaze data represented a video file that displayed a scene ahead of the subject with an 146 

embedded crosshair in each trial. The anatomical and prosthetic hands were tested in each 147 

session, and the marker and gaze data were collected. The marker data (not discussed in this 148 

paper) was used to calculate the upper limb's kinematic characteristics (with and without a 149 

prosthesis) while completing the functional task. Each session lasted for about an hour, 150 

distributed as follows: 151 

1. Obtain written consent, including reading the participant information sheet, explaining the 152 

study protocol, demonstrating the task completion, and answering any relevant questions 153 

(about 20 minutes). 154 

2. Attach the markers to the body and calculate the center of rotation of the shoulder joint 155 

(about 20 minutes).  156 

 157 

Figure 1. Experimental setup for the performed tasks, Sobuh et al. [15]  158 
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3. Data collection according to the following order: 159 

(a) Collecting gaze and marker data for the intact limb (Condition 1). 160 

(b) Quick inspection for the collected data (about 10 minutes). 161 

(c) Collecting gaze and marker data for the prosthetic limb (Condition 2). 162 

Each participant completed the task 10 times, and each trial (attempt to complete the task) 163 

took at most 15 seconds for the anatomical hand and 25 seconds for the prosthetic hand. The 164 

total data collection duration for both conditions was less than 8 minutes (about 3 minutes for 165 

Condition 1 and 5 minutes for condition 2). As the actual testing (i.e., data collection) period 166 

for both conditions was less than 10 mins, the effect of the subject's fatigue on the results is 167 

considered negligible [31, 32]. 168 

In this study, two test conditions, using anatomical and prosthetic hands, are considered for 169 

coding each of the subjects involved.  Each test is based on five trials data, resulting in 40 coded 170 

trials of gaze data. The Gaze data is coded twice: once manually, where a rater goes through 171 

gaze data frame by frame to identify which AOIs are fixated throughout the gaze trail. The data 172 

is then exported to the algorithm designed for this study to determine which AOIs are fixated 173 

throughout the gaze trial, then label the gaze data.  174 

The proposed coding algorithm consists of three main stages: data preparation, data 175 

processing, and output generation. Each stage performs specific tasks towards obtaining a 176 

stacked color bar representing the location and duration of gaze fixation at AOIs in each trial. 177 

2.3 Data preparation  178 

The data preparation stage consists of two stages: preprocessing and keyframes detection. The 179 

main tasks performed in each of these stages are outlined as follows. 180 

2.3.1 Preprocessing  181 

At this stage, the eye tracker collects data as a crosshair image and a gaze video clip. The 182 

crosshair image has a fixed feature (i.e., shape and color); thus, it can be detected directly using 183 

its preloaded image. The gaze video can be optionally cropped to remove unnecessary parts of 184 

the video (e.g., irrelevant initial recording, if any). This reduces the processing time by focusing 185 

on a particular area of interest. The gaze video is then converted into frames sequence and 186 

used to detect the AOIs of the non-key frames.   187 

Unlike the crosshair image, the AOIs feature of the video frames/images, captured from the 188 

head-mounted scene camera, changes from one frame to another, as shown in Figure 2. The 189 

AOIs, therefore, cannot be detected from a single image/frame, as in the case of the crosshair. 190 

Also, some AOIs may appear after the video clip's onset; for instance, the hand only appears 191 

sometime after the first frame in Figure 2. These challenges are addressed by detecting 192 

keyframes, which help manual identification of the AOIs by a specialist.  193 

2.3.2 Keyframes detection   194 

When a prostatic user video is watched with a frame rate of 25 frames per second, the frame 195 

changes can be noticed every few seconds. This means that the first three seconds might be 196 

very similar, with a little difference between the 75 frames. Then frame number 76 may have 197 

a big difference, such as the appearance of new AOI (hand), so to reduce the required 198 

processing time, we introduce a new idea called a Keyframe.  199 
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Keyframes (KFs) are the gaze-data frames that exhibit significant feature differences from one 200 

to another. The first frame of the gaze video is, therefore, always considered a keyframe. Other 201 

