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ABSTRACT  
Hydrogen-based MHD power generators offer significant advantages over conventional designs. The optimization of these energy devices 

benefits from both laboratory scale testing and computational simulation. Motivated by this, in the current work, a mathematical model is 

developed for MHD pumping of partially ionized hydrogen in a rotating duct with oscillatory, Maxwell displacement and magnetic induction 

effects under an inclined static magnetic field. Perfectly electrically conducting duct walls are assumed. The non-dimensional conservation 

equations are solved using the power-series based Homotopy Analysis Method (HAM) with an appropriate embedding parameter. Detailed 

graphical visualization of the impact of emerging parameters on the non-dimensional primary and secondary velocity components ( ),  u v
 

and magnetic induction components ( ),  x yb b
 
across the duct is presented. Average squared residual errors for all key variables

, , ,( and )u v bx by    with associated CPU times at various orders of the HAM iteration are also included. Validation with an Adomian 

Decomposition Method (ADM) is also conducted, and excellent agreement is obtained (tabulated).  The computations have shown that with 

increasing inverse Ekman number strong damping is observed in the primary flow whereas the secondary flow is accelerated, in particular in 

the core region of the duct. With elevation in Maxwell displacement effect (for the case of a 45 degrees inclined magnetic field i.e.  = /4) 

there is a strong decrease in primary magnetic induction at the lower wall of the duct and elevation in magnitudes at the upper duct wall; 

however, in the core region no tangible modification is computed. The opposite trend is observed for the secondary magnetic induction. With 

increasing magnetic Prandtl number (i.e. ratio of magnetic Reynolds number to ordinary Reynolds number) in the presence of strong Maxwell 

displacement current, strong magnetic field and high inverse Ekman number, the primary velocity is accelerated in both the left and right half 

space of the duct with a dip in magnitude at the centreline. However, the secondary velocity exhibits a much lower enhancement in both zones 

with only weak acceleration near the duct walls. Both velocity components achieve symmetrical distributions about the duct centreline. A 

significant depletion in primary magnetic induction is computed near the lower duct wall with enhancement near the upper duct wall; the 

contrary behaviour is exhibited by the secondary induced magnetic field. Applications of the study arise in hybrid rotating hydrogen based 

MHD energy generators and furthermore the computations provide a good basis for generalization to 3-dimensional flows with commercial 

multi-physical fluid dynamic codes e.g. ADINA-F, COMSOL, ANSYS FLUENT-Maxwell wherein further phenomena may be explored 

including Alfven wave effects and dielectric losses. 

 

KEYWORDS: MHD power generation; Oscillatory flow; Maxwell electrical displacement current; Homotopy analysis method (HAM); 

Adomian decomposition method (ADM); dielectric hydrogen gas. 
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1. INTRODUCTION  

Sustainable energy systems are growing in demand in the 21st century. The current 

global climate crisis has motivated strong interest in refining existing methodologies to produce 

long-term initiatives worldwide in environmentally friendly “green” power generation. Notable 

examples include geothermal fields, biofuels, ocean wave energy, tidal stations, piezoelectric 

energy harvesting, solar collectors and magnetohydrodynamic (MHD) generators. The last of 

these techniques was originally developed in the 1960s with large programs in Japan, Russia, 

France and the USA. Systems underwent significant evolution in the 1970s and 1980s with the 

fabrication of novel magnetic materials and matured in the 1990s. An excellent perspective of 

these developments was provided in the UNESCO-funded monograph of Messerle [1]. Central 

to MHD energy systems is the science of magnetohydrodynamics which involves the 

interaction between the electric currents and magnetic fields in either inviscid or viscous flow 

generating Lorentz body forces that can be used to propel and manipulate fluids. Both direct 

and alternating currents may be utilized in MHD and many phenomena may arise including 

Alfven waves, ion-slip, Hall currents, non-uniform magnetic fields, electromagnetic induction, 

coupled electrical and magnetic fields, jet instability in Robert layers, Hartmann-Stokes layers, 

variable electrical conductivity of working fluids etc. In addition, flows may be accompanied 

with significant heat transfer, mass diffusion, chemical reaction (oxidation at duct walls) and 

time-dependent effects. MHD viscous flows, in particular, are of great importance in such 

systems and indeed many other technologies including fusion propulsion systems using 

plasmas [2], magnetic pumps for medicine [3,4], lithium lead liquid metal blankets in nuclear 

reactors [5] andelectrically conductive liquid sodium flow in coolant systems for sodium fast 

reactors (SFR) [6]. In parallel with significant experimental work in MHD viscous fluid 

dynamics, mathematical and numerical models also provide an indispensable and relatively 

inexpensive and safe tool for optimizing designs. Many elegant computational approaches have 

been developed in the past few decades in this regard including ANSYS finite volume coupled 

electromagnetics schemes for contact resistance MHD duct flows [7], dual reciprocity 

boundary element methods (DRBEM) for variable magnetic field duct flows [8], unstructured 

collocation meshing used in the HYMAG electromagnetic free surface flow algorithm [9], 

Runge-Kutta quadrature in MATLAB symbolic software [10]. Mao and Pan [11] used a 3-D 

SIMPLE algorithm with a finite volume structured staggered grid together with a Crank-

Nicolson scheme to solve the electrical potential equation at low magnetic Reynolds numbers 
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and high Hartmann numbers in hydromagnetic duct flows. Sahu Bhattacharya [12] investigated 

multiple MHD duct flows (e.g. with transverse fringed magnetic field and unsteady free 

convection) using COMSOL finite element multi-physics open source software for Hartmann 

numbers up to 10,000, electrical wall conductance ratios of 0.01 and Grashof numbers up to 

1,000000. Many other techniques have also been deployed to simulate MHD viscous duct flows 

including computer extended power series schemes [13], asymptotic and leap frog finite 

difference techniques [14], simplified marker and cell (SMAC) algorithms with point SOR [15] 

(for accommodating Poisson’s equation) in annular MHD pumping, Nachtsheim-Swigert 

shooting iteration and Nakamura's implicit finite difference methods [16], bi-cubic B-spline 

finite element methods for accelerated convergence [17], Chebyshev collocation methods [18], 

combined panel and boundary element methods [19], weak form variational finite-element 

methods and  multistep differential transform method (MS-DTM) coded in MATLAB   [19] 

(for double diffusive Hall MHD generator transport), optimized perturbation methods [20] and 

MAPLE bvp4c quadrature routines with Adomian decomposition method for non-Newtonian 

non-isothermal MHD pumping flows [22]. 

In many applications, electromagnetic induction becomes significant. This requires the 

inclusion of a separate conservation equation for the induced magnetic field which interacts 

with the velocity and other field variables. Several investigators have therefore examined MHD 

viscous flows in generator and pumping systems in recent years with robust models for 

magnetic induction effects. Young [23] used a finite element code to study 3-D viscous flow 

with magnetic induction effects in a short-circuited magnetohydrodynamic generator 

comprising either all insulating channel walls or two insulating and two conducting walls. He 

observed that the optimum pressure gradient is suppressed as the induction angle increases 

from 0 to 45 degrees owing to a reduction in electrical current flow. Drits et al. [24] used a 

finite difference algorithm to compute both the cylindrical magnetic induction effects in 

magnetohydrodynamic and electrohydrodynamic flows of a liquid metal MHD pump. Béget 

al. [25] used MAPLE symbolic software to solve the coupled differential equation boundary 

value problem for thermo-capillary-driven magnetohydrodynamic nanofluid from a non-

isothermal surface with magnetic induction effects. They observed that induced magnetic 

stream function and temperatures are elevated with stronger Hartmann (magnetic to viscous 

force ratio) whereas both strong flow deceleration and depletion in magnetic induction stream 

function gradient is generated with a greater nanofluid solid volume fraction. Arasekiet al. [26] 

investigated both numerically and experimentally the hydromagnetic flow instabilities in an 

annular linear induction sodium pump for magnetic Reynolds numbers exceeding unity and 
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over a low frequency pressure pulsation in the range of 0–10 Hz. They identified that induced 

magnetic field phase shift suppresses the instability at low wall slip values although it reduces 

the pumping pressure and also lowers the electromagnetic force. Zohra et al. [27] computed 

the electromagnetic nanofluid Falkner-Skanbio-smart coating flow doped with gyrotactic 

micro-organisms from a two-dimensional geometry for the case where electrical currents 

flowing in the fluid give rise to an induced magnetic field. They studied two-dimensional 

magnetic induction fields for the case of an electrical field aligned with the geometry surface. 