KFs are detected by a fuzzy-logic controller based on three inputs, shown in Figure 3. Each input 202 

represents a measure for the level of change between two consecutive frames (e.g., Frame 1 203 

and Frame 2, then Frame 2 and Frame 3, and so on). The first input that represents the absolute 204 

difference between the current frame/image and the previous one of the red, green, and blue 205 

color components is calculated as follows: 206 

𝛥𝐼(𝑟𝑔𝑏)  =  𝐼𝑛(𝑟𝑔𝑏) − 𝐼𝑛−1(𝑟𝑔𝑏)  (1) 

 207 

Figure 2. Example showing how the carton object changes in orientation and shape across different frames 208 
(labeled 1, 110, 162, and 190) while the shape of the crosshair (red cross) remains fixed 209 

The main challenge in using a color difference is its sensitivity to the lighting conditions. To 210 

eliminate this effect, an anisotropic diffusion filter [33] is used to smooth the image and 211 

preserve the leading edges. The absolute difference between the images is calculated in (2) and 212 

used as a second input to the controller.  213 

𝛥𝐼(𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐)  =  𝐼𝑛(𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐) − 𝐼𝑛−1(𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐) (2) 

The last input is the energy-absolute difference between the current image and the previous 214 

one. To calculate the energy of an image, a gray level co-occurrence matrix [34] is calculated. 215 

 216 

Figure 3. Simplified block diagram of the cascaded fuzzy logic controllers 217 
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The co-occurrence matrix size of the grayscale image in gaze data videos is 256x256. This size 218 

is scaled down to an 8x8 matrix to reduce the calculation time. The energy of the image is then 219 

calculated as follows:  220 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝐺2(𝑖. 𝑗)7
𝑗=0

7
𝑖=0      (3) 221 

where G is the value of the gray level co-occurrence at index (i, j); i is a row number, and j is a 222 

column number. 223 

The three inputs of the fuzzy controller are then normalized between -1 and 1, as follows:  224 

𝐼𝑁𝑜𝑟𝑚 = 2 (
𝐼−𝐼𝑀𝑖𝑛

𝐼𝑀𝑎𝑥−𝐼𝑀𝑖𝑛
) − 1  (4) 

Given the normalized inputs of the controller, a given frame is considered as a keyframe if: 225 

• The high weight change in (2) is detected since the difference becomes large when there 226 

are actual changes in the image because the lighting conditions are eliminated after 227 

applying an anisotropic diffusion filter. 228 

• A high weight change in energy and color difference is detected since any small change in 229 

lighting conditions significantly affects the result. 230 

The fuzzy output value that is determined in the aggregation stage is converted to a crisp value 231 

(0 or 1) by calculating the area's center. For example, if the output value is higher than a certain 232 

threshold, the frame is considered a keyframe (membership 1; otherwise, it is considered a 233 

non-key frame (membership 2). In this study, a threshold value of 0.7 is found appropriate to 234 

obtain the best results based on a trial-and-error method.  235 

The fuzzy controller iterates through all frames (except for the first one), generating a group of 236 

keyframes. The keyframes can therefore be detected even in slow-moving objects. However, 237 

the limitation here is that a keyframe with an order 𝐹 will be considered closer to frame 𝐹−1 238 

than to the previous keyframe (e.g., if frames 1 and 100 are considered keyframes, then frame 239 

99 is considered closer to keyframe 100 than to keyframe 1). To address this limitation, a 240 

second fuzzy controller is cascaded to the first one. The keyframes detected by the first 241 

controller are now fed as a fourth input to the second one, as shown in Figure 3. The second 242 

controller iterates through all keyframes and eventually generates an output with two 243 

membership functions: previous and next. The previous output designates that the current 244 

frame is similar to the previous keyframe, while the next output designates that the current 245 

frame is similar to the next keyframe. 246 

The keyframe identification efforts performed by the single and cascaded controllers are tested 247 

using a sample video of 603 frames. The number of keyframes detected in this video is 11 248 

(1.8%). These keyframes require manual intervention to select the AOIs, while all other frames 249 

(98.2%) are processed automatically by the developed algorithm. Table 1 shows the numbers 250 

of the identified keyframes and the corresponding frame ranges (start and end frame numbers) 251 

using both the single and cascaded controllers. It is worth noting that the cascaded controller 252 

also improves the AOIs detection in non-key frames as the template matching (explained later 253 

in Section 2.4.2) will be low in the frame immediately before the next keyframe if the second 254 

fuzzy controller is excluded. 255 

 256 
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Table 1.  Comparison between Keyframes detection using single and cascaded fuzzy controller  257 

Keyframe # 
First fuzzy controller Cascaded fuzzy controllers 

Start frame # End frame # Start frame # End frame # 

1 1 99 1 97 

100 100 111 98 105 

112 112 198 106 189 

199 199 267 190 216 

268 268 451 217 447 

452 452 462 448 457 

463 463 526 458 522 

527 527 543 523 540 

544 544 550 541 549 

551 551 562 550 556 

563 563 603 557 603 

Figure 4 shows an example for keyframes 1 and 100 and the keyframes detected by the second 258 

controller. As illustrated, frames 98 and 99 are in the range of keyframe 100 instead of 259 

keyframe 1. Therefore, these two frames are considered closer to keyframe 100, especially in 260 

prostheses hand shape, since its larger part appears in those two frames compared to keyframe 261 

1. 262 

The selection of the AOIs is performed in terms of a group of polygon vertices, shown in Figure 263 

5(a). After defining the vertices, the polygon is closed by moving the mouse pointer and clicking 264 

on the initially selected point. Once the detection process completes, the identified keyframes 265 

are displayed to help the specialist select the corresponding AOIs. A user-friendly graphical user 266 

interface (GUI) shown in Figure 5(b) is developed to facilitate the manual selection of the AOIs. 267 

Initially, the specialist can select an AOI either from an existing dropdown menu or provide its 268 

name in a textbox. Then, s/he can either use the ‘Next AOI’ button to select another AOI or use 269 

the ‘Restart Selection’ button if an error exists.  Once the AOIs’ selection in a particular 270 

keyframe is completed, the specialist continues the selection process in other keyframes in a 271 

similar manner.  272 

 273 

Figure 4. Example results obtained from the second fuzzy controller demonstrating how the frames 98 and 99 are 274 
closer to keyframe 100 than keyframe 1. 275 
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(a) Object’s polygon vertices  (b) Graphical user interface  

Figure 5.  An example demonstrating how the carton object is selected as an AOI, using polygon vertices 276 

The algorithm uses the order in which the specialist selects the AOIs to prioritize the AOIs 277 

(i.e., the first AOI has the highest priority and the last one has the lowest priority). If AOIs 278 

overlap in a specific frame and the crosshair appears over the overlapped section, the frame 279 

is automatically labeled after the first AOI. 280 

2.4 Data processing  281 

At this stage, the crosshair and AOIs in the remaining non-key frames are detected by the 282 

algorithm, considering that the shape of AOIs may change slightly in these frames. The 283 

detection process is explained as follows. 284 

2.4.1 Crosshair detection 285 

The eye tracker generates a gaze position and projects it onto the scene ahead in a crosshair 286 

shape, as discussed earlier in the experimental considerations section. The user can select a 287 

distinctive crosshair color to ensure clarity in the scene. The color selection is, therefore, done 288 

before recording the gaze data by the eye tracker. In this experiment, a red crosshair is 289 

considered an appropriate choice. The crosshair detection is performed by converting the 290 

frame and crosshair images from RGB color space to YCbCr color space [35]. In the present 291 

work, the YCbCr is used to: (i) enhance the contrast between the preloaded crosshair image 292 

and its background and (ii) eliminate the effect of any changes to the background, as follows: 293 

[
𝑌

𝐶𝐵
𝐶𝑅

] = [
16

128
128

] +
1

256
[

65.738 129.057 25.064
37.945 −74.494 112.439

112.439 −94.154 −18.285
] . [

𝑅
𝐺
𝐵

]  (5) 294 

where 295 

R, G, and B: Red, Green, and Blue are color intensity values 296 

Y:   Luminance component 297 

CB: Blue difference chroma component 298 

CR: Red difference chroma component 299 

The stages of the crosshair detection process are shown in Figure 6. The red diffidence 300 

chrominance component (CR), which represents the third layer in YCBCR color space, is initially 301 

obtained for both the frame and crosshair images (Figure 6a). Next, the normalized cross-302 

correlation is applied, as shown in Figure 6b, and the obtained result is used to determine 303 

whether the crosshair exists in the frame or not.  304 
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 305 
Figure 6. Stages of the crosshair detection process 306 