They showed that the surface skin friction is suppressed with greater applied magnetic field 

whereas it is enhanced with a stronger electric field. They further noted that magnetic induction 

(i.e. magnetic stream function gradient) is significantly boosted enhanced with greater electric 

field whereas it is depleted higher values of reciprocal of the magnetic Prandtl number and that 

this also manifests in flow deceleration. Further recent computational studies of 

electromagnetic viscous induction flows include Akbar et al. [28] (for metachronal pumping 

of copper-water nanofluids), Yeh et al. [29] (for coaxial cylindrical permeable flows), Bég et 

al. [25] (for solar electro-conductive nano-polymer coating fabrication magnetofluid 

dynamics), Velikhov et al. [31] (for rotating liquid metal hydromagnetics with vortex effects),  

Uddin et al. [32] (for slip effects in nanofluid magnetic induction external boundary layer flows 

in materials processing), and Park et al. [33] (for super/hypersonic flow control in aerospace 

bypass gas magneto-gas dynamics). All these studies have confirmed the need to include 

magnetic induction phenomena in realistic mathematical models of engineering processes.  

The benefits of hydrogen as a working gas in many areas of renewable energy have 

been established for some years. Commercial magnetic hydrogen gas generators have now 

entered the market and are being deployed in conjunction with solar, ocean, tidal and biomass 

fuel systems for a more sustainable energy sector [34]. Significant research interest has also 

been stimulated in recent years for improving MHD hydrogen plants and pumping technologies 

and larger scale implementation of this exciting ecologically friendly and “green” power 

source. Nakamura and Riedmüller [35] developed a robust novel closed cycle MHD generator 

operates energy conversion utilizing hydrogen and oxygen produced from water by means of 

multi-step thermochemical decomposition. They demonstrated that nuclear heat available from 

existing reactors may be successfully transformed into electricity at nearly the Carnot 

efficiency and those thermal efficiencies in excess of 50 percent is achievable. Further MHD 

generator designs featuring hydrogen (and oxygen) have been explored for nuclear fusion 

pulsed bypass systems by Ishikawa and Umoto [36], ocean energy generators in  helical-type 

MHD ships with solenoid superconducting magnets by Takeda [37], massive hydrogen plants 
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[38] and supersonic diverging area Hall duct MHD power systems working on Cesium-seeded 

hydrogen-oxygen in the NASA Lewis Research Center-Cleveland high-field strength 

cryomagnet facility by Smith [39] (which attained  peak power densities of greater than 100 

MW and vastly out-performed in-city clean fuelled conventional steam power plants and coal-

fired power plants). Other studies include Stangeby [40] (on relative economic benefits of 

seeded plasma MHD pumping) and Celinski [41] (quasi-neutral hydrogen MHD plasma fusion 

reaction in a vacuum chamber, thermally insulated from the chamber walls). Schneider et al. 

[42] have elaborated on the use of weakly ionized hydrogen in MHD wave non-equilibrium 

plasma propulsion for next generation space planes which deploy hydrocarbon fuel reforming 

up to Mach numbers of 7. Many other exciting developments in ionized hydrogen technology 

include steam MHD generators [44], pulsed lithium liquid ducts [45], two-fluid MHD plasma 

pumping [46], magneto-hydrolysis with foam electrodes [47], solar MHD pond hydrogen 

plants [48],  nickel-molybdenum smart coating deposition [49], chemical production systems 

[50] and biomimetic surface tension-driven MHD hydrogen bubble pumping [51]. 

The above studies, while detailed ignored Maxwell displacement current effects. 

Maxwell in a monumental article [52] introduced a new phenomenon into electromagnetic 

theory i.e. “real motion of electrical particles in a sea of aethereal vortices”. Displacement 

current has been shown however to also be a quantity arising in a changing electric field and 

may occur in a vacuum or in a dielectric medium e.g. ionized hydrogen. Displacement current 

has the units of electric current and it has an associated magnetic field. The celebrated quartet 

of Maxwell's equations (Gauss’s law of electrostatics, Ampere’s law of magnetism, Gauss’s 

law of magnetostatics, and Faraday’s law of electromagnetic induction) consist of two 

inhomogeneous partial differential equations and two homogeneous partial differential 

equations. Since it was known that an electric current generates a magnetic field around it, a 

changing electric field must also produce a magnetic field. As magnetic fields are intimately 

connected to electrical currents, Maxwell [52] showed for the first time that this current was 

proportional to the rate of change of the electric field and termed it the displacement current. In the 

past several decades there has been resurgence in Maxwell displacement current effects in 

engineering electromagnetics. Important areas of application in this regard include ferrite cores in 

electrical power systems [53], high permittivity magnetic materials in plasma propulsion [54], 

intelligent shape memory magnetic alloys [55], quantification methods for thin solid film p-pentyl-

p'-cyano-biphenyl (5CB) liquid crystal monolayers during monolayer compression and the cis-

trans photoisomerization [56], Langmuir phospholipid and azobenzene mixed monolayer 

magnetic material characterization [57], and phase transitions in electroconductive liquid 

http://en.wikipedia.org/wiki/Dielectric
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crystals [58], molecular orientation of magnetic surfaces [59]. In scenarios where electric field 

does not change with time (e.g. steady electric fields in a conducting wire), the displacement 

current may be zero. However, in the absence of electrical conduction current but with a time-

varying electric field present, only displacement current arises [60, 61]. 

Among the many designs emerging in MHD energy generators (which feature no 

moving parts), rotating ducts [62] offer an alternative control mechanism to linear pumping 

systems [63-65]. They are also popular when seeding is deployed i.e. injection of a seeding 

material such potassium carbonate or Cesium into the plasma/fluid to increase the electrical 

conductivity. Rotation introduces a Coriolis body force which can also be exploited to regulate 

both core and boundary layer regions of MHD duct flows [66]. This can also result in a 

reduction in mechanical losses, lower operational and maintenance costs and more compact 

deployment across a range of sectors. Rotating MHD generators also achieve higher working 

efficiencies in converting thermal energy directly to electrical energy, circumvent corrosion 

issues at walls and exhibit improved fuel utilization. An extensive number of analytical and 

numerical studies have therefore been communicated in rotating MHD viscous duct flows with 

and without heat transfer. Ghosh and Bhattacharjee [67] considered the combined free and 

forced convective MHD flow in a rotating duct with perfectly conducting walls, deriving exact 

solutions and noting a significant deceleration in flow at the duct walls with increasing 

rotational and magnetic body force effects. They also found that Nusselt number (wall heat 

transfer rate) is suppressed with increasing thermal buoyancy effect (Grashof number). Bég et 

al. [68] examined the resonant flow in a rotating MHD generator under an inclined, uniform 

magnetic field. They used a generalized angular velocity function (co-latitude model) to 

simulate rotation about different axes in the system. Bhat [69] extracted Laplace transform-

based solutions for thermo-magnetic flow in a rotating straight channel is derived, noting that 

duct wall Nusselt numbers are boosted with Hartmann number for high values of rotational 

parameter (viscous force to Coriolis force ratio) and vice versa for low values. This work 

showed the beneficial nature of controlled rotation in cooling duct walls and therefore 

mitigating corrosion damage. Takhar et al. [70] used the complex variables method to compute 

Strouhal (dimensionless frequency parameter) effects in fluid-particulate seeded thermal 

magnetic convection in a revolving duct with Hall currents and the Marble-Drew dusty model. 

Mehmood et al. [71] derived closed form power series solutions for rotating magneto-

convective duct flow of an Eringen rheological micropolar fluid with the optimal homotopy 

analysis method (OHAM). They evaluated the influence of vortex viscosity, Rossby parameter 

(inertial to Coriolis rotational body force ratio) and Péclet number (advection to diffusion rate 
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ratio) on transport characteristics. They observed that local skin friction is greater with strong 

concentration of microelements compared with weak concentration and that careful 

combination of Rossby and magnetic Hartmann numbers achieved cooling at the duct walls 

and optimum acceleration. Bég et al. [72] deployed an electrothermal network simulation 

algorithm (PSPICE) to compute the thermo-magnetic pumping in a hybrid porous media 

rotating MHD generator duct. They observed that both primary and secondary flow 

acceleration is induced with progressively sparser permeable buffer material (i.e. higher Darcy 

numbers). They also found that secondary flow is deceleration in the primary flow with greater 

Hall effect whereas the opposite behaviour is computed in the secondary flow.  Hartmann-

Stokes boundary layers were also shown to grow with increasing Coriolis forces. Many other 

examples of such flows have been reviewed in some detail by Bég et al.[73] including models 

featuring Alfven waves, eddy current losses, magneto-hysteresis and free surface 

magnetohydrodynamic effects. 

In the present article, a new mathematical model is developed for oscillatory pumping 

of partially ionized hydrogen in a rotating MHD generator duct with Maxwell displacement 

and magnetic induction effects under an inclined static magnetic field. Perfectly electrically 

conducting duct walls are assumed. The non-dimensional conservation equations are solved 

using the power-series based homotopy analysis method (HAM) [74] with an appropriate 

embedding parameter. A detailed parametric study of the impact of Maxwell displacement i.e. 

dielectric strength parameter, inverse Ekman (rotational) number, Hartmann magnetic 

parameter, magnetic Prandtl number, oscillation frequency, magnetic field inclination on  

dimensionless primary and secondary velocity components and magnetic induction 

components across the duct is presented. Average squared residual errors for all key variables 

with associated CPU times at various orders of the HAM iteration is also included. Validation 

with an Adomian decomposition method (ADM) is also conducted and excellent agreement is 

obtained (tabulated). Mathematica symbolic software is used. The simulations reveal some 

interesting features of ionized working gas MHD systems and furthermore furnish a good 

benchmark for generalization to 3-dimensional flows with commercial multi-software. The 

computations reported may also find relevance in smart actuated rotating microvalve fluidics 

and naval “caterpillar MHD” propulsion. 

 

 

 

2. MATHEMATICAL MODEL 
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Oscillatory pumping of partially ionized hydrogen gas in an MHD generator duct is studied. 

The viscous, Newtonian, incompressible, electricallyconducting flow model is deployed. A 

constant pressure gradient is assumed and the duct revolves about an axis perpendicular to 

longitudinal plane of the ducts ( x y− plane), with constant angular velocity,  , under a 

uniform magnetic field orientated at a general angle,, to the positive direction of the axis of 

rotation (z − axis). The duct walls are a distance 2L apart (z L= + corresponds to the upper 

wall and z L=− to the lower wall). Subsonic flow is considered, and Alfven 

magnetohydrodynamic wave effects neglected. Both the fluid and the channel are rotating in 

unison as a rigid body with the same constant angular velocity of rotation. This rotation induces 

a secondary flow in the regime. An ( ),  ,  x y z coordinate system is adopted. The regime is 

depicted in Fig. 1. The duct walls are electrically perfectly conducting and magnetic Reynolds 

number is sufficiently high to invoke induction effects. Electron pressure is however negligible 

and Hall current, Joule dissipation (Ohmic heating)and ion slip effects are excluded. 

 

 

Fig. 1 Revolving MHD generator ionized hydrogen duct flow regime 

 

The generalized vector form of the momentum equation in a rotating frame of reference may 

be shown to take the form:  
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𝜕𝒒

𝜕𝑡
+ (𝒒 ⋅ 𝛻)𝒒 + 2𝛺𝒌 × 𝒒 = −

1

𝜌
𝛻𝑝 + 𝑣𝛻2𝒒 −

1

𝜌
𝑱 × 𝑩                 (1) 

 

Ohm’s generalized law for a moving conductor incorporating takes the form:  

 

J = [E+ q B]          (2) 

 

Following Müller and Bühler [75] Maxwell’s generalized electromagnetic field equations, may 

be presented as follows: 

 

JB e= (Ampère’s Law)                     (3) 

 

t


−=

B
E  (Faraday’s Law)        (4) 

 

0= B (Maxwell equation i.e. magnetic field continuity)                  (5) 

 

0. = J (Gauss’s Law i.e. conservation of electric charge)                 (6) 

 

The field vectors are defined for the present regime as:  

 

( )',0,' wu=q ; 0( , , );x zB B B=B , ( , , );x y zE E E=E ),0,( zx JJ=J                 (7) 

 

Here q, H, E, J are, respectively, the velocity vector, the magnetic field vector, the electric field 

vector and the current density vector, k is a unit vector (in Eqn. (1)) directed along the axis of 

rotation of the system (z-axis), is electrical conductivity of the partially ionized hydrogen gas, 

e is the magnetic permeability of the gas, is the Newtonian kinematic viscosity of the gas, t 

denotes time and all other parameters have been defined earlier. The conservation of electric 

charge (Gauss’s law) gives J = 0 , so that 0yJ = throughout the duct. Maxwell’s 

displacement current appears as an additional term to the electric current term in Ampère's 

circuital law, as the rate of change of the electric displacement, D. This displacement current 

does not exist as a real current (movement of charge); it is actually a quantity proportional to 

the time derivative of the electric field and implies that a changing electric field has an 

associated magnetic field. The displacement current is mathematically defined by the rate of 

change of the electric displacement field, D: 

                                                                 (8) 
tt 


=




=

ED
DJ

http://en.wikipedia.org/wiki/Electric_current
http://en.wikipedia.org/wiki/Electric_displacement
http://www.answers.com/topic/electric-displacement-field
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whereE is electrical force, D = εE, ε = ε0εr is the permittivity, ε0 is the permittivity of free space 

(8.854 x10-12 Fm-1) and εr is the relative permittivity of the dielectric gas. The presence of the 

electrical field may have a significant influence on MHD duct flows with reference to a charge 

density subject to: 

                                                                  (9) 

In a partially ionized gas (hydrogen) the induced electrical field cannot be neglected so the 

effects of induced magnetic field also become significant and the dielectric strength leads to 

the survival of the Maxwell displacement current. Neglecting convective acceleration terms 

from the MHD modified Navier-Stokes equation (1), the reduced momentum and magnetic 

induction conservation equations emerge as follows: 

                (10)  

                   (11)  

                   (12) 

                             (13) 

                             (14) 

 

In Eqns. (13) and (14) represent the Maxwell displacement terms are the first terms on the left-

hand sides which feature the dielectric parameter ε. 'u and 'v  are the velocity components in 

the x- and y-directions. The other parameter and variables are time (t), ionized hydrogen density 

(ρ), hydrodynamic pressure (p), kinematic viscosity of ionized hydrogen (), ionized hydrogen 

electrical conductivity (σ), applied magnetic field s(B0), angular velocity of the rotating duct 

(), inclination of the applied magnetic field to the positive z-axis (θ) and magnetic induction 

components in the x- and y-directions (Bx and By). The primary and secondary momentum 

equations (10) and (11) feature linear cross flow Coriolis body forces, -2v’ and +2u’. For 
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the case of a linear duct flow these terms vanish. Although analytical solutions are possible for 

the system of Eqns. (10)-(14) subject to boundary conditions (described in due course), this 

requires explicit data on the electromagnetic, thermal and hydrodynamic properties. 

Furthermore, with this approach, the excellent insight afforded by scaling transformations 

cannot be exploited. Therefore, to allow scaling of the system, the following dimensionless 

variables are invoked:  

, , , , , , , 

, , ,  ,  (15)  

Here   is dimensionless z-coordinate (along the spin axis), u and v  are non-dimensional 

velocity components in x−and y −directions, xb and yb are non-dimensional induced 

magnetic field components in the x−and y −directions,   is non-dimensional angular 

frequency, T is non-dimensional time, R is non-dimensional longitudinal pressure gradient, 

2K (ratio of Coriolis and viscous body forces) is rotational effect parameter (also known as 

inverse Ekman number), M is Hartmann magnetohydrodynamic parameter, mP is magnetic 

Prandtl number (ratio of momentum diffusion rate and magnetic diffusion rate) and dc is 

dielectric strength parameter (related to the Maxwell displacement current effect). Substitution 

of Eqn. (15) in Eqns. (10) - (14) yields the desired dimensionless forms of the primary and 

secondary momentum and magnetic induction conservation equations:  

                                       (16)  

                              (17)  

                                         (18) 
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In oscillatory MHD flows, the pumping regime is influenced by an oscillator and we may 

invoke appropriate expressions for the primary and secondary velocity and induced magnetic 

field components, following Ghosh et al. [75]: 

                                      (20a) 

                                      (20b) 

The Maxwell displacement current is analyzed by virtue of a time-varying current flow of a 

cosinusoidal naturein the regime. A resonant response is sustained if a forced oscillation is 

considered. Fluctuations can arise in the regime at the resonant level and instabilities may arise 

if excessively high Lorentzian magnetic body forces are generated. This scenario is however 

avoided here. Further details are provided in Petit et al. [76]. To complete the boundary value 

problem, the following no-slip velocity and magnetic induction boundary conditions [77] for 

0T  are imposed at the upper and lower ducts and at the centre line, respectively: 

0u v= = at 1 =                     (21a) 

0x yb b= = at 0 =                                                    (21b) 

 

3. HOMOTOPY ANALYSIS METHOD (HAM) SOLUTIONS 

The well-posed non-dimensional boundary value problem defined by Eqns. (16)-(19) under 

conditions (21a, b) may be solved by a variety of techniques. Here we seek analytical solutions 

using the exceptionally accurate Homotopy Analysis Method (HAM). This approximate 

method which is based on the homotopy of topology of differential equations has become 

immensely popular in recent years. Introduced by Liao [74], it is a special method in the sense 

that it provides a purely analytic approach to any type of differential equation although it 

requires numerical evaluation of the solutions via a computer algebra system. It has been 

widely deployed in recent years in a variety of fluid mechanics and magnetohydrodynamic 

flows including polar radiative convection channel flow [78], viscoelastic magneto-convection 