In the present experiment, a threshold of 0.6 (obtained by trial and error) is found appropriate 307 

to decide the crosshair existence.  When the normalized cross-correlation result is greater than 308 

0.6, the extracting indices are used as the crosshair's centroid. Otherwise, the crosshair is 309 

considered missing; this can happen due to eye blinking or saccade. However, if the detection 310 

process fails in a particular frame due to an eye blink or saccade, it is automatically labeled 311 

"Missing data." Otherwise, indices of the crosshair centroid are obtained, as follows:   312 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = [𝑃𝑥. 𝑃𝑦] + [
𝐿

2
.
𝑊

2
] 

 (6) 

where Px, Py represents the upper left corner of the crosshair position (see Figure 6c), and L, 313 

W are the length and width of the smallest rectangle enclosing the crosshair (see Figure 6d). It 314 

is worth mentioning here that the detected crosshair indices and the number of "Missing data" 315 

in each video are compared with that of the eye tracker to validate the crosshair detection 316 

process's correctness. The obtained results showed that they are 99% identical, validating both 317 

the detection algorithm and the chosen threshold. Although it is available in the eye tracker, 318 

crosshair detection is used to generalize the developed algorithm for any gaze dataset 319 

regardless of its structure or format. Thus, no additional preprocessing or format conversion is 320 

required to handle data collected from different eye trackers.  321 

2.4.2 AOIs Detection in non-key frames 322 

Unlike AOIs of the keyframes, which are defined manually by a specialist, AOIs in the non-key 323 

frames are detected automatically by the algorithm using a simple template matching 324 

technique. The matching process moves the template image to all possible positions in a larger 325 

input frame’s image. This process is demonstrated in the block diagram of Figure 7. As 326 

illustrated, the matching process moves the template image, starting from the upper left 327 
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corner, with a fixed step within each frame to cover all possible positions in the frame’s image. 328 

It computes a numerical difference that detects how well the template matches the image in 329 

that position. The results of these movements are stored in an output array from which the 330 

minimum value that represents the closest position is obtained. In this study, a movement step 331 

of 4 pixels is considered an acceptable compromise between accuracy and time complexity (i.e., 332 

execution time) of the developed algorithm.  333 

 334 

Figure 7. Schematic of the templet matching operation  335 

2.5 Output generation 336 

Gaze coding involves labeling each frame of the gaze data with the name of a prespecified AOI 337 

depending on the gaze crosshair's location. Each AOI typically represents the objects in the 338 

scene of the gaze data. The frames can be labeled, after specifying an AOI, only if the crosshair 339 

is located within the specified AOI at that particular frame. In this part of the algorithm, the 340 

crosshair's relative position to the selected AOI at each frame is determined and counted. 341 

Postprocessing of the input data, the total fixation time for each AOI, including "Other" and 342 

"Missing data", are determined by the algorithm. This is achieved by iterating along all frames 343 

to obtain the crosshair's relative position to the AOIs. The instant and duration of obtaining the 344 

existing crosshair position is obtained for each AOI. As illustrated in the flowchart of Figure 8, 345 

the search process starts by examining whether a crosshair is detected in the frame or not. If 346 

not, the frame is labeled as "Missing data." Otherwise, the search continues for intersections 347 

crosshair’s centroid and all AOIs. Now, if no intersection exists, the frame is labeled as "Other."  348 

Otherwise, the frame is either labeled for the intersected AOI (in case of a single intersection) 349 

or labeled for the highest priority AOI to detect multiple intersections. The highest priority AOI 350 

is the one that is firstly selected by the specialist. 351 

Once the relative location of crosshair in each frame is determined, the total fixation duration 352 

(Fd) for each AOI, including "Other" and "Missing data," is calculated by mapping the total 353 

number of frames in each area into time, as follows: 354 

𝐹𝑑 (𝑠) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 (𝐻𝑧)
     (7) 355 
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In this study, the gaze video is converted to a group of frames with a 25Hz frame rate. The 356 

output is a vector that has the fixation duration (the time spent looking) for each area, "Other" 357 

and "Missing data." Therefore, the total length of the output vector is represented by the AOIs 358 

selected by the specialist plus the "Missing data" and the "Other" conditions. Finally, the 359 

algorithm generates the output in the form of a stacked color bar representing the location and 360 

duration of gaze fixation at the AOIs in each trial. 361 

 362 

Figure 8. A flowchart for frame labeling process  363 

3. Results 364 

3.1 Experimental results 365 

As detailed earlier in the previous section, once the crosshair image and gaze video clip are 366 

loaded to the developed coding algorithm, the keyframes are detected using a fuzzy-logic 367 

controller. Examples of detected keyframes and their order in the gaze video are shown in 368 

Figure 9.  As illustrated, the shape and color of objects in the scene are changing significantly. 369 

These changes cannot be recognized and tracked using image processing techniques alone; 370 

thus, the utilization of more intelligent algorithms becomes crucial to address this challenge. 371 
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 372 

Figure 9.  Example of detected keyframes and their order in the gaze video 373 

Post manual labeling of the AOIs in keyframes, the algorithm detects the AOIs and crosshair in 374 

non-key frames. Figure 10a shows an example of several AOIs (Carton, Glass, and Hand) in a 375 

keyframe. Figure 10b shows how the algorithm detects these AOIs in a non-key frame that 376 

comes later (i.e., several frames after the keyframe of Figure 10a). For each AOI, the total-377 

fixation duration is calculated and exported as a vector in an Excel sheet.  378 

 
(a) (b) 

Figure 10.  Examples of labeling/detection of AOIs and crosshair; (a) AOIs and crosshair in a keyframe, (b) AOIs 379 
and crosshair in a non-key frame  380 

The primary added value of the developed algorithm is automating the coding process. Once 381 

the gaze data is coded, it can be easily presented in different forms and formats, including the 382 

stacked bar commonly called a scanpath in behavioral psychology. It is used to demonstrate 383 

the gaze sequence and how it differs under different testing conditions [36]. In the present 384 

work, we used the stacked color bar to illustrate each frame's fixation position to the hand. This 385 

helps specialists to analyze the prosthesis user behavior and elicit clinically meaningful results. 386 

Figure 11 shows an example stack bar which demonstrates the relative gaze position to the AOI 387 

during the trial time. At the beginning of the trial, the prosthesis user moves his/her gaze 388 

around for 2 seconds then starts looking at the cartoon. 389 

 

Fixation Time (s) 

Other Missing Carton Glass Hand 

Figure 11. Example of the generated stacked bar showing the fixation position at each frame to the hand.  390 

 391 
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3.2 Validity analysis 392 

The validity of the coding results obtained by the developed algorithm is assessed by comparing 393 

them to those obtained manually using Cohen's Kappa statistical measure. To avoid 394 

exaggerating the sample size, Cohen's Kappa is calculated for each trial's coding results 395 

separately, then the average of the obtained results from each trial is considered. The obtained 396 

results for each trial's anatomical and prosthetic hands are respectively shown in Tables 2 and 397 

3. It can be noticed that Kappa values in all trials ranged from 0.705 and 1, but, on average, 398 

they are mostly higher than 0.8, which can be statistically considered almost perfect agreement 399 

[37]. 400 

Table 2. Cohen’s Kappa analysis results of the anatomical hand 401 

Trial No. 1 2 3 4 5 Mean 

Subject 1 1 0.934 0.962 0.984 0.972 0.970 

Subject 2 0.770 0.866 0.815 0.788 0.914 0.831 

Subject 3 0.934 1 0.753 0.964 0.995 0.929 

Subject 4 0.936 0.986 1 0.969 1 0.978 

Overall mean: 0.927 

Table 3. Cohen’s Kappa analysis results of the prosthetic hand  402 

Trial No. 1 2 3 4 5 Mean 

Subject 1 0.884 0.785 0.838 0.724 1 0.846 

Subject 2 0.741 0.792 0.790 0.760 0.793 0.775 

Subject 3 0.930 0.923 0.947 0.928 0.871 0.920 

Subject 4 0.929 0.837 0.705 0.839 0.709 0.804 

Overall mean: 0.836 

The confusion matrices that pinpoint the miscoding results between “Carton” and “Glass,” and 403 