[79], stretching wall duct hydromagnetics [80], entropy generation in hydromagnetic conduits 

[81], axisymmetric magneto-nanofluid stagnation flows [82], microstructural biomagnetic 

lubrication  [83], ferromagnetic slip thermal transport [84], external boundary layer slip flows 

of magnetic nanofluids [85], magneto-acoustic plasma waves in MHD generators [86], hybrid 

solar magnetohydrodynamic duct collector flows [87], supersonic magneto-gas dynamics [88], 

bio-inspired electromagnetic pumping systems [89]  and ocean hydroacoustic wave dynamics 

[90]. An excellent discourse on auxiliary and embedding parameter selection in HAM has been 

)cos(),(cos 00 TvvTuu  ==

)cos(),(cos 00 TbbTbb yyxx  ==
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presented by Abbasbandy et al. [91]. The principal components involved in applying HAM 

procedure are: (i) selecting a suitable initial profile satisfying the boundary conditions of the 

problem and (ii) selecting an appropriate auxiliary linear operator so that solutions are more 

amenable to evaluate analytically.  

In the present problem, depending upon the boundary conditions (21a)-(21b) we choose 

the initial profiles as: 

 

0 0

2

0 0( , ) ( , ) , ( , ) ( , )T

x yu T v T e b T b T T     −= = − = = (22)
 

     

(23) 

and 

          (24)                                      

Here the Ci’s are arbitrary constants. It is noteworthy that the choice of initial profiles and 

linear operators are not unique for a given problem; however accelerated convergence of the 

solution depends strongly on their choice. Eqns. (16) to (19) prescribe the nonlinear operator 

for the HAM analysis through which a system of deformation equations may be generated.  

3.1 Zeroth and higher order deformation equations 

To obtain the HAM solution for Eqns. (16)-(19) under conditions (21a)-(21b) with the standard 

notations applied, let  be an embedding parameter and uc , ,vc bxc  and byc denote the 

non-zero convergence control parameters. Then the non-linear operator takes the following 

form based on the governing equations: 

(25)                          

                          (26)      

                            (27) 

                              (28)                     

Then the zeroth and higher order deformation equations can be written as follows: 

                   (29)                 

222 2

2 2 2 2
; ; ; ;

x y

yx
u v b b

bbu v
L u L v L L

T T 
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= − = − = =
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 0,1 
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                    (30)          

             (31)         

            (32) 

The nonzero auxiliary parameter  is prescribed unity value to synthesize robust 

solutions of the governing equations. Eqns. (21a)-(21b) become: 

and                           (33) 

For the -order deformations equation, we first differentiate (29)-(32) times with respect 

to    dividing them by  and then set   Following this procedure we have: 

(34)                 

                                                  (35)    

                                          (36) 

                                         (37) 

The associated boundary conditions are: 

 and                                                             (38) 

Here and are 

the remainder terms of the linear operators which are defined as follows: 

 

(39) 

 

 (40) 

 

       (41)              
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(42)                                              

Here  is defined as: 

                    (43)  

Now we expanding and  in Taylor series with 

respect to  , yields the following power series expansions: 

where,          (44) 

where,           (45) 

where        (46) 

where,      (47) 

Now setting  and  in (29)-(32), we have: 

and
                

(48) 

  and                                                                      (49) 

and                                                                  (50) 

  and                 (51) 

Thus the non-auxiliary parameter   increases from 0 to 1 and 

and  vary from the initial guess, the functions 

 and converge to the solution and  of 

the governing equations respectively.  Here, the auxiliary parameters are elected such that the 

Liao HAM series solution converges for : 
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                                                                                         (53) 

                                                                                     (54) 

                                                                                   (55) 

Therefore, the approximate analytical solutions   and 

 are obtained from (34)-(37), (28)-(31) and (24) via the following recursive 

formulae: 

                                               (56) 

                                                (57) 

                                                (58) 

                                                (59) 

Here  and  are the particular solutions 

given  as follows: 

                 (60) 

                 (61) 

                            (62) 

                (63) 

 

We solve Eqns. (60) - (63) for various values of ‘n’ starting from 1, 2, 3… by using 

MATHEMATICA. The procedure is terminated automatically when the infinite series solution 

satisfies the desired order of accuracy. 

3.2 Residual Error Analysis  

To provide a supplementary means of monitoring accuracy of the HAM computations, the 

squared residual error functions are presented here using the following relation: 
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  here  and                                     (64)                

Here  and . From (64), to find the convergence control parameters 

  and  values are obtained, and these values are used while performing the 

computations in Mathematica. The convergence control parameters are: 

  and  

Table 1: Minimum of the average squared residual error  and  with CPU time 

(seconds) at various orders of iterations. 

 

Order 

(n) 

CPU 

time 

(sec) 

    

1 

5 

10 

15 

20 

25 

30 

40 

4.008 

11.39 

22.05 

36.56 

54.01 

104.22 

150.43 

281.05 

3.037781×10−2 

2.727533×10−3 

2.035611×10−5 

3.561993×10−7 

1.601724×10−8 

2.378899×10−9 

3.028397×10−10 

1.837289×10−14 

1.467452×10−2 

1.743739×10−3 

2.007363×10−4 

2.287692×10−5 

3.000837×10−6 

3.352681×10−7 

2.111092×10−8 

1.029827×10−10 

1.635771×10−2 

1.008398×10−3 

2.737811×10−4 

1.029884 ×10−5 

3.092722×10−6 

3.009238×10−7 

2.182783×10−8 

1.333566×10−10 

1.562267×10−2 

1.000292×10−3 

2.692771×10−4 

1.000025×10−5 

3.007278×10−6 

3.333565×10−7 

2.148834×10−8 

1.209981×10−10 

 

As the order of iteration is increased, the residual error decreases rapidly as is evident from 

Table 1. Also, it is observed that the CPU time is needed to compute the residual errors for the 

lower orders of approximation are extremely small. For example, 4.008, 11.39, 22.05, 36.56, 

54.01, 104.22, 150.43 and 281.05 seconds of CPU time are required for 𝑙 = 1, 5, 10, 15, 20, 

25, 30 and 40 respectively. Further, selected inverse linear mapping leads to the five-term 

solution with total error between 10−2 to 10−14 (Table 1). Using HAM, approximate series 

solutions for governing equations have successfully been achieved with fractional CPU times. 

The series solutions are highly convergent by deploying optimum convergence control 

parameters cu, cv, 𝑐𝑏𝑥
 and 𝑐𝑏𝑦

. We illustrate the residual error εi at various deformation 

solutions for selected different physical parametric values and impressive results are obtained 

as depicted in Figures 3-5. It is illustrated from these figures that the residual error in the 

convergence control parameters for the 7th to 9th deformation solutions decays rapidly. 
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Figure 2: Residual error on convergence control parameter cu at 7th (solid line), 8th (dashed 

line) and 9th (double dashed line) order HAM deformation solutions. 

 

 

 

 
 

Figure 3: Residual error on convergence control parameter cv at 7th (solid line), 8th (Dashed 

line) and 9th (double dashed line) order HAM deformation solutions. 
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Figure 4: Residual error on convergence control parameter 𝑐𝑏𝑥
at 7th(solid line), 8th (dashed 

line) and 9th (double dashed line) order HAM deformation solutions. 

 

 
 

Figure 5: Residual error on convergence control parameter 𝑐𝑏𝑦
 at 7th (solid line), 8th (dashed 

line) and 9th (double dashed line) order HAM deformation solutions. 

 

4. VALIDATION WITH ADOMIAN DECOMPOSITION METHOD (ADM) 

To verify the HAM solutions, the authors have sought published results in the literature. 

However, since the current model is novel, benchmarking of the full range of solutions is not 

possible. An alternative validation is therefore conducted using a different semi-numerical 

procedure is known as the Adomian decomposition method (ADM) [92]. DM consists of 

decomposing an unknown function e.g. ( ),  u x t of any ordinary or partial differential equation 

into the sum of an infinite number of linear and nonlinear components using a recursive 

algorithm. The evaluation of these components can be achieved efficiently via recursive 
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relations featuring simple integrals. Once decomposition is executed, the highest-order 

derivative operator contained in the linear operator on both sides of the differential equation is 

inverted. Next the initial and/or boundary conditions are identified as terms involving the 

independent variable alone as an initial approximation. The nonlinear function decomposition 

is formulated in terms of special polynomials called Adomian polynomials. The successive 

terms of the series solution are produced by recurrent relation using Adomian polynomials. 