between “Hand” and “Carton” for all trails, using both the anatomical and prosthetic hands, 404 

are respectively shown in Tables 4 and 5.  The accuracy, precision, false-negative rate (FNR), 405 

and false-positive rate (FPR) are calculated from the confusion matrices in these tables and are 406 

summarized in Table 6. For these calculations, the manual analysis is considered the actual 407 

data, and the computerized analysis is the predicted data. The FNR and FPR represent type-1 408 

and type-2 errors, respectively.   409 

Table 4. Miscoding results of the anatomical hand  410 

 Computerized Analysis 

Total Carton Glass Hand Missing Other 

Manual 

Analysis 

Carton 471 25 0 1 56 553 

Glass 63 2662 0 0 121 2846 

Hand 0 0 19 0 19 38 

Missing 0 0 0 614 0 614 

Other 15 31 5 6 3837 3894 

Total 549 2718 24 621 4033 7945 

 411 
 412 
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Table 5. Miscoding results of the prosthetic hand  413 

 Computerized Analysis 

Total Carton Glass Hand Missing Other 

Manual 

Analysis 

Carton 1844 17 64 0 369 2294 

Glass 63 1054 0 0 205 1322 

Hand 143 0 292 0 135 570 

Missing 0 0 1 1512 0 1513 

Other 115 46 61 4 4057 4283 

Total 2165 1117 418 1516 4766 9982 

Table 6. Accuracy, precision, FNR and FPR metrics of the miscoding results 414 

 Accuracy (%) Precision (%) FNR (%) FPR (%) 

Anatomical hand 95.70 91.33 04.3 1.43 

Prosthetic hand 87.75 86.85 12.25 3.75 

The agreement between the manual and computerized rating methods is assessed using the 415 

intra-class correlation coefficient (ICC).  The ICC estimate for each AOI's total fixation duration 416 

and its 95% confidence intervals are calculated using SPSS statistical package version 23 (SPSS 417 

Inc, Chicago, IL). A two-way random-effect model based on single ratings and absolute 418 

agreement is used. The estimated agreement index is found to be 0.908 with 95% confidence 419 

intervals (0.867, 0.937) for the anatomical hand and 0.923 with 95% confidence intervals 420 

(0.888, 0.948) for the prosthetic hand. The Bland-Altman plots for both the anatomical and 421 

prosthetic hands are shown in Figure 12. As illustrated, the difference between fixation 422 

duration is plotted against the mean fixation duration at each AOI across all trials, as identified 423 

by the rating methods. 424 

3.3 Coding-process efficiency  425 

The time complexity analyses of the developed algorithms representing both the compiled time 426 

and execution time are calculated, as suggested in [38]. However, as the compiled time is not 427 

involved in the algorithm's real-time operation, the time estimation is limited to the algorithm's 428 

execution time. Estimating the execution time is performed by running the algorithm under 429 

test through a specific number of loop iterations. Timestamps of the start (Tstart) and end (Tend) 430 

instants of the loop are recorded, and the execution time (Texec) is then calculated as suggested 431 

in [39]: 432 

  𝑇𝑒𝑥𝑒𝑐 =
𝑇𝑒𝑛𝑑−𝑇𝑠𝑡𝑎𝑟𝑡

𝑛
                        (8) 433 

where n is the number of loop iteration. In the present analysis, n = 100,000 is considered 434 

adequate to estimate the average Texec with acceptable accuracy. Finally, the computerized 435 

coding process's total time is obtained by adding the specialist's time to obtain the keyframes 436 

and AOIs to the execution time estimated in (8).  Estimation of Texec is carried out using a laptop 437 

with Intel(R) Core (TM) i7-4770 M CPU @ 3.4 GHz, 4.0 GB RAM, and 64-bit Windows 10 438 

operating system, and the code is run on MATLAB with real-time priority mode. Further 439 

reduction in the Texec is possible using a more time-efficient programming language such as 440 

C/C++ or assembly programming compared to the MATLAB. 441 
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(a) Anatomical hand 

 

(b) Prosthetic hand 

Figure 12.  Bland-Altman plots of the total fixation duration on AOI for the manual and computerized methods  442 

A comparison between the computerized and manual coding efficiency is shown in Table 7. The 443 

timeframes reported in this table represent the average times taken by two specialists to 444 

perform the given tasks (i.e., watching the video and counting the number of crosshair 445 

appearance on each AOI). As illustrated, a significant timesaving is achieved by the developed 446 

algorithm as compared to the traditional manual coding. The central part of the time saving is 447 

reflected by reducing the number of keyframes that require a specialist’s intervention towards 448 
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generating the stacked-bar output. This development reduces the data-preparation time and 449 

allows the specialist to focus on the analysis rather than extracting the fixation data.  450 

Table 7. Time efficiency comparison between the proposed system and the manual coding 451 

Coding activity 

Coding time 

Manual (min) 

Computerized (min) 

 

Keyframe 

Selection 

Program 

Execution 

Video 1: Duration: 16s, 

number of frames: 400 
11 0.5 5.5 

Video 2: Duration: 18s, 

number of frames: 450 
12 0.6 6.4 

4. Discussion 452 

In this work, a new algorithm capable of detecting gaze fixation at predefined areas of interest 453 

in given gaze data has been designed, developed, and tested successfully. Two test conditions, 454 

using anatomical and prosthetic hands, are considered for coding in this study. Each test is 455 

based on five trials' data, resulting in 40 coded trials of gaze data. We used an intelligent 456 

algorithm based on a fuzzy controller to automate fixation position detection on trials. This 457 

development has improved the process of obtaining clinically meaningful findings from the 458 

gaze data by saving time and improving reliability by obtaining consistent results. The main 459 

findings and limitations of the work presented in this paper are discussed as follows. 460 

4.1 Main findings  461 

The developed algorithm is considered an essential step towards fully automating the dynamic-462 

gaze video analysis. It contributed to automating the process of finding AOIs in non-key frames 463 

and generating the required stacked bar that the specialists require. AOIs of the keyframes are 464 

still defined manually with the help of a specialist. Such a human intervention is considered 465 

necessary to deal with the alterations in the shape of the AOIs. These alterations are mainly 466 

caused by the dynamic changes in the location and orientation of the AOIs relative to the 467 

tracking camera, see Figure 9. On average, about ten frames in each gaze video required user 468 

intervention, representing only a small portion (2.6%) of the entire manual analysis process.   469 

The developed algorithm is tested by analyzing the gaze data collected during completing a 470 

simple Activities of Daily Living (ADL) task under two testing conditions using both a prosthesis 471 

and anatomically intact hands. The gaze data described in the methods (Section 2) is collected 472 

to characterize prosthetic users' gaze behavior to understand prosthetic control's underlying 473 

process [15].  The difficulty the team has faced while analyzing the gaze data to quantify the 474 

gaze fixation patterns on the scene is the actual rationale behind developing the proposed 475 

algorithm. Such a difficulty has resulted from the fact that the scene comprises many AOIs that 476 

can be fixated. In particular, the interest is to count the gaze duration at each AOI and the 477 

sequence of this gaze fixation (known as the scan-path) during task completion. 478 

Comparable results are obtained when comparing the algorithm's coding results with those 479 

obtained manually. The developed algorithm showed a comparable accuracy of coding with 480 

high precision, especially when the anatomical hand is used. Tables 1 and 2 indicated high 481 

agreement between the algorithm coding and the manual coding for all testing conditions as 482 
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Cohen’s Kappa values ranged from 0.705 to 1.0. However, Cohen's Kappa is slightly higher for 483 

the anatomical hand than that of the prosthetic hand. This difference may be due to the 484 

relatively short task duration of the anatomical hand usage and fewer keyframes. Besides, 485 

when the anatomical hand is used, the gaze involves fewer transitions between AOIs; 486 

therefore, the possibility of mislabeling/disagreement is reduced. The ICC results also 487 

demonstrated high agreement between the two methods, as illustrated in the Bland-Altman 488 

plot of Figure 12. It can be noticed that the data points for both hands are closely scattered 489 

around the mean.     490 

4.2 Challenges and limitations 491 

4.2.1 Challenges 492 

Design and development of the proposed coding algorithm have dealt with and addressed 493 

some technical challenges, including the following: 494 

a) Dynamic changes in the location and orientation of the AOIs - this challenge is addressed 495 

by using fuzzy logic to support the algorithm in making decisions similar to human 496 

thinking.  The small weight given to the color change helped minimize the lighting effect 497 

on the performance, unless it had sufficient change (energy). 498 

b) Identification of accurate crosshair borders - the algorithm defines the crosshair as a 499 

square that may cause bias in its center, especially when the crosshair intersects with two 500 