Symbolic software e.g. MAPLE, MATLAB, MATHEMATICA can be used to compute the 

Adomian polynomials and monitor convergence of the series of the function. The ADM is 

quantitative rather than qualitative and furthermore is rigorously analytic, requiring neither 

linearization nor perturbation. It is a continuous solution methodology and circumvents the 

need with other techniques for discretization (e.g. finite element method) and consequent 

computer-intensive calculations. A further advantage of ADM is that since highest ordered 

derivative are easily invertible operators, laborious integrations involving complicated Green’s 

functions can be avoided. Consider a general differential equation with V as the variable, of the 

form: 

 

𝐷[𝑉()] = 𝑄()                                                                                      (65)  

 

Here, D is the differential operator consists of linear terms ( )L R+   with L  being the highest 

ordered derivative and easily invertible operator and R is the Adomian reminder linear 

component and 𝑁𝑏𝑥() is the Adomian nonlinear component. Each of the transformed 

governing equations for primary and secondary momentum or primary and secondary induced 

magnetic field i.e. Eqns. (16)-(19) feature two independent variables (, T). These can be 

reduced to a single variable by substituting the forced oscillation expressions from Eqn. (21) 

for the temporal derivatives. For example, the primary magnetic induction Eqn. (18) can be 

written as: 

𝐿𝑏𝑥() + 𝑅𝑏𝑥() + 𝑁𝑏𝑥() = 𝑄()                 (66) 

Now the solution 𝑏𝑥() is obtained by solving the Eqn. (66) for 𝐿𝑏𝑥(). Since the 
thn  order

L is the highest ordered derivative and easily invertible, then 1L−  Is the foldn−  integral 

operator. Thus, Eqn. (17) can be written as: 

 

𝑏𝑥() = 𝐿−1𝑄() − 𝐿−1𝑅𝑏𝑥() − 𝐿−1𝑁𝑏𝑥()                                      (67) 
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Next we introduce 1 2&L L as the 3rd and 2nd order differential operators𝐿1 =
3

𝜂3
(∗)and𝐿2 =

2

𝜂2
(∗) respectively. Consequently, 

1 1

1 2&L L− −
are the 3 fold&2 fold− −  indefinite integral 

operators,𝐿1
−1(∗) = ∫ ∫ ∫ (∗)𝜂𝜂𝜂

𝜂

0

𝜂

0

𝜂

0
 and 𝐿2

−1(∗) = ∫ ∫ (∗)
𝜂

0

𝜂

0
𝜂𝜂 respectively. 

Furthermore, the constants of integration in
1 1

1 2&L L− −
are computed from the given initial and 

boundary conditions. ADM assumes the solution ( )bx  as an infinite series: 

 

𝑏𝑥() = ∑ 𝑏𝑥𝑛
∞
𝑛=0                     (68) 

 

which is the unknown solution for the primary magnetic induction, bx(). Similarly, for 

velocity components and induced magnetic field components, the Adomian series solutions 

take the form: 

 

𝑢(𝜂) = ∑ 𝑢𝑛(𝜂)∞
𝑛=0                                           (69) 

 

𝑣(𝜂) = ∑ 𝑣𝑛(𝜂)∞
𝑛=0                                           (70) 

      

𝑏𝑦(𝜂) = ∑ 𝑏𝑦𝑛(𝜂)∞
𝑛=0                                           (71) 

 

Finally, the non-linear term ( )Nu y  assumed to analytic and by writing as an infinite series, we 

have for the primary induced magnetic field: 

 

𝑁𝑏𝑥(𝑦) = ∑ 𝐴𝑛
∞
𝑛=0                                           (72) 

 

Here nA  represents the Adomian polynomials which are lengthy expressions and are omitted 

for brevity. Convergence is excellent with this technique and further details are provided in 

Cherruault [93].ADM has proven to be as versatile as HAM. It has been implemented 

extensively in recent years in a plethora of magnetofluid and plasma dynamics problems. Radu 

et al. [94] used ADM in simulating the quark gluon plasma model for astrophysical 

applications. Bég et al. [95] computed the squeezing magnetic thin film flow in prosthetics 

with ADM, also considering induced magnetic field effects. MHD duct flows were studied by 

Machado et al. [96] using a modified ADM procedure. Manzoor et al. [97] simulated the 
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metachronal bio-inspired propulsion of a magneto-rheological fluid with heat transfer using 

ADM. Further studies include Shit et al. [98] (on peristaltic magnetic pumping of blood), 

Shamshuddin et al. [99] (on homogeneous-heterogeneous reactions in bi-axial stretching 

dynamics of magnetic polymers), Dib et al. [100] (who used the Duan-Rach modified ADM 

approach for hydromagnetic flow in converging/diverging channels), Ungani [101] (for arterial 

biomagnetic flow), and, these studies verified the ability of ADM to accommodate multiple 

types of ordinary and partial differential boundary value problems. In the present validation, 

ADM is programmed in MATLAB software, running on an SGI Octane desktop workstation. 

Computational times are around 40 seconds. Tolerance is set at 10-6. Tables 2-4 present the 

comparisons for ADM with HAM for selected values of Hartmann magnetohydrodynamic 

number squared ( )2 ,M oscillation frequency ( ), varying inverse Ekman number ( )2 ,K

angular time ( )T respectively, magnetic field inclination ( )  and Maxwell displacement 

dielectric parameter ( )cd . An excellent agreement is achieved. 5th order truncation was used 

for the power series expansions. Confidence in HAM solutions is therefore justifiably very 

high.  

 

Table 2: Spatial primary and secondary induced magnetic field values for M2 = 10,  = 0.2, 

T = /4,  = /4, dc = 0.3 and K2 = 5 (ADM and HAM solutions). 

 ADM solutions  HAM solutions 

  
xb  

(primary induced 

magnetic field) 

yb  

(secondary induced 

magnetic field) 

xb  

(primary 

induced 

magnetic field) 

yb  

(secondary 

induced magnetic 

field) 

-1.0 -1.04191 2.08687 -1.092791 2.040378 

-0.8 -0.23740 0.47551 -0.239999 0.472902 

-0.6 -0.02487 0.04980 -0.020715 0.049540 

-0.4 0.00794 -0.01591 0.008100 -0.016011 

-0.2 0.00532 -0.01065 0.005792 -0.010649 

0.0 0.0 0.0 0.0 0.0 

0.2 -0.00532 0.01065 -0.005792 0.010649 

0.4 -0.00794 0.01591 -0.008100 0.016011 

0.6 0.02487 -0.04980 0.020715 -0.049540 
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Table 3: Spatial primary and secondary induced magnetic field values for 

2 5,  0.2,  / 4, / 4,   0.3cM T d    = = = = = with 
2 5K = (ADM and HAM).   

 

Table 4: Spatial primary and secondary induced magnetic field values for 
2 10M = (strong 

magnetic field), 2  5,  / 4, / 4,   0.3cK T d   = = = = and 0.6 = (ADM and HAM). 

0.8 0.23740 -0.047551 0.239999 -0.0472902 

1.0 1.04191 -2.08687 1.052791 -2.040378 

 ADM solutions  HAM solutions 

  
xb  

(primary 

induced 

magnetic field) 

yb  

(secondary 

induced 

magnetic field) 

xb  

(primary 

induced 

magnetic field) 

yb  

(secondary 

induced 

magnetic field) 

-1.0 -1.19189 1.73098 -1.193011 1.731000 

-0.8 -0.49248 0.71523 -0.508372 0.715228 

-0.6 -0.10711 0.15556 -0.107355 0.156371 

-0.4 0.00445 -0.00646 0.005039 -0.006274 

-0.2 0.01332 -0.01935 0.013222 -0.019346 

0.0 0.0 0.0 0.0 0.0 

0.2 -0.01332 0.01935 -0.013222 0.019346 

0.4 -0.00445 0.00646 -0.005039 0.006274 

0.6 0.10711 -0.15556 0.107355 0.156371 

0.8 0.49248 -0.71523 0.508372 0.715228 

1.0 1.19189 -1.73098 1.193011 1.731000 

 ADM solutions  HAM solutions 

  
xb  

(primary 

induced 

magnetic field) 

yb  

(secondary 

induced 

magnetic field) 

  
xb  

(primary 

induced 

magnetic field) 

-1.0 -0.20535 0.39878 -0.217286 0.398800 

-0.8 -0.04904 0.09523 -0.050022 0.095219 

-0.6 -0.00556 0.01079 -0.005517 0.010804 



24 

 

5. HAM SOLUTIONS AND DISCUSSION  

Figs. 6- 19 visualize the distributions of primary velocity ( )u , secondary velocity ( )v , primary 

and secondary induced magnetic field components ( ),  x yb b with variation in vertical coordinate

( ) , time ( )T , inverse Ekman number ( )2K , Hartmann number squared ( )2M , oscillation 

frequency ( ) , magnetic field inclination ( ) and Maxwell dielectric parameter ( ).cd Unless 

otherwise stated the dielectric parameter is prescribed as  3.0cd = and magnetic Prandtl 

number,  0.72mP = which are appropriate for partially ionized hydrogen[76]. 

 

 
Figure 6: Primary induced magnetic field distribution for 

2 2 5,  0.2,  / 4, / 4,  5K T M    = = = = = with 0cd = (no Maxwell displacement), 1, 2, 3. 

-0.4 0.00158 -0.00307 0.001600 -0.003126 

-0.2 0.00113 -0.00219 0.001131 -0.002207 

0.0 0.0 0.0 0.0 0.0 

0.2 -0.00113 0.00219 -0.001131 0.002207 

0.4 -0.00158 0.00307 -0.001600 0.003126 

0.6 0.00556 -0.01079 0.005517 -0.010804 

0.8 0.04904 -0.09523 0.050022 -0.095219 

1.0 0.20535 -0.39878 0.217286 -0.398800 
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Figure 7: Secondary induced magnetic field distribution for 

2 2 5,  0.2,  / 4, / 4,   5K T M    = = = = = with 0cd = (no Maxwell displacement), 1, 2, 

3. 

 

 

 

Figure 8: Primary induced magnetic field distribution for 
2 20M = (strong magnetic field), 

2  5,  / 4, / 4,  0.2K T    = = = = with 0cd = (no Maxwell displacement), 1, 2, 3. 
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Figure 9: Secondary induced magnetic field distribution for 
2 20M = (strong magnetic field), 

K2 =5, T = /4,  = /4,  = 0.2 with 0cd = (no Maxwell displacement), 1, 2, 3. 

 

 

 

Figure 10: Primary (u) velocity distributions forM2 = 20 (strong magnetic field), K2 = 20,T 

= /4,  = /4,  = 0.2 with dc = 0 (no Maxwell displacement), 1, 2, 3. 
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Figure 11: Secondary (v) velocity distributions for
2 20M = (strong magnetic field), 

2 20, / 4, / 4, 0.2K T    = = = = with 0cd = (no Maxwell displacement), 1, 2, 3. 

 

Figure 12: Primary (u) velocity distributions for 
2 20M = (strong magnetic field), 

/ 4, / 4, 0.2T    = = = with cd (Maxwell displacement dielectric parameter)=5 and 

various inverse Ekman numbers ( )2 1,  10,  20,  40 .K =  
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Figure 13: Secondary (v) velocity distributions for
2 20M = (strong magnetic field), 

/ 4, / 4, 0.2T    = = = with dc (Maxwell displacement dielectric parameter) = 5 and 

various inverse Ekman numbers ( )2 1,  10,  20,  40K = . 

 

Figure 14: Primary (u) velocity distributions for
2 20M = (strong magnetic field), 

2 20, / 4, 0.2K T  = = = with 5cd = and various magnetic field inclinations

(  0, / 6, / 4, / 2)   =  
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Figure 15: Secondary (v) velocity distributions for
2 20M = (strong magnetic field), 

2 20, / 4, 0.2K T  = = = with cd (Maxwell parameter) = 5 and various magnetic field 

inclinations (  0, / 6, / 4, / 2)   = . 

 
 

Figure 16: Primary (u) velocity distributions for
2 20M = (strong magnetic field), 

2 20, / 4, / 4, 0.2K T    = = = = with cd (Maxwell parameter)=4 and 

 0.1,  0.3,  0.5,  0.72mP = (ionized hydrogen). 
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Figure 17: Secondary ( )v velocity distributions for
2 20M = (strong magnetic field), 

2  20,  / 4, / 4,  0.2K T    = = = = with cd (Maxwell parameter)=4 and 

 0.1,  0.3,  0.5,  0.72mP = (ionized hydrogen). 

 

 

Figure 18: Primary induced magnetic field ( )xb for
2 20M = (strong magnetic field), 

2  20,  / 4, / 4,  0.2K T    = = = = with cd (Maxwell parameter)=4 and 

 0.1,  0.3,  0.5,  0.72mP =
 
(ionized hydrogen). 



31 

 

 

Figure 19: Secondary induced magnetic field ( )yb  for
2 20M = (strong magnetic field), 

2 20,  / 4, / 4,  0.2K T    = = = = with 4cd = and  0.1,  0.3,  0.5,  0.72mP = (ionized 

hydrogen). 

We have taken
2 5.0K = and

2 5.0M = in all plots. These correspond to weak rotational 

effect (Coriolis force is five times the magnitude of the viscous hydrodynamic force) and 

relatively weak applied magnetic field (Lorentzian magnetic drag is 5 times the magnitude of 

viscous force). Profiles are computed at a specific instant in time i.e.  / 4T = by which the 

flow is assumed to have fully developed and any incipient instability has been eliminated. A 

generic inclination angle of 45 degrees to the vertical is prescribed (   / 4 = radians), which 

offers a representative insight into a working MHD generator configuration. 

 

Figs. 6-7 illustrate the response in primary and secondary induced magnetic field 

components ( ),  x yb b with vertical coordinate ( ) at a fixed time (  / 4)T = for various 

Maxwell dielectric parameter values ( )cd . Although thermal effects are not considered (they 

are addressed in a companion work), high temperature ionized gas is assumed as the working 

fluid. It is noteworthy that the majority of common gases do not ionize significantly at 

temperatures obtainable with fossil fuel chemical reactions. However, hydrogen is easily 

produced, light, cheap and can be seeded with small percentage doping of ionizable materials 



32 

such as alkali metals. Furthermore, metals such as Cesium and Potassium have been shown to 

possess ionization potentials low enough so that they successfully ionize at temperatures 

obtainable with combustion reaction in air [75]. Increasing dielectric parameter exerts a dual 

influence in the duct cross section range ( 1 1)−   + on both primary and secondary magnetic 

induction fields. In both cases maximum or minimum magnitudes are computed at the duct 

walls. With increment in dc, primary induced magnetic field (Fig. 6) is decreased at the lower 

duct wall ( 1) = − whereas it is elevated at the upper duct wall (  1). = +  All profiles exhibit 

a distorted reflective symmetry about  0 = (duct centre line). Minimal distortion in bx is 

observed in the absence of Maxwell displacement current c( 0)d = . However, with increasing 

dc values the profiles are progressively morphed, although this is confined to the near wall 

regions, which is attributable to the generation of Hartmann-Stokes layers there [16]. These 

zones are wider in the lower half space i.e. ( 1 0.5)−   − and narrower in the upper half 

space i.e. (0.75 1.0)  . The parameter
2c

v
d

L




 
=  
 

appears as a coefficient of the second 

order time derivative of induced magnetic field i.e. 2 2( / )c xd b T  . Clearly cd is inversely 

proportional to electrical conductivity of the ionized gas ( )  and directly proportional to the 

kinematic viscosity ( )  and the dielectric constant ( ) , for a given duct semi-depth ( )L . Higher 

values of cd imply a reduction in electrical conductivity (for fixed values of other parameters) 

and this will strongly influence the production of magnetic induction. Evidently the changing 

electrical field (since an open circuit MHD generator is considered) mobilizes significant 

modification in the magnetic induction via the Maxwell dielectric effect. Neglecting of 

Maxwell displacement (dielectric) effect therefore leads to an over-prediction of primary 

magnetic induction in the lower duct half space ( 1  0)−   and an under-prediction in the 

upper duct half space (0  1)  . This will ultimately therefore produce erroneous estimates 

of the MHD generator efficiency, as noted by Bég et al. [22] and Takeda [37], among others. 

Fig. 7 shows that secondary induced magnetic field ( )yb  responds in the opposite fashion to 

primary magnetic induction with an increase in Maxwell displacement current ( )cd , although 

the invariance in the duct core zone ( 0.5  0.5)−   is sustained as with primary induction 

(Fig. 6). Again, maximum or minimum magnitudes of secondary magnetic induction are 

computed at the duct walls. With increment in cd , secondary induced magnetic field is 

increased at the lower duct wall ( 1) = − whereas it is depleted at the upper duct wall ( 1) = +
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. Much narrower zones are also present in the lower and upper duct half near-wall zones where 

secondary induced magnetic field by is altered, as compared with the primary magnetic 

induction, xb (Fig. 6). Also, significantly lower magnitudes are observed for yb at the duct walls 

compared with xb . However, overall the Maxwell displacement current effect exerts a non-

trivial impact on secondary magnetic induction, and as mentioned earlier is an important feature 

of more realistic engineering fluid dynamics models for working MHD generators.  