AOIs. In this case, the algorithm considers the fixation at the AOI listed first by the 501 

specialist. 502 

c) The color contrast between the AOIs and the background of a similar color. For example, 503 

the "Glass" increases the difficulty of visually distinguishing it from the surrounding area. 504 

This problem is tackled by using an anisotropic diffusion filter, which helped remove the 505 

small details (e.g., texture and internal edges) without affecting the main object's edges. 506 

4.2.2 Limitations 507 

The developed algorithm represents a significant step towards the automation of dynamic-gaze 508 

video analysis for upper-limb prosthesis users. However, for full automation of the coding 509 

analysis process, which is not the objective of this study, there is a need for further 510 

improvements. For example, obtaining the AOIs in the keyframes still requires the intervention 511 

of a specialist. The mislabeling may occur between the "Other" backgrounds, and the AOIs that 512 

need further improvements. A miscoding between “Carton” and “Glass”, and between “Hand” 513 

and “Carton” can also happen with the prosthesis during the task completion. These limitations 514 

can be avoided by prioritizing the intersected AOIs. 515 

The developed algorithm deals with the physical AOIs border, but the nearby areas may also 516 

contain important information beyond the scope of the present study. Such information can 517 

be of a particular importance when the gaze fixation is located within the vicinity of the 518 

object(s) of interest rather than at the object itself. For instance, perhaps, it is reasonable to 519 

assume that the participant is looking at the carton and/or glass to check onto the pouring 520 

action. Alternatively, gaze might be kept in an area close to both areas in order to achieve the 521 

same intended function (i.e., check onto the pouring action). To address this limitation, defining 522 

a “functional AOI” sometimes relates to an action (i.e., pouring water). This functional AOI can 523 

comprise several objects that need to complete the action (i.e., carton, glass, and their vicinity). 524 

These limitations and others are currently part of the ongoing work of the authors.  525 
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5. Conclusion 526 

In this paper, a bespoke algorithm for detecting gaze fixation in given gaze data has been 527 

designed, developed, and tested successfully. The results obtained using the developed 528 

algorithm agree with those obtained manually but found to be significantly faster and less 529 

prone to human errors when compared to the manual coding. Statistical analysis showed that 530 

Cohen's Kappa ranges from 0.705 to 1.0. Moreover, based on the ICC, the agreement index 531 

between computerized and manual coding methods is found to be (i) 0.908 with 95% 532 

confidence intervals (0.867, 0.937) for the anatomical hand and (ii) 0.923 with 95% confidence 533 

intervals (0.888, 0.948) for the prosthetic hand. A Bland-Altman plot also showed that all data 534 

points are closely scattered around the mean. These findings confirm the validity and 535 

effectiveness of the developed coding algorithm. This confirms the validity of the developed 536 

coding algorithm. 537 

The developed algorithm demonstrated a significant step forward for full automation of the 538 

dynamic-gaze video analysis process; thus, reliable, accurate and clinically meaningful findings 539 

can be obtained in a short period as compared to the existing tedious and time-consuming 540 

manual analysis. However, further investigations are still required to improve the developed 541 

coding algorithm's structure and performance by conducting a more comprehensive clinical 542 

study. A more intelligent machine learning approach, such as neural networks, can also be 543 

adopted to automate the coding process of keyframes in the gaze data. Other factors that may 544 

affect the collection and analysis of gaze data such as gamification of eye exercises for 545 

evaluating the eye fatigue, gender, age, color, position, and stress can be considered in future 546 

experiments. These potential experiments and others are currently part of the authors' ongoing 547 

work and will be the subject of a future publication(s). 548 
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