Figs. 8-9depict the evolution in primary and secondary induced magnetic field 

components ( ),  x yb b with vertical coordinate ( ) at a fixed time (  / 4)T = again for various 

Maxwell dielectric parameter values ( )cd .All data is as prescribed in Figs. 6-7, however the 

applied magnetic field, 
2  20M = i.e. significantly stronger. Comparing with Figs. 6-7

( )2 5.0M = , it is immediately evident that there is a reversal in the response of both magnetic 

induction components to increasing dielectric parameter values ( )cd in both near-wall zones. 

The parameter, M as noted earlier is the square of the Hartmann number,

1
2

0M B L




 
=  

 
 . It 

represents the ratio of Lorentzian magnetic drag to viscous force in the duct. It features in both 

magnetic induction conservation Eqns. (16) and (17) in the linear body force terms, -M2

2( ) cos u and
2M v− . The stronger magnetic field will induce further deceleration in the 

primary flow (described later) and concurrently mobilize a strong modification in magnetic 

induction field. In the primary induction case (Fig. 8), with increment in dielectric parameter 

values ( )cd , in the lower duct half space, significant elevation inbx is now generated; 

furthermore, the profiles are warped into parabolic topologies with an induction overshoot 

close to the lower duct wall, whereas in Fig. 6 ( )2 5M = they are generally linear in nature. In 

the upper duct half space however the primary induced magnetic field is now markedly 

suppressed with stronger Maxwell dielectric parameter and again the profiles become 

increasingly parabolic in nature, whereas in the weaker magnetic field case ( )2 5M = they are 

once again clearly linear. In the mid-duct (core) zone, there is no variation again in primary 

magnetic induction. This is no doubt linked to the weaker viscous forces arising here compared 

with the strongest viscous forces which are associated with the near-duct zones (Hartmann-

Stokes layers).  Evidently therefore there is a substantial interplay between applied magnetic 

field and induced magnetic field and this relationship is amplified via the Maxwell 
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displacement effect. The central invariant zone is also contracted with greater magnetic field, 

indicating that with stronger Lorentzian drag, magnetic induction effects are expanded in the 

near-wall duct regions and grow further towards the duct centre. Fig. 9 shows that the 

secondary magnetic induction, bx is under stronger magnetic effect ( )2  5M = although initially 

enhanced with increment in Maxwell dielectric parameter values(dc), rapidly begins to decay 

strongly in the lower half-space of the duct. A switch over arises somewhere in the central zone 

and thereafter secondary induced magnetic field is observed to be significantly accentuated 

with higher Maxwell dielectric parameter values ( )cd , which is the contrary response to that 

for lower magnetic field i.e. 
2 5M = (Fig. 7). However, another key modification with stronger 

magnetic field ( )2 20M = is that the upper duct half space response is not consistent as 

computed in Fig. 7; in close proximity to the upper duct wall, the secondary magnetic induction 

experiences a weak decrement. Again, there is a substantial contraction in the plateau zone in 

the central duct region with stronger magnetic field i.e. the secondary magnetic induction 

dominates larger sections of the duct cross-section when Hartmann number is increased. 

However minimal magnitudes of secondary magnetic induction arise yet again at the upper 

duct wall (  1) = + , with maximum values obtained at the lower duct wall ( 1), = − which 

concurs with the response computed for weaker magnetic field in Fig. 6 ( )2  5M = . It is also 

noteworthy that while the Hartmann number ( )M does not feature in either magnetic induction 

equation, via coupling to the velocity fields there is an indirect influence imparted.  

Figs. 10-11visualize the distributions in primary ( )u and secondary ( )v velocity across 

the duct for 
2 20M = (strong magnetic field) and strong rotation ( )2  20K = with an increment 

in Maxwell displacement ( )cd . Distinct from the magnetic induction component distributions 

(Figs. 6-9), perfectly symmetrical inverted parabolic profiles are computed across the duct 

space for both velocity components, although there are some unique characteristics for each 

velocity component. Fig. 10 reveals that with an increment in Maxwell displacement 

parameter, there is strong acceleration in primary flow ( )u in both lower duct half space and 

the upper duct half space. Time-varying electrical field therefore exerts a significantly 

beneficial influence on the primary (main) flow in the duct. The classical parabolic peak is 

captured at the duct centre line. Clearly neglecting of the Maxwell displacement effect in the 

mathematical model therefore grossly under predicts the primary velocity magnitudes. 
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Consistently positive magnitudes are computed across the duct cross section i.e. for all 

values, except at the duct walls where in accordance with the no slip boundary conditions (21) 

velocity vanishes. Fig. 11 demonstrates that while symmetry is sustained in the secondary 

velocity ( )v profiles in the core region of the duct, there is an oscillatory nature to the 

distribution which is absent in the primary flow. Also, the effect of rising Maxwell 

displacement current ( )cd is to decelerate the secondary flow i.e. suppress secondary velocity 

magnitudes, and this behaviour is sustained over the majority of the duct width

( 0.7  0.7)−   . This is due to the re-distribution in momentum in the regime- acceleration 

in the primary flow will drain momentum from the cross flow (secondary flow). However, 

towards the periphery of the duct there is a dramatic alteration in secondary velocity 

distribution - larger Maxwell displacement current ( )cd leads to a substantial elevation in 

secondary velocity which is protracted to the duct wall surfaces. However, the maximum values 

attained at the duct walls are considerably lower than the maximum secondary velocity 

computed again at the duct centre.  

Figs. 12- 13 display the evolution in primary ( )u and secondary ( )v velocity 

distributions for 
2 20M = (strong magnetic field), with 5cd = (high Maxwell displacement 

dielectric parameter) for a range of inverse Ekman numbers ( )2  1,  10,  20,  40K = .The 

significance of this parameter is critical in operational performance of real rotating MHD 

generators, since if unchecked it can lead to hydrodynamic instabilities, flow separation etc - 

see refs. [1, 66, 70]. This has been observed experimentally for 
2 ~ 100K (Coriolis rotational 

body force is 100 times the magnitude of the viscous hydrodynamic force). The rotational 

parameter is as noted the inverse of the classical Ekman number (Ek), introduced for 

geophysical vortex dynamics in meteorology which expresses the ratio of viscous to Coriolis 

forces. At low values of Ek (i.e. very high values of 2K ), thin boundary layers known as Ekman 

layers are created on the rotating duct walls which substantially interact with the momentum 

transport in the core internal flow. Two distinct features characterize the flow field. While these 

layers dominate for 2K  above 100, they still may partially form at lower rotational speeds. 

Increasing 2K  values clearly markedly decelerate the primary flow (Fig. 12) across the duct 

span and again symmetrical parabolic profiles are computed. The wider lateral distributions are 

constricted with increasing Coriolis force (higher 2K ). At the highest values of
2 40K = , flow 

reversal is in fact induced near the both duct walls- this is absent for
2 40K  . Conversely 
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secondary flow (Fig. 13)  is accelerated (principally in a narrow core region) with increment in 

2K , although a less pronounced change in magnitudes is computed compared with primary 

velocities over the same range of inverse Ekman numbers. Near the duct walls, initially back 

flow is mobilized, and a noticeable deceleration in the secondary flow is produced.  

Figs. 14 -15describe the response in primary ( )u and secondary ( ) v i.e. cross flow 

velocity distributions for 
2 20M = (strong magnetic field), 

2 20K = (strong rotation), 5cd =

(high Maxwell displacement dielectric parameter) over a range of applied magnetic field 

inclinations (  0, / 6, / 4, / 2)   = .A considerable deceleration in primary flow (Fig. 14) is 

generated with greater inclination angle. For the case 2 0, ( ) 1cos = → and the magnetic field 

is in the vertical direction (along the z-axis i.e. transverse magnetic field scenario), and the 

Lorentzian body force component in the primary flow Eqn. (16) i.e. 2 2( )  M cos u reduces to

2M u . The secondary momentum Lorentzian magnetic drag component is unaffected since-

M2v is independent of the obliqueness of the magnetic field. As   increases through π/6, π/4 

(both oblique cases) and finally π/2 (magnetic field is parallel to the positive x-direction 

constituting the “aligned magnetic field case”), the Lorentzian drag is progressively decreased. 

However, the flow is still decelerated since the significant rotational body force dominates 

( )2 20K = and momentum diffusion in the primary flow is inhibited. Maximum flow 

acceleration is therefore only achieved for the transverse magnetic field case. With increasingly 

oblique field, the primary flow is substantially damped, and this permits a useful non-intrusive 

mechanism for regulating the flow and eliminating any backflow or instability during 

operations. Fig. 15 shows that secondary flow is also damped in the core zone of the duct with 

increasing inclination of the magnetic field,  ; however unlike the primary flow, towards the 

near-wall regions, flow acceleration is induced which is again associated with a re-distribution 

in momentum in the rotating duct regime. In both figures however symmetrical profiles about 

the channel centre line are observed.  

Figs. 16-17 display the evolution in primary ( )u and secondary ( ) v distributions for 

2 20M = (strong magnetic field), 
2 20K = (strong rotation), 4cd = (high Maxwell 

displacement dielectric parameter) over a range of magnetic Prandtl numbers, Pm. mP is 

generally less than unity in magnetohydrodynamic induction flows [73, 76, 77], but not 

massively less than unity. Magnetic Prandtl number quantifies the relative magnitude of 

momentum and magnetic field diffusion rates. At the duct walls it can also be used to measure 
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the ratio of hydrodynamic and magnetic boundary layer thicknesses. For liquid metals 

5~ 10mP − to 10-9 i.e. it has an extremely low value, since the magnetic diffusivity of such fluids 

will be very high. However, in dielectric gases e.g. partially ionized hydrogen, oxygen etc, 

values are between 0.1 and 0.8. Pm also defines the ratio between the magnetic Reynolds 

number and the ordinary Reynolds number, thereby expressing the ratio of the kinematic 

viscosity to the magnetic diffusivity. Values approaching unity provide a wider perspective of 

the flow phenomena and also correspond to cases where magnetic Reynolds number ( )mRe is 

high, which is important for MHD induction generator systems. This latter parameter quantifies 

the ratio of the fluid flux to the magnetic diffusivity and describes the diffusion of magnetic 

field along the streamlines, in an analogous fashion to the ordinary Reynolds number, which 

determines the vorticity diffusion along the streamlines. For high values of this parameter, the 

magnetic field will move with the flow and this constitutes the “frozen-in” scenario, as opposed 

to the case where magnetic Reynolds number is much less than unity, for which the magnetic 

field will not be distorted by the flow field. mP features in the primary and secondary magnetic 

induction equations (18, 19) via the velocity coupling terms, ( )1/  cosmP  . /u   and

( )1/  cosmP  . v/. Increasing mP strongly elevates the primary velocity (Fig. 16) magnitudes 

in both the lower and upper duct half spaces i.e. it mobilizes strong primary flow acceleration. 

A dimpled inverted parabolic profile is computed across the duct span at values of magnetic 

Prandtl number 0.1mP  .  For the case of 0.1mP = (magnetic diffusion rate is ten times the 

momentum diffusion rate) a perfectly inverted parabolic topology is computed. Maximum 

primary velocity therefore is obtained with highest magnetic Prandtl number and arises twice 

in the duct span i.e. in the middle of each half space region at ~ 0.6  . Secondary velocity 

(Fig. 17) is weakly enhanced with increasing magnetic Prandtl number, although this is 

constrained to the core region of the duct only ( 0.75  0.75)−   with some flow reversal 

computed in the outermost domains; external to this core zone, a marked decrement in 

secondary velocity is generated (values are negative) with vanishing secondary flow at both 

duct walls. The peak value of secondary velocity is again observed at the duct centre line. 

Overall an oscillatory nature is computed which is not present in the primary flow (Fig. 16). 

Figs. 18-19illustrate the HAM solutions for primary and secondary induced magnetic 

field ( )x y,b b for 
2 20M = (strong magnetic field), 

2 20K = (strong rotation), 

 / 4, / 4,  0.2T    = = = with cd (Maxwell parameter) = 4 corresponding to different 
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values of magnetic Prandtl number, 0.1,  0.3,  0.5,  0.72mP = . Substantial depletion in primary 

magnetic induction xb (Fig. 18) is computed in the lower duct half space with increment in 

magnetic Prandtl number; the contrary pattern is observed in the upper duct half space. Again, 

due to the electrically perfectly conducting nature of the duct walls (no magnetic leakage or 

dielectric losses), the variation in primary induced magnetic field is restricted to the near-wall 

zones; in the central core region no tangible variation is observed (here viscous forces are also 

minimized).Magnetic flux reversal (i.e. negative primary magnetic induction) does arise close 

to the upper duct wall at all values of magnetic Prandtl number; however, it is only generated 

for magnetic Prandtl number 0.1mP  in the vicinity of the lower duct wall. Effectively a change 

in relative momentum and magnetic field diffusion rates imparts a considerable modification 

in primary induced magnetic field distribution.  Secondary magnetic induction ( )yb exhibits 

the opposite response to an increase in magnetic Prandtl number, as visualized in Fig. 19. In 

all profiles a sigmoidal topology is observed from the lower duct wall to the upper duct wall. 

In the lower duct half space, a substantial boost in secondary magnetic induction ( )yb is 

computed and maximum positive by value corresponds to the highest mP value (0.72, i.e. 

ionized hydrogen). However, in the upper duct half space, a strong damping is produced in the 

secondary induced magnetic field. Again, in the core region, there is no variation observed in 

yb at any magnetic Prandtl number, although the plateau is slightly wider than for the case of 

primary induced magnetic field, xb (Fig. 18).  

 

6. CONCLUSIONS 

 

Motivated by probing deeper into the fluid dynamics of hybrid rotating ionized gas MHD 

(magnetohydrodynamic) power generators, a novel mathematical model has been presented for 

Newtonian magnetohydrodynamic pumping of partially ionized hydrogen in a rotating duct 

with perfectly electrically conducting walls and oscillatory, Maxwell displacement (dielectric 

parameter) and magnetic induction effects under the action of an inclined static magnetic field. 

The non-dimensional transformed boundary value problem comprising primary and secondary 

momenta and primary and secondary induced magnetic field under forced oscillation 

conditions and no slip wall conditions have been solved using the power-series based homotopy 

analysis method (HAM) with appropriate embedding and auxiliary convergence parameters. 

Validation with an Adomian decomposition method (ADM) has also been included and 

excellent agreement obtained over general operational working conditions. Detailed graphical 
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visualization of the impact of emerging parameters on the non-dimensional primary and 

secondary velocity components ( ,  )u v and magnetic induction components ( ,  )x yb b across the 

duct have been presented. Average squared residual errors for all key variables

( ), , ,and u v bx by    with associated CPU times at various orders of the HAM iteration have 

also been documented. The present simulations (executed in MATHEMATICA and MATLAB 

symbolic software) have shown that: 

(i) With increasing inverse Ekman number strong damping is observed in the primary flow 

whereas the secondary flow is accelerated, in particular in the core region of the duct.  

(ii) With elevation in Maxwell displacement effect (for the case of a 45 degrees inclined 

magnetic field i.e. / 4 = ) there is a considerable depletion in primary magnetic induction at 

the lower wall of the duct and elevation in magnitudes at the upper duct wall; however in the 

core region no tangible modification is computed.  

(iii)With greater Maxwell displacement effect secondary magnetic induction is elevated near 

the lower duct wall whereas it is boosted near the upper duct wall. 

(iv)With increasing magnetic Prandtl number (i.e. ratio of magnetic Reynolds number to 

ordinary Reynolds number) in the presence of strong Maxwell displacement current, strong 

magnetic field and high inverse Ekman number (strong Coriolis body force relative to viscous 

force), the primary velocity is accelerated in both the left and right half space of the duct with 

a plummet in magnitude at the centreline.  

(v)With larger magnetic Prandtl number, secondary velocity exhibits a much lower 

enhancement in both zones with only weak acceleration near the duct walls. Both velocity 

components achieve symmetrical distributions about the duct centreline.  

(vi) A significant depletion in primary magnetic induction is computed near the lower wall with 

enhancement near the upper wall; the contrary behaviour is exhibited by the secondary induced 

magnetic field.  

(vii)The current study has shown that HAM (and ADM) offers an excellent platform for 

simulating complex MHD viscous flows with multi-physics. 

 

In the present work the model developed has assumed the duct walls to be rigid. However new 

developments in MHD generators have embraced bio-inspired flexible duct walls - such 

systems require magnetohydrodynamic fluid structure interaction (FSI) analysis [102, 103], 

which is being considered presently, again for the case of partially ionized gases (hydrogen). 

Furthermore, attention has been confined to Newtonian viscous working gases. Increasingly 
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engineers are exploring non-Newtonian seeded working fluids which require more 

sophisticated rheological models for capturing complex fluid characteristics including 

microstructural liquids (spin of suspended particles) [104], magnetized fluid-particle 

suspensions (multiphase media) [105] and electroconductive viscoelastic liquids [106]. These 

areas constitute interesting and potentially beneficial pathways for future investigation and 

efforts in this regard will be communicated imminently. 
